Depauperate fusulinid faunas of the Tengchong Block in western Yunnan, China, and their paleogeographic and paleoenvironmental indications

Yukun Shi,1,2 Hao Huang,3 and Xiaochi Jin3

1School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China (ykshi@nju.edu.cn)
2State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Science, Nanjing 210000, China
3Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China (geohaohuang@gmail.com), (jinxchi@cags.ac.cn)

Abstract.—New samples of fusulinids collected in the Tengchong Block, western Yunnan, China, are systematically studied and presented here. The fusulinid fauna from the Xishancun section in the Shanmutang area is dominated by Chusenella and Nankinella, whereas that from the Shuangheyan area is composed mainly of Chusenella and Schwagerina. Both faunas are dated as Roadian–Capitanian (middle Permian). These new findings are integrated with fusulinid taxa reported earlier from the block to demonstrate the taxonomic features and paleogeographic significance of Permian fusulinids. The low generic diversity through early and middle Permian and the paucity of middle Permian neoschwagerinids and verbeekinids in the block confirm its Gondwana-affinity attributes. Moreover, the Permian fusulinids of the Tengchong Block are depauperate; i.e., consisting of a limited number of species with abundant individuals. This particular feature commonly suggests an inhospitable environment, and carbonates of varied facies containing these faunas in the Tengchong Block suggest a facies-independent factor as the reason, most likely the relatively low temperature of seawater.

Introduction

The Tengchong and Baoshan blocks, in the western Yunnan of Southwest China, are considered to be Gondwana derived, mainly on the basis of their Permo-Carboniferous Gondwana-affinity sediments (diamictites, pebbly mudstones) and fossils (cool- to cold-water faunas; Wang, 1983; Jin, 1994, 1996, 2002; Wopfner, 1996; Fig. 1). Both blocks have been suggested to have been at the northern margin of Gondwana during the Permo-Carboniferous glaciation and detach thereafter (e.g., Wopfner, 1996; Shi and Archbold, 1998; Ueno et al., 2003; Wang et al., 2013). The carbonate deposition starting in the late early Permian marks the rapid climate amelioration after the glaciation (Jin et al., 2011). The continuation of the carbonate environment resulted in the formation of Permian (to Triassic) carbonate successions.

The understanding of the remarkable climate transition in the Tengchong Block is mainly attributed to the work since the 1980s. Geological mapping and a few studies on Carboniferous and Permian strata in the Tengchong Block have discovered a number of fossils and accumulated important geological data (e.g., Geological Survey of Yunnan, 1979, 1985, 1986; Sheng and He, 1983; Fan, 1993; Nie et al., 1993; Yang, 1998; Jin, 2002). The brachiopods, bryozoans, crinoids, and small corals reported from the late Carboniferous–early Permian clastic sediments indicated a cool climate, whereas the fusulinids discovered from the Permian carbonates suggested somewhat warmer water (Nie et al., 1993; Jin, 2002; Duan et al., personal communication, 2005; Shi et al., 2008; Jin et al., 2011). Nevertheless, among these fossils, only limited materials have been illustrated and described (e.g., Sheng and He, 1983; Fan, 1993; Nie et al., 1993; Yang, 1998; Shi et al., 2008); thus most of these reported data are unexaminable for further discussions concerning paleoecology and paleobiogeography. In particular, although fusulinid foraminifera have long been recognized as an environment-sensitive indicator (e.g., Thompson, 1948; Ross, 1967, 1995; Rui, 1981; Leven, 1993), the fusulinids in the Tengchong Block were not systematically studied until several years ago (Shi et al., 2008).

During recent years, we have conducted several field trips in the Tengchong Block and discovered a considerable number of fusulinid fossils. According to the results of our studies, the early Permian fusulinids are dominated by Eoparafusulina, and the middle Permian fusulinids are dominated by Chusenella and Monodiexodina. These genera have also been found in many other Gondwana-derived blocks although with specific distinctions (Shi et al., 2008). In 2010 and 2013, more middle Permian fusulinid specimens were found in both northern and southern regions of the Tengchong Block. This paper describes these newly discovered fossils and discusses their particular taxonomic features. In conjunction with previously reported data, these new materials are then used to unravel the paleogeographic and paleoenvironmental details of the Tengchong Block.

Geologic setting

The Tengchong Block is bounded by the Nujiang fault zone on the east. Its west boundary is hard to define due to the lack of available data, although it has been suggested to lie roughly

https://doi.org/10.1017/jpa.2016.122 Published online by Cambridge University Press
along the line from Bahmo to Myitkyina in Myanmar (Jin, 1996; Fig. 1). The Permo-Carboniferous succession in the Tengchong Block is generally composed of siliciclastics, namely the Menghong Group, in the lower part and carbonates in the upper part. In the northern region, the Menghong Group consists of, in ascending order, the Zizhi Formation and the Kongshuhe Formation and is overlain by carbonates of the Dadongchang Formation (Jin, 2002; Jin et al., 2011; Fig. 2). The 600–700 m thick Zizhi Formation is composed of mainly sandstones, whereas the Kongshuhe Formation is composed of diamictites, pebbly mudstones, black mudstones, and siltstones, indicating probably a glacial-deglacial-postglacial sequence (Jin, 2002; Jin et al., 2011). The Dadongchang Formation consists of up to 600 m thick limestones and dolomitic limestones. The early and middle Permian fusulinids reported previously were collected from the lower part of the limestones (Jin, 2002; Shi et al., 2008). The fusulinid materials that we newly collected from the northern Tengchong Block are from the lower part of the Dadongchang Formation (Fig. 1).

The Menghong Group in the southern Tengchong Block includes, in ascending order, the Bangdu Formation, Luogengdi Formation, Siguaping Formation, and Damuchang Formation. It has a thickness of about 1,500 m and exhibits a similar lithological sequence to that in the northern region, except for lateral variation of thicknesses of main lithological components. Above the siliciclastics rest the carbonates of the Yanzipo Formation, composed of massive fossiliferous limestones in the lower part, where fusulinids have been reported (Geological Survey of Yunnan, 1986; Fan, 1993), and dolomitic limestones and dolomites in the upper part, which was once named ‘Shuangheyan Formation’ (Geological Survey of Yunnan, 1986; Jin, 1994; Fig. 2). The fusulinid samples we newly collected in the southern Tengchong Block are from loose stones on the carbonate hillside of the Shuangheyan valley (hereafter the Shuangheyan fauna; Fig. 1).

Materials and methods

About 20 kg of limestones containing fusulinids were collected from the Xishancun Section of Shanmutang area and the Shuangheyan valley. The axial thin sections of fusulinids were prepared by grinding the specimens parallel to the coiling axial until the middle of the proloculus was exposed. Altogether, 186 axial thin sections have been prepared and then carefully examined for the identification. Digital images of each specimen were collected using cameras attached to a transmitted light microscope with digital resolutions of 72 dots per inch (dpi).
Repositories and institutional abbreviations.—All illustrated specimens are housed in the School of Earth Sciences and Engineering, Nanjing University, China. Specimen catalog numbers indicate either collecting localities or dates.

Systematic paleontology

Classification follows the scheme of Sheng et al. (1988).

Superfamily Fusulinoidea Möller, 1878
Family Schwagerinidae Dunbar and Henbest, 1930
Subfamily Pseudoschwagerininae Zhang, 1963
Genus Chusenella Hsu, 1942

Type species.—Chusenella ishaensis Hsu, 1942 from the Chungkuh Limestone of Yishan area in Kuangxi province, China, by original designation.

Chusenella riaguensis Chen, 1985 in Zhang, Chen, and Yu, 1985
Figure 3.17, 3.18, 3.20, 3.21, 3.23–3.26
1985 Chusenella riaguensis Chen; Zhang et al., p. 131, pl. 2, fig. 7.

2010 Chusenella sinensis Sheng, 1963; Zhang et al., p. 971, fig. 5.31, 5.32, 5.39–5.48.

Holotype.—The specimen (Sz2f2) from the Zhuobu Formation, Xainza area of central Tibet, China (Zhang et al., 1985, pl. 2, fig. 7).

Occurrence.—The present species only occurred in the Tengchong Block and central Tibet (Zhang et al., 1985; Zhang et al., 2010).

Description.—Test small, fusiform with bluntly pointed poles. Adult tests commonly contain 5–7.5 whorls, with length in the range of 2.8–3.2 mm and width 1.2–1.5 mm. The first three whorls tightly coiled with sharply pointed poles, and after that the coiling becomes looser. Spirotheca composed of the tectum and coarsely alveolar kerotheca. Septa are nearly straight in the inner whorls and flute strongly but regularly. Septal folds are nearly as high as half of the chamber. Proloculus is moderate in size, commonly 0.1–0.2 mm in outside diameter. Secondary deposits fill the axial regions.

Figure 2. The composite Permian stratigraphic successions in the northern and southern Tengchong Block showing occurrence of fusulinids studied here and reported by Shi et al. (2008). The succession in the northern part is based on sections near the Shanmutang village, and in the southern part is based on sections in the Damuchang and Shuangheyan areas (Jin, 1994).
Figure 3. Fusulinids from the Xishancun section of Shanmutan area. (1–4, 10) *Nankinella orientalis*, cat. nos. 37-6-1, 37t-1-4, 130317-4-18, 37t-1-4-2, 37-6-2; (5, 6, 11) *Nankinella mingshanensis*, cat. nos. 37-12-2, 37-9, 37t-1-11; (7–9) *Nankinella* sp., cat. nos. 130317-4-10, 130317-4-22, 130317-4-11; (12–16, 19, 22, 27) *Chusenella* cf. *C. minuta*, cat. nos. 130317-4-7, 37-7, 37t-1-3, 130317-4-15, 37t-2-6, 37t-1-5-1, 37t-2-1, 37-19; (17, 18, 20, 21, 23–26) *Chusenella riagouensis*, cat. nos. 37-21, 130317-4-3, 37-4, 130317-4-14, 37t-2-7, 130317-4-23, 37-5-2, 37-11. Scale bar = 1 mm.
Remarks.—The present species is typical in the Xainza area of central Tibet. Zhu (1982) assigned the specimens from Xainza to *Chusenella sinensis minor* because they share similarity with *Chusenella sinensis* Sheng and also have significantly smaller size. Chen (in Zhang et al., 1985) renamed the specimen holding inner whorls and slightly bigger adult test. The specimens from Tengchong Block are rather similar, with regard to adult test shape and ontogenetic shape changes, to the types of *Chusenella sinensis*, but they are only half the size. Therefore, it is not appropriate to assign them into *C. sinensis* until there is enough evidence to demonstrate that the species could cover a quite wider size distribution. Therefore, we assign the present group of specimens to *Chusenella riaguensis*.

Chusenella cf. *C. minuta* Skinner, 1969

Figure 3.12–3.16, 3.19, 3.22, 3.27

Occurrence.—This species only discovered in the Tengchong Block hitherto.

Description.—Test small, inflated fusiform with distinctively bluntly pointed poles. Adult tests have 6.5–8 whorls with 3.4–4.5 mm in length and 1.5–2.3 mm in width, giving axial ratio 1.8–2.6. The first three or four whorls tightly coiled with sharply pointed poles, and after that the coiling becomes looser. Spirotheca composed of the tectum and coarsely alveolar keriotheca. Septa are nearly straight in the inner whorls and flute strongly but regularly. Septal folds are slightly higher than half of the chamber’s height. Proloculus is moderate in size, 0.1–0.2 mm in outside diameter. Secondary deposits fill the axial regions.

Remarks.—The present specimens are similar to *Chusenella minuta* Skinner, 1969 in terms of the adult test shape and general ontogenetic shape change, but differ in the less tightly coiled inner whorls and slightly bigger adult test.

Chusenella mingguangensis Shi et al., 2008

Figure 4.1–4.7, 4.10, 4.11, 4.13–4.16

2008 *Chusenella mingguangensis* Shi et al., p. 126, fig. 4.1–4.8, 4.10–4.16, 4.20.

Holotype.—The specimen (MCC2-b7) from the Dadongchang Formation, Shanmutang area of northern Tengchong, China (Shi et al., 2008, p. 126, fig. 4.2)

Occurrence.—This species only discovered in the Tengchong Block hitherto.

Description.—Test medium, elongated fusiform with bluntly rounded poles. Adult tests have 5.5–7 whorls with 4.5–6 mm in length and 1.2–1.8 mm in width, resulting axial ratio 3.5–4. The first two or three whorls tightly coiled, others expanding gradually. Spirotheca composed of the tectum and keriotheca. Septa folds regularly and widely spaced with height more than half the chambers. Proloculus is moderate in size, 0.1–0.2 mm in outside diameter. Secondary deposits fill the polar regions.

Remarks.—This species is rather abundant in the Caiyuanzi area, its type locality. Specimens characteristically exhibit intensively involute whorls and extensively developed axial filings. Although specimens of Shuangheyan are poorly preserved compared with the contemporaneous ones from the Shanmutang area, identical aforementioned characters could still be recognized.

Subfamily Schwageriniinae Dunbar and Henbest, 1930

Genus Schwagerina Skinner and Dunbar, 1936

Type species.—*Borelis princeps* Ehrenberg, 1842 from Am Onega-See, Russland, figured by Ehrenberg (1854), reassigned as genotype of *Schwagerina* by Möller (1877), and restudied by Dunbar and Skinner (1936).

Schwagerina chihsiiaensis (Lee, 1931)

Figure 4.17–4.23

1931 *Schellwienia chihsiiaensis* Lee, p. 287, pl. 1, fig. 2, 2a.

1962 *Schwagerina chihsiiaensis* (Lee), Sheng, p. 102, pl.15, fig. 5.

1986 *Schwagerina chihsiiaensis* Sheng, 1962; Xiao et al., p. 104, pl. 5, figs. 10, 14–17.

Holotype.—The specimen (without catalog number) from the uppermost Chihsia Limestone, Nanjing area, China (Lee, 1931, pl. 1, fig. 2)

Occurrence.—This species was first discovered in the Kungurian Chihsia limestone of South China (Sheng, 1962) and could range up to the Guadalupian Maokou Formation (Zhang et al., 1988). It was widely distributed in South and North China (Fan et al., 2013).

Description.—Test median, fusiform with bluntly rounded poles. The inner whorls with more sharply pointed poles. Adult tests grow 6.5–7 whorls, with 7.4–8.4 mm in length and 1.8–2.3 mm in width, giving form ratio 3.0–4.2. Spirotheca composed of the tectum and coarsely alveolar keriotheca. Septa flute strongly but regularly. Septal folds are lower than half of the chamber’s height in the inner whorls but becoming higher in the outer whorls. Proloculus is moderate in size, around 0.2 mm in outside diameter. Axial fillings present.

Schwagerina pseudocompacta Sheng, 1956

Figure 4.12, 4.24–4.26

1956 *Schwagerina pseudocompacta* Sheng, p. 190, pl. 8, figs. 4–6.

1962 *Schwagerina pseudocompacta*; Sheng, p. 106, pl. 17, fig.8.

1986 *Schwagerina pseudocompacta*; Xiao et al., p. 103, pl. 10, fig. 13.

2010 *Schwagerina pseudocompacta*; Zhang et al., p. 967, fig. 5.21–5.30.
Figure 4. Fusulinids from the Shuangheyan area. (1–7, 10, 11, 13–16) Chusenella mingguangensis, cat. nos. 090303-2-1, 090303-2-2, shy100321-2-7, 090304-2-11, 090303-2-11, shy100320-1-18, 090304-2-10, shy100319-6-10, 090304-2-4, shy100321-2-3, shy100320-1-1, 090304-2-9; (8, 9) Staffella sp., cat. nos. shy100321-1-2, shy100321-1-10; (17–23) Schwagerina chihsiaensis, cat. nos. shy100320-1-26, shy100320-1-32, 090304-2-12, shy100320-2-8, shy100320-1-11, shy100320-1-2, shy100320-1-23; (12, 24–26) Schwagerina pseudocompacta, cat. nos. 090303-2-4, shy100320-1-9, shy100321-2-3, shy100320-2-9. (1–7, 10–26) Scale bar = 1 mm; (8, 9) scale bar = 500 µm.
Holotype.—The specimen (No. 8165) from the Maokou Formation, Liangshan area of Shaan’xi, China (Sheng, 1956, pl. 8, fig. 6).

Occurrence.—This species is widely distributed in the Guadalupian Maokou Formation in North and South China, and in the Lhasa Block (Fan et al., 2013).

Description.—Test small, fusiform with bluntly rounded poles. Spirotheca composed of the tectum and coarsely alveolar kerotheca. Adult tests commonly have 5–6.5 whorls, with 4.0–5.4 mm in length and 1.7–2.3 mm in width, giving axial ratio 2.3–2.7. Septa are fluted strongly and irregularly. Septal folds are nearly as high as half of the chamber’s height. Proloculus is moderate in size, around 0.2 mm in outside diameter. Axial fillings present.

Family Staffellidae Miklukho-Maklay, 1949

Subfamily Staffellinae Miklukho-Maklay, 1949

Genus Nankinella Lee, 1934

Type species.—Staffella discoides Lee, 1931 from the upper Chihsia Limestone of Nanjing in Jiangsu province, China, assigned as the genotype of Nankinella by Lee (1934).

Nankinella mingshanensis Sheng and Rui, 1984

Figure 3.5, 3.6, 3.11

1984 *Nankinella mingshanensis* Sheng and Rui, p. 34, pl. 1, figs. 24–26.

Holotype.—The specimen (no. 82384) from the *Palaeofusulina sinensis* zone, Leping village of Jiangxi, China (Sheng and Rui, 1984, pl. 1, fig. 25).

Occurrence.—This species was first discovered in the upper Permian strata in Jiangxi (Sheng and Rui, 1984) and later discovered in the Maokou Formation in Guizhou (Zhang et al., 1985) and Yunnan (Zhou, 1998).

Description.—Test median, subrhomboidal with narrowly pointed periphery, slightly convex lateral sides, and closed umbilici. Adult tests commonly develop 6–9 whorls, with 1.5–1.9 mm in length and 2.0–2.5 mm in width, giving axial ratio around 0.7. Spirotheca with three layers, tectum as well as outer and inner tectorium. Septa straight. Proloculi are less than 0.1 mm in diameter.

*Nankinella sp.

Figure 3.7–3.9

Description.—Test median, elliptical with rounded periphery, slightly convex lateral sides and closed umbilici. Tests of the inner whors are subrhomboidal with narrowly pointed periphery. Adult tests develop 6–7.5 whorls, with length of 1.3–1.4 mm, width of 1.5–1.9 mm, giving axial ratio around 0.7. Spirotheca are composed of tectum, upper and lower tectorium. Septa straight. Proloculi are less than 0.1 mm in diameter.

Remarks.—The present species is similar to *N. orientalis* except for the much smaller size and the elliptical shape of the adult tests.

Results.

The Xishancun fauna from the northern Tengchong Block is composed of *Chusenella riagouensis* Chen, 1985, *C. cf. minuta* Skinner, *Nankinella cf. mingshanensis* Sheng and Rui, *N. orientalis* Miklukho-Maklay, 1954, and *Nankinella* sp. (Fig. 3). Among them, *Chusenella riagouensis* is the dominant species. Until now it was only found in the Xainza area of Tibet (Zhang et al., 1985). It is distinct from other *Chusenella* species in its small size. This species occurs in the Zhaopu (Zhou’bu) Formation of the Xainza area and indicates an age of Roadian to Capitanian.

Nankinella mingshanensis Sheng was first found in the upper Permian in Jiangxi (Sheng and Rui, 1984) and later discovered in the Guadalupian Maokou Formation in Guizhou and Yunnan (Zhou, 1998). *Nankinella orientalis* is widely distributed in the Changhsingian strata of North and South China (Zhang et al., 1985; Zhou, 1998). *Nankinella orientalis* is the dominant elementhere, and is also proli

Among them, *Chusenella riagouensis* is the dominant species. Until now it was only found in the Xainza area of Tibet (Zhang et al., 1985). It is distinct from other *Chusenella* species in its small size. This species occurs in the Zhaopu (Zhou’bu) Formation of the Xainza area and indicates an age of Roadian to Capitanian.

This species is widely distributed in the Changhsingian of North and South China, and has been reported from the Guadalupian strata in Azerbaijan associated with *Chusenella* and Verbeekina (Ruzhentsev and Sarycheva, 1965).

Description.—Test small, fusiform with bluntly rounded poles. Spirotheca composed of the tectum and coarsely alveolar kerotheca. Adult tests commonly have 5–6.5 whorls, with 4.0–5.4 mm in length and 1.7–2.3 mm in width, giving axial ratio 2.3–2.7. Septa are fluted strongly and irregularly. Septal folds are nearly as high as half of the chamber’s height. Proloculus is moderate in size, around 0.2 mm in outside diameter. Axial fillings present.

Nankinella orientalis Miklukho-Maklay, 1954

Figure 3.1–3.4, 3.10

1954 *Nankinella orientalis* Miklukho-Maklay, p. 70, pl. 11, figs. 1–4.

1963 *Nankinella orientalis*; p. 31, pl. 2, figs. 8–10.

Holotype.—The specimen (no. 226-4-45) from a pebble of foraminiferal limestone from Lower Triassic conglomerates in Epchika area, northern Caucasus (Miklukho-Maklay, 1954).
are all small or medium in size. Than 5 mm in length, and even the largest species, and Southeast Asia, but more than two-thirds of the species are southern Europe, North America, Japan, South China, and Central species are also signi
cantingguangensis
2007; Zhang et al., 2010; Zhang et al., 2013). From the Xainza area are hardly over 4 mm in length (Huang et al.,
Eoparafusulina
Eoparafusulina
and
Parafusulina
besides the eponymous genera. The Caiyuanzi fauna is dominated by Chusenella mingguangensis and Monodioxodina gigas Shi et al., 2008.
The common dominant element in the three middle Permian faunas of the Tengchong Block is Chusenella, and the species discovered, i.e., C. riagouensis, C. mingguangensis, C. cf. minuta, are all small or medium in size. Chusenella is widely distributed in southern Europe, North America, Japan, South China, and Central and Southeast Asia, but more than two-thirds of the species are medium to large in size, which means over 6 mm in test length. Most Chusenella species from the Tengchong Block are less than 5 mm in length, and even the largest species, Chusenella mingguangensis, is only around 6 mm long. The small Chusenella species are also significant in the Lhasa Block, and those reported from the Xainza area are hardly over 4 mm in length (Huang et al., 2007; Zhang et al., 2010; Zhang et al., 2013).

Discussion

Depauperate faunas and paleoenvironmental inference.—The common feature for all four faunas of the Tengchong Block is low generic and speci
diversity with abundant specimens. Although fusulinid individuals discovered in all four locations were plentiful, no more than five genera and six species have been recovered in any given fauna, and nearly half the individuals of each fauna belong to the predominant species.

Modern examples of depauperate foraminiferal assemblages are diagnostic of inhospitable environments. For example, Amphistegina lobifera Larsen, 1976 is a larger benthic foraminiferal species with a tolerance for low winter temperatures and mixotrophic feeding strategy. It is found in the Mediterranean and dominates the benthic foraminiferal assemblages there (Triantaphyllou et al., 2012). Androsina lucasi Lévy, 1977 thrives in open, dwarf-mangrove flats areas in exceptional abundance, owing to its euryhaline adaptation (Hallock and Peebles, 1993). The Frierfjord of Norway was once inhabited seas with relatively cool temperate conditions. Fusulinids likely include low temperature and speci
development of green algae in these faunas denotes adequate sunlight in these shallow marine environments. As a result, the probable controlling factor of these impoverished faunas could be unfavorable temperature. Therefore, we infer that Permian depauperate fusulinids in the Tengchong Block probably inhabited seas with relatively cool temperate temperatures.

The Gondwana-affinity feature and paleogeographic discussion.—We compiled all the fusulinid data hitherto documented from the Tengchong Block in order to fully understand the fusulinid composition and their paleogeographic indications. There are several reports of Permian fusulinids from the Tengchong Block prior to 2008, although without illustrations or descriptions (Geological Survey of Yunnan, 1985, 1986; Fan, 1993; Nie et al., 1993). According to our recent study, specimens previously reported as Hemifusulina from the Kongshuhe area (Fan, 1993; Nie et al., 1993) should be assigned to Eoparafusulina (Shi et al., 2008). All other reported fusulinid genera from the block are valid and considered in the following discussion.
The generic diversities of fusulinids through the early and middle Permian of the major Gondwana-derived blocks, including the Tengchong Block, are listed in Table 1. Integrated generic lists from peninsular Thailand and northwest peninsular Malaysia (PTNPM), Shan State of Burma, Lhasa, Baoshan, and Tengchong blocks are presented because fusulinid data from these blocks have been updated recently.

Figure 5. Diverse lithological facies in fusulinid-containing sections/areas of Tengchong. (1) Packstone, from Caiyuanzi Section of Shanmutang area, cat. no. NMC+3-2; (2) packstone, Shuangheyan area, cat. no. 100320-2-1; (3) dolomitized wackestone with (3a) exhibiting dolomites, from Shuangheyan area, cat. no. 100321-1-3; (4) wackestone, from Xishancun section of Shanmutang area, 130317-4-7; (5) grainstone, from Shuangheyan, cat. no. O90304-2-1; (6) grainstone with fine-grained bioclasts and *Monodiexodina gigas*, from Caiyuanzi Section, cat. no. MCC8-11. (1–3, 4–6) Scale bars = 1 mm; (3a) scale bar = 200 µm.
<table>
<thead>
<tr>
<th>Ages</th>
<th>Turkey</th>
<th>Iran and Transcaucasia</th>
<th>South Afghanistan</th>
<th>South Pamir</th>
<th>Lhasa Block</th>
<th>Peninsular Thailand and northwest Peninsular Malaysia</th>
<th>Shan State (East Myanmar)</th>
<th>Baoshan Block</th>
<th>Tengchong Block</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kungurian</td>
<td>13 (3)</td>
<td>15 (4)</td>
<td>23 (6)</td>
<td>21 (7)</td>
<td>0</td>
<td>Monodiodoxina</td>
<td>1</td>
<td>Parafusulina</td>
<td>0</td>
</tr>
</tbody>
</table>

Sources See Ueno (2003) | Wang et al., 1981; Zhu, 1982; Zhang et al., 1985; Nie and Song, 1990; Cheng et al., 2005; Huang et al., 2007; Zhang et al., 2010; Zhang et al., 2013 | Ingavat-Helmcke, 1993; Fontaine et al., 1994; Hassan et al., 2014 | Oo et al., 2002; Latt et al., 2008 | Ueno, 2003; Huang et al., 2009; Shi et al., 2011; Huang et al., 2015a, 2015b | Geological survey of Yunnan, 1979, 1985, 1986; Fan, 1993; Nie et al., 1993; Shi et al., 2008 |

Numbers in square brackets indicate genera number of Pseudoschwagerininae; starred genera and numbers within parentheses refer to those of Verbeekinidae and Neoschwagerinidae.
The early Permian fusulinids of the Cathaysian (tropical Tethyan) region are characterized by many species in the subfamily Pseudoschwagerininae. By contrast, the Gondwana-derived blocks contain generally less diverse pseudoschwagerine. For example, the common genera *Pseudoschwagerina*, *Robustoschwagerina*, *Sphaeroschwagerina*, and *Zellia* are abundant in most sections of South China (Zhu et al., 2002; Shi et al., 2009), but they are sparsely distributed in the Gondwana-derived blocks (Ueno, 2003; Table 1). Moreover, the overall diversities of early Permian fusulinids in the Gondwana-derived blocks are commonly lower than those in South China. For example, the Asselian–Sakmarian fusulinids typically include over 15 genera in South China, whereas most Gondwana-derived blocks have fewer than 10 genera. In the Tengchong Block, early Permian fusulinids are only composed of three genera, *Eoparafusulina*, *Pseudofusulina*, and *Monodiexodina*, and the association is devoid of Pseudoschwagerininae.

The middle Permian fusulinids of the Gondwana-derived blocks are characterized by: (1) the relatively poor development of the tropical/subtropical Verbeekinidae and Neoschwagerinidae taxa, and (2) the association of certain Schwagerinidae genera, such as *Chusenella*, *Rugososchwagerina*, and *Eopolydixodina* (Ozawa, 1987). In the Tengchong Block, only one genus of Neoschwagerinidae, *Cancellina*, has been reported from the middle Permian strata of the northern region. Instead, *Chusenella* is the principal element. It occurs abundantly and is accompanied by *Nankinella* or *Monodiexodina* in the Shanmutang area and by *Schwagerina* in the Shuangheyan valley. In this respect, the fusulinids from the Tengchong Block bear strong Gondwana affinity.

With regard to the generic diversity through the early and middle Permian, the Gondwana-derived blocks could be further divided into two groups. Group 1 contains Turkey, Iran, and Transcaucasia, south Afghanistan, south Pamir; Group 2 includes the Lhasa Block, PTNPM, Shan State, Baoshan, and the Tengchong Block. Fusulinids from the former have evidently higher diversities than those from the latter in general, especially during Kungurian and the succeeding middle Permian.

Specifically, in the Asselian to Artinskian (early Permian) times, the blocks of Group 2, except the Tengchong Block, hosted fewer fusulinid genera than those of Group 1. The generic number from Tengchong Block might have been overestimated because some of the previously reported genera cannot be checked due to the lack of illustration or description. In the Kungurian, fusulinids in Group 1 areas were diverse, characterized by the proliferation of newly developed Verbeekinidae and Neoschwagerinidae genera containing a new inner skeletal structure named parachomata. However in Group 2 areas, fusulinids scarcely occurred, and the only recorded genera, i.e., *Monodiexodina* and *Parafusulina*, developed a new structure called cuniculi.

During the middle Permian, fusulinid in Group 1 areas were more diverse, including certain newly evolved taxa, i.e., Neoschwagerinidae and Verbeekinidae. Group 2 areas still hosted less diversified fusulinids, especially within the Neoschwagerinidae and Verbeekinidae, than Group 1. The diversification of the families Verbeekinidae and Neoschwagerinidae is believed to be diagnostic for the middle Permian Tethyan region (Leven, 1993; Ross, 1995). Representatives of these families are thought to have been thermally stenotropic and typify tropical or subtropical warm-water environment (Gobbert, 1967; Ozawa, 1970; Ross, 1982; Stevens, 1985; Ueno, 2003). They are abundant in the Cathaysian Tethyan region and well developed in Group 1 areas, but obviously less so in Group 2. In most blocks of Group 2, Schwagerinidae fusulinids, such as *Chusenella*, play the major role. In the Tengchong Block, *Chusenella* co-occurs with either Schwagerina or Nankinella, and in the PTNPM it is accompanied by Schwagerina, Nankinella, and *Staffella* in several sites (Ingavat-Helmcke, 1993; Hassan et al., 2014). A *Chusenella*-Nankinella association was reported from the Xainza area of the Lhasa Block, although the dominant species are different from those of the Tengchong Block (Huang et al., 2007; Zhang et al., 2010). It is noteworthy that the *Chusenella* species in the Xainza area are rather small, displaying a certain similarity to those of the Tengchong Block as mentioned before. In the Baoshan Block, *Chusenella* was found in various locations with Schwagerina, Rugosos fusulina, or Nankinella (Huang et al., 2015b). The genus has not been reported yet from the Shan State.

In summary, by comparison with Group 1, the regions of Group 2 demonstrate overall fewer fusulinid taxa in both early and middle Permian and impoverished Neoschwagerinidae and Verbeekinidae. The Gondwana-derived blocks were geographically reconstructed to lie in a southern transitional region between the Paleo-equator and temperate/cool Gondwanan Pangea during most of the Permian (Shi et al., 1995; Grunt and Shi, 1997; Shi and Archbold, 1998; Ueno, 2003). Most Group 2 members, i.e., PTNPM, Shan State, Baoshan Block, are interpreted to occur in the higher latitude portion of the southern transition region (Ueno, 2003; Huang et al., 2015a, 2015b, personal communication, 2016). In this regard, the Tengchong Block shares more similarities with these temperate marine blocks. This is consistent with the aforementioned paleoenvironment inference.

There are still several notable distinctions between the fusulinids of Tengchong Block and those of other Gondwana-derived blocks, revealing a somewhat endemic nature of the block. Whereas there are several Neoschwagerinidae and Verbeekinidae genera developed in the Shan State, Baoshan Block, and Lhasa Block of Group 2, they are rather scarce in the PTNPM and Tengchong Block. In the Tengchong Block, only the genus *Cancellina* of Neoschwagerinidae was reported in the Guanyinshan area (Fan, 1993). We searched that area during the fieldwork in 2010, but failed to verify its presence.

Monodiexodina was suggested to be an antitropical genus and confined paleogeographically to the northern and southern middle latitudinal areas (Ueno, 2006). However, there is no *Monodiexodina* reported from the Lhasa Block, Shan State, or Baoshan Block, but *Monodiexodina gigas* is a dominant species of the middle Permian of the Tengchong Block. Moreover, this species is significantly distinct from the *Monodiexodina* species of PTNPM (Fontaine et al., 1994; Hassan et al., 2014), and any other reported *Monodiexodina* species, for evolving a huge test with the diameter of 2 cm (Shi et al., 2008).

Among the fusulinids absent from the Tengchong Block, *Eopolydixodina* is thought to have been restricted to the Laurentian and peri-Gondwanan borders of the Tethys (Ueno, 2003; Colpaert et al., 2014). It is an endemic genus in the Western Tethys Province and constitutes a typical combo associated with *Rugososchwagerina* or *Xiaoxinzhaiella* (Ueno, 2003; Shi et al., 2005). This combo is absent in the Tengchong Block, but thrived in both Baoshan and Lhasa blocks.
Conclusions

1. This paper describes two newly collected fusulinid faunas from the Tengchong Block, involving Chusenella riangouensis, C. cf. minutia, Nankinella cf. mingshuanensis, N. orientalis, and Nankinella sp. from the Shanmutang area, and Chusenella mingguangensis, Schwagerina chilsiensis, Schwagerina pseudocompacta, and Staffella sp. from the Shuangheyan area. The former indicates an age of Roadian–Capitanian (middle Permian) age.

2. Middle Permian fusulinid faunas discovered in the Tengchong Block display the depauperate characteristic of low generic and specific diversities with abundant specimens. This may suggest an inhospitable temperate zone of shallow sea.

3. Hitherto published fusulinid data from the Tengchong Block include eight genera in the early Permian and 10 genera in the middle Permian. The fusulinids exhibit Gondwana affinity of low diversity and impoverished Pseudoschwagerininae, Verbeekeininae, and Neoschwagerininae. They further indicate that the block was probably located at the higher latitude area of the southern transitional zone.

Acknowledgments

X. H. An and P. Zong participated in the fieldwork. We thank P. H. Muller for offering information. We are grateful to J. Groves and another anonymous reviewer for their valuable suggestions and comments. This research is supported by the State Program of Overseas Study for Outstanding Young Scholars of Jiangsu, the National Natural Science Foundation of China (No. 41272043, 41372008), State Key Laboratory of Palaeobiology and Stratigraphy (Nanjing Institute of Geology and Palaeontology, CAS) (No. 133110), and the Fundamental Research Funds for the Central Universities (No. 20620140390).

References

Möller, V.V., 1877, Ueber Fusulinen und ähnliche Foraminiferen-Formen des russenischen Kohlenkalks: Neus Jahrbuch für Mineralogie, Geologie, und Paläontologie, v. 1877, p. 139–146.

Accepte 9 June 2016