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Abstract

The SARS-CoV-2 virus has made the largest pandemic of the 21st century, with hundreds of
millions of cases and tens of millions of fatalities. Scientists all around the world are racing to
develop vaccines and new pharmaceuticals to overcome the pandemic and offer effective
treatments for COVID-19 disease. Consequently, there is an essential need to better understand
how the pathogenesis of SARS-CoV-2 is affected by viral mutations and to determine the
conserved segments in the viral genome that can serve as stable targets for novel therapeutics.
Here, we introduce a text-mining method to estimate the mutability of genomic segments
directly from a reference (ancestral) whole genome sequence. The method relies on calculating
the importance of genomic segments based on their spatial distribution and frequency over the
whole genome. To validate our approach, we perform a large-scale analysis of the viralmutations
in nearly 80,000 publicly available SARS-CoV-2 predecessor whole genome sequences and show
that these results are highly correlated with the segments predicted by the statistical method used
for keyword detection. Importantly, these correlations are found to hold at the codon and gene
levels, as well as for gene coding regions. Using the text-mining method, we further identify
codon sequences that are potential candidates for siRNA-based antiviral drugs. Significantly,
one of the candidates identified in this work corresponds to the first seven codons of an epitope
of the spike glycoprotein, which is the only SARS-CoV-2 immunogenic peptide without amatch
to a human protein.

Introduction

Currently, the world is in an unprecedented state of crisis due to the COVID-19 pandemic, which
has affected the health and social behaviour of humans, as well as taken a considerable toll on the
global economy. The cause of this deadly disease is the SARS-CoV-2 virus, which is a novel
member of the Coronavirus family whose origin and chain of infection to humans still remains
uncertain (Andersen et al., 2020; Burki, 2020). Researchers around the globe are racing to develop
therapeutic strategies to help mitigate the pandemic, including novel antiviral drugs, appropriate
combinations of existing pharmaceuticals, and SARS-CoV-2 vaccine candidates.

To ensure sustained efficacy, it is imperative that novel therapeutics target the conserved parts
of the viral genome (Hermann, 2016; Hu et al., 2020; Srinivasan et al., 2020) since these segments
are not considerably affected by viral mutations. Several methods that are based on sequence
alignment currently exist to find the conserved parts of a viral genome (Stojanovic, 1999; Nagar
and Hahsler, 2013; Wiltgen, 2019). These methods involve performing pairwise alignment
between the predecessor and a descendant sequence. While this enables the characterisation of
the viralmutations, thesemethods require an extensive number of sequences that are rooted from
the same ancestor and must be collected over time. Thus, when facing a novel virus or pathogen
that has the potential to lead to a widespread epidemic or a global pandemic, this waiting process
impedes the rapid development of targeted therapeutics that could have a critical impact on the
case fatality rate or the magnitude of the outbreak. Importantly, the mutation information can
seldom be extracted directly from themutational changes observed in othermembers in the virus
family. For example, the SARS-CoV-2 virus has undergone considerably different changes in
comparison with other members of the Coronaviridae family, such as its cousins SARS-CoV and
MERS (Naqvi et al., 2020; Wu et al., 2020).

Due to the urgency in controlling a highly infectious pathogen, it is imperative to have a
method for extracting mutational information as quickly as possible so that therapeutic targets
can be promptly identified. A method that can extract the mutational propensity of different
segments of the whole genome directly from an ancestral sequence is thus ideal for the rapid
development of targeted therapeutics when a novel pathogen is identified. Here we introduce one
suchmethod that is similar to the keyword detection techniques in text-mining. Using this simple
approach, an arbitrary genomic segment is assigned an importance value based on its repetition
and spatial distribution within the ancestral genome. The importance values can then be used to
estimate the mutability of segments in the whole genome, where the conserved or low mutation
parts are those with a high importance value. To demonstrate the validity of this approach, we
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apply the method to the SARS-CoV-2 reference genome (NCBI,
2020) and show that the segments that are identified as important
strongly correlate with the conserved sequences that are identified
through standard mutational analysis of nearly 80,000 complete
genome sequences for the virus. Importantly, we further use the
approach to identify conserved segments of six and seven codons in
the SARS-CoV-2 genome that are potential candidates for stable
siRNA-based targeted drugs.

Themanuscript is organised as follows. In section ‘Methods’, we
describe the empirical SARS-CoV-2 data that are used in the study
and introduce the text-mining method developed in the work. In
section ‘Results’, we present the results of standard mutation ana-
lysis of the SARS-CoV-2 viral genomes and compare these findings
with the results from the text-mining method applied to the
reference genome. Finally, in section ‘Discussion’, we discuss the
implications of our results and suggest potential future research
directions.

Methods

Curation and preparation of genomic data

In this study, nearly 80,000 complete genome sequences for SARS-
CoV-2 were curated from two public repositories and then subse-
quently analysed. First, 7,031 complete genome sequences were
obtained from NCBI (2020). Thereafter, we obtained 74,750 gen-
ome sequences from GISAID (2020) which most of them (99.8%)
contained more than 29,000 nucleotides and were considered to be
complete genomes in this work.

The reference sequence, NC_045512.2, was also obtained from
NCBI (2020). This is the first genomic sequence for SARS-CoV-2,
whose origin is Wuhan, China, and it was made publicly available
on NCBI in January 2020. The reference sequence is comprised of
29,903 nucleotides. According to the NCBI database, the sequence
contains 28 coding regions that specifically code the virus proteins.
These coding regions are encompassed in 10 genes: ORF1ab, S,
ORF3a, E,M, ORF6, ORF7ab, ORF8, N andORF10. These 10 genes
occupy approximately 97.86% of the virus genome. The longest
gene is ORF1ab, with a length of 21,290 nucleotides, while the
shortest gene, ORF10, has length 117 nucleotides.

The genomic sequences from both data sets were aligned with
the reference sequence, NC_045512.2, using the NCBI’s BLASTN
2.6.0þ software (Zhang et al., 2000). To avoid overlap between the
two data sets, and to facilitate comparison of the results, the
subsequent genomic analysis was performed independently for
each data set. Albeit in most instances we proceed with reporting
the results for the larger data set (GISAID).

Based on alignments, any certain change in the genome
sequences with respect to the reference sequence, including nucleo-
tide insertions, deletions and substitutions, were extracted into a
master file. This master file contained themutation information for
each sequence, as well as the specific nucleotide change and its
position in the reference genome, and is the foundation for the
empirical analysis.

During the empirical analysis, we investigated the number and
type of mutations in the SARS-CoV-2 genome. We looked for
changes at the individual nucleotide level, including the distribu-
tion of changes at different positions in the genome. We also
investigated changes at the codon level, including insertion, sub-
stitution and deletion mutations, and whether these mutations
cause changes at the protein level.

Word ranking technique

The arrangement of nucleotides in a genome sequence is not purely
random. This is because physical and chemical interactions
between nucleotides determine which nucleotide is more likely to
be a neighbour of another nucleotide (Alberts et al., 2002; Chen
et al., 2016). These interactions thus give rise to order in the
sequence; however, randomness is introduced by thermal fluctu-
ations, environmental interactions and non-equilibrium conditions
arising during replication processes. The competition between
order and disorder leads to some segments of the sequence being
more stable, or important, than others. This observation is very
similar to patterns in written texts, in which some words are more
important and responsible for conveying the meaning of a passage
of text, while others are common words. Consequently, it seems
only natural to develop text-mining-based techniques to identify
important parts in a specific genome sequence.

We consider a text as a one-dimensional array. The appearances
of a specific word are occupied distinct positions in this discrete
space. In random text, words are distributed uniformly because
there is no preference for placing a word in proximity to another
word and the position of a word is independent of the position of
other words. Therefore, in every part of text there is a non-zero
probability for finding a certain word. In contrast, in natural text,
the positions of words are determined based on the grammatical
rules and the context of the text, thus the position of each word
strongly depends on the position of other words. For genomic
sequences, the overall functionality of the sequence is synonymous
with themeaning of a passage of text, and the chemical and physical
interactions between nucleotides or codons are analogous to gram-
matical rules. The existence of short-range and long-range order
causes the distribution pattern of a word to deviate from uniformity
and to be clustered. The important words are more clustered than
common words. By randomly shuffling the words in a passage of
text, the meaning is lost and grammatical rules are also violated.
Importantly, shuffling does not considerably alter the pattern of
words that are distributed near uniformly, whereas the distribution
of clustered words experiences a drastic change. This observation
allows us to consider the clustering as a measure of importance in
addition to the word frequency.

Several methods exist for ranking the distinct words of a text
according to their importance (Najafi and Darooneh, 2015). All
these methods identify the clustering of a word in the text. Here we
develop a new approach for characterising genome segments that is
based on the frequency of occurrence of the segment in the whole
genome, as well as its closeness to boundaries and clustering within
the genome, to associate an importance value to different genomic
‘words’ for SARS-CoV-2.

The starting point in this approach is defining what is con-
sidered a ‘word’ in the genomic sequence. Here we consider codons,
which are three-nucleotide sequences that encode for amino acids,
as the words. The position of the codon is taken to be the location of
its first nucleotide in the sequence. Like the keywords in text, we
assume that the significant codons form clusters. Furthermore,
clustering near region boundaries is assumed to be more important
than other places in the genomic sequence (Parmley and Hurst,
2007; Esposito et al., 2010; Chaney et al., 2017). To quantify these
properties, we define the eccentricity e wð Þ for a word (codon) w, as
follows:

e wð Þ¼ 1
R

XR
r¼1

Xf r wð Þ

i¼1

xi wð Þ�mrð Þ2, (1)
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where R is the number of regions in the sequence and f r wð Þ is the
frequency of occurrence of w in the rth region. Additionally, xi wð Þ
is the ith position of the word in the region and mr is the position of
the first quarter of the r th region. This convention implies that
clustering at the end of a region is more important than at the
beginning. When a coding region is formed by joining several
disconnected smaller regions, the eccentricity from the first quarter
of all smaller regions must be taken into account. However, this
definition of the eccentricity will not be able to capture clustering
near mr as required.

In addition to the eccentricity, the importance of a codon also
depends on its frequency of occurrence in the genome. Indeed,
many researchers believe that bias in repetition of codons has
biological consequences (Angov, 2011; Lauring et al., 2012; Zhou
et al., 2016). Thus, the frequency of occurrence should be combined
with eccentricity to have a unified rule for assigning importance to
codons. We suggest the following formula for calculation of the
importance i wð Þ of codon w :

i wð Þ¼ ln 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f wð ÞP
vf vð Þ

s !
� ln 1þ e wð ÞP

ve vð Þ
� �

, (2)

where f wð Þ is the frequency of occurrence of codon w and e wð Þ is
its eccentricity, calculated using Eq. (1). This form was chosen for
the importance because, by normalising both the frequency and the
eccentricity, their values become comparable to each other. The
square root appears in the first logarithm to account for the fact that
the frequency values are distributed over a larger scale than the
eccentricity values. Based on the empirical data, taking the square
root of normalised frequency reduces the variation in the frequency
of different codons to one order ofmagnitude, like their eccentricity
variation. Thus, incorporation of the square root inhibits the codon
frequency from dominating the importance. The logarithm is
further used to reduce large differences. Moreover, by multiplica-
tion of the two logarithmic expressions, all combinations between
frequency and eccentricity are taken to account. It should be noted
that the importance can be scaled by an arbitrary factor. Thus, to
draw conclusions about which codons are most important within a
given genome, it is necessary to examine how a given codon
compares with all other codons in that genome.

In this work, we compute the eccentricity of codons over 28 cod-
ing regions in the SARS-CoV-2 genomic sequence. Some coding
regions have overlap, therefore, a codon-positionmay contribute to
the calculation of the importance more than one time through the
eccentricity.

Results

Empirical analysis characterises SARS-CoV-2 viral mutations

We identified 57,939 mutations in the curated NCBI data set and
674,800 in the curated GISAID data set. In the NCBI data set,
48,554 or 83.8% of the mutations occurred in coding regions, while
561,195 or 83.2% were in coding regions for the GISAID data set.
The mutation rate per nucleotide per generation, calculated as the
number of mutations per number of sequences and per sequence
length, is approximately 2:75�10�5 and 3:02�10�5, respectively,
for the NCBI and GISAID data sets. Thus the probability of
mutation in the SARS-CoV-2 genome is low in comparison with
other RNA viruses (Drake et al., 1998), which accounts for the
stability of the SARS-CoV-2 virus and the emergence of the recent
pandemic (Duffy, 2018; Peck and Lauring, 2018).

The frequency of nucleotide occurrence in a genome is a basic
specification for any genomic sequence, and it is related to the
effective energy usage by organisms in their duplication process
(Chen et al., 2016). In Fig. 1, we present the probability of occur-
rence of each nucleotide in the reference sequence NC_045512.2,
calculated as the fraction of the whole genome comprised of each
nucleotide. As we see from Fig. 1, each nucleotide type does not
appear with the same frequency of occurrence. In particular, Thy-
mine (T) occurs most frequently 32.08% in the reference sequence,
while Cytosine (C) appears least often, 18.36%. In addition, in
Fig. 1, we plot the fraction of mutated nucleotides, which evidently
varies significantly among the different bases. These results indicate
that mutations do not occur randomly, since in the latter case, each
nucleotide type would have the same probability of mutation and
occurrence. Interestingly, Cytosine has a significantly higher prob-
ability of mutation, despite being the lowest occurring nucleotide
(54.51% in the NCBI and 49.23% in the GISAID sequences). In
contrast, Thymine, which occurs most frequently, has the lowest
probability of mutation, 8.17 and 8.41% for the NCBI and GISAID
datasets, respectively. The details are reported in Supplementary
Information 1.

The percentage of different mutations in the SARS-CoV-2
genome that are observed for each nucleotide type is shown in
Fig. 2. Overall the pattern of evolution, that is GC!AT, is apparent
in the virus mutations (Greenbaum et al., 2008). Interestingly, we
see that the results for both the NCBI and GISAID data sets are
quite similar, with slight differences in the distributions for Cyto-
sine, Thymine, and nucleotide insertions. Importantly, we see from
this figure that for each nucleotide, there is a distinct destination for
substitution mutations. Specifically, the most probable mutations

Fig. 1. The probability of appearance of each nucleotide (A, Adenine; C, Cytosine; G, Guanine; T, Thymine) in the reference SARS-CoV-2 genome sequence (blue solid bar), and the
fraction of mutated nucleotides (orange bar), for the (a) NCBI data set and (b) GISAID data set.
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are: A !G (83.16 and 81.18%), C !T (96.72 and 95.95%), G !T
(57.01 and 38.77%) and T!C (76.47 and 62.70%). In contrast, we
see that for the insertion mutations, all nucleotide types have a
considerable probability, while Thymine has the highest chance
(43.75 and 49.76%). The first and second values in the parentheses
are extracted from the NCBI and GISAID datasets, respectively.
The details are reported in Supplementary Information 1.

All mutated nucleotides have a neighbour on both their left and
right sides. To determine whether all the corresponding nucleotide
sequences have equal propensity for mutation, we plot the percent-
age of mutations that are observed for each of the 16 possible
nucleotide sequences, for each mutated nucleotide, in Fig. 3. We
see that for all four mutated central nucleotides, the distribution is
not uniform among the different nucleotide sequences. Import-
antly, this indicates that certain nucleotide sequences have a sig-
nificantly higher propensity for mutation than others. For example,
Cytosine is more likely to mutate when it is preceded by another
Cytosine or a Thymine, with the highest probability occurring
when it is also succeeded by a Thymine. Specifically, for TCT, the
mutation percentage is 24.22 and 22.51% for the NCBI and

GISAID, respectively. Interestingly, we see from Fig. 3 that, overall,
a nucleotide has a considerable probability of mutation if it has
Guanine, Adenine or Thymine, but not Cytosine, in its immediate
vicinity. Furthermore, we point out that there are slight differences
in the results for the NCBI and GISAID data sets. The details are
reported in Supplementary Information 1.

The nucleotide sequences in Fig. 3 each occur at several posi-
tions within the SARS-CoV-2 whole genome sequence. Though
almost all such positions for each nucleotide sequence are observed
to be mutated, the number of mutations is not uniform across all
positions along the sequence. In Table 1, we report the top 10 posi-
tions with the highest frequency of substitution mutation observed
in the GISAID data set. We see from Table 1 that some positions
along the whole genome are indeed significantly more predisposed
for mutation, with the top five positions comprising over 37% of all
the mutations in the genome.

As mentioned above, most of the SARS-CoV-2 genome is
occupied by codons, which are sequences of three nucleotides that
code for specific amino acids during protein synthesis. Importantly,
the codons and the corresponding protein structure of the SARS-

Figure 2. Percentage of different mutations observed for each nucleotide (A, C, G, T) for (a) the NCBI data set and (b) the GISAID data set. Axis labels reference nucleotide
substitutions, ‘Del’ refers to deletion events, and ‘Ins’ are nucleotide insertions.

Figure 3. The percentage of mutations that occur among different possible three-nucleotide sequences. For each sequence, the mutation occurs in the central nucleotide, as
indicated at the centre of each plot. Results are shown for (a) the NCBI data set and (b) the GISAID data set.
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CoV-2 virus may change due to mutations in the nucleotide
sequences. To analyse the impact of the observed nucleotide muta-
tions on the synthesis of viral proteins, we first examined the
underlying distribution of codons in the SARS-CoV-2 reference
sequence, NC_045512.2. Importantly, we found that there is a non-
uniform distribution in the frequency of occurrence of each codon
(see Supplementary Information 2, Fig. S1). We next determined
the number of codon mutations in each nucleotide position of the
whole genome, which is presented in Fig. 4 for the GISAID data set.
We see from the figure that the distribution of mutations is non-
uniform over the genome, displaying some background periodici-
ties. Interestingly, several of the codon positions which include
nucleotides with more than 50,000 mutations are identified in this
figure. These nucleotides are in accordance with the results in
Table 1.

Building on these results, we investigated the distribution in the
number of codon mutations along the SARS-CoV-2 genome in the
GISAID data set. We found that the distribution function behaves
non-monotonically as a function of the number ofmutations, and it
peaks between approximately 8 and 32 codon mutations (see
Supplementary Information 2, Fig. S2). Interestingly, the number
of positions in the SARS-CoV-2 genome with a given number of

codon mutations increases linearly when the number of mutations
is small ( ≲23); however, when the number of mutations exceeds
≈23 , the number of positions with a given number of codon
mutations is inversely related to the mutation repetition number.
This power law behaviour emphasises that the evolution of the
SARS-CoV-2 genome is not a purely random process, but rather, it
obeys some universal physical rules.

While we found that the evolution of the SARS-CoV-2 genome
is not a purely random process, examining the total number of
codon mutations does not give insight into the nature of the
mutations that occur. To gain further insight into the specific codon
mutations, we begin by examining the probability for different
possible nucleotide-substitution codon changes, calculated based
on the frequency of the observed mutation in the GISAID data set.
The results are depicted in Fig. 5 and the details are also reported in
Supplementary Information 1. Importantly, we see that the prob-
ability of each codon change is non-zero for only a small fraction of
the possible codon changes. Interestingly, the codon changes with
higher probability of mutation follows, on average, a series of single
straight lines that originate at the top left and end at the bottom
right of the plot. Each line corresponds to a specific position (first,
second or third) in the codon that is mutated, and the mutation is
repetitive. For example, for the lowest line emerging from the left of
Fig. 5, at the codon GAA, the first nucleotide is mutated to an
Adenine for the codons beginning with Guanine, and to a Cytosine
for the codons beginning with a Thymine. The 10 most frequently
observed nucleotide-substitution codon changes exhibited in Fig. 5
are listed in Table 2. Comparison of Tables 1 and 2 reveals that some
of the nucleotide positions in the SARS-CoV-2 genome with the
highest probability for mutation are not involved in codon changes,
for example position 241.

As exhibited in Fig. 2, deletion mutations also occur in the
SARS-CoV-2 genome. Deletion mutations, which result in the
removal of segments of the genome, can cause some adjacent
codons to merge into each other, potentially forming a new codon.
In Table 3, we report the 10 most frequent deletion mutations that
were observed in the SARS-CoV-2 genome in the GISAID data set.
Importantly, we see that several of themost frequent deletion events
lead to a new codon, which can change the encoded amino acid, and
potentially lead to protein-level changes in the virus.We also found
that there are very rare cases in which the number of adjacent
nucleotide deletions is not a multiplicative factor of three. While
rare, such deletions can dramatically change the protein sequence.
In agreement with previous work (Mercatelli and Giorgi, 2020),

Table 1. Top 10 nucleotide positions with the highest probability of
substitution mutation in the SARS-CoV-2 genomic sequence, based on the
GISAID data set

Position Nucleotide Repetition
Left

neighbour
Right

neighbour

23403 A 57221 G T

14408 C 56993 C T

3037 C 56957 T T

241 C 55901 T G

28881 G 24173 A G

28882 G 24125 G G

28883 G 24117 G G

25563 G 16264 A A

1059 C 12614 A C

11083 G 8286 T T

Figure 4. Number of codonmutations associated with each nucleotide position in the SARS-CoV-2 whole genome, according to the GISAID data set. The coloured rectangles in the
bottom of the figure depict different gene regions. Three codon positions that include nucleotides with more than 50,000 mutations are identified by red arrows.
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insertion mutations were found to be rare, accounting for less than
0.28% of all nucleotide mutations. However, while rare, such muta-
tions can profoundly affect the sequence of viral proteins encoded
by the SARS-CoV-2 genome.

Substitution mutations may be silent, which corresponds to the
case where the codon changes but it does not alter the encoded
amino acid. This is possible since most amino acids can be encoded
bymore than one distinct codon. Thus, if codonmutations result in
a degenerate codon for a specific amino acid, changes will not be

observed at the level of amino acids, and consequently, at the
protein level. In Fig. 6, we compare the number of silent mutations
to the total number of mutations for each codon in the SARS-CoV-
2 genome, obtained from the GISAID data set. We see that, on
average, silent mutations make up a small number of total muta-
tions for most of the codons. However, some codons have a
tendency to undergo mostly silent mutations. For example, the
codon TTC was observed to undergo a total of 63,555 mutations,
and more than 98.7% of them are silent.

Figure 5. Probability of nucleotide-substitution codon changes in the SARS-CoV-2 genome, based on the GISAID data set. The y-axis corresponds to the origin codons in the
reference genome and the x-axis is the destination codon. The codons are arranged in alphabetical order along each axis.

Table 2. The 10 most probable codon changes in the SARS-CoV-2 genome,
according to the GISAID data set

Position Origin Destination Repetition

23402 GAT GGT 57221

14407 CCT CTT 56966

3035 TTC TTT 56956

28880 AGG AAA 24088

28883 GGA CGA 24085

25561 CAG CAT 16223

1058 ACC ATC 12605

11081 TTG TTT 8173

14803 TAC TAT 6524

28143 TTA TCA 5385

Table 3. Top 10 most frequent deletion mutations in the SARS-CoV-2 genome,
causing the merging or removal of codons, based on the GISAID data set

Position Origin Destination Repetition

1604 AATGAC A—AC 1552

686 AAGTCATTT ——— 237

21989 GTTTAT GT—T 69

515 GTTATG —— 56

506 CATGGTCATGTTATGGTT CA—————T 54

6329 TCAAATTCG ——— 44

509 GGTCATGTTATG G———TG 43

28089 GGTTCTAAA G——AA 26

21980 TTTTTGGGTGTTTAT TT————T 24

671 TACGGCGCCGATCTA T————TA 23

6 Amir Hossein Darooneh et al.

https://doi.org/10.1017/qrd.2021.13 Published online by Cambridge University Press

https://doi.org/10.1017/qrd.2021.13


Text-mining methods identify conserved genome segments and
novel therapeutic targets for SARS-CoV-2

Using the word ranking technique described in section ‘Word
ranking technique’, we sought to determine the importance of
different codons in the SARS-CoV-2 genome and use this to
quantify the importance of each gene. To this end, we began by
investigating the positions of each codon in the reference genome,
which are depicted in Fig. 7 for the codons CGG and TAA. We see
that while these two codons have approximately the same frequency
of occurrence (11 and 10 times, respectively), their distribution
along the genome is markedly distinct, with the codon CGG
uniformly appearing in only three distinct genes. In contrast, the
codon TAA appears towards the end of most coding regions in the
genome and forms a cluster towards the end. These differences in
the distribution of positions complies with the importance of the
stop codon, which plays a key role in protein synthesis by termin-
ating the decoding process.

To further quantify how the distribution of codon positions is
related to the importance of the codon in the genome, we next
calculated the eccentricities for all codons in the SARS-CoV-2
reference genome, which are depicted in Fig. 8. We see that the
three codons GGG, CCC and GTC have the highest value of
normalised eccentricity, 1:87�10�2,1:82�10�2 and 1:77�
10�2, respectively. In Fig. 8, we have ordered the codons based on
their frequency of occurrence in the genome, which is also shown in

the plot for comparison. We also present the importance of each
codon in the plot, calculated using Eq. (2) for the reference genome,
which depends on both the eccentricity and the frequency of
occurrence in the genome.

As we saw in Fig. 4, almost all occurrences of codons in different
positions of the genomic sequence experience at least one mutation
in the GISAID data set. Given the non-uniform distribution of
mutation numbers across nucleotide positions, it is useful to classify
the codons into low repetition and high repetitionmutation groups.
This is performed by segregating the codon-position pairs with a
mutation repeat less than a threshold value into the low repetition
group and the remaining pairs into the high repetition group. Here
we take the threshold value to be eight, which leads to two groups
with nearly equal number of codons.

Then, to quantify the degree of mutations in all codon-position
pairs along the SARS-CoV-2 genome, we define the relative density
of a codon w, denoted by r wð Þ, as follows:

r wð Þ¼ f low wð Þ
f wð Þ : (3)

In this last expression, f low wð Þ is the number of positions in which
codon w has a low number of mutations (defined to be less than
eight in this work), and f wð Þ is the frequency of occurrence of
codon w in the genome, as defined previously. Since a codon-
position pair is either mutated a low number of times or a high

Figure 6. Total number ofmutations (blue solid bar) and the number of silentmutations (orange bar) for distinct codon types, based on GISAID data set. The codons are arranged in
alphabetical order along the horizontal axis.

Figure 7. The positions of two codons, CGG andTAA, in the SARS-CoV-2 reference genome. The vertical blue lines are the position of the codons and the coloured rectangles are gene
regions in the sequence. The two codons have almost the same frequency of occurrence, 11 and 10, respectively; however, their position along the genome ismarkedly different. TAA
is the stop codon and plays an important role in protein-making instructions.
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number of times, the relative density varies between zero and one
for each codon w, where a value of one indicates that all codon-
position pairs for codon w experience a low number of mutations.

We plot the relative density of codons in Fig. 9, obtained by
applying Eq. (3) to theGISAID data set. In the figure, the codons are
arranged from least to most important, where the codon import-
ance was calculated by applying Eq. (2) to the SARS-CoV-2 refer-
ence genome. From the figure, it is clear that there is a strong
positive correlation between codon importance and relative dens-
ity. To quantify the trend, we calculated the Pearson correlation
between the codon importance and its relative density in the low
repetition group, and found it to be greater than 0:68. Interestingly,
these results imply that mutation information can be inferred
directly from the codon importance values associated with the
reference genome.

To validate the results, we can compare them with the results
obtained from a random sequence with the same distribution of
nucleotides and genomic structure. In a random sequence, the
frequency of appearance of a three nucleotide segment is propor-
tional to the product of the probability of its constituents, that is
f ran w¼ x1x2x3ð Þ� p x1ð Þp x2ð Þp x3ð Þ. We can eliminate the effect of
bias in usage of nucleotides by replacing the frequency in
Eq. (2) with the relative frequency of a codon, f wð Þ= f ran wð Þ. This
reduces the Pearson correlation between importance and relative
density in the reference sequence to nearly 0:5. If we repeat the
same calculation with a random sequence, the Pearson correlation
becomes very close to zero. This implies that the codon

arrangement in the reference sequence is not random and instead
obeys a kind of order.

Building on these results, we next ranked the SARS-CoV-2 genes
according to the average of the relative density and importance of
their constituent codons. The results are plotted in Fig. 10 and show
that the two ranking schemes are strongly correlated with each
other. To quantify the correlation, we calculated the Pearson cor-
relation coefficient for the two ranked lists, which gave a value of
greater than 0:91. These results confirm that the importance of
viral genes, calculated from a reference genome using the text-
mining methods developed in this work, can be used to infer which
genes have a higher probability for mutation and those which are
likely to be conserved. Furthermore, strong correlations are also
observed between these two measures for the coding regions of the
genome, as depicted in Supplementary Information 2, Fig. S3. The
value of the Pearson correlation coefficient in this case is 0:90.

Given that text-mining methods were successful at pinpointing
important mutation information for the viral genes, we next sought
to determine if empirical laws that arise in linguistics are exhibited
in viral genome sequences. To this end, we investigated how the
frequency of codon-position mutations are related to their rank. As
mentioned above, distinct codons can appear in different locations
in the genome sequence, and in each location the codon experiences
a different number of mutations. Therefore for each codon, we
associate a set that is comprised of the number of itsmutations in all
its locations in the genome.We then ranked the values of each set in
descending order for each codon. Doing so, we find that Zipf’s law

Figure 8. The eccentricity (solid blue bar) and frequency of occurrence (orange bar) for all the codons in the SARS-CoV-2 reference genome. The codons are arranged according to
their frequency of occurrence, from most to least frequent. The red dashed line shows the codon importance, which takes into account both the normalised eccentricity and
normalised frequency according to Eq. (2).

Figure 9. Relative density of codons in the SARS-CoV-2 genome, arranged in order of increasing codon importance, for the low mutation repetition group. Calculations were
performed for the GISAID data set.
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(Newman, 2005) holds between the number of mutations and the
rank for all codons, implying there is a power law relation between
these two quantities, as illustrated in Fig. 11. These results enable
the quantification of the relative likelihood of different mutation
events for each codon. Specifically, our findings indicate that the
mutation event with rank n appears 1=nζ times as often as themost
frequent mutation event for each codon, where ζ is called the Zipf
exponent and is usually close to one.

The above result can be interpreted in the context of population
genetics. Here, we consider mutations for a certain codon and
assume there is only one mutation in each sequence. Therefore,
the mutated sequence plays the role of an allele for the reference
sequence. It has been previously shown that the frequency distri-
bution of alleles obeys a power law relationship like the Zipf’s law
(Rothman and Templeton, 1980).

Finally, given that each codon position is associated with a
different number of mutations, we sought to define a statistical
quantity, which we refer to as themutation index, that characterises
the overall set of mutations for each codon type. Since the set of
mutation values for each codon follows Zipf’s law, we chose to take
the median mutation number as the mutation index. In Fig. 12, we
plot the mutation index of each codon in relation to the codon
importance. Importantly, we can see from the figure that increasing
importance values correspond to a lower mutation index. This
implies that there is a strong negative correlation between these
two quantities. To quantify the correlation, we calculated the
Pearson correlation coefficient between the codon mutation index
and importance values and found it to be greater than 0:70 in
magnitude.

Themutation index is defined for any specific part of genome by
averaging the mutation indices of the constituents of that segment.
Using this approach, we next calculated the mutation index, based
on the mutation data from the GISAID data set, for each of the
SARS-CoV-2 genes in the reference genome. Similarly, we calcu-
lated the importance of each gene by taking the average of the
importance values of their constituent codons in the reference
genome. To quantify the strong negative correlation between these
two measures, we calculated the Pearson correlation coefficient,
which had a value of �0:92. To illustrate the negative correlation,
we plot the average mutation index and the average importance of
the SARS-CoV-2 viral genes in Fig. 13. In the figure, the genes are
ranked in order of increasing mutation index and decreasing
importance.

Notably, the average mutation index and the average import-
ance of the coding regions of the SARS-CoV-2 viral genes are also
highly correlated. To quantify the degree of correlation, we calcu-
lated the Pearson correlation coefficient between these two meas-
ures for all of the coding regions in the SARS-CoV-2 genome, and
found it to be �0:91, indicating a strong negative correlation with a
similar magnitude as the correlation for the viral genes. Thus, we
can rank the genes either from most to least important, or by
increasing mutation index, and we find that the difference between
the two ranking schemes is negligible for most coding regions (see
Supplementary Information 2, Fig. S4).

These results indicate that the importance of codons is strongly
negatively correlated with their propensity for mutation. Thus, by
analysing the importance of any segment of a reference genome, we
can immediately infer themutability of this segment. Specifically, in
the case of novel viruses and pathogens, we can compute an index of
mutability by calculating the importance of different segments from
the first identified genome, without having to wait to gather gen-
omes from other infected individuals to analyse themutations. This
is a significant finding because by requiring information about only
one infection, the time it takes to develop targeted therapeutics for a
novel pathogen is drastically reduced. Our findings can immedi-
ately be used to develop stable drugs that are based on short
interfering RNA (siRNA) by targeting important genome segments
of the pathogen that have low propensity for mutation. To this end,
we present the top 10 important segments which consist of six and
seven codons, respectively, in Tables 4 and 5. Inspection of Tables 4
and 5 confirms that non-structural protein 3 (nsp3) and spike
protein (S) are the best targets for antiviral drugs (Lei et al., 2018;
Angeletti et al., 2020; Frick et al., 2020; Ong et al., 2020; Pang et al.,
2020). It should be noted that in Tables 4 and 5, we have scaled the
importance values of the codons between 0 and 1 using the formula:

Figure 10. Average relative density and average importance of SARS-CoV-2 viral genes. The former is obtained from mutation data in GISAID data set and the latter is calculated
based on the SARS-CoV-2 reference genome.

Figure 11. Number of mutations versus rank for all codon positions in the genome, for
each codon type, obtained from the GISAID data set. Different codons are distinguished
by different colours. We observe that Zipf’s law holds for all codons. The black dashed
line corresponds to a power law function with the form y∝x�1.
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iscaled wð Þ¼ i wð Þ� imin

imax� imin
, (4)

where imin ( imax) is the minimum (maximum) importance value
for the codons. Following the convention above, the importance of
a segment is the average of the importance of its constituent codons.

Discussion

In this work, we developed a simplistic but powerful text-mining
method to identify the most important segments in a genome
sequence. As shown in the work, the length of the segment is
arbitrary, thus the method can be used to identify important

Figure 12. Mutation index of each codon, with codons arranged from least to most important. The plot depicts a strong negative correlation between the mutation index and the
codon importance.

Figure 13. Average mutation index and average importance of SARS-CoV-2 viral genes. The former is obtained from mutation data in GISAID data set and the latter is calculated
based on the SARS-CoV-2 reference genome. To illustrate negative correlationwe rank the genes from the lowest to the highest averagemutation index (left panel) in contrast to the
ranking order for the importance values.

Table 4. Top 10 important segments with six codons in the SARS-CoV-2 genome sequence

Segment Position Importance Peptides Coding region

AAAGTTGATGGTGTTGAT 19720 0.9653 KVDGVD endoRNAse;ORF1ab

AAAAATGTTACAAAAGAA 21067 0.9541 KNVTKE 20-o-MT;ORF1ab

AATTTTAAAGTTACAAAA 1787 0.9522 NFKVTK ORF1a;nsp2;ORF1ab

ACAAAAGTTGATGGTGTT 19717 0.9502 TKVDGV endoRNAse;ORF1ab

AAAGATTTTGGTGGTTTT 23945 0.9493 KDFGGF S

GAAACTAAAGATGTTGTT 8204 0.9473 ETKDVV ORF1a;nsp3;ORF1ab

ACTAAAGATGTTGTTGAA 8207 0.9473 TKDVVE ORF1a;nsp3;ORF1ab

GGTGTTGAAGGTTTTAAT 23006 0.9462 GVEGFN S

AATGGTGTTGAAGGTTTT 23003 0.9462 NGVEGF S

AATGTTACAAAAGAAAAT 21070 0.9462 NVTKEN 20-o-MT;ORF1ab
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segments across several length scales, including at the level of
codons, genes, or gene coding regions. To illustrate the general
applicability of the method, we implemented it to identify import-
ant segments in the SARS-CoV-2 reference genome (NCBI, 2020)
directly from their frequencies of occurrence and spatial distribu-
tion along the sequence. Significantly, we showed that the segments
that were identified as important strongly correlate with the con-
served sequences identified through pairwise alignment of the
reference genome with nearly 80,000 SARS-CoV-2 predecessor
complete genome sequences.

In our empirical mutational analysis, we identified over 732,000
nucleotide mutations in the SARS-CoV-2 genome data set, and
over 83% of these mutations were found to occur in coding regions
of the virus, potentially leading to changes at the protein level.
While characterising the nucleotide mutations, we found that the
mutation frequency was negatively correlated with the frequency of
occurrence of each nucleotide in the reference SARS-CoV-2 gen-
ome. Furthermore, we found that for each nucleotide, there was one
distinct destination for substitution mutations, which were the
most common type of mutations observed in the data set. Overall,
nucleotide mutations tended to increase the AT content of the
genome. Looking at the neighbours of mutated nucleotides, we
further determined that some nucleotide sequences have a higher
propensity for mutation than others. Notably, a nucleotide with a
Guanine, Adenine, or Thymine, but not Cytosine, in its immediate
vicinity was found to have a considerably higher probability of
mutation, see Supplementary Information 1.

Analysing the spatial distribution of nucleotide mutations, we
found that almost all nucleotide positions exhibited at least one
mutation within the data set. However, certain positions along the
genome exhibited a much higher rate of mutation, with the top five
positions comprising nearly 40% of all the genomic mutations.
Analysing the distribution of the number of codon mutations, we
found that most codon positions in the genome have a small
number of mutations, with the peak number being ≈16�32 ,
and considerably fewer sites have a significant ( ≳211) number of
codon mutations. Importantly, we found that for most codons,
silent mutations, which do not lead to protein-level changes, make
up a small number of total mutations. However, some codons
experienced silent mutations almost exclusively. It should be noted
that the mutation rate across the total number of nucleotides in the
genome and the number of samples in the data set, overall, was
fairly low compared with some other RNA viruses (Drake et al.,

1998). However, these results are crucial for understanding the
diversity of the SARS-CoV-2 viral proteins, which is necessary for
the development of effective vaccines and therapeutic strategies
(Mercatelli and Giorgi, 2020).

We introduced two new measures in this work, the relative
density and the mutation index, to characterise the mutations
observed in different segments of the genome. We found that the
relative density of a genome segment in the lowmutation groupwas
strongly correlated with its importance value, which indicated that
important segments tended to have a low number of mutations.
Significantly, this correlation was observed to hold at the codon and
gene levels, and also for the coding regions of each gene. Import-
antly, we found that Zipf’s law holds between the number of
mutations of a codon position and its rank in the set of mutations
for each codon. This enabled us to define the mutation index to
characterise the mutability of different codons. We found that the
mutation index of different genome segments was highly negatively
correlated with the importance of these segments, with the strong
correlation observed at the codon and gene levels, as well as for the
coding regions of each gene. This strengthens the conclusion that
important segments have a lower number of mutations. Notably,
these findings are important for identifying potential candidates for
stable siRNA-based targeted drugs that can inhibit the production
of viral proteins. To illustrate this point further, we used the text-
miningmethod developed in this work to identify the most import-
ant six and seven codon sequences from the reference SARS-CoV-2
genome, which are most likely to be stable against future genomic
mutations and may therefore be candidates for siRNA-based anti-
viral drugs.

Crucially, the SARS-CoV-2 genes that were identified by the text-
mining approach developed here confirm previous findings into the
pathogenesis of the virus in humans (Mercatelli and Giorgi, 2020).
Specifically, the genes encoding the structural proteins (S, E, M, N)
and the gene ORF1ab, which encodes several non-structural pro-
teins, were identified to be important by application of themethod to
the reference SARS-CoV-2 genome. Indeed, these proteins are
thought to play a crucial role in the pathogenesis of the virus
(Yoshimoto, 2020). In addition, genes that encode accessory proteins
(ORF6, ORF8, ORF7ab, ORF3a and ORF10) were identified as
highly important by our method. These proteins are thought to play
a role in counteracting the host’s innate immune system (Yoshimoto,
2020). The SARS-CoV-2 virus is known to induce an innate immune
response, including the release of pro-inflammatory cytokines such

Table 5. Top 10 important segments with seven codons in the SARS-CoV-2 genome sequence

Segment Position Importance Peptides Coding region

AAAAATGTTACAAAAGAAAAT 21067 0.9538 KNVTKEN 20-o-MT;ORF1ab

GGTAATTTTAAAGTTACAAAA 1784 0.9510 GNFKVTK ORF1a;nsp2;ORF1ab

ACAAAAGTTGATGGTGTTGAT 19717 0.9507 TKVDGVD endoRNAse;ORF1ab

AAAGATTTTGGTGGTTTTAAT 23945 0.9498 KDFGGFN S

AATGGTGTTGAAGGTTTTAAT 23003 0.9471 NGVEGFN S

GAAACTAAAGATGTTGTTGAA 8204 0.9462 ETKDVVE ORF1a;nsp3;ORF1ab

GGTGGTAAAATTGTTAATAAT 8549 0.9412 GGKIVNN ORF1a;nsp3;ORF1ab

GATTTTGGTGGTTTTAATTTT 23948 0.9394 DFGGFNF S

ACTAAAAATGTTACAAAAGAA 21064 0.9392 TKNVTKE 20-o-MT;ORF1ab

ATTAAAGATTTTGGTGGTTTT 23942 0.9317 IKDFGGF S
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as TNF- α, IL-1 and IL-6 (Vabret et al., 2020). This inflammatory
response can lead to a cytokine storm, resulting in severe COVID-19
disease conditions and a high fatality rate. It is important to under-
stand more about how variants of the accessory proteins are linked
to innate immune signalling and severe disease outcome, and this
will be investigated in a future work.

Severe COVID-19 disease conditions may also be related to the
development of autoimmunity due to homology between the viral
proteins and human proteins (Lyons-Weiler, 2020). This is a pivotal
consideration when searching for antiviral targets and developing
new vaccines. In recent work, it was determined that all of the SARS-
CoV-2 proteins with immunogenic peptides have at least one match
to human proteins; however non-human-like epitopes have also
been identified (Lyons-Weiler, 2020; Sørensen et al., 2020). Import-
antly, when ourmethod was used to identify genomic segments with
six codons as potential targets for siRNA-based therapeutics, one of
the identified segments corresponds to a non-human-like epitope of
the SARS-CoV-2 spike glycoprotein (Sørensen et al., 2020). Thus,
our findingsmay immediately be realisable for the development of an
siRNA-based therapeutic that can target an epitope of a structural
SARS-CoV-2 protein, without the risk of inducing an autoimmune
response and severe disease outcome.

In closing, we note that the text-mining method developed here
is generic and it enables the rapid identification of segments of a
whole genome that are likely to remain conserved during future
genomic mutation events. Importantly, these segments are identi-
fied from a reference (ancestral) genome. Thus, the method elim-
inates the need to wait for the collection and analysis of predecessor
whole genome sequences. This not only reduces the cost, but is also
crucial for the timely response to highly infectious novel pathogens
that have the potential to cause widespread epidemics or global
pandemics. Importantly, the approach can be applied to any patho-
gen, including for the identification of novel therapeutic strategies
to help overcome antimicrobial resistance, which is considered one
of the biggest threats to global health. This direction of research will
be considered in a future work.
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