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ON CESÀRO AND ABEL SUMMABILITY FACTORS 
FOR INTEGRALS 

DAVID BORWEIN AND BRIAN THORPE 

1. Introduction. Many results have been obtained about factors trans­
forming integrals summable by ordinary and absolute Cesàro methods of 
non-negative orders into integrals summable by such methods (see [4], [2], 
[6], [3] ) and also into integrals summable by the ordinary and absolute 
Abel methods (see [7] ). Since the Cesàro summability methods (C, a) and 
|C, a\ for integrals are defined for a ^ — 1, it is natural to try to extend the 
above mentioned results for a ^ 0 to the case — 1 îâ a < 0. In this paper 
we restrict attention to the simplest case a = — 1, and classify the 
summability factors from (C, - 1 ) and \C, - 1 | to (C, - 1 ) , \C, - 1 | , 
(C, X), |C, X|, A and \A\, where X i^ 0 and A denotes Abel summability. 

2. Notation and definitions. Let M (a, b) and L(a, b) denote respectively 
the Banach spaces of Lebesgue measurable essentially bounded functions 
on (a, b) and Lebesgue integrable functions on (a, b). Let M = M(l , oo), 
L = L(l , oo), 

Mioc = n Af(l, n) and L loc - n ^ ( 1 , «)• 
l ^ n < o o l^w<oo 

Denote by BV the Banach space of functions of bounded variation over 
[1, oo), by BV(0, oo) the space of functions of bounded variation 
over (0, oo), and by BV]oc the space of functions of bounded varia­
tion over [1, n] for every finite n > 1. Suppose throughout that X ^ 0. 

An integral /^° x(t)dt is said to be 
(i) summable (C, — 1) [ |C, - 1 | ] if x G L loc and 

(1) y(t) = J i x(u)du + fx(0 

is equivalent to a function tending to a finite limit as t —» oo [ e 2?F]; 
(ii) summable (C, À) [ |C, X| ] if x G L loc and 

1 — - I x(u)du 

tends to a finite limit as / —> oo [ G 5 F ] ; 
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454 D. BORWEIN AND B. THORPE 

(iii) summable A [ \A\ ] if x G L l oc and 
foo 

J] e~sux(u)du 

is convergent for s > 0 and tends to a finite limit as s -» 0 + 
[ G BV(09 oo)]. 

The symbol (C, —1) will also be used to denote the linear space of 
functions x such that J^° x(t)dt is summable (C, — 1), and a similar use 
will be made of the symbols \C, —1|, (C, X) etc. The set of summability 
factors from X to 7 will be denoted by (X; 7), i.e., k G (X; 7) if and only 
if xk G 7 whenever .x G X 

A summary of the main results established is given at the end of the 
paper. 

3. Preliminary results. Integrating (1) yields the identity 

1 ft P 
- J y(u)du = j x(u)du 

from which it follows that x G (C, — 1) if and only if x G (C, 0) and 

ess lim tx(t) = 0. 
/—>oo 

Likewise, it follows that x G \C, —1 | if and only if JC G |C, 0| and 
tx(t) G BV. The inverse transformation to (1) is given by 

\-t jxy(u)du) x(t) = — [- f i y(u)du ) for a.a. / ^ 1. 

If the function/ defined by (1) is in BVloc, then the inverse transformation 
has the following alternate form 

x(t) = —y- + -~- I udy(u). 
r t J ] 

Moreover, given any function^ G BVloc the function x defined by 

- f (2) x(t) = -2 j ] nrfKiO 

satisfies (1) with^(/) — y(\) in place of j^(/). Hence if y G #PI O C
 an<3 y(t) 

tends to a finite limit as t —» oo, then (2) defines a function x G (C, — 1); 
and if j ; G BV, then x G |C, - 1 | . 

LEMMA 1. Let 

1 ft f°° k(u) 
/,(?) = - J f *(«)</«, / 2 ( 0 = r J r - ^ /or t iï 1, 

w/zere /c G L loc. 77zeft 
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(a)/*! G M if and only iff2 G M\ 
(b)f G BV if and only iff2 G BV. 

Proof (a) Suppose that f G M and that 7" ê / ê 1. Then, on 
integration by parts, 

r % ) , i r . , w i r t , w . «, r/i(w^ 
J —2~aw = — / k(u)du — -J / k(u)du H- 2 / —^-aw. 

Letting r —» oo, we deduce that the integral defining/2(0 converges and 
that 

and hence that / 2
 G ^ -

Conversely, if / 2 G M then the integral defining / 2 is convergent by 
hypothesis and integration by parts yields, for / ^ 1, 

(4) / , ( 0 = - / ' ulk^du = - f ° ^ < / « - / 2 ( 0 + - / ' , f2(u)du, 

and so f G M. 
(b) Suppose that/ j ^ BV. Then (3) holds, and to show that / 2 G £ F w e 

have to show that 

/

oo /• (u\ 
J-A^du G £ K 

' u 

Now 

and hence, if 1 ^ t0 < tx < . . . < /„, then 

2 IYC) - Y(',--,)I ^ /Ô* 2 |/i(-) - / , ( — ) | 
/ = 1 ^ U / = j I \ V / \ v / ' 

/

oo 

1 \df(t)l 

so that y G BV. 
Conversely, if f2 G BV then (4) holds and so f G # F since 

X- f[f2(u)du= j\f2(tv)dv e S F 

provided we define/2(w) = 0 for 0 ë w < 1. 
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LEMMA 2. Let 

1 P f°° dk(u) 
gi(0 = " J , udk{u\ g2(t) = t J t —^for t è 1, 

where k e BV\oc- Then 
(a) g] G M if and only if g2 G M; 
(b) g! G BV if and only if g2 e £ F . 

The proof is similar to that of Lemma 1. An immediate consequence of 
Lemma 2(a) is the following: 

COROLLARY. Let k e BVloc. Then 

1 ft 
- I . u\dk(u 
t J l 

) | e M 

if and only if 

r°° \dk(u) 
/ ; 

M. 

Parts (b) and (c) of the following lemma are due to Tatchell [8, Theorem 
1], and Lorentz [5]. 

LEMMA 3. Suppose that y e BVloc and a function w on [1, oo] is defined by 
the transform 

/"oo 

(5) w(t) = J f K(t, u)dy{u) 

where, for every t ^ 1, AT(/, w) w bounded and continuous as a function of u 

on [1, oo]. 
(a)Ifw e M whenever y ^ BV, then there is a constant H such that, for 

all u ^ 1 tf«<i a.a. ? = 1, 

(b) Ifw G L whenever y ^ BV, then there is a constant H such that, for 
all u ^ 1, 

1 !#(/, w) |A ^ H. 

(c) Ifw(t) tends to a finite limit as t —> oo w/ze«ever j^(7) te^ds to a finite 
limit as t —> oo, //z£?2 f/zere are constants c, t0, H such that 

Çoo 

(6) J \duK{t,u)\ ^Hfort^ to, 

(7) \K{t, u) | â H for t ^ t 0 , u ^ l , 

and, for every u = 1, 

(8) AT(7, w) tozds /o a finite limit as t —» oo. 

/ ; 
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Proof of'(a). Using Lemma 6 in [8], with the Banach space B taken to be 
M, and the arguments in the proof of Lemma 1 in [8], we observe that the 
hypotheses imply that (5) defines a bounded linear operator from B V to 
M. Hence there is a constant H such that 

esssup|vK0l ^ H(\y(\)\ + I \dy(u)\) 
t^\ J l 

for every y e BV. Taking the special case 

JO if 1 S H â v, 
^ ( W ) = l l i f v < u , 

we get that, for every v ^ 1, 

ess sup \K(t9 v)\ ^ H, 

and this is the required result. 

The arguments in the proof of Theorem 3 in [8] can be used to 
establish: 

LEMMA 4. If for every t > 1, K(t, u) is continuous as a function of u on 
[1, t], and the transform 

= / ; w(t) = J j tf(f, « ) ^ ( I I ) 

defines a function w G BV whenever y Œ BV, then there is a constant H such 
that, for all u ê 1, 

Too 

w, u) | + J M \dtK(t, u)\ ^ H. 

4. Summability factors from \C, — 11. 

THEOREM 1. 7H order //zûtf /: G ( |C, —1| ; (C, A.)) it is necessary and 
sufficient that 

(9) k G L loc W - / k(u)du G M. 
1 f 
- / , k(u)du 
t J l 

iVtfo/. Sufficiency. Suppose that (9) holds, that x G |C, —1| , and that >> 
satisfies (1). Then, using the inverse transformation to (1), we have that, 
for t ^ 1, 

/

t (l k(u) P k(u) fu 

j x(u)k(u)du = y (I) J 1 —^-du + j ] -^-du J ] vdyiy). 
By Lemma 1(a), (9) implies that 

/ 

oo 

u k(u)du 
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is convergent and so xk e (C, 0) if and only if the second term on the 
right-hand side of the above identity tends to a finite limit as / —> oo. By 
Fubini's theorem, 

i i k-^rdu i . vdy{v) = iivdy{v) Jv-jrdu 

= /;^,(/;^-/;^4 
and, using (9) and Lemma 1(a), 

/

t I foo h-(u\ I foo 

where 

H = sup 
I f°°k(u] 
r / ~~T dw < oo. 

Hence 

(v) 

ft (<*> _2 
/ vdyiy) J u k(u)du 

tends to a finite limit as / —* oo. Also 

^dy(v) Jt ~j-du\ ^-\jxvdy{v 

= H\y(t) - — - - I y(v)dv\ -> 0 as / -> oo, 

since y(t) tends to a finite limit as t —> oo. Thus xk e (C, 0) c (C, X). 
Necessity. Suppose k e ( |C, —1| ; (C, X) ). For any f > 1, 

X[l,r] 

and hence 

\Q - H 

^X[i,/] G ( C X), 

so that A: e L loc. Given any >> e 5 K, if we define x by (2) then x 
|C, - 1 | and, for t ^ 1, 
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by Fubini's theorem. Thus w G M whenever y G B V, and so, by Lemma 
3(a), there is a constant H such that, for all w = 1 and a.a. / > w, 

I» /I H ) > H. 

Since the left-hand side is a continuous function of f, the inequality must 
in fact hold whenever f = w = 1. Consequently, for 1 ^ « ^ 1/ ^ /, 

! « / : ( ' - : ) > ^ 2//. 

Letting / —* oo we obtain, by dominated convergence, that 

I fU k(vh 
I J u , / 

^ 2/7 

and hence, by Cauchy's criterion, that 

-2 J * v Lk{v)dv 

is convergent. Now let U —> oo to obtain that, for all w ^ 1 

I f°° klv) 
\u J -dv 2H 

and hence, by Lemma 1(a), that (9) holds. 

THEOREM 2. In order that k G ( \C, —1 | ; (C, — 1) ) it is necessary and 
sufficient that k G L loc and 

(10) /: G M(c, oo) for some c ^ 1. 

iVtfo/l Sufficiency. Suppose that k G L loc and that x G |C, —1| . 
Then 

lim tx(t) = 0 

and, by Theorem 1, xk G (C, 0). Thus if (10) also holds, then 

ess lim tk(t)x(t) = 0 

and so xk G (C, — 1). 
Necessity. Suppose that k G ( |C, - 1|; (C, - 1) ). That fc G L1OC follows 

from Theorem 1 since (C, —1) c (C, 0). Assume (10) to be false. Then 
there is a strictly increasing sequence of positive integers {nt} and a 
sequence of open intervals {It} such that w(/z) < 1, It c (w/5 w/ + 1) and 

ess sup |/c(/) | > 2l for z = 1, 2 , . . . . 

Define a function x by setting 
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x(t) 
7 for/ e /,., / = 1, 2 , . . . , 

0 for all other 1 ^ 1 . 

Then tx(t) e B V and 

so that x G |C, —1| , On the other hand 

ess sup \tx(t)k(t) | è 1 for / = 1, 2 , . . . , 

and so xk £ (C, — 1). This contradicts the hypothesis that 

k e ( |C, - 1 | ; (C, - 1 ) ) , 

and thus (10) is necessary. 

THEOREM 3. In order that k e ( |C, — 1|; >4 ) // w necessary and sufficient 
that (9) AoW. 

Proof. Sufficiency. This follows from Theorem 1 since A is regular. 
Necessity. Suppose that k e ( |C, —1 | ; ,4) and that s > 0. Then, for all 

x G |C, - 1 | , 

/

oo 

<Twx(v)Jk(v>fr 

is convergent so that e~svk(v) e ( |C, —1 | ; (C, 0)) . Hence, by Theo­
rem 1, 

e~~svk(v) e L loc 

so that k <E L loc. In addition, by Lemma 1(a), there is a constant Hs such 
that 

(H) \V l y e / ; 
„*(v) 

Jv ^ if. for all F â 1. 

Suppose now thatj^ G 5 F. If x is defined by (2), then x G |C, — 1| and, for 
V^ 1, 

J ! <TJvx(v)Â:(v )rfv = J | e " i V ^ J v j \ udy(u) 

by Fubini's theorem. Further, by (11), 
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lim 
fV A 

J j udyiu) J ^ —2~"V = 0 

since, on integration by parts, 
ry 

J udy(u) = o(V) as V —> 00. 

Hence, if we let F —» 00 in the above identity and observe that the 
left-hand side tends to a finite limit since xk e A, we obtain 

/

oo Zoo /*oo fcfvl 

the left-hand side being a continuous bounded function of s in (0, 00) 
whenever j ; e 5 V. It follows, by Lemma 3(a), that there is a constant H 
such that for all w â 1 and a.a. 5 > 0 

\u J e-^dv ^ #. 

By continuity the inequality holds for all s > 0, and hence if 1 Si u â U 
then 

I (" 
1/7 / 

e —T-dv ^ 27/ 

and so, letting s —» 0 -f, 

^ 2#. 

Hence, by Cauchy's criterion, 

r 
J u 

v zk(v)du 

is convergent, and letting [ / ->oowe obtain that, for all w = 1, 

\u I 
k(y) 

dv ^ 2H 

so that, by Lemma 1(a), (9) holds. 

THEOREM 4. In order that k e ( \C, —1 | ; |C, —1| ) /*/ is necessary and 
sufficient that 

(12) k e M H £F l o c W if u\dk(u) | G M. 

/VO0/. Sufficiency. Suppose that (12) holds and that x e. |C, —1| . Then 
x ^ L and k ^ M imply that JCÂ: e L. In order to show that xk Œ \C, — 1| 
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it remains to prove that tx(t)k(t) e BV. Using the inverse transformation 
to (1) we have, for / ^ 1 

/ t J x 

where y e BV. Since 

udy(u) 

/:K^/:^w; \dk(t) 
< oo 

by (12) and the corollary to Lemma 2, it remains to show that y e BV 
where 

lit) 
kit) (0 (' 

t Ji 
udyiu). 

Let 1 = t0 < t] < ... < t„. Then, for / = 1, 2 , . . . , n 

yiti) - y(?;_,) = «,- + ft 

where 

and 

Now 

A-
*(/ ; udyiu). 

2 Iftl ^ * 2 - f' u\dyiu) | 
i = i / = i ti

 J >i-\ 

\dyiu) | 

where 

K = sup \k(t) |. 
(SI 

Further 

2 I«,I ^ 2 £ ko,) _ *(/,._,)! 
• i ' > , f i - i 

A- , 
)l 

' = ' „ ', 

*(*,-) *(/,-_,) 

' / - l 
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where /' is the index such that /, _, < w â /,- _.. But tor \ = u ^ t « — l » 

u ZJ 
k(tt) k{tl_x) 

H-\ 

^ w / —~—at + u I , 
J U f- J U f 

which is bounded for u ^ 1 in view (12) and the corollary to Lemma 2. 
Hence there is a constant c such that 

2 w/,) -?(/,._,)! ^ 2 Kl + 2 |j8,.| ^c 
/ = 1 * = 1 z = l 

for all choices of t^ tx,. . . , /„, and so y e Z?K 
Necessity. Suppose that Â: G ( |C, - 1 | ; \C, - 1 | ). For any f > 1, 

X[i,r] G IC, " I l 

so that 

*X[l,r] e IC - H . 

Hence w£(w) G ^ ^ I O C
 a n d so k e #Kloc. Given any j e J9F, define x by 

(2) so that JC e |C, - 1 | and, for / ^ 1, 

J ! MÛEV(W). w(0 := tx(t)k(t) 

Then w G 1? F whenever j e 5 F and consequently, by Lemma 4, there is a 
constant H such that, for all u ~ 1, 

|/c( .„+.yrk^)i*». 
and so 

« r ^ * « r ^ + « r L(^)i - 2//. 
It follows, by the corollary to Lemma 2, that (12) holds. 

THEOREM 5. In order that k e ( \C, —1 | ; |C, 0| ) /Ï z's necessary and 
sufficient that 

(13) Jfc e L loc a«J - f\ \k(u) \du M. 

Proof. Sufficiency. Suppose that (13) holds and that x e |C, —1| . By 
Lemma 1(a) there is a constant H such that, for all t ^ 1, 
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f°° \k(u 
J' ~J 

)l du ^ H. 

x(u)k{u) = .y(l)—5- + —J- / . 
u u J ' 

Using the inverse transformation to (1), we have, for « = I, 

tdy(t), 
u~ w ' ' 

where y G BV. Hence 

/

OO foO foo ]/((„) I 

, \x(u)k(u)\du ^ H\y(\)\ + J] t\dy(t)\ J ;
 l-^du 

^H\y(l)\ + « / ; \dy(t) | < oo. 

Thus xk G |C, 0| = L. 
Necessity. Suppose that k G ( \C, -1|; \C, 0| ). Since \C, 0| c (C, 0) it 

follows, by Theorem 1, that k G L1OC. Given any)' G BV, define x by (2) 
so that x G \C, - 1 | and for f è 1, 

">(') : = = / ' , x(v)k(v)dv 

J\~jrdv j\udy^ 

il "Mu) Ju-4-dv. 

Then w e 5 K whenever y e 5 F and so, by Lemma 4, there is a constant 
/ / such that, for all u ^ 1, 

/bo 

W / 
I*(V) 

Jv ^ / / . 

By Lemma 1(a), this implies (15). 

THEOREM 6. /« order r/z^ k e ( |C, —1 | ; |C, X| ) w/zere X > 0 it is 
necessary and sufficient that k e L l oc owd f7*tf/ there be a constant H such 
that, for all t ^ 1, 

/
°° du I fu 

v ) - ^ ) . v ^ H. 

Proof. Sufficiency. It is shown in [3] that a G |C, X| if and only if 
a e L loc and 

f°° du I /*" 
v)X ^ ( v ^ / v < oo. 
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Suppose that x e \C, —1| and that (14) holds. As before we have, for 
1, 

(16) x(u)k(u) = y(\) 
k(u) k(u) f" 

tdy(t) 

where y e BV. \i follows from (14) with t = 1 that (15) holds with 
a(v) = v~2k(v) so that u~2k(u) e \C, \\. To show that the other term on 
the right-hand side of (16) is also in \C, X| we observe that, in view 
of (14), 

du /7^l/>-^*/><<> 

=/;«oi/;^|/:<«-^^ 
/*oo 

â H J j \dy(t) | < oo. 

dv 

Thus (15) holds with a(v) = x(v)k(v), and so xk G \C,\\. 
Necessity. Suppose that k G ( \C, — 1 | ; |C; X| ). Then 

* G ( |C, - 1 | ; (C, A)) 

and so, by Theorem 1, k G L1OC. Given any j G 5 F, if we define x by (2) 
then x G |C, —1| and, for a.a. / è l , 

w(0 : = /*+• y i 
(/ - v)X~]vx(v)k(v)dv 

/ + i y i / ' , (' - vf-'—dv j \ udyiu) 

j ^ j xudy(u) Jjt- v] \-\ k(v) 
dv 

- J ! K(t, u)dy(u) 

where 

*e. «) - T^T / I ( , _ v ) x - i * 0 0 A 

whenever \ ^ u ^ t and the integral exists in the Lebesgue sense, and 
K(t, u) = 0 otherwise. (Note that the integral may fail to exist on a set of 
measure zero when 0 < X < 1.) Then w ^ L whenever y e i?Kand so, by 
Lemma 3(b), there is a constant H such that, for all u è 1, 
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f°° f°° dt I P 

H^J] \K{t,u)\dt = uju j^lJjt Vf-^dv 

i.e., (14) holds. 

T H E O R E M l.IfX^ 1 then 

(|C, - 1 | ; | C , X | ) = (|C, - 1 | ; ( C , 0 ) ) . 

Proof. For any À â 0, 

(|C, - 1 | ; |C,A|) c ( |C, - 1 | ; (C, X) ) = ( |C, - 1 | ; ( C , 0 ) ) 

by Theorem 1. To complete the proof we have to show that 

(|C, - 1 | ; (C ,0) ) c ( |C, - 1 | ; |C, 1|), 

since |C, 1| c \C, X\ for X ê 1. By Theorems 1 and 6 this means that we 
have to show that (9) or, by Lemma 1(a), that k e L l oc and 

-du <>7) , / ; ^ 
1 J l U 

implies that 

<-«) < / : $ i r < v ) 

^ H for ^ ^ 1 

•rfv ^ # , for / ^ 1, 

H and // , being constants. Suppose that (17) holds. Then, on integrating 
by parts, 

fu k(y) , f°° k(w) 1 f°° k(w) 1 

I dv = t I — Y ~ d w — u I — Y ~ d w 
J t v J t w^ J » w

l 

J t J v w2 

V 

and hence, by (17), we have, for t ^ 1, 

f°° du I (u k(v) J I ^ „ Tr f°° du , TT f°° du fu 
t / -y / -^dv g 2Ht / -j + Ht I -y / 

^ 2H + H = 3H, 

i.e., (18) holds. 

THEOREM 8. ( |C, - 1 | ; \A\) = ( |C, - 1 | ; (C, 0) ). 

/Voo/. Suppose that A: e ( |C, - 1|; (C, 0) ) and that JC e |C, - 1|. Then, 
by Theorem 7, JC/C e (C, 0) Pi |C, 1|, and so, by Theorem 3 in [7], xk e \A\. 
Hence 

(|C, - l | ; (C ,0) ) c ( | C - 1 | ; \A\) c ( | C - 1 M ) . 
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Further, by Theorems 1 and 3, 

(|C, - l | ; y i ) = (|C, - 1 | ; (CO) ) , 

and the required identity follows. 

5. Summ ability factors from (C, — 1). 

THEOREM 9. In order that k G ( (C, — 1); (C, X) ) it is necessary and 
sufficient that 

(19) k G Mloc W - / k(u)du G 5 K 

Proof. Sufficiency. Suppose that (19) holds and that x G (C, —1). Let 

a(f) = — ( - / , k(u)du) and /}(*) = / , a(u)du, 
dt\t J ] / ^ ] 

so that, for a.a. f = 1, 

(20) fc(/) = to(0 + J8(f). 

By (19), a G L n Mloc and )8 G 5 K It follows, since 

ess lim tx(t) = 0, 

that 

tx(t)a(t) G (C, 0) 

and, since x e (C, 0), that 

xfi G (C, 0). 

Hence, by (20), 

xA: G (C, 0) c (C, X). 

Necessity. Suppose that k G ( (C, - 1 ) ; (C, X)). For 7 > 1, if 
JC G L(l , 7) and x(t) = 0 for t > 7, then x G (C, - 1) so that JCÂ: G (C, X) 
and in particular x/c G L(l , 7"). Hence, by a theorem of Lebesgue, it is 
necessary that k G Mloc. Now suppose that ^ G i?Floc and that j>(0 tends 
to a finite limit as / —» oo. If x is defined by (2), then x G (C, — 1) and, as 
in the proof of the necessity part of Theorem 1, for t ^ 1, 

w ( ' ) : = ) \ y " ]) k^x^dv = )\K^u)dy{u) 

where 

L f f l - ^ if ! * « * , , 
* ( , , « ) = | • / " V ^ v2 

0 if « > t. 
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Then w(t) tends to a finite limit as t —> oo whenever y G BV]oc and y(t) 
tends to a finite limit as / —> oo. Hence, by Lemma 3(c), K satisfies (6), (7) 
and (8). As in the proof of Theorem 1, (7) implies that 

/ 

oo 

l v'2k(v)dv 

is convergent, so that, for u ^ 1, 

foo 

/

oo £ / y \ 
—2~Jv = : y(u). 

V 

Now, by (6), whenever c = u0 < ux < . . . < un and t â t0 we have 

and hence 

n 

2 |y(Ml.) - Ydi^,) | ^ / / . 
z = l 

It follows that y G S F a n d so, by Lemma 1(b), (19) holds. 
THEOREM 10. In order that k G ( (C, — 1); (C, — 1) ) it is necessary and 

sufficient that (19) hold and that k G M. 
Proof. Sufficiency. Suppose x G (C, —1). Then, by Theorem 9, (19) 

implies that xk G (C, 0), and k & M implies that 
ess lim tx(t)k(t) = 0. 

/—»oo 

Thus (19) and A: G M imply that xk G (C, - 1 ) . 

Necessity. Suppose k G ( (C, — 1); (C, — 1) ). Since 

|C, - 1 | c (C, - 1 ) c (C,0), 

it follows from Theorem 9 that /c G M1OC and from Theorem 2 that 
A: G M(c, oo) for some c ^ 1. Hence k ^ M. 

THEOREM 11. In order that k G ( (C, —1); ^4) // z's necessary and 
sufficient that (19) hold. 

Proof. Sufficiency. This follows from Theorem 9 since (C, 0) c A. 
Necessity. Suppose that k G ( (C, — 1); A) and that s > 0. Then 

e~svk(v) G ((C, - 1 ) ; ( C , 0)) 

so that, by Theorem 9, /: G Mloc. Suppose now that y G 2?F1OC and that 
y(t) tends to a finite limit as t —> oo. If .x is defined by (2), then 
x G (C, — 1) and, as in the proof of the necessity part of Theorem 3, 
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/

OO COO foo K(v\ 

x e~svx(v)k(v)dv = Jx udy(u) J u e'^^-dv. 
Since the left-hand side tends to a finite limit as s —» 04- whenever 
y G BVloc and j> (/) tends to a finite limit as t —> oo, it follows, by Lemma 
3(c), that (6), (7) and (8) hold with 

K(t9 u) = u [°° e ~ v / ' ^ n U . 

It follows from (7), as in the proof of Theorem 3, that 

r vt, ^ f°°k(v) 
lim A(7, u) = u I —^—av 
r-xx> J u vl 

and then from (6), as in the proof of Theorem 9, that 

/*oo 

u J u v~2k(v)dv G £ K 

Thus, by Lemma 1(b), (19) must hold. 

THEOREM 12. /H order that k G ( (C, —1); |C, 0| ) it is necessary and 
sufficient that 

kit) 
(21) k G Mloc W - ^ G L. 

Proof Sufficiency. Suppose that (21) holds and that x G (C, — 1). Then 
there is a number c ^ 1 such that /jc(f) G M(c, oo), and hence 

/

oo /Y foo h-tt\ 

] |JC(0^(0I* = j x \x(t)k(t)\dt + J c H ' ) - ^ 
dt < oo. 

Thus jtfc G (C, 0). 
Necessity. Suppose k G ( (C, - 1); |C, 0| ). Then k G ( (C, - 1); (C, 0) ) 

so that k G M loc by Theorem 9. Let {an} be any sequence of positive 
numbers decreasing to 0, and define 

x(t) = izR^R for » ^ f < « + 1, /i = 1, 2 , . . . 

Then tx(t) -» 0 as f -> oo and, for 2 ^ TV ̂  T < TV + 1, 

/ ^ ( O * = 2 ( - l ) V o g ( l + ^ ) + ( - l ) % l o g ( » ) 

so that x G (C, 0) by Leibniz's test. Hence x G (C, —1) and so 
xk G |C, 0|, i.e., 
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< oo. 
n = 1 * 

Since {«„} could be any sequence decreasing to 0, we must have 

n = \ J n t J ] t 

(otherwise 

would give an example of a function x G (C, — 1) for which x/c £ |C, 0| ). 
Thus (21) must hold. 

The proof of the next theorem is an adaptation of the proof for the 
series analogue given in [1]. 

THEOREM 13. In order that k e ( (C, —1); \A\) it is necessary and 
sufficient that (21) hold. 

Proof. Sufficiency. This follows from Theorem 12 since \C, 0| c \A\. 
Necessity. Suppose jk e ( (C, — 1); \A\ ) and define a(t\ /?(/) as in (20). 

Since \A\ c A, we have, by Theorem 11, that a e L Pi M loc and ft ^ BV. 
Suppose that s > 0 and that * e (C, - 1 ) . For / ^ 1, let 

/ x(u)du, (22) *,(/) = / 1 x(u)du, y(t) = x}(t) + tx(t). 

Then 

/

oo /*oo /*oo 

] e~stx(t)k(t)dt = J 1 e~stx(t)(l(t)dt + J ] e~sttx(t)a(t)dt. 
The first integral is of bounded variation over (0, oo) by hypothesis, and so 
is the final integral since 

/*oo 

/ j | ta(/)a(0 l<# < oo. 

Hence 
/*oo 

/ ( j ) : = J i e~stx(t)f}(t)dt e £F(0, oo). 

On integration by parts, 

/"oo 

J 1 e~stxx(t)a(t)dt e £F(0, oo) 

/(J) = J , * i ( / ) e ~ X 0 - sfi(t))dt 

and 
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since 
Too 

1 

Thus 

Ix(s) = s I e stxx(t)P(t)dt G BV(0, oo). 

Further 

f° 
J 1 |xj(0«(0 I* < oo. 

7,(5) = 5 / 7 e _ s ' ^ A /', ^(«y« 

= , f~y(u)du ^ e-ffi*, 

the interchange in order of integration being justified since 

/; „(,,, „„/;, -m. 
s u p ( - /jj>(v)|<fr) • / 

oo 
st ] e~st\P(t) \dt < oo. 

Next 

Ix(s) = J2(*) + 7 3 ( J ) 

where 

/

oo foo e~st 

x y(u)du Ju — (P(t) - P(u))dt, 

/

oo foo e~st 

1 y(u)P(u)du Ju —du 
We prove first that I2 e £F(0, oo). Observe that 

/

oo I 3 I f\it a /oo 3 2 

so that 

/
oo 2 /*°° /*°° d 

0 | / ^ ) \ds^-jx \y(u) \du J u IAO - j8(«) h 

2 f°° \ fv 

= - J , W(v) | - J , | ^ (u) | J M <oo. 

dt_ 
,2 
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Thus I2 e BV(0, oo) and so I3 e BV(0, oo) whenever x e (C, - 1 ) . For 
« ^ 1, let 

wJu) = — J dt) = / dt 

so that 

/

oo 

, >^(«)i8(«K(«)rf« 

and hence 

/

oo I /"oo 

0 ds\J] y(u)P(u)ws(u)du < oo 

whenever y ^ B where B denotes the Banach space of bounded 
measurable functions z on [1, oo) such that z(t) tends to a finite limit as 
/ —> oo, the norm being given by 

||z|| = sup \z(t)\. 

This is so, since if y G B and x is defined by 

x(t) = — I - / y(u)du I for a.a. J > 1, 
dt^t J x / 

then (22) holds for a.a. / > 1 and x e (C, — 1). For « ^ 1 and each fixed 
s > 0, define a continuous linear functional fn:B —» C by 

/«OO = j\y(u)Ku)ws(u)du. 
Since, for every y ^ B, 

/

oo 

^ ( W ) / Î ( W ) H ; 5 ( W ) J W , 

this defines a continuous linear functional on B for each fixed s > 0. 
Hence, by Lemma 1 in [8], since I'3 <E L(0, OO) there is a constant H such 
that, for every y Œ B, 

/

oo /*oo 

0 & I J , y(u)P(u)ws(u)du 

^ H sup \y(u)\. 

Now take 

y(u) 

\a(u)\ 

a(u) 

0 for u > m, 

sgn /?(w) for 1 ^ w ^ w, 

^here 
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/
°° • — r(2 + /) 

slws(u)ds = — 1 + .— for u = 1. 
0 s

 2 M ! + ' 

Then 

ir(2 + i)I (m\m\, fm , w ,„ , w 
/ aw = / a(u)y(u)p(u)au 

2 J x u J 1 

/
m A» 

x y(u)/3(u)du J 0 ^ ( w ) * 

/

oo AM 

0 ^ J ! y(u)p(u)ws(u)du 

/
oo I /*m 

0 £fc|J1 j(W)/)(W)w»a 

^ i / sup \y(u) | ^ 7/ 

by (23), the inversion in order of integration being justified since 

fm f°° fm \B(u)\ 
J 1 |j8(n) |<fe J Q \WS(U) \ds ^ 2 J 1 ^ - ^ < oo. 

It follows that 

|r(2 + i) | /*°° |j8(n) | 01 f°° \P(u) 
J i du ^ 7/ 

2 ^ ! u 

and hence, by (20), that (21) holds. 

THEOREM 14. ( (C, - 1 ) ; \A\ ) = ( (C, - 1 ) ; |C, X| ). 

Proof. Suppose k e ( (C, - 1 ) ; |C, X| ) and that JC G (C, - 1 ) . Then 

A: e ((C, - 1 ) ; ( C , A)) = ( (C, - 1 ) ; ( C , 0 ) ) , 

by Theorem 1. Thus xk e (C, 0) n |C, \ | and so, by Theorem 3 in [7], 
xk G |̂ 41, so that 

k e ((C, - 1 ) ; | ^ | ) . 

Hence 

((C, - 1 ) ; |C,X|) c ((C, - 1 ) ; \A\ ). 

Further, by Theorems 12 and 13, 

( (C, - 1 ) ; \A\) = ( (C, - 1 ) ; \C, 0| ) c ( (C, - 1 ) ; |C, X| ), 

and the required identity follows. 
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THEOREM 15. In order that k e. ( (C, — 1); \C, —l\) it is necessary and 
sufficient that k(t) = 0 for all t ^ 1. 

Proof Sufficiency. This is immediate provided we adopt the convention 
that x(t)k(t) = 0 whenever k(t) = 0 even when x(t) is infinite or 
undefined. 

Necessity. Suppose k(c) =£ 0 for some c ^ 1. Define x(t) = 0 f or / ^ 1, 
t =£ c and x(c) = oo. Then JC e (C, — 1) but xk £ \C, —l\ since 

tx(t)k(t) £ BV. 

In Theorem 15 the necessity for k to be identically zero is a trivial 
consequence of the definition of |C, —1| . The following theorem shows 
that the condition on k cannot be significantly relaxed by enlarging the 
space \C, —1| in a natural way. 

THEOREM 16. In order that 

f x(u)k(u)du + tx(t)k(t) 

be equivalent to a function in BV whenever x £ (C, — 1) it is necessary and 
sufficient that 

(24) k{t) = 0 /o ra .a . t â 1. 

Proof Sufficiency. This is immediate. 
Necessity. Assume (24) to be false. Then there is a strictly increasing 

sequence {cn}, a sequence of positive numbers {en}, and a sequence of 
measurable sets {En}, such that cx â 1, and, for n = 1, 2, . . . , 

|/c(0 | ^ £„ for f e £„ c (c„, C/I + 1) and 0 < m(E„) ^ 1. 

Let rn be an even positive integer such that 

and define 

En4 = (cn,i-\>Cn,i) n En 

where 

the numbers c„ • being chosen so that 

x E«j tk(t) 

is constant for / = 1, 2, . . . , rn. 
Now define 

https://doi.org/10.4153/CJM-1986-023-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1986-023-1


SUMMABILITY FACTORS 475 

x(t) = 

(-!)'<„ for / E Enh i = 1 ,2 , . . . , rfV « = 1 , 2 , . . . , 
ntk(t) 

0 for other / ^ l . 

Then 

/ : : x(r)A = 0 

and, for cn < T < c / l+1, 

i/: x{t)dt 

so that 

/ : x(OA - ^ O a s T - ^ o o . 

Also, 

| /JC(/) | â 1/A7 forc„ ^ / < c„ + 1, 

and so 

tx(t) —> 0 as / -> oo. 

Hence x e (C, — 1). On the other hand if y(t) = tx(t) k(t) for a.a. f ^ 1, 
then the variation 

K^ + , (y(0) = ^ = 2, 
" ft 

and so y £ £K. Thus (24) is necessary. 

Remark. Theorem 12 is a special case of Theorem 14 and is not needed 
to prove Theorem 14. The proof of Theorem 12 has been included since it 
is much simpler than that of Theorem 14 which uses the necessity part of 
Theorem 13 in an essential way. 

6. Summary. Collecting the above results we obtain: 

I. ( |C, - 1 | ; ( C , X ) ) = (|C, - 1 | ; ,4) 

= (|C, - 1 | ; |C,A + 1|) 

= ( |C , - H ; Ml) =:S, 

and 

k e S <=> k e L loc 

and 
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1 /"' 
- J , k(u)du G M. 
t J l 

II. ((C, - 1 ) ; ( C , X ) ) = ((C, - 1 ) M ) = : r , 

and 

and 

fee r <=» fc G Mi loc 

- / , fe(w)Jw G 5 K 

III. ((C, — 1); |C, X| ) = ((C, - 1 ) ; |>4| ) = : U, 

and 

and 

fee U <=> k G M loc 

/c(0 
G L. 

and 

and 

IV. k G ( |C, - 1 | ; (C, - 1 ) ) <=» /c G L l oc n M(c, oo) 

for some c 

V. A: G (|C, - 1 | ; |C, - 1| ) «=» Jfc e £K loc n M 

- / , t/|JA:(«) I G M. 

VI. k G ( | c , - 1 | ; | C , 0 | ) « * e L loc 

1 /"' 
- / , \k(u) \du G M 
/ y ' 

VII. k G ( | c , - 1 | ; |C, X| ) for 0 < X < 1 <̂> k G L1OC 

^ 1. 

and 

f°° rfn I f" 
it -J+\\Ji(u- v \-\ k(v) 

dv M. 
w ' " ' v 

VIII. t G ( ( C , - l ) ; ( C , - l ) ) o J t £ M 

and 
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1 f 
- / , k{u)du e BV. 
t J ' 
IX. k e ( (C, - 1 ) ; \C, - 1 | ) <=> Jfc(0 = 0 for all f è 1. 
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