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Abstract

This paper considers similarity solutions of the multi-dimensional transport equation for
the unsteady flow of two viscous incompressible fluids. We show that in plane, cylindrical
and spherical geometries, the flow equation can be reduced to a weakly-coupled system of
two first-order nonlinear ordinary differential equations. This occurs when the two phase
diffusivity £>(#) satisfies {D/D')' = I/or and the fractional flow function / (6) satisfies
df/d6 = KD"11, where n is a geometry index (1, 2 or 3), a and K are constants and primes
denote differentiation with respect to the water content 6. Solutions are obtained for time
dependent flux boundary conditions. Unlike single-phase flow, for two-phase flow with
n = 2 or 3, a saturated zone around the injection point will only occur provided the two
conditions /0' £)/(l — f)d9 < oo and/ ' ( I ) ^ 0 are satisfied. The latter condition is
important due to the prevalence of functional forms of / (6) in oil/water flow literature
having the property/'(I) = 0.

1. Introduction

McWhorter and Sunada [9] presented a useful range of integral solutions to two-phase
flow problems in both one and two dimensions based on the fractional flow function
approach of McWhorter [8]. While these solutions are exact and apply for arbitrary
capillary hydraulic properties, they do require iteration techniques to evaluate the
saturation profiles. The one-dimensional solution of [9] is similar to that given by
Sander et al. [19] which was based on the work of Parlange and Braddock [12] and
Parlange [10]. The solution of [19] also applies for arbitrary capillary hydraulic
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properties and requires iteration to obtain the exact saturation profiles. However its
advantage is that by incorporating the optimisation procedure of Parlange [11] an
accurate first estimate of the saturation profile is obtained which renders iteration
unnecessary.

There are now quite a few analytical closed-form exact solutions for two-phase
flow. These are predominantly for one-dimensional flow problems and originate with
Fokas and Yortsos [7] for D = D0(l - v9)~2, (Do and v constants), df/d6 = KD and
a constant flux boundary condition. Rogers et al. [ 16] then extended this to include the
effect of gravity through a linear hydraulic conductivity function. Solutions were also
obtained for two-phase absorption under Dirichlet boundary conditions by Sander et
al. [18] using the same D and / as Fokas and Yortsos [7], and Sander et al. [17] with
the same D but with / (61) = (/, + f29 + /3<?2)/(l - vd), where / , , f2 and / 3 are
constants.

In higher dimensions there seems to be only one exact explicit solution. This was
found by Weeks et al. [24] in two dimensions, without gravity, for radially symmetric
flow under a constant flux injection through a line source at r = 0. Their solution can
be written as

(
[0, r2>4Dot/a,

for D(9) = D00
a, f{9) = 6a+l and an injection flux V = 2D0/(a + 1). Their

solution was found by extending the first integral approach of Parlange et al. [ 15 ] from
single-phase to two-phase flow. In this paper we seek to use the same approach to
obtain first integral style similarity solutions, (#(</>); <j> = r/«/i), for three-dimensional
radially symmetric two-phase flow under a time dependent point source flux boundary
condition. For completeness we present the first integral solutions for all symmetric
geometries in one, two and three dimensions through a geometry index parameter n.
As such, the previous solutions of Sander et al. [19], n = 1, and Weeks et al. [24],
n = 2, will be obtainable directly from the theory presented here.

In n-dimensions, the nonlinear transport equation for radially symmetric two-phase
flow is given by [5]

where t is time, r is the radial coordinate and n = 1, 2 and 3 for plane, cylindrical and
spherical geometries. The boundary and initial conditions considered are

t = 0, r > 0 , 0 = 0, (1.3a)

r > 0 , r = 0, fq, -r"-lD(6)d6/dr = qw(r = 0,t)=qw0, (1.3b)

t > 0, r -+ oo, 6 -> 0. (1.3c)
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In (1.2) and (1.3), 9(r, t) is the normalised volumetric water content with 0 < 9 < 1
and is related to the actual water content 0 by 9 = (0 — 0r)/(0sat — ©r). where
©a, and 0 r are the saturated and residual water contents respectively. The flux of
water (or wetting fluid) is denoted by qm, non-wetting fluid qnw and the total fluid flux
qt = qw + qnw The volumetric flow rates <2, (i = w, nw, t) are related to their fluxes
qt by <7, = Qi/Gi®^ — 0r). Both Q, and the constant G depend upon n. In 1, 2 and
3 dimensions, G equals l,2nb (where b corresponds to the length of the line source),
and An respectively. For similarity, the water injection takes place along a plane, line
or point source subject to [12]

qwo=Vt"2-\ (1.4)

with V a constant.

2. First integral

In this paper we will only be considering unidirectional displacement of a non-
wetting phase by a wetting phase, therefore at r = 0, qnw = 0 and q, = qwo. Defining
the standard similarity variable

<S> = r t ~ l / 2 , (2.1)

then (1.2) reduces to

while (1.3a) and (1.3c) coalesce to 9 = 0, 0 -> oo. The handling of boundary
condition (1.3b) depends very much on n. Integrating (2.2) gives

-\ r ^T^*6=\f v - °IT
2 Jo d(j) L d<t>

where the last equality comes from combining (1.3b) and (1.4) and remembering
qt = qWo- In the case of n = 1, at <f> = 0, 9 = 9S, where 9S is constant with time and
related to V through (2.3) (since in this case 9{(j>) is invertible) by [19]

/
Jo

<pd9 = 2V. (2.4)

Here V is related to the well-known sorptivity S by 5 = 2 V and therefore (2.4) also
imposes an upper limit to V defined by 9S = 1.

When we move to two- and three-dimensional flow regimes (n = 2, 3) a saturated
zone will usually develop around the source [9]. In this zone 9 = 1, d9/d<p = 0 and
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6(<p) is not uniquely invertible. However if we define the edge of this saturated zone
by <p = <pi, then we can still invert the solution provided <p > <pt and then (2.3) and
(2.4) are replaced by

f , d9~\
\fV-<pn-lD—\ =V, n = 2,3, (2.5)

where 4>i is obtained from

f°° dd /"'
- / </>"— d(j>= / pde = 2V, n = 2,3.

Jfr d(p Jo

To obtain a first integral solution we follow the method as outlined in Parlange et
al. [13-15] and define the transformations

u = (f>D~]/2 (2.6a)

and

dy = dD/D, (2.6b)

where y is the independent variable. Equation (2.2) then becomes

where

If (2.7) is to lead to a first integral, then it is necessary that both the functions h(6) and
VD~n/2df/d6 be independent of 0. This is easily achieved by setting h{6) = I/a
and VD~n/2df/d0 = fi, where a and fi are constants. It is hardly surprising that the
condition h(6) = I /a emerges from our analysis. It is well-known that this is the
necessary condition for Lie group invariance of the nonlinear diffusion equation and
Richards' equation [2,21,22] which is a property that known exact solutions possess.
Integrating (2.8) shows that D(6) must be of the form

-, . Did) - D0{6 + n)a (2.9a)

or

\ (2.9b)
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where /z, A and p are positive constants, and (2.9b) is the limiting case of a —*• oo.
If we now set VD-"/2df/d9 = P and integrate using / (0) = 0 and / (1) = 1 then
/ (9) is given by

f° Dn'2da
2 ( 2 . 1 0 )

with

(2-11)
/0 D"'2d9

and D{6) given by either (2.9a) or (2.9b) only.
The form of (2.7) suggests we take a new function co ([13])

co = u/2 + u', (2.12)

which combined with (2.9)—(2.11) allows (2.7) to be rewritten as the first-order dif-
ferential equation

\u + - (n - 1 - Pu2-")] co2 + (l + -\co - (2co - u)^- = 0. (2.13)
\_ u J V a) du

Therefore whenever D and/ obey (2.9) and (2.10) a first integral exists. Equations
(2.12) and (2.13) form a weakly-coupled system of first-order differential equations
for the function u(y). First consider the case of the exponential diffusivity as given
by (2.9b). When D ^ 0 at 6 = 0, as in an exponential D, </> -» 0 asymptotically
as 9 -*• 0. From (2.6a) <p -*• oo implies u -+ oo and (2.13) can be approximated
by uco2 — 2(odo)/du s» 0 which has the dominant solution co ̂  y exp(«2/4) with
y ^ 0. Clearly y must depend not only on p in (2.9b) but also the surface flux
V. Unfortunately there is no direct means of determining this dependence other than
through iteration. However when D(0) = 0, iteration is unnecessary and y is known
directly, given by y = 0 [12]. In this case it can be shown that as u -*• 0, co -*• 0 also.

In this paper we are only interested in solutions which do not require iteration and
from now on we only consider D{9) as in (2.9a) with /x = 0 so that D(0) = 0. Thus
from (2.9a), (2.10) and (2.11)

D(9) = D09
a, (2.14)

f (9) = 9na/2+l, (2.15)

0= V(na/2+l)Don/2. (2.16)

Since D(0) = 0, </> at 9 = 0 must be finite, u -*• oo and <y~' can be expanded as a
series in powers of u in the form

co-1 = -ctu/2 + An + Bnu-1 + Cnu~2 + £nM"3 + O(«"4), (2.17)
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where An, Bn, Cn and En are constants which depend on the dimension n. The
importance of (2.17) is that it provides the necessary boundary condition for the
integration of (2.13) and therefore (2.12). If we substitute into (2.13) we obtain

-+4jEn + - (Bn+
A^\]u-3+ O(U~4) = 0. (2.18)

For (2.18) to hold true, all coefficients of u must be zero. Thus, by setting n and
grouping like terms, we find that the constants An, Bn, Cn and En take on the following
values: for« = 1,

lap „ -Sap
a + 2 ' (a + 2)(3a + 2)'

—a 4a[(a + 2) — 4P(a + 1)J
' = aTT ' ' = (a + l)(2a+ l)(a + 2)2 '

for n = 2,

A 2 = 0 , B2 = a{P~f\ C2 = 0, E2= ~*a(fi'-V
a + 1 (a + l)(2a + 1)

and for n = 3,

—3a „ 2a5 12a
A 3 = 0 , B3 = , C3 = — , £3 = . (2.19c)

a + l 3a+ 2 (a + l)(2a + l)

For n = 2, the coefficients of all of the even powers of u («°, M~2, ere.) are zero
and for p = 2, co — —2/au is the solution of (2.13). This leads to the fully analytic
solution for (I.I) in cylindrical geometry given by 9{r, t) = (I — ar2/4Dot)

l/a for
r2 < 4Dot/a and 9(r, t) = 0 for r2 > 4D0t/a [24]. No similar phenomena are found
in either the plane or spherical cases.

The definitions of D{9) and y from (2.14) and (2.6b) allow (2.12) to be written as

dU • •' (2.20)
d\nG

which can be integrated to first order for u large (co -*• 0) to give u % c9~"12 (c being a
constant) which combined with the definition of u gives <p = uD'/2 % c9~a/2D^26a/2

being finite at 0 = 0. Consequently a well-defined wetting front is moving into the
soil, consistent with D(0) = 0. Equation (2.17) provides the starting condition at
infinity (the position of the wettihg front) so that (2.13) can be integrated backwards
in the direction u —> 0. The initial value of u has to be chosen large enough so that
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the higher order terms in (2.17) become negligible. The boundary condition given by
either (2.3) or (2.5) depending on n, determines how far (2.13) is integrated backwards.
Rewriting (2.5) as

V = - 0 " " 1 Dw(0)~ , 4> = <t>u (2.21)
aq>

then Dw(0) = D(9)/(l - / ) is the usual single-phase (water) diffusivity.
Substituting (2.6a) for u in (2.20) and expanding the derivative term will give the

following expression for the flux in terms of u and a> at the injection point <j> = <j>\.

-<j>n-xDw{6) ^

or combining with (2.21)

(2.22)

U °° ' • (2.23)

For n - 1, 6 = 9S at 0 = 0 and with / (0) from (2.15)

r>i/2

(0)(l fc-fa/2+I)) ' { }

As V = S/2, (2.24) provides a relationship between the sorptivity 5 and 9X and is
equivalent to (2.14) of Sander etal. [19].

For n = 2 or 3, however, 6 = 1 at <f> = (p\ which means that the denominator of
the right-hand side of (2.23) is zero due t o / (1) = 1. Therefore, if we are to obtain
a finite flux V from (2.23), then u must also be zero. The definitions of </> and u from
(2.1) and (2.6a) show that u = 0 corresponds to r = 0. This means that no saturation
zone develops around the source for the two- and three-dimensional problems. This
occurs because of the functional form of D and/ in (2.14) and (2.15) resulting in the
sorptivity S, approximated by [ 11 ]

being infinite. Consequently any flux of water injected at the source {r = 0) can
be absorbed by the soil and no saturation zone forms. This is by no means the only
restriction on the formation of a saturated zone. A saturated zone will also not occur
for n = 2 and 3 if / (6) has the property / ' ( I ) = 0 even if 5 is finite. A proof and
further discussion of saturated zone formation is given in a later section.
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3. Asymptotic expansions for 0 (<f> ->• 0)

We can obtain expansions for 6 (</>) as (p —> 0 or when 9 is near 9S for n = 1, and 9
near 1 (saturation) for n = 2 and n = 3.

Case n = 1. The differential equation for n = 1 is

da> f 2 1
(2o>-«)—- =w \(u-2P)o)+- + l , (3.1)

and we look for an expansion for co(u ->• 0) of the form

co = &>0(l + atu + c,u2 + 0(u3)), (3.2a)

where a;0 = O>(H = 0). Substituting (3.2a) into (3.1) and by matching terms of the
order M° and u we find

(3.2b)

and

c, = a,(2 + 2/a)(4c;o)-1 + 1/4 - atf - a\/2. (3.2c)

An estimate of a>0 for arbitrary a is not possible, however by following Parlange et
al. [13] we can find estimates to <oQ fora large. The exponent a is usually large for
soils, for example a > 4, and we note from (2.17) that for large a, uco behaves like
a~]. Substituting for uco into the right-hand side of (3.1) and then neglecting 0(0;"')
terms, (3.1) simplifies to

dco co- 2Pco2

du 2co — u

Integrating (3.1) along with the boundary condition uco -*• - 2 / a as u —• oo, an
estimate for co0 is obtained by solving the nonlinear equation

1 ~^M° l n d ~ 2P™o) - - + (— + ̂ ]co0 = 0. (3.3)
2pl a \ a p J

Finally combining (2.6a), (2.14), (2.20) and (3.2a) and keeping only the dominant first
two terms shows that as <p ->• 0, 0(<f>) behaves like 9 = 9S + (aco0D

i
0
/29?/2)-'<p, with

co0 estimated from (3.3).

Case n = 2. In two dimensions, the first-order approximation for co(u) is given by
co = oio"1"^ [24] and we look for the second-order term in the form

" + c2K
d, (3.4)
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0.80 -

0.60 -

0.20 -

0.00
0.20 0.40 , 0.60 0.80

0
FIGURE 1. Profiles of 0(0) when n = 1 for one- and two-phase flow with a = 8 and 0s equivalent to
P = 0.5, 1 and 2.

where the constants c2 and d can be found by substituting (3.4) into (2.13) and grouping
like terms. For consistency we find d = 1 and the two-term expansion for co(u) is
co = coou1'*1 + (l/2)(2- p + 2/a)u/ ft. Forn = 2, it is also possible to get a first-order
estimate of co0 for the cases where a is large. As for n — 1, large a means that we
can take uco « —2/a, then substituting into (2.22) and neglecting terms of O(a~l)
we have

dco 2(1-P)co/u +I
~T~ ~ —^ ; ' (-i-->>
du 2 — u/co

which can be integrated with the boundary condition uco -> 2/a as u -*• oo, resulting
in the first-order approximation

{p

The next term in the series can also be found by using the solution of (3.5) to estimate
the 0(a~') terms initially neglected. For 1 < ft < a2 the two-term expansion fora>()

is

a

It should also be noted that for ^ = 1, the differential equation for co(u) reduces
to (13) of [13]. Hence, a three-term expansion for o>0 in this case (/J = 1, a large) is
given by (23) of [13], that is,
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1.00
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0.40 -

0.00

[10]

FIGURE 2. Profiles of 6(ct>) for n = 2, a = 4 and p as marked.

The expansions for 9(<p -+ 0) as <f> -»• 0 is given by combining (2.6a), (2.14), (2.20)
and (3.4) as [24]

t-P/2

(3.6)

By differentiating (3.6) it is possible to see that in two dimensions the value of fi
determines the behaviour of dd/d<p as </> —> 0. There are three distinct types of
behaviour of d9/d<j>, (i) dO/d<f> -* - o o for 0 < /8 < 1, (ii) d6/d(p -> (D^acoo)'1

for P = 1 and (iii) </#/</<£ ->• 0 for /3 > 1. The case 0 < 0 < 1 is particularly
interesting as it implies a rapid decline in the water content away from the injection
point and that overall an S-shaped water profile will result. This type of behaviour has
often been noticed in two-phase flow experiments (see Bond and Collis-George [3],
for example). The definition of fi shows that S-shaped profiles will predominantly
occur under small injection rates V, which is also in agreement with the findings of
McWhorter and Sunada [9].

Case n = 3. In three dimensions, the differential equation for dco/du is

dto to ["/ 2 / p\\ 2 "I
— = -r. M + - 2 - - W + - + 1 .
du 2<w — u |_ \ it \ u / / or J

(3.7)

For u small the dominant term in (3.7) is given through (2 — P/u)co/u. Neglecting
other terms and integrating gives a first-order approximation for co as

co = conu
2ep/". (3.8)
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1.00
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0.60 -

0.40 -

f - 0.5

0.00 0.20 0.40 . 0.60 0.B0 1.00

0
FIGURE 3. Profiles of 6(<t>) for n = 2, a = 8 and p as marked.

Then from (2.6a), (2.14), (2.20) and (3.8) the first-order approximation to 6 for <t> ->• 0
is

0 = 1 + (OICDQP) e ° . (3.9)

Differentiating (3.9) shows that d6/d<j> at </> = 0 for n = 3 is always zero. As yet
estimates to o>0 for n = 3 have not been found.

4. Discussion

In general, (2.12) and (2.13) cannot be integrated analytically. Using (2.17) as
the starting condition (2.13) is integrated backwards to u = 0 using the fourth-order
Runge-Kutta method to obtain co(u). Having <U(M), (2.12) can be integrated using
Simpson's rule for u(y) using the boundary condition u = 0, y = a \n(9s) for n = 1,
or u = 0, y = 0 for n = 2 and 3. Equation (2.6) then finally gives <j>(6) or G((p)
parametrically. When (I > 1 for n = 2 and 3, (3.4) and (3.8) show that o> —• —oo
as u -> 0, then for these cases the integration is taken back only as far as u = u*,
u* > 0. When co(u) is known numerically, (3.4) when n = 2 or (3.8) when n = 3 can
be rearranged to estimate a)0 numerically. As u —*• 0 these expansions become more
accurate, thus u* is defined by the value of u giving con accurate to four significant
figures. Equation (2.12) is still integrated as before but with the expansions used for
(o(u) when 0 < u < u* and the numerical solution for u > u*. All figures presented
in this section are accurate to four significant figures.

Figures 1 to 6 show the 0(<p) profiles as a function of a and V for all three
dimensions. We have also included in these figures the one-phase moisture profiles
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1.00
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0.40 -

0.20 -

0.00
0.00 0.20 0.40 . 0.60 0.80 1.00

FIGURE 4. Profiles of 6((t>) forn = 3, a = 4 and /? as marked.

(dashed lines) for the purposes of comparison. The single-phase n-dimensional flow
equations are given in Parlange and Braddock [12] and can be obtained directly from
(2.13) by setting )9 = 0. However in both two- and three-dimensional one-phase flow
conditions a saturated zone will develop around r = 0 in which case (2.13) (with
fi = 0) is integrated only as far back a s « = ux, co = cot, where u\, co\ satisfy [12]

co^u"-1 =-aVD~n/2. (4.1)

Note that (4.1) is obtainable directly from (2.23) by simply taking/ = 0 . If n = 1,
then (2.24) is replaced by

-1/2 (4.2)

In Figure 1 (n = 1) both the one- and two-phase profiles (solid line) are plotted for
the same surface water content 8S, hence the fluxes V will be different and given by
(4.2) for single-phase and (2.24) for two-phase flow. In Figures 2 to 6 both the single
and two-phase flow profiles (solid lines) have the same injection flux V determined
from (2.16) as V = ^DQ / 2 (1 + na/2)~l once /3, or and n are given. Without loss of
generality D() is taken as 1 in all the figures.

Figures 2 to 6 show that the effect of increasing a or increasing geometry dimension
through n is to reduce the influence of the non-wetting phase on the saturation profile
6 (</>). Secondly the effect of the non-wetting phase is predominantly to alter the shape
and position of the saturation profile around 8 = 1 and it has very little influence over
the position or shape of the tail of the wetting front itself. The reason for this is clearly
seen when we look at the functional form of / (9), that is, / (8) = 8l+na/2. As either

https://doi.org/10.1017/S1446181100008087 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181100008087


[13] Integral and similarity solutions for two-phase flow 377
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0.00 0.20 0.40 . 0.60 0.80 1.00

0
FIGURE 5. Profiles of 0(0) for n = 3, a = 8 and P as marked.

a or n increases and in particular for a large, f (9) will only be significantly different
from 0 for 9 near 1. Thus / (9) starts to behave like a delta function and therefore the
non-wetting phase has little or no influence on the saturation profile.

The other feature we notice in Figures 2 to 6 is the S-shaped profiles which occur
when n = 2 or 3. For n — 2 these profiles will occur for p < 1 (Equation (3.6)) or for
a flux V < (1 + a)"1. These profiles therefore only arise for small injection fluxes,
and the larger the diffusivity exponent a, the smaller the flux V will need to be. It is
also clear that S-shaped profiles will develop when n = 3 for a small injection flux.
However with n = 3, while the value of /3 necessary for S-shaped profiles is much
smaller than its value when n = 2, there is no limiting value of fi below which these
profiles will always occur. This can be seen in Figures 4 and 5 for ft — 0.05, where
for a = 4 the profile is markedly S-shaped but at a = 8 it is barely so and in fact
disappears once /3 increases to 0.1.

The S-shaped profiles also appear for single-phase flow in two and three dimensions
and are therefore not due to the presence of the second fluid. If anything, the effect of
the second fluid has been to diminish the magnitude of the positive curvature in 9(<p)
for small </> when n = 2 or 3. We see this most strikingly in Figure 6 for n = 3, a = 2
and p = 0.5, where the single-phase profile is S-shaped and the two-phase profile is
not.

Saturation zones. We saw from (2.23) that our two- and three-dimensional first
integral solutions do not develop a saturated zone around the injection point. This is
due in part to the diffusivity required for a first integral to exist, that is, (2.9) is not
zero at 9 = 1. While the traditional single-phase diffusivity Dw is a monotonically
increasing function of 9, the two-phase diffusivity D(9) is zero at both 9 = 0 and
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FIGURE 6. Profiles of 0(4>) for n = 3, with a and fi as marked.

0 = 1. With D and Dw related by Dw = D/(l - / ) , then from (2.14) and (2.15) not
only does Dw(\) -»• oo but also

oo. (4.3)

For Dw increasing rapidly with 0 we know from [11] that the integral in (4.3) is
approximately 52/2. Consequently if the soil's sorptivity is infinite it will not be
possible for a saturated zone to develop. It is quite straightforward to derive this
condition for arbitrary D{0) with D{\) = 0 rather than just the particular form of
D(9) necessary for a first integral. Integrating (2.2) we have

- f Dda

- / ) - ( 1 / 2 ) /
where

</> , for n = 1,

\n(4>, /4>), for n = 2,

0"1 - 0 / 1 , for « = 3,

(4.4)

(4.5)

with <pf being the position of the wetting front. Without loss of generality we assume
D(0) = 0 so that cpf is finite. Since <j>(6) is a monotonically decreasing function of 0
we know that the integrand in (4.4) is always positive, hence

V(\ - >\ f
2 Jti

<P"da, (4.6)
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and therefore at 9 = 1 (4.4) has the lower bound

,' D_±_ If '
k V(l-f)-(l/2)fi<p*dp V Jo

If the single-phase diffusivity Dw satisfies (4.3), then from (4.5) and (4.6), \j/ —• oo
and the position of the saturated zone fa (9 = 1, <j> = fa) must be at zero.

In single-phase flow, having the integral in (4.7) being finite is sufficient for a
saturated zone to develop, however for two-phase flow a further condition is required.
We see this by first Taylor expanding the integrand of (4.4) around 9 = 1 as

D

Zy(l) + (g-l)D"(l)/2
V[fa2/(2V) - / ' ( I ) ] + (9 - l)[(n/2)fa"-l(d<t>/de)\e=i -J

Since (4.8) must be positive and £>'(1) < 0, then fa2/(2V) < / ' ( I ) , so that if
/ ' ( I ) = 0, fa must also be zero and again no saturated zone forms. It is worthwhile
noting that it is very common in the oil/water and petroleum reservoir modelling
literature to use functional forms of / (9) which have the property / ' ( I ) = 0 [1,4,6,
20,23].

In conclusion we have extended the n-dimensional single-phase first integral simi-
larity solutions of Parlange and Braddock [12] to two-phase flow when D(9) = D06

a

and/ (9) = Qi+na/2. We have also shown that S-shaped saturation profiles develop at
low injection fluxes V in both two and three dimensions and that for a saturated zone
to develop around the injection point r = 0, the hydraulic functions D(9) and / (6)
must satisfy the two conditions of /0' D/(l — f) d9 < oo and/ ' ( I) ^ 0.
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