Review Article

Potential applications of fish oils rich in \(n \)-3 fatty acids in the palliative treatment of advanced pancreatic cancer

Ali Arshad*, Dhya Al-Leswas, James Stephenson, Matthew Metcalfe and Ashley Dennison

Department of Hepatobiliary and Pancreatic Surgery, Leicester General Hospital, Leicester, UK

(Received 15 November 2010 – Revised 24 March 2011 – Accepted 29 April 2011 – First published online 12 July 2011)

Abstract

The palliative treatment of patients with advanced pancreatic cancer (APC) has undergone little advancement in the last 15 years. Novel therapies that have been investigated to extend survival have shown little benefit over existing chemotherapy regimens. Patients with APC often experience significant weight loss, which is one of the primary factors involved in declining quality of life. Recently, the ability of \(n \)-3 fatty acid rich oral preparations to attenuate or reverse tumour-related weight loss has been investigated in this patient group with encouraging results. Laboratory investigation has also yielded promising results suggesting a potential direct tumoricidal effect of \(n \)-3 fatty acids as well as the putative potentiation of existing chemotherapy regimes. The present review aims to examine the potential applications of fish oils rich in \(n \)-3 fatty acids in patients with APC, present a selection of the studies carried out to date and outline avenues of possible further clinical investigation.

Key words: \(n \)-3 Fatty acids: Fish oil: EPA: DHA: Pancreatic cancer

Pancreatic cancer is responsible for more than 7700 deaths from cancer each year, making it the fifth most common cause of death from all cancer sites and the third most common from gastrointestinal sources. It is the eleventh most common cancer in the UK, with over 7600 new cases per annum. This represents nine per 100 000 cases in the UK population\(^1\).\(^2\)\(^3\)\(^4\). The male:female ratio is roughly equal, and although the incidence in men has fallen slightly in the last 30 years, the female incidence has remained unchanged. Overall, 1-year survival rates are in the region of 13\%, with rates of 25\% in the under 50s; 5-year survival is 2–3\%. This makes the prognosis one of the worst among all cancers. Only about 10\% of patients with pancreatic cancer are suitable for surgical resection, which remains the only possible chance of long-term survival. The remainder will be offered palliative treatments to extend and improve quality of life (QOL). The current standard of care is single-agent gemcitabine chemotherapy; however, this offers only a modest survival advantage with a median benefit of 2–3 months over no treatment. This dismal outlook has prompted the search for alternative therapies, which can be given in conjunction with standard chemotherapy in an effort to further improve survival and QOL. Many different chemotherapeutic combination agents have been tried, none of which has shown significantly improved activity over single-agent gemcitabine\(^5\). Novel biological agents have also been extensively examined in phase II trials, in particular those which target specific growth factor receptors such as the epidermal growth factor receptor. Only the epidermal growth factor receptor antagonist erlotinib has shown significantly improved activity in randomised phase III trials in combination with gemcitabine. This improvement was limited to a prolonged overall survival period of 6·24 v. 5·91 months (\(P=0·038 \)) and 1-year survival of 23 v. 17\% (\(P=0·024 \))\(^5\). This was at the expense of common and potentially significant cutaneous side effects.

Patients with advanced pancreatic cancer (APC) commonly experience profound weight loss, and therapies that may alleviate this distressing symptom as well as potentially provide enhanced anti-cancer activity are of particular interest.

\(n \)-3 Fatty acids are a family of unsaturated fatty acids that have in common a first carbon–carbon double bond as the third carbon–carbon bond from the terminal methyl end of the carbon chain. Important \(n \)-3 PUFA involved in human nutrition are \(\alpha \)-linolenic acid, EPA and DHA. These fatty acids have three, five or six double bonds in a carbon chain of eighteen, twenty or twenty-two carbon atoms, respectively.
The capacity of human metabolism to derive EPA and DHA by the elongation and desaturation of α-linolenic acid is negligible. Furthermore, this synthesis of longer-chain, n-3 fatty acids from linolenic acid is competitively slowed by n-6 analogues. Therefore, their concentration in tissues is enhanced when they are directly ingested or when competing amounts of n-6 fatty acids are relatively small.

Methods

A PubMed/Medline search of ‘cell proliferation’ OR ‘pancreatic cancer’ AND ‘omega 3’ OR ‘n-3 polyunsaturated fatty acids’ OR ‘EPA’ OR ‘DHA’ was carried out, and relevant articles were screened manually for inclusion in order to provide a representative selection of the important studies carried out to date. The articles were divided into those that utilised pre-clinical in vitro or in vivo work to determine the action of n-3 fatty acids on cell lines or xenograft models and those that used oral preparations of n-3 fatty acids in clinical trials (Tables 1 and 2).

Table 1. Pre-clinical studies using n-3 fatty acids in neoplastic and proliferative cell lines and xenograft models

<table>
<thead>
<tr>
<th>Study (year)</th>
<th>Model used</th>
<th>Parameters measured and outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Falconer et al. (1996)</td>
<td>PC cell lines + different FA</td>
<td>Reduction in cell numbers, viability and proliferation with EPA</td>
</tr>
<tr>
<td>Lai et al. (1996)</td>
<td>PC cell lines + EPA</td>
<td>Decrease in cell count and viability mediated by cell cycle arrest and apoptosis with EPA</td>
</tr>
<tr>
<td>Ravichandran et al. (2000)</td>
<td>PC cell lines/mouse xenograft + EPA + GLA</td>
<td>Growth inhibition in cell lines with EPA + GLA but no effect in xenograft model</td>
</tr>
<tr>
<td>Merendino et al. (2003, 2005)</td>
<td>PC cell lines + butyric acid, DHA or ALA</td>
<td>Reduced cell growth and induction of apoptosis, probably by glutathione depletion, with DHA</td>
</tr>
<tr>
<td>Shirota et al. (2005)</td>
<td>PC cell lines + EPA</td>
<td>Dose-dependent inhibition of proliferation + induction of apoptosis with EPA</td>
</tr>
<tr>
<td>Zhang et al. (2007)</td>
<td>PC cell lines + EPA or DHA</td>
<td>Growth and proliferation inhibition with induction of apoptosis with EPA or DHA</td>
</tr>
<tr>
<td>Hering et al. (2007)</td>
<td>PC cell lines + n-3 FA/n-6 FA + -gemcitabine</td>
<td>Inhibition of proliferation in n-3 FA group regardless of gemcitabine. Inhibition of NF-κB activation and restoration of apoptosis in gemcitabine-resistant cells with n-3 FA</td>
</tr>
<tr>
<td>Dekoji et al. (2007)</td>
<td>PC cell lines + n-3 FA or n-6 FA</td>
<td>Decreased development of pre-neoplastic lesions with increased n-3 FA component</td>
</tr>
<tr>
<td>O’Connor et al. (1989)</td>
<td>Rats treated with azaserine to induce pre-neoplastic pancreatic lesions + different n-3:n-6 FA ratios</td>
<td>Decreased incidence of liver metastases in n-3 FA group. Decreased incidence of macroscopically visible pancreatic tumours in n-3 FA, although microscopic appearances are not different from other FA groups</td>
</tr>
<tr>
<td>Heukamp et al. (2006)</td>
<td>Hamsters treated with BOP to induce pre-neoplastic pancreatic lesions</td>
<td>Incidence, frequency and proliferation index of pancreatic pre-cancer reduced with n-3 FA-rich diet. Decrease in cell line proliferation and induction of apoptosis with DHA</td>
</tr>
<tr>
<td>Gregor et al. (2006)</td>
<td>PC + n-6 FA-rich diet followed by n-3 or n-3, 6 and 9 FA-rich diet</td>
<td>Decreased cell growth with n-3 FA. Decrease in growth in mouse model with n-3 FA-rich diet</td>
</tr>
<tr>
<td>Strouch et al. (2009)</td>
<td>EL-Kras mice + n-3 FA-rich diet or standard diet</td>
<td>Suppression of VEGF-induced proliferation with EPA</td>
</tr>
<tr>
<td>Funahashi et al. (2008)</td>
<td>PC cell lines + n-3 FA or n-6 FA. Mice injected with PC cells + n-3 or n-6 FA-rich diet.</td>
<td>Inhibition of VEGF-stimulated migration and tube formation. Reduction in MMP2 and MMP9</td>
</tr>
<tr>
<td>Yang et al. (1998)</td>
<td>Bovine endothelial cell lines treated with VEGF + n-3 or n-6 FA</td>
<td>Inhibition of VEGF-stimulated migration and tube formation and VEGF receptor 2 expression strongest with DPA compared with DHA or EPA</td>
</tr>
<tr>
<td>Tsuzuki et al. (2007)</td>
<td>Human umbilical vein cells treated with VEGF + EPA</td>
<td>Inhibition of VEGF production with EPA</td>
</tr>
<tr>
<td>Tsuji et al. (2003)</td>
<td>Bovine endothelial cell lines treated with VEGF + EPA or DPA or DHA.</td>
<td>Inhibition of vascular smooth muscle proliferation through inhibition of PDGF signal transduction with EPA greater than DHA</td>
</tr>
<tr>
<td>Fox & DiCorleto (1988)</td>
<td>Vascular endothelial cells + EPA</td>
<td>Inhibition of PDGF production with EPA</td>
</tr>
<tr>
<td>Terano et al. (1996)</td>
<td>Vascular smooth muscle cells + EPA or DHA</td>
<td>Inhibition of vascular smooth muscle proliferation through inhibition of PDGF signal transduction with EPA greater than DHA</td>
</tr>
<tr>
<td>Boutard et al. (1994)</td>
<td>Macrophages isolated from rats fed n-3 FA-rich or deficient diets.</td>
<td>NO production in response to lipopolysaccharide reduced by n-3 FA-rich diet</td>
</tr>
<tr>
<td>Jeyarajah et al. (1999)</td>
<td>Mouse macrophages (treated with IFN-γ or TNF-α) + DHA</td>
<td>DHA inhibitory to NO production at all doses of IFN-γ or TNF-α</td>
</tr>
<tr>
<td>Ohata et al. (1997)</td>
<td>Mouse macrophage cell line treated with lipopolysaccharide + n-3, n-6, n-9 FA or stearic acid</td>
<td>Inhibition of NO production with n-3 FA in contrast to no inhibition with any other FA regimen</td>
</tr>
<tr>
<td>Narayanan et al. (2005)</td>
<td>Prostate cancer cell lines + DHA + celecoxib (COX-2 inhibitor)</td>
<td>Inhibition of growth and induction of apoptosis greatest with low-dose combination of DHA + celecoxib</td>
</tr>
<tr>
<td>Reddy et al. (2005)</td>
<td>Colon cancer rat model + celecoxib + n-3 FA-rich or -deficient diet</td>
<td>Inhibition of tumour incidence in multiplicity in n-3 FA-rich diet with low-dose celecoxib</td>
</tr>
</tbody>
</table>

PC, pancreatic cancer; FA, fatty acids; GLA, γ-linolenic acid; ALA, α-linolenic acid; BOP, N-nitrosobis(2-oxopropyl)amine; VEGF, vascular endothelial growth factor; MMP, matrix metalloproteinase; DPA, docosapentaenoic acid; PDGF, platelet-derived growth factor; IFN, interferon; COX, cyclo-oxygenase.
They inhibit the growth of human pancreatic adenocarcinoma cell lines in a dose-dependent manner\(^{6–8}\). They also induce apoptosis of the same cells in a dose-dependent manner\(^{7,9–12}\). They have been shown to inhibit proliferation in gemcitabine-resistant cell lines irrespective of the level of gemcitabine resistance\(^{13}\). There are various mechanisms postulated for this action including the induction of apoptosis, cell cycle arrest, intracellular glutathione depletion, down-regulation of cyclin E and inhibition of NF-κB expression\(^{10,14}\).

In rat models given azaserine to induce neoplastic pancreatic lesions, a diet with a high \(-n\)-6 fatty acids content resulted in a decrease of pre-neoplastic atypical acinar cell nodules\(^{15}\). A different model using \(N\)-nitrosobis-2-oxopropylamine to induce ductal pancreatic adenocarcinoma in rats found that a group fed with a diet rich in \(n\)-3 fatty acids only had significantly lower incidence of macroscopic tumours and liver metastases compared with the groups fed on a diet rich in \(n\)-6 fatty acids alone, or \(n\)-3, \(-n\)-6 and \(-n\)-9 fatty acids together\(^{16,17}\). More recently, the incidence, frequency and proliferative index of pre-neoplastic pancreatic lesions in an experimental rat model has been shown to be reduced in the cohort fed on a high-\(n\)-3 fat diet\(^{18}\). \(-n\)-6 Fatty acids have been shown to stimulate the development of pancreatic carcinoma in xenograft models through the increased production of cyclo-oxygenase-2-generated PGE\(_2\), whereas in the same model, \(n\)-3 fatty acids were shown to reduce the development of pancreatic carcinoma through the reversal of the PGE\(_2\):PGE\(_3\) ratio\(^{19}\).

Rapidly growing tumours require new blood vessel formation or angiogenesis in order to initiate and sustain proliferation. Angiogenesis is dependent on many different growth factors, in particular vascular endothelial growth factor and platelet-derived growth factor. \(n\)-3 Fatty acids suppress vascular endothelial growth factor-stimulated cell proliferation, migration and tube formation during angiogenesis\(^{20–22}\). \(n\)-3 Fatty acids inhibit the production of platelet-derived growth factor-like protein from vascular endothelial cells and inhibit vascular smooth muscle proliferation by interfering with the platelet-derived growth factor signalling pathway\(^{23,24}\). In addition, angiogenesis is critically dependent upon the production of NO and the action of cyclo-oxygenase-2. \(n\)-3 Fatty acids inhibit NO production and NO synthase in vitro as well as in animal models\(^{25–27}\). Several recent studies have shown that \(n\)-3 fatty acids combined with cyclo-oxygenase-2 inhibitors inhibit growth in experimental cancer cell lines and xenograft models\(^{28,29}\).

Furthermore, \(n\)-3 fatty acids have been shown to potentiate the effects of gemcitabine chemotherapy on human cancer cell lines. The postulated mechanisms for this action include up-regulation of cytotoxic transporters and initiation of oxidative stress processes.

Human studies into the effects on tumour-related cachexia and quality of life

It has been suggested for 20 years that \(n\)-3 fatty acids may be useful in the alleviation of tumour-related cachexia\(^{30}\). In particular, most studies have been performed on patients with pancreatic and upper gastrointestinal tract cancers, although there are some data showing a benefit in patients with other solid cancers\(^{31}\). Barber et al.\(^{32,33}\) showed that patients with pancreatic cancer given approximately 2g of EPA and 1g of DHA for 7 weeks showed significant weight gain and improvement in functional status and appetite, in both one single- and two double-arm non-randomised studies comprising seventy-two patients and twelve controls. It was also shown that high doses (up to 18g) of EPA were well tolerated but with greater side effects such as pain, steatorrhoea and...
Many studies have reported beneficial immunomodulatory and nutritional effects of n-3 fatty acid-containing lipid emulsions as part of total parenteral nutrition. So far, few have examined the use of n-3 fatty acid emulsions independently in the treatment of inflammatory conditions, and there are no published case series or controlled trials of intravenous n-3 fatty acid preparations in the adjunct treatment of cancers. However, animal models as discussed previously using n-3 fatty acid preparations do support the potential utility of n-3 fatty acid emulsions in the adjunct treatment of human pancreatic adenocarcinoma. Notwithstanding the potential direct tumour effect and potential response for patients undergoing chemotherapy for unresectable pancreatic adenocarcinoma, there is a reasonable body of evidence that QOL scores and tumour cachexia may be improved.

High-strength oral preparations are available, as mentioned previously, with EPA purity of up to 95% containing up to 18 g of EPA in 100 ml of emulsion. However, data concerning the oral bioavailability of EPA and DHA are limited, and there are no published data comparing oral and intravenous bioavailability. Intravenous preparations containing 10 g of n-3 TAG per 500 ml are commercially available.

The safety of high-dose n-3 fatty acid parenteral emulsions is well established when it has been used as a component of total parenteral nutrition, but further studies would be required to establish its tolerability and efficacy as a combination therapy in conjunction with gemcitabine chemotherapy for the treatment of APC.

Conclusions

The effective palliative treatment of patients with APC has undergone very little advancement in terms of improving overall survival, since gemcitabine chemotherapy was first introduced 16 years ago. Novel agents that can prolong survival, improve QOL and alleviate cachexia in patients with APC are currently unavailable. Putative adjuvant therapies including parenteral n-3 fatty acid emulsions have the potential to address all of these outcome targets and have the additional benefit of proven safety and tolerability albeit in a different study population. The marginal benefits on tumour cachexia and QOL shown in trials using oral n-3 fatty acid supplementation may warrant further investigation with parenteral preparations as compliance and maintenance of optimal dosing should be easier to achieve. Clinical trials to investigate n-3 fatty acid emulsions in combination with gemcitabine in patients with APC are clearly warranted. Even if there is no demonstrated anti-neoplastic activity, an improvement in cachexia and QOL could result in n-3 fatty acid emulsions becoming part of standard care in this challenging patient group.

Acknowledgements

The authors’ contributions are as follows: A. A., M. M. and A. D. designed the concept of the study, and all authors were involved in the literature search and review. A. A., D. A.-L. and J. S. were involved in the data collection, and A. A. and D. A.-L. wrote the manuscript. A. A., J. S., M. M. and A. D. were involved with editing the manuscript and all authors read and approved the final manuscript. All authors are in receipt of industry support from Bbraun Melsungen, Germany, for conducting trials involving parenteral n-3 fatty acid preparations.

References

