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1. Introduction

The solution to the boundary problem

AM = uxx+uyy = 0 in r ^ l , ur = hu on r = 1, (1.1)

where r is the distance of point (x, y) from the origin, and h is a given function
of the arc length s along the unit circle r = 1, is not necessarily unique, Boggio
(1), Weinstein (2), Stoker (3), Martin (4). Indeed if h is a positive integer m,
it is known that the only solutions regular analytic for r ^ 1 are

u = Arm cos m9 + Brm sin mO,

where r, 9 denote polar coordinates and A, B are arbitrary constants.
On the other hand it is easy to see that if the ratio A = ul/u2 of two of these

solutions uu u2 is required to be regular analytic in r ^ l , the two solutions
must be linearly dependent. This example shows that even though the solution
of the boundary problem is not unique, the imposition of a further hypothesis
implies linear dependence between two solutions.

The problem considered in (4) and in the present paper follows naturally
from this example and is formulated as follows.

What can be said about the uniqueness of a function u, harmonic in a region S,
if along the boundary C of S the external normal derivative un is a prescribed
separable function

un = h{s)f{u) (I)
ofu and the arc length s of C1

In this paper we approach the problem from a new point of view and
extend earlier results (4). We assume that S is a simply connected region
bounded by a single analytic curve C, and that S lies in the interior of a region
R within which u is regular analytic. The functions h(/),f(u) are real functions
and are assumed regular analytic for all real values of their arguments.

If u0 is a zero of /(«), an obvious solution is the constant solution w = u0.
Such trivial solutions are disregarded and only non-constant solutions
considered.

t This work was supported by the Guggenheim Memorial Foundation and by the United
States Air Force through the Air Force Office of Scientific Research of the Air Research
and Development Command under Contract No. AF 49(638)-570 with the University of
Maryland.
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2. Preliminary Considerations
We begin with the formula

(2.1)
valid for any pair of functions ut, u2 harmonic in R^>S. Here we have written

/i=/(«i), h=Ku2\ Pi=d-r, <li=d-~' ('""I. 2), (2.2)
ox oy

and T = T(M1; U2) with
a=/ 2 r U l , 2b=/2rU2-/1TUl+(/2'-/1 ')T, c=-f<zUz, (2.3)

where the primes denote differentiations. The formal verification of (2.1)
for an arbitrary function x is an easy application of Gauss's theorem, but for
the formula to be valid, the function T and the functions uu u2 must be chosen
so that the integrals in (2.1) exist.

To bring out the connection of (2.1) with the uniqueness question (1),
suppose a real function T subject to the conditions.

b2-ac = 0, a>0, (2.4)

can be found for which the integrals in (2.1) exist for a given pair of harmonic
functions uu u2. In this event (2.1) may be given the form

If both uu u2 satisfy the boundary condition (I), the integral around C vanishes
and the vanishing of the integral over S implies that the equations

y/api+yfcpi = 0, y/aql+yJcq2 = 0,

hold everywhere in S. As a consequence the Jacobian of uu u2 vanishes
identically in S and therefore uu u2 are functionally dependent.

At this point the following lemma applies.

Lemma 2.1. If two harmonic functions ult u2 are functionally dependent,
they are linearly related, i.e., real constants k, I exist for which

u2 =kUl + l. (2.6)

The proof of this lemma is easy and is omitted.
Thus the two solutions ut, u2 must be linearly related, i.e. satisfy (2.6).

Clearly this implies that

^ = * ^ i onC,
dn dn

and therefore f(u2) = kf(u{) so that f(u) necessarily satisfies the functional
equation

f(k l) = kf{Ui) (2.7)
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Recalling that we have laid aside constant solutions, we digress a moment
to prove the following lemma.

Lemma 2.2. The only real, non-constant, analytic solutions of the functional
equation

f(ku+l) = kf(u), k, I = const, (real) (2.8)

are the linear functions

/ = m(u — u0), u0 = 1/(1—k), m = const, (arbitrary),
if k + ±1. If k = 1, the functional equation defines the periodic functions of
period I; ifk = —\,it defines the odd functions ofu —1/2.

Only the statement for k 4= +1 requires proof. Differentiating (2.8) n
times and then placing u = u0, we obtain

(^-1- l) / ( n>(M0) = 0, n = 0 , 1 , 2 , . . . ,

inasmuch as kuo + l = u0. Therefore/and all its derivatives vanish at u = u0,
except the first which remains arbitrary. Consequently the Taylor series
expansion of /(«) in powers of u—u0 reduces to / = m(u—u0), with m an
arbitrary constant. Conversely it is easy to verify that / = m(u—u0) is a
solution of the functional equation for arbitrary constant m, provided u0 is
as given. This completes the proof of the lemma which will be used in the
proof of Theorem 2.1 below.

If f(u) is linear in u, say f(u) = m(u — u0) the functional equation (2.7)
requires that / = (1— k)u0 in (2.6) to yield u2 — u0 = k(u1—u0). Thus the
differences u2 — u0, ux — u0 are linearly dependent.

If/(«) is not linear in u, it follows from Lemma 2.2 that either k = + 1 ,
in which case/(«) is periodic of period / and u2 — ut = I from (2.6); or A; = — 1,
whereupon/(w) is an odd function of u— u0 and (2.6) requires u1 + u2 = 2u0.

If/(w) is not linear, periodic, nor an odd function of u—u0, the functional
equation (2.7) can hold only if A: = 1, / = 0, and therefore ut = u2 from (2.6).
A non-constant solution ut is therefore unique.

Summing up our results, we have the theorem

Theorem 2.1. If uu u2 are two non-constant solutions of the boundary
problem

Au = 0 in 5, un = h(s)f(u) on C,

regular analytic in Rr>S, and a function x = x(U\, u2) can be found subject to
the conditions (2.4) such that (2.5) is valid, the two solutions M1; U2 must be
linearly related, i.e., u2 = kux+l.

If'/(«) is linear, say f = m(u-u0), the differences U^-UQ, U2-U0 are linearly
dependent. Iff(u) is not linear, the two solutions uu u2 must be identical unless
f(u) is periodic or an odd function of u — u0, whereupon either the difference, or
the sum ofuu u2, is constant respectively.
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The first condition in (2.4) is a non-linear partial differential equation

[/l^,-/2TU2 + (/1 '-/i)T]2 + 4/1/2TI,1T1J2 = 0 (2.9)

for T, and the second imposes the inequality a = / 2 T U 1 >0.

3. The Function T
If we set

r = logT (3.1)

the partial differential equation (2.9) for T becomes

UlTU2 = 0 (3.2)

This is the equation of a parabola in the plane of the variables TUl, TU2. If
we introduce a uniformising parameter t by placing

T - - C - / i ) 2 r - (f~/2)2 n v
l—Jl) J2\J\.~J2)

the integrability condition yields a quasi-linear partial differential equation

fS(t~fi) ~//V~/), . (3-4)
l —J2)

for (. Corresponding to a solution t of this equation we obtain a solution T
of (2.9) from

}, C = const., (3.5)

for TUl, TU2 as given in (3.3).
The quantities a, b, c defined in (2.3) take the following forms

a = _4(^Z0!T ; b = H-fW-fS>tt c = _ 4 ( i ^ ) l T (3.6)
/1 /i'-/2' fl-fi h Si-Si

The requirement b2-ac = 0 in (2.4) is obviously fulfilled. If / t =# 0 , , 2 =f= 0,
/ i + /2 hold in i?, it follows from (3.3) and (3.5) that T is regular analytic in
R and maintains a fixed sign. From (3.6) it follows that the second requirement
a > 0 in (2.4) may now be met by adjusting the arbitrary constant C in T.

Thus we arrive at the following lemma.

Lemma 3.1. A function x fulfilling the hypotheses of Theorem 2.1 can be
found and the conclusions of the theorem apply, provided

/ i * 0 , / 2 * 0 , Si*Si, (3-7)

hold in R=>S and a solution t = t(ult u2) of (3.4) regular analytic in R is at hand.

In view of this lemma, Theorem 2.1 yields

Theorem 3.1. If uu u2 are two non-constant solutions of the boundary
problem

AM = 0 in S, un = h(s)f(u) on C,

https://doi.org/10.1017/S0013091500014450 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500014450


SOLUTIONS TO BOUNDARY PROBLEMS 29

regular analytic in R^S such that

/i*0, /2*0, fi+fi
hold in R and a solution t = t(u1, u2) of (3.4) regular analytic in R can be found,
the two solutions w,, u2 must be linearly related, i.e., u2 = ku% + l.

Iff(u) is linear, say f = m(u — u0), the differences uy — u0, u2 — u0 are linearly
dependent. If J\u) is not linear, the two solutions uu u2 must be identical unless
/(«) is periodic or an odd function u — u0, whereupon either the difference or the
sum ofuu u2 is constant respectively.

When new independent variables

are introduced into (3.4) this equation takes a normal form

= Kt2 + 2Lt+M (3.9)
e

where
fr _ Jlfi~f2j2 T _ _ fif if2 ~J\flJ 1 jtf _ fifif2 ~ / l 72/2 /T 1 n\

2(fi-fD2' 2(fl-ftf ' 2(fl-ftf ' - ' •
and we find, from (3.3) that

T. flfi-t2 2t-f[-fi
^ ff r t ' " rt ft ^ '

J\ —J2 7l —J2
Clearly the integration of (3.9) is an important step, and we turn to this in

the next section.

4. The Uniformising Parameter t
In some cases the partial differential equation (3.9) for t integrates by

separation of variables. When this is not the case, the lemmas below sometimes
apply.

Lemma 4.1. The nonlinear partial differential equation

tt + ttn = Kt2 + 2Lt + M (4.1)

will have solutions in common with the linear equation

tn-Kt = L + X(£), (4.2)
provided

X4= Ln, Ls-M,+KM-L2 = F(O, (4.3)

and X{£) is a solution of the Ricatti equation

X'+X2 + F(0 = 0 (4.4)

Corresponding to each solution X(£) of this equation, equations (4.1), (4.2)
share a one-parameter family of solutions

t = eJ l{Me-Jd£+(L+X)e-Jdri} + CeJ, C = const (4.5)
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where
J = \{{L-X)dt; + Kdri} (4.6)

Solving (4.1), (4.2) simultaneously for t$, tn we find

tn = Kt+L+X (4.7)

A simple calculation shows that the integrability condition tin = tni is satisfied
identically if (4.3), (4.4) hold. Conversely if these hold, the line integral (4.6)
defines a function J = /(£, n) and e~J serves as a simultaneous integrating
factor for the linear equations (4.7), for they may be written

e t eM, f e t e

and the integrability condition arising from these equations is satisfied
identically. Consequently (4.5) offers a one parameter family of simultaneous
solutions to the linear equations (4.7) and, since these equations imply (4.1),
(4.2), the lemma is proved.

This lemma forms the basis for the next one.

Lemma 4.2. The non-linear partial differential equation

tf + tt,, = wnt
2 + 2W<t + wn, w = w(£, n), (4.8)

has a one-parameter family of solutions

t = C~ZH**HZ', H = H($, n) = P Q&, r\)dr\, C = const., ...(4.9)
G z Jo

corresponding to each solution Z = Z(<̂ ) of the linear equation

Z"+F(0Z = 0, (4.10)

provided the function Q = e~w meets the conditions

Qx-Qn+HOQ = o, Q^,O) = o (4.11)

If we identify
K = M=wn, L = ws, (4.12)

in (4.1) the first condition in (4.3) is obviously satisfied, and the second reduces to

or to
QK-Qnn + F(Z)Q=0 if w=-loge,

and the Ricatti equation (4.4) is replaced by the linear equation (4.10) if we
employ the well-known transformation

Substituting from (4.12), (4.13) into (4.6) we find

J = - l o g QZ,
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and consequently from (4.5) that

If we introduce the function H defined in (4.9) the line integral / reduces to

/ = ZH^-HZ', (4.14)

provided (4.11) hold. To verify this we need only show that J4 = ZQn, since
/ , = ZQ$— QZ' is obvious from the definition of H. Calculating /,* from
(4.14), we find, by virtue of (4.11) that

Jc = ZH^-HZ" = Z !" Qnndn = ZQn.
Jo

The solutions (4.5) and (4.9) involve two arbitrary constants and therefore
constitute complete solutions. They may be used to construct the general
solutions of (4.1) and (4.8) by the well-known procedure of envelope con-
struction (5).

5. The Linear Problem un = h(s)u

Here the partial differential equation (2.9) reduces to

and signifies that t is homogeneous of degree 0 in uu u2, so we may write

T = %(X), X = Ut/U2,

the function x(X) being arbitrary. On calculating a, b, c from (2.3) we obtain

a = T', b = —Xx', c = X2x'.

The simplest choice for the arbitrary function T(A) is T = X, in which case
the conditions (2.4) are clearly fulfilled, but to insure the validity of (2.5) and
thereby complete the hypothesis in Theorem 2.1 we make the additional
assumption that the ratio X is regular analytic in R. Taking w0 = 0 in Theorem
2.1 we arrive at the following theorem (4).

Theorem 5.1. If u2 ^ 0 is a solution of the boundary problem

AM = 0 in S, un = h(s)u on C,

regular analytic in R=>S, any other solution u^ for which the ratio X = uju2

is regular analytic in R is linearly dependent on u2.

6. The Non-linear Problems un = h(s)u1+p(p = 1, 2, ...)

For the new variables £, r\ in (3.9) we find

( p \ | | (6.1)
P \"2 « /
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If p is even, the inverse transformation is

e9'— 1 1 — e~an

pi pi 1+P

and the partial differential equation (3.9) becomes

(6.2)

This has the solution

sinh — n
t = -^ — , y = const.,

9 Z
as may be discovered by separation of variables or verified by direct substitution.
Expressed in terms of the original variables this solution is

If p is even, t is regular analytic in R; if p is odd we take

t = y(l + pX±u1u2)
p/2 as UjU^O,

and t is regular analytic in R provided neither uu nor u2 vanishes in R. With
this function t at hand we turn to Theorem (3.1) and prove

Theorem 6.1. Two non-constant solutions ult u2 of the boundary problem

Au = 0inS, un = h(s)u1+p on C, p = 1,2, ...

regular analytic in R with

t^ + 0, M2#0, uf#uf, (6.3)
holding in R cannot exist.

To prove the theorem assume that two such solutions uu u2 exist. If p
is even/(w) = u1 + p is odd and Theorem 3.1. implies ul-\-u2 — 0 to contradict
(6.3); if p is odd, /(«) = u1 + p is even and Theorem 3.1 implies ut = u2 again
contradicting (6.3). Thus two such solutions uu u2 cannot exist.

A variant of this theorem may be obtained by calculating T explicitly.
When p is even from (3.4) and (6.2) we find

T4 ^
gi

and therefore

, T, = y csch ^ - c o t h \ n,
2 2

arc tanh eB/2 " log sinhT= —— log£ arc tanh e9'2 " log sinh- ?7+const.,
9 9 9 2

so that

T = Co^1-1'2/9e-4(0'/9)arctanhe(9/2)lI(sinh^f/) *", Co = const.
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To return to the original variables uu u2 it is convenient to note from
(6.1), (6.2) that

whereupon after some calculation, we find
.-4(y/s)arctanhAP/2

t - i» + 'A«r i J < 1 + r t . A a C
( 1 . ^ « y , » C = const., ...(6.4)

and from (2.3) that

1 — A.

2 ^ (6.5)

provided the arbitrary constant y is chosen so that y2(l +p) = l + 2p.
These formulas remain valid if p is odd provided 0 < A < 1 and apply to

prove the following theorem (4).

Theorem 6.2. If u2 is a non-constant solution of the boundary problem

AM = 0 in S, un = h(s)u1 + p on C. p = 1, 2, ...,

regular analytic in R => S, no other such solution uy exists for which the ratio
X = uju2 is regular analytic in R and | X \<\ if p is even, or O < 1 < 1 if p is
odd.

If such a solution wt exists, T is regular analytic i n R, conditions (2.4) are
met and (2.5) is valid, as is readily seen from (6.4) and (6.5). The conditions
of Theorem 2.1 are therefore satisfied and this theorem implies ut = — u2

in R if p is even, and ut = u2 if p is odd, contradicting the hypothesis on X in
either case.

7. The Non-linear Problem un — h(s) sin u

The solution is not unique. Given a solution ult other solutions u2 are
given by

M2 = —uu u2 = Ut + lnn, n = + 1 , + 2 , ...,

but, under certain conditions the solution is unique, as we shall see in Theorem
7.1 below.

The transformation to new variables (3.8) gives

tan2 uJ2 , , sin2

' tan2 u2/2' ' " " sin2 u2

with the inverse transformation

(7.1)

e*—cosh <̂  coshf —e * ,_ _.
^ c o s u 2 = . , , (7.2)

sinh £sinh c sinh
E.M.S.—C
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and the partial differential equation (3.9) takes the form (4.8) with

, . cosh t — cosh n
w = i log f—- ',

sinh £,
so that

cosh (J —cosh r\

A simple calculation verifies that Q satisfies conditions (4.11) with

and that the substitution

z = coth 4 (7.4)

transforms (4.10) into the equation

( l - z 2 ) Z - 2 z Z - i Z = 0 , • = d/dz,
for the Legendre functions of order n = — \. The general solution of this
equation is (6)

and the Legendre functions may be represented by Laplace's integrals

fc) = - f" (z + V ? ^ cos 4>Td<t>, Qn(z) = ^nJo Jo
of the first and second kind.

We take cx = JI, c2 = 0 in (7.5), substitute for z from (7.4), and obtain

= f / h
si;h^ j*> ^n)= r /

J 0 V cosh c, 4- cos q> J 0 y
cosh <; —cosh (p

the latter formula arising from (4.9) and (7:3). These functions may be
expressed in terms of the elliptic integrals

Jo 7 1 - f e sin 0 J
if desired. One finds

±K(k), k =, 2,

x l , . , C • i / cosh 4 — cosh w
) , k = tanh —, sin <p = j .

2 V cosh£- l

Clearly Z, H are real, regular analytic functions of 4, V as long as

0<| t] \<4, (7.7)

which condition will, from (7.1), be met if

« 2 | < | M l \<n, (7.8)
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Since Z + 0 obviously holds for £>0, the solution t of (4.8) given by (4.9)
is regular analytic in the region (7.7) and consequently from (7.1) is regular
analytic in the region (7.8). The following theorem follows from Theorem 3.1.

Theorem 7.1. Two solutions uu u2 of the boundary problem

AM = 0 in S, un = h(s) sin u on C,
for which

0 < | « i | < | u2\<n
hold in R cannot exist.

For if two such solutions exist, conditions (3.7) are met and the solution t
of (3.4) regular analytic in R is provided by (4.9) with Z, H given in (7.6).
The hypotheses of Theorem 3.1 are satisfied, and therefore either

or M2 + « I
 = "

holds, to contradict the hypothesis 0<\ul\<\u2\<n.
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