Can. J. Math., Vol. XXXVIII, No. 2, 1986, pp. 453-477

ON CESARO AND ABEL SUMMABILITY FACTORS
FOR INTEGRALS

DAVID BORWEIN AND BRIAN THORPE

1. Introduction. Many results have been obtained about factors trans-
forming integrals summable by ordinary and absolute Cesaro methods of
non-negative orders into integrals summable by such methods (see [4], [2],
[6], [3]) and also into integrals summable by the ordinary and absolute
Abel methods (see [7] ). Since the Cesaro summability methods (C, &) and
|C, al for integrals are defined for &« = — 1, it is natural to try to extend the
above mentioned results for @« = 0 to the case —1 = a < 0. In this paper
we restrict attention to the simplest case @« = —1, and classify the
summability factors from (C, —1) and |C, —1] to (C, —1), |C, — 1|,
(C, M), |C, A, 4 and |4], where A = 0 and A denotes Abel summability.

2. Notation and definitions. Let M(a, b) and L(a, b) denote respectively
the Banach spaces of Lebesgue measurable essentially bounded functions
on (a, b) and Lebesgue integrable functions on (a, b). Let M = M(1, oo),
L = L(1, o),

Mo = N M(n) and Lo = N L(n).

=n<oco 1=n<oco

Denote by BV the Banach space of functions of bounded variation over
[1, c0), by BV(0, co) the space of functions of bounded variation
over (0, co), and by BV, the space of functions of bounded varia-
tion over [1, n] for every finite n > 1. Suppose throughout that A Z 0.
An integral [{° x(¢)dt is said to be
(1) summable (C, — 1) [|C, —1}]if x € L. and

(N y@ = fl x(u)du + tx(¥)

is equivalent to a function tending to a finite limit as ¢t — oo [€ BVT;
(i) summable (C, M) [|C, M ]if x € L and

ftl(l - %)xx(u)du

tends to a finite limit as ¢t — co [€ BV,
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(iil) summable 4 [ |4]]if x € L, . and
oo
.[1 e “Ux(u)du

is convergent for s > 0 and tends to a finite limit as s — 0+
[€ BV(0, o) .

The symbol (C, —1) will also be used to denote the linear space of
functions x such that f 7% x(t)dt is summable (C, —1), and a similar use
will be made of the symbols |C, —1|, (C, A) etc. The set of summability
factors from X to Y will be denoted by (X; Y), i.e,, k € (X; Y) if and only
if xk € Y whenever x € X.

A summary of the main results established is given at the end of the

paper.

3. Preliminary results. Integrating (1) yields the identity

; /ll y(u)du = fl] x(u)du

from which it follows that x € (C, —1) if and only if x € (C, 0) and

ess lim tx(r) = 0.

100

Likewise, it follows that x € |C, —1] if and only if x € |C, 0| and
tx(t) € BV. The inverse transformation to (1) is given by

df{l [t
x(t) = —\|- y(u)ydu) foraa.r=1.
divet J1

If the function y defined by (1) is in BV, then the inverse transformation
has the following alternate form

1 1 !
x(t) = )—}fT) + 2 fl udy(u).

Moreover, given any function y € BV the function x defined by

4

1
@ x) = [ wavy
satisfies (1) with y(r) — y(1) in place of y(z). Hence if y € BV, . and y(¢)

tends to a finite limit as 1 — oo, then (2) defines a function x € (C, —1);
and if y € BV, then x € |C, —1].

LEMMA 1. Let

1 [ o0
L) = p f1 k(u)du, f5(t) =t f,

where k € L. .. Then

k
l(;)du fort = 1,
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(a)f, € Mifand only if f, € M;
(b) f, € BV ifand only if f, € BV.

Proof. (a) Suppose that fj € M and that T = ¢ = 1. Then, on
integration by parts,

/,T k(u) — / k(w)du — tlz /11 k(uw)du + 2 /,Tfll(;‘)du

Letting T — oo, we deduce that the integral defining f5(¢) converges and
that

& A0 =0+ 2 [T W4,

and hence that f, € M.
Conversely, if f, € M then the integral defining f, is convergent by
hypothesis and integration by parts yields, for ¢+ = 1,

1 k() 1 [ k(u) 2 [
@ [0 = f = =;f1 uZ'du—fz(zH;f]fz(u)du,

and so f; € M.
(b) Suppose that f; € BV. Then (3) holds, and to show that f, € BV we
have to show that

y(1) =1t f:o%du € BYV.

Now

y(t) = f:)fl(é)dv

and hence, if | = 1, <1} < then

(1) - (=)

= [T o

n’

n 1
2 ) — V)| = f 2

i=1

so that y € BV.
Conversely, if f, € BV then (4) holds and so f; € BV since

1 t 1
P ,[1 Swdu = fo fr(v)dv € BV

provided we define f)(u) = 0 for0 = u < 1.

IA
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LEMMA 2. Let

g = 4 [ ko g = 7O for 21,

u

where k € BV, .. Then
(a) gy € Mifand only if g, € M;
(b) g, € BV if and only if g, € BV.

The proof is similar to that of Lemma 1. An immediate consequence of
Lemma 2(a) is the following:

CoROLLARY. Let k € BV, . Then
1 !
7 f] uldk(w)| € M

if and only if
z/ ———‘dk(u)! € M.
! u

Parts (b) and (c) of the following lemma are due to Tatchell [8, Theorem
1], and Lorentz [5].

LEMMA 3. Suppose thaty € BV, and a function w on [1, o0] is defined by
the transform

5 w@) = /1 K{(z, u)dy(u)

where, for every t Z 1, K(1, u) is bounded and continuous as a function of u
on [1, oo].

(a) If w € M whenever y € BV, then there is a constant H such that, for
allu =2 landaa. t = 1,

IK(¢t, u)| = H.
(b) If w € L whenever y € BV, then there is a constant H such that, for
allu = 1,
[ee)
f] IK(t, u) |dt = H.

(c) If w(t) tends to a finite limit as t — oo whenever y(1) tends {o a finite
limit as t — co, then there are constants c, ty, H such that

(6) /C ld K(t, u)| = H fort = 1,
(7 K@t u)l = Hfort Zty,u =1,
and, for every u = 1,

(8)  K(t, u) tends to a finite limit as t — oo.
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Proof of (a). Using Lemma 6 in (8], with the Banach space B taken to be
M, and the arguments in the proof of Lemma 1 in [8], we observe that the
hypotheses imply that (5) defines a bounded linear operator from BV to
M. Hence there is a constant H such that

ess sup w(n)| = H(ly( | + /1 ldy @) 1)

for every y € BV. Taking the special case

()_{Oifléuév,
T = Wity < u,

v

we get that, for every v 1,

ess sup |K(t, v)| = H,
=1

and this is the required result.

The arguments in the proof of Theorem 3 in [8] can be used to
establish:

LEMMA 4. If, for every t > 1, K(1, u) is continuous as a function of u on
[1, ¢], and the transform
t
wt) = [ K wdv
defines a function w € BV whenever y € BV, then there is a constant H such
that, for all u = 1,
o0
[K(u, u) | + /u |dK(t, u)| = H.

4. Summability factors from |C, —1|.
THEOREM 1. In order that k € (|C, —1|; (C, X)) it is necessary and
sufficient that

1 t
® kel and - / k(uw)du € M.
PR

Proof. Sufficiency. Suppose that (9) holds, that x € |C, — 1], and that y
satisfies (1). Then, using the inverse transformation to (1), we have that,
fort = 1,

1 Ik( ) fk( ) u
/1 x(u)k (u)du = y(1) f} Dot + fl u;‘ du fl vy (v).

u

By Lemma 1(a), (9) implies that
/l u‘zk(u)du
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is convergent and so xk € (C, 0) if and only if the second term on the
right-hand side of the above identity tends to a finite limit as r — co. By

Fubini’s theorem,
[ [,

/l k(u)d f vdy (v)
f; vdy(v)(/jo k;‘)du - fjo é%zaru),

1

Il

and, using (9) and Lemma [(a),

[\ o [T a2 0t [ v,
where
_ = kW |
A f
Hence

f: vdy(v) f(:o U™ 2 (u)du

tends to a finite limit as t — oco. Also
t [ee] k H 4

f vdy (v) f @du = — lf vdy (v)
1 4 u ! 1

1 1 /1
:Hbm—4§—7fwmw

— 0 ast — oo,

since y{t) tends to a finite limit as t — co. Thus xk € (C, 0) € (C, A).
Necessity. Suppose k € (|C, —1; (C, A)). For any ¢t > 1,

X1 €16 1
and hence
kxi.q € (CA),

so that k € L, .. Given any y € BV, if we define x by (2) then x &
|C, =1l and, fort = 1,

w(t) i = ftl (1 - ;))\k(v)x(v)dv
= f[ (1 — t)Ak(v)dvf udy(u)
= f[ udy(u)f (1 - )Akiv)
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by Fubini’s theorem. Thus w € M whenever y € BV, and so, by Lemma
3(a), there is a constant H such that, forall ¥ = 1 and a.a. 1 > 4,

uf;(l—;)xk(vd.<H

Since the left-hand side is a continuous function of ¢, the inequality must
in fact hold whenever 1 = u = 1. Consequently, forl = u=U =1,

u fU(l - ;)Mf%—)dvl < 2H.

Letting ¢ — oo we obtain, by dominated convergence, that

yrnp

and hence, by Cauchy’s criterion, that

fzo v 2k (v)dy

is convergent. Now let U — oo to obtain that, for all u = 1

ok
uf #dv
U oy

and hence, by Lemma 1(a), that (9) holds.

THEOREM 2. In order that k € (|C, —1|; (C, —1)) it is necessary and
sufficient that k € L, and

(10) k € M(c, oo) for some ¢ = 1.

Proof. Sufficiency. Suppose that &k € L, and that x € |C, —1].
Then

lim tx(1) = 0

=00

and, by Theorem 1, xk € (C, 0). Thus if (10) also holds, then
ess lim tk(t)x(t) = 0

lade ]

and so xk € (C, —1).

Necessity. Suppose that k € (|C, —1|; (C, —1)). That k € L, _follows
from Theorem 1 since (C, —1) € (C, 0). Assume (10) to be false. Then
there is a strictly increasing sequence of positive integers {»;} and a
sequence of open intervals {/;} such that m(;) < 1, I, € (n; n,; ;) and

esssup k(f)| > 2" fori=1,2,....
re];

Define a function x by setting
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1
—forr el i=12...,
X([): 12

0 for all other 7 = 1.

Then tx(t) € BV and

f?o be(o) ldt = fdt é; =1,

so that x € |C, —1]. On the other hand

esssup |ix(Dk(r)| =1 fori=12,...,
el

and so xk & (C, —1). This contradicts the hypothesis that
k€ (|C, —1; (C, —1)),
and thus (10) is necessary.

THEOREM 3. In order that k € (|C, —1|; A) it is necessary and sufficient
that (9) hold.

Proof. Sufficiency. This follows from Theorem 1 since A is regular.
Necessity. Suppose that k € (|C, —1]; 4) and that s > 0. Then, for all
x €|C, —1},

/:)O e Vx(k()dv

is convergent so that e” k(v) € ({C, —1f; (C, 0)). Hence, by Theo-
rem 1,

e Vk(v) € Ly

so that k € L,,.. In addition, by Lemma 1(a), there is a constant H, such
that

ok
(11) ’ny e ”—fzv—)dv’ < H, forall V= 1.

Suppose now that y € BV. If x is defined by (2), then x € |C, — 1] and, for
V=1,

/IV e x(MkW)dv = /I/ e-”k( ) f udy (u)

S [ e

by Fubini’s theorem. Further, by (11),
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14 o} k
lim f udy(u)f e‘”—(;—)dv =0
V—oco ! 4 V

since, on integration by parts,

V
/1 udy(u) = o(V) as V — co.

Hence, if we let V' — oo in the above identity and observe that the
left-hand side tends to a finite limit since xk € A, we obtain

e [ k()
f} e "x(WkMdv = fl udy(u) fu e 2 dv,

the left-hand side being a continuous bounded function of s in (0, oo)
whenever y € BV. It follows, by Lemma 3(a), that there is a constant H
such that for allu = 1 and a.a. s > 0

]u f e*”k%gdv
u y

By continuity the inequality holds for all s > 0, and hence if | = u = U

then
u k
u f eA”@dv‘ =2H
u y
and so, letting s — 0+,

u/Uﬂ—z‘de

4y

= H

= 2H.

Hence, by Cauchy’s criterion,

[eo]
/ ) v 2k(v)du
is convergent, and letting U — oo we obtain that, for all u = 1,
© k
—(;—)dv

LY

1§2H

so that, by Lemma 1(a), (9) holds.

THEOREM 4. In order that k € (|C, —1|; |C, —1{) it is necessary and
sufficient that

1

]
(12) k&Mn BV, ad - fl uldk(u)| € M.

Proof. Sufficiency. Suppose that (12) holds and that x € {C, — 1. Then
x € L and k € M imply that xk € L. In order to show that xk € |C, — 1|
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it remains to prove that tx(¢)k(¢) € BV. Using the inverse transformation
to (1) we have, for ¢t = 1

k k !
tx(OHk(t) = y(l)—itt—)- + _(I_Q /1 udy (u)

where y € BV. Since

fw’ (k(z))' = [ "‘§;>'dt+ I Idkft)l o

by (12) and the corollary to Lemma 2, it remains to show that y € BV
where

k t
w0 =50 [ vy

Letl =1, <t <...<t, Then,fori=1,2,...,n
() — vt ) = o + B

a; = (ﬁ(—t'—) - M)ﬂ_l udy (u)

[ ¢,

i—1

and
B - 5553 J! v,

Now

Il/\

1B/

i=1

> } ! v

=k [Mlwwi = [ iww

where

K = sup k(1) |.
=1

Further

n
> oyl
i=1

n

>

i=1

— [ v =

IIA

k@) k(ti—l)l i
y ———ti—l /1 uldy(u) |

k(r) k(z,-_o}
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n—1»

where i, is the index such that ¢, , <u =1y . Butforl = u =1«

2”3 k() k(tl)‘suf:o d(@)‘

= u f:o ]kii)ldt Y u fzo -——Idkﬁt)l,

which is bounded for u = 1 in view (12) and the corollary to Lemma 2.
Hence there is a constant ¢ such that

n

> ) — vl = 2 lo| + 2 1Bl = ¢

i=1 i=1

for all choices of 1y, ¢;,...,1,, and soy € BV.
Necessity. Suppose that k € (|C, —1|; [C, —1]). For any ¢ > 1,

X € 1C —1]
so that
kxj1 € 1C, — 11

Hence uk(u) € BV, and so k € BV),. Given any y € BV, define x by
(2) so that x € |C, —1] and, for: = 1,

k 4
w(?) 1= tx()k(t) = % fl udy (u).

Then w € BV whenever y € BV and consequently, by Lemma 4, thereis a
constant H such that, for all u = 1,

o+ 7 ](10)
and so
foosdka)l foovca)l i /ool (k(z))'

It follows, by the corollary to Lemma 2, that (12) holds.

A

H’

THEOREM 5. In order that k € (|C, —1|; |C, 0|) it is necessary and
sufficient that

1 t
(13) k&L and - /1 lk(u)ldu € M.

Proof. Sufficiency. Suppose that (13) holds and that x € |C, —1]. By
Lemma 1(a) there is a constant H such that, for all ¢+ = 1,
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ok
z/ k)1 4y =
L
Using the inverse transformation to (1), we have, for u = 1,

k(u) k(u) [
x(u)k(u) = y(1) 2 + 2 /1 1dy (1),

where y € BV. Hence

00 © > |k
[} ik = vy + [ i) [7E
< 1y + 1 [ o] < o

Thus xk € |C, 0| = L.

Necessity. Suppose that k € (|C, —1]; |C, 0] ). Since |C, 0| € (C, 0) it
follows, by Theorem 1, that k € L, .. Given any y € BV, define x by (2)
so that x € |C, —1|and fort = 1,

w(t) = frl x(Mk)dv

_ f’l k(”dv/ udy ()
= [ udy(u) [ @dv
.[1 /u v?

Then w € BV whenever y & BV and so, by Lemma 4, there is a constant

H such that, for all u = 1,

k4 < 1

By Lemma 1(a), this implies (15).

THEOREM 6. In order that k € (|C, —1]|; |C, A}) where A > 0 it is
necessary and sufficient that k € L, and that there be a constant H such

that, for all t = 1,
f (u *'k(v) ‘ = H

o [5G

Proof. Sufficiency. It is shown in [3] that ¢ € |C, Al if and only if
a € L]OC and

(15) / (u )‘ 1va(v)dv

| )\+l < 0.
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Suppose that x € |C, —1| and that (14) holds. As before we have, for

u=l1,

k u
16) ki =y + KD [

where y € BV. It follows from (14) with r = 1 that (15) holds with
a(v) = v %(v) so that u” %k(u) € |C, M. To show that the other term on
the right-hand side of (16) is also in |C, A| we observe that, in view

of (14),
Tou_’id-‘l:_‘ ./T (u — V)}“lli(v—vzdv /: tdy(t)’
‘1>° f—H fu tdy(z)[  — v 1k(V) ‘
= fooz(dy(mfoo i f( o ]k(v) i

A

H /To ldy(t) | < co.

Thus (15) holds with a(v) = x(v)k(v), and so xk € |C, Al.
Necessity. Suppose that k € (|C, —1]|; |C; A]). Then

k€ (IC, =15 (G N)

and so, by Theorem 1, k € L,... Given any y € BV, if we define x by (2)
then x € |C, —1| and, for a.a. t = 1,

1 t -
w(t) 1= X fl (t — v))‘ Lx (v)k (v)dv
1 ~1k(v) ’
= AT f1 « — ) vv dv f, udy (u)

1 [ ‘ ik
:?T'f‘ udy (u) f ¢ — ]%dv

/To K¢, uw)dy(u)

I

where

Kt u) = ;X’i—] ft « - v)“‘@dv

whenever 1 = u = ¢ and the integral exists in the Lebesgue sense, and
K(t, u) = 0 otherwise. (Note that the integral may fail to exist on a set of
measure zero when 0 << A << 1.) Then w € L whenever y € BV and so, by
Lemma 3(b), there is a constant H such that, for all u = 1,
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© dt

0 14
Hi/l K wldi =u |, x5 ! (V)

N

1.e., (14) holds.
THEOREM 7. If A = 1 then
(1€, =1 1C, AL = (€, =1} (G, 0)).
Proof. For any A = 0,
(1C, =1 IC, AL < (IC, =1 (G, A)) = (IC, =15 (C, 0))
by Theorem 1. To complete the proof we have to show that
(IC, =15 (G, 0)) c (IC, —11 G 1)),

since {C, 1] € |C, Al for A = 1. By Theorems 1 and 6 this means that we
have to show that (9) or, by Lemma 1(a), that k € L, and

K
(17) t[ -@du} =H forr=1
Loy

implies that

(o] u
(18) z/t du f{ k(v)dvl = H, fortz1,
u v

H and H,| being constants. Suppose that (17) holds. Then, on integrating
by parts,

U o0 joe]
f k(v)dv =t &v;)dw —u k(—v;)dw
v L ow “oow

t
+ f dvf *k(‘;))dw
t v W

and hence, by (17), we have, for r = 1,

 du| [« k 0  du [ dv
—Z‘ft (v)dv§2Htf +Hf R
Vv

< H + H = 3H,

L.e., (18) holds.
Tueorem 8. (|C, —1]; 14}) = (IC, —1]; (C, 0)).

Proof. Suppose that k € (|C, —1|; (C, 0)) and that x € |C, — 1. Then,
by Theorem 7, xk € (C, 0) N {C, 1], and so, by Theorem 3 in {7}, xk € |4].
Hence

(IC, =1 (G 0))  (IC, =15 4]) € (IC, —1f; 4).
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Further, by Theorems 1 and 3,
(IC, =1 4) = (IC, =15 (C, 0)),

and the required identity follows.

5. Summability factors from (C, —1).

THEOREM 9. In order that k € ((C, —1); (C, A\)) it is necessary and
sufficient that

1 t
(19) ke M, and - f k(u)du € BV.
t 1
Proof. Sufficiency. Suppose that (19) holds and that x € (C, ~1). Let

1) =5;(; le k(u)du) and B(f) = le a(u)du,

so that, for a.a. 1 = 1,
(20) k(1) = ta(t) + B(0).
By (19), « € L N M, . and 8 € BYV. It follows, since

ess lim tx(¢) = 0,

=300
that
tx(a(t) € (C, 0)
and, since x € (C, 0), that
xB € (C, 0).
Hence, by (20),
xk € (C, 0) C (C, D).

Necessity. Suppose that k € ((C, —1); (C, A)). For T > 1, if
x &€ L(1, T)and x(z) = Ofort > T, then x € (C, —1) so that xk € (C, \)
and in particular xk € L(1, T). Hence, by a theorem of Lebesgue, it is
necessary that k € M, .. Now suppose that y € BV . and that y(¢) tends
to a finite limit as t — oco. If x is defined by (2), then x € (C, — 1) and, as
in the proof of the necessity part of Theorem 1, for ¢t = 1,

W) = ft] (1 - l;))\k(v)x(v)dv —~ f?o K(t, w)dy(u)

t Ak
u/(l*z)-—(:—)dv ifl1=2u=1q,
K(1, u) = “ t v

Oifu >t

where
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Then w(z) tends to a finite limit as 7 — oo whenever y € BV and y(¢)
tends to a finite limit as ¢ — co. Hence, by Lemma 3(c), K satisfies (6), (7)
and (8). As in the proof of Theorem 1, (7) implies that

/TO y 2k (v)dv

is convergent, so that, for u = 1,
. k(v
lim K(t, u) = u f —(2—)dv =: y(u).
t—00 “ oy
Now, by (6), whenever ¢ = uy < u; < ...<u,and t = t, we have

n

> K, u) — K(t,u;_,)| = H,

i=1

and hence
2 Iy(w) = v, )| = H.
i=1

It follows that y € BV and so, by Lemma 1(b), (19) holds.

THEOREM 10. In order that k € ((C, —1); (C, — 1)) it is necessary and
sufficient that (19) hold and that k € M.

Proof. Sufficiency. Suppose x € (C, —1). Then, by Theorem 9, (19)
implies that xk € (C, 0), and k € M implies that

ess lim tx(t)k(z) = 0.

[—00
Thus (19) and & € M imply that xk € (C, —1).
Necessity. Suppose & € ((C, —1); (C, —1)). Since
IC, =1 € (C, =) C (G, 0),

it follows from Theorem 9 that k¥ € M, . and from Theorem 2 that
k € M(c, oo) for some ¢ = 1. Hence k € M.

THEOREM 11. In order that k € ((C, —1); A) it is necessary and
sufficient that (19) hold.

Proof. Sufficiency. This follows from Theorem 9 since (C, 0) C A.
Necessity. Suppose that k € ((C, —1); 4) and that s > 0. Then

e Vk(v) € ((C, —1); (C,0))

so that, by Theorem 9, k& € M, .. Suppose now that y € BV, and that
y(t) tends to a finite limit as t — oo. If x is defined by (2), then
x € (C, —1) and, as in the proof of the necessity part of Theorem 3,
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© —sv _ © « —sv@
f] e "x(WkW)dv = f] udy (1) fu e 2 dv.

Since the left-hand side tends to a finite limit as s — 0+ whenever
y € BV, and y(¢) tends to a finite limit as r — oo, it follows, by Lemma
3(c¢), that (6), (7) and (8) hold with

0 k
K(t,u) = u / e_mgdv.
u v
It follows from (7), as in the proof of Theorem 3, that
*k
#dv
Vv

143

lim K(t, u) = u

1200

and then from (6), as in the proof of Theorem 9, that

(o]
u _/ v 2k(v)dv € BV.
Thus, by Lemma 1(b), (19) must hold.

THEOREM 12. In order that k € ((C, —1); |C, 0| ) it is necessary and
sufficient that

k(t
(2l1) k € M, and k() e L
t

Proof. Sufficiency. Suppose that (21) holds and that x € (C, —1). Then
there is a number ¢ = 1 such that tx(¢) € M(c, oo), and hence

f] [x()k(t) |dt = ,/1 Ix(t)k(2) |dt + f(v 'tx(t)—t— dr < oo,
Thus xk € (C, 0).

Necessity. Suppose k € ((C, —1); |C, 0]). Then k € ((C, —1); (C,0))
so that k € M, by Theorem 9. Let {a,} be any sequence of positive
numbers decreasing to 0, and define

-1
CU s i<n+ln=l2...
{

x(t) =

Then tx(t) > 0ast —>o0cand,for2 = N=T <N+ 1,
N—1

./Tx(’)d’ > (—1)"tx,,10g(1 + l) + (= 1)y log(%)

n=1 n

so that x € (C, 0) by Leibniz’s test. Hence x € (C, —1) and so
xk € |C, 0], i.e.,
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& n+1
> a, fn '—k—(tt)—ldt< co.

n=1
Since {a,} could be any sequence decreasing to 0, we must have

S kOl [T ROl

n=1 t t

(otherwise

n+1
a, = 1/(1 + f lk(t’)‘dz)

would give an example of a function x € (C, —1) for which xk & |C, 0] ).
Thus (21) must hold.

The proof of the next theorem is an adaptation of the proof for the
series analogue given in [1].

THEOREM 13. In order that k € ((C, —1); |A|) it is necessary and
sufficient that (21) hold.

Proof. Sufficiency. This follows from Theorem 12 since |C, 0| C |A|.

Necessity. Suppose k € ((C, —1); |4] ) and define «(?), B(z) as in (20).
Since |4| C A, we have, by Theorem 11, thata € L N M. and 8 € BV.
Suppose that s > 0 and that x € (C, —1). For ¢ = 1, let

(22) x,(¢) = /1 x(u)du, y(t) = x,(t) + tx(¢).
Then

/To e Ix(Ok(t)dt = /To e Ix()B(Hdt + f?o e tx(t)a(t)dt.

The first integral is of bounded variation over (0, o) by hypothesis, and so
1s the final integral since

/To ltx ()a(2) |dt < oo.

Hence

I(s) : = /To e “'x()B(t)dt € BV (0, co).

On integration by parts,

16 = [T 506 ate) — 580

and

f To e Sx ()a(t)dt € BV(0, o)
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since

ﬁo [x,(D)a(t) ldt < o0.
Thus

Ii(s) =s f?o e “x,(1)B@t)dt € BV(0, o0).
Further

[e%s) 4
I(s) = s _[1 e?”é;?dt fl y(u)du

s fc;oy(u)du /‘oo e_”—B(—th,

“ t

l

the interchange in order of integration being justified since

f L f . e”’lﬁ(tt—)[dz

= :g}? (i fl; ly(v) Idv) . f(:o e YB(t) |dt < oo.

Next
Li(s) = Iy(s) + L(s)

where

16y =5 [ vodu [ gy - oy,

t

e*Sl

t

Iys) = s f‘ y(uw)B(u)du fu dt.

We prove first that I, € BV(0, co). Observe that

J

so that

1/t 00 2
ds = f i(se_”)ds - —g(se'”)ds = —,
as et

d -y
5;(‘?8 ) 0 1/t 3¢

A
!

o0 2 00 oo di
fo [I3(s) 1ds = ~ f‘ Ly (u) ldu f 1B(r) — Bw) lt—zt

2 [T vwia 7% [ s

- /TO ldB(v) l% /: ly(u) ldu < oo.

IIA

|

1o

4
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Thus I, € BV(0, oo) and so I; € BV(0, oo) whenever x € (C, —1). For
u=1, let

(o8] —st oo , St
w (u) = 2 ¥ @) = ¢ @ — e ™,
* Is\Ju ¢ wooy

so that

I(s) = f -y @)Buyw, (u)du

and hence

/0 ds /1 y()Bu)w (u)du| < oo

whenever y € B where B denotes the Banach space of bounded
measurable functions z on [1, oo) such that z(¢) tends to a finite limit as
t — oo, the norm being given by

llzll = sup lz(2) .
=
This is so, since if y € B and x is defined by

d{1 (!
x(t) = —(~ / y(u)du) fora.a.r > 1,
di\e 7!

then (22) holds for a.a. t > 1 and x € (C, —1). For n = 1 and each fixed
s > 0, define a continuous linear functional f,:B — C by

£00 = [ pum, e

Since, for every y € B,
. o0
) = lim 1,00 = [ 0BG, e
n—>00
this defines a continuous linear functional on B for each fixed s > 0.

Hence, by Lemma 1 in [8], since I} € L(0, oo) there is a constant H such
that, for every y € B,

(23) 0 ds ,/1 y(u)Bww (wydu| = H sg[]) ly@u) |
Now take
|a(u)lsg,n Bu) forl = u = m,
»(u) = { alu)

0 for u > m,

where
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~TQ + 1)

WED foru = 1.
u

alu) = /ZO s"ws(u)ds =

Then

TQ2 + )| [m "
IT( 2 N f1 |/3<;4)1 e /1 () )N

— [T s [ v, s

(o]

= fo s'ds f’:y(u)B(u)ws(u)du

é/ods

=H s>up>1 ly(u)| = H

m=u=

7 s, s

by (23), the inversion in order of integration being justified since

[ et [ wotas =2 [

u)’du < o0
u

It follows that

0@ + D] (18w, _
5 f] ) du = H

and hence, by (20), that (21) holds.
THEOREM 14. ((C, —1); [4]) = ((C, —=1); |C, A|).
Proof. Suppose k € ((C, —1); |C, A) and that x € (C, —1). Then
ke ((C -1 (CN) =G —1)(C0)),

by Theorem 1. Thus xk € (C, 0) n |C, Al and so, by Theorem 3 in [7],
xk € |A4], so that

k€ ((C, —1); |4]).
Hence
(G, =D [C A € ((C, =D 4]).
Further, by Theorems 12 and 13,
((C, =D; 14l = ((C, =1 [C, 01) < ((C, =1 [C, Al),

and the required identity follows.
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THEOREM 15. In order that k € ((C, —1); |C, —1}) it is necessary and
sufficient that k(t) = 0 for all t = 1.

Proof. Sufficiency. This is immediate provided we adopt the convention
that x(2)k(t) = 0 whenever k(t) = 0 even when x(¢) is infinite or
undefined.

Necessity. Suppose k(c¢) # 0 for some ¢ = 1. Define x(¢t) = 0 forr = 1,
t # cand x(¢) = co. Then x € (C, —1) but xk & |C, — 1] since

Ix(t)k(t) & BV.

In Theorem 15 the necessity for k to be identically zero is a trivial
consequence of the definition of |C, —1|. The following theorem shows
that the condition on k cannot be significantly relaxed by enlarging the
space |C, —1] in a natural way.

THEOREM 16. In order that

/[] x(k(w)du + ix(t)k(1)

be equivalent to a function in BV whenever x € (C, — 1) it is necessary and
sufficient that

24y k(t) =0 foraa.t=1.

Proof. Sufficiency. This is immediate.

Necessity. Assume (24) to be false. Then there is a strictly increasing
sequence {c,}, a sequence of positive numbers {¢,}, and a sequence of
measurable sets {£, }, such that ¢, 2 1, and, forn = 1,2,...,

lk(t)y| =2 ¢, fort € E, C (¢,, ¢,; ) and 0 < m(E,) = 1.

H

Let r, be an even positive integer such that
€,r, = n,

and define

E,, = (Cn,iVI’ Cn,i) n En

Cp = Cuo < Cp1 < - < Gy = Gy

the numbers ¢, ; being chosen so that

/ dt
Eni th(1)

isconstant fori = 1,2, ...,r
Now define

ne
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_li
wfort €k, i=
x(t) = { ntk(1) ’

0 for other tr =

v

Then

il
. x(t)dt =0
and, for ¢, < T < ¢, .},

T
[ ] =B < 1
Cp n

MIA

so that

/Tx(t)dt — 0as T — oo.
Also,

ltx(t)| 2 1/n forc, =t < ¢,y
and so

tx(1) >0 ast— oo

Hence x € (C, —1). On the other hand if y(t) = 1x(¢) k(¢) for a.a. t = 1,
then the variation

, 2¢,r
Vi) 2 = 2 2,

and so y € BV. Thus (24) is necessary.

Remark. Theorem 12 is a special case of Theorem 14 and is not needed
to prove Theorem 14. The proof of Theorem 12 has been included since it
is much simpler than that of Theorem 14 which uses the necessity part of
Theorem 13 in an essential way.

6. Summary. Collecting the above results we obtain:

= (IC, =1 IC A + 1)
= (IC, —1; |4]) =: S,
and

ke Seke L,

and
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1 I
p /1 k(u)du € M.

IL ((C, =1 (CN) = ((C, —1);4) =: T,

and
ke Teke M,
and
1 1
- f] k(u)du € BV,
t
HL ((C, =D |G A) = ((C, =1); |4]) =: U,
and
ke Uske M
and
M e L.
t
IV. ke (IC, —1;(C, = 1))k € L, N M(c, o0)
for some ¢ = 1.
V. ke —-1IC, —1ll)sske BV, " M
and
1 H
; /l u|dk(u)| e M.
VL. ke (|C, =1 IC,0]) s k € L,
and
1 t
p fl lk(u)|ldu € M
VII. ke (IC, —1;|C,A)for0 < A< le ke L.
and
© du u aA—1k(v)
l/[ Wf{(u*l’) leV e M.
VIII. ke ((C, —1),(C, " DH)yeske M
and
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1 t
p /1 k(u)du € BV.

IX. ke ((C —1)]|C —1])e k() =0foralls = 1.
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