THE GENERALIZED SYLVESTER MATRIX EQUATION, RANK MINIMIZATION AND ROTH'S EQUIVALENCE THEOREM

MINGHUA LIN and HARALD K. WIMMER[™]

(Received 5 February 2011)

Abstract

Roth's theorem on the consistency of the generalized Sylvester equation AX - YB = C is a special case of a rank minimization theorem.

2010 Mathematics subject classification: primary 15A24.

Keywords and phrases: Sylvester's matrix equation, Roth's equivalence theorem, rank minimization, Roth's similarity theorem.

Let $A \in K^{m \times m}$, $B \in K^{n \times n}$ and $C \in K^{m \times n}$ be matrices over a field K. Set $Gl(n) = \{M \in K^{n \times n} | \det M \neq 0\}$. The following theorem is due to Roth [1]. It gives a necessary and sufficient condition for the consistency of the generalized Sylvester equation (1) in terms of an equivalence of two associated matrices.

THEOREM 1. The matrix equation

$$AX - YB = C \tag{1}$$

is solvable with $X, Y \in K^{m \times n}$ if and only if there exist matrices $P, Q \in Gl(m + n)$ such that

$$P\begin{pmatrix} A & C \\ 0 & B \end{pmatrix} = \begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix} Q.$$

We shall see that Roth's theorem is a special case of a result on rank minimization. It is the purpose of this note to prove the following.

THEOREM 2. We have

$$\min\{\operatorname{rank}(AX - YB - C) \mid X, Y \in K^{m \times n}\} = \min\left\{\operatorname{rank}\left[P\begin{pmatrix}A & C\\ 0 & B\end{pmatrix} - \begin{pmatrix}A & 0\\ 0 & B\end{pmatrix}Q\right] \mid P, Q \in \operatorname{Gl}(m+n)\right\}.$$

^{© 2011} Australian Mathematical Publishing Association Inc. 0004-9727/2011 \$16.00

PROOF. Let $X, Y \in K^{m \times n}$ and $P, Q \in Gl(m + n)$. Set

$$\phi(X, Y) = AX - YB - C$$
 and $\Phi(P, Q) = P \begin{pmatrix} A & C \\ 0 & B \end{pmatrix} - \begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix} Q$,

and

442

$$\gamma = \min \operatorname{rank} \{ \phi(X, Y) \mid X, Y \in K^{m \times n} \}$$

and

$$\Gamma = \min \operatorname{rank} \{ \Phi(P, Q) \mid P, Q \in \operatorname{Gl}(m+n) \}.$$

From [2] we know that

$$\gamma = \operatorname{rank} \begin{pmatrix} A & C \\ 0 & B \end{pmatrix} - \operatorname{rank} \begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix}.$$

For $P, Q \in Gl(m + n)$, we obtain

$$\operatorname{rank} \Phi(P, Q) \ge \operatorname{rank} P\begin{pmatrix} A & C \\ 0 & B \end{pmatrix} - \operatorname{rank} \begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix} Q$$
$$= \operatorname{rank} \begin{pmatrix} A & C \\ 0 & B \end{pmatrix} - \operatorname{rank} \begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix} = \gamma.$$

Hence $\Gamma \geq \gamma$. With $X, Y \in K^{m \times n}$, we associate the matrices

$$P_Y = \begin{pmatrix} I & Y \\ 0 & I \end{pmatrix}$$
 and $Q_X = \begin{pmatrix} I & X \\ 0 & I \end{pmatrix}$.

Then

$$\Phi(P_Y, Q_X) = \begin{pmatrix} 0 & -\phi(X, Y) \\ 0 & 0 \end{pmatrix}.$$

Hence

$$\Gamma \leq \min\{\operatorname{rank} \Phi(P_Y, Q_X) \mid X, Y \in K^{m \times n}\} = \min\{\operatorname{rank} \phi(X, Y)\} = \gamma.$$

This completes the proof.

The following theorem deals with the Sylvester equation (2). It is known as Roth's similarity theorem.

THEOREM 3 [1]. The matrix equation

$$AX - XB = C \tag{2}$$

is solvable with $X \in K^{m \times n}$ if and only if there exists a matrix $P \in Gl(m + n)$ such that

$$P\begin{pmatrix} A & C \\ 0 & B \end{pmatrix} = \begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix} P.$$

[2]

There is evidence that Theorem 3 is also a special case of a result on rank minimization. We conjecture that the identity

$$\min\{\operatorname{rank}(AX - XB - C) \mid X \in K^{m \times n}\} = \min\left\{\operatorname{rank}\left[P\begin{pmatrix}A & C\\ 0 & B\end{pmatrix} - \begin{pmatrix}A & 0\\ 0 & B\end{pmatrix}P\right] \mid P \in \operatorname{Gl}(m+n)\right\}$$

holds, which extends Theorem 3.

References

- [1] R. E. Roth, 'The equations AX YB = C and AX XB = C in matrices', *Proc. Amer. Math. Soc.* **3** (1952), 392–396.
- [2] Y. Tian, 'The minimal rank of the matrix expression A BX YC', *Missouri J. Math. Sci.* 14 (2002), 40–48.

MINGHUA LIN, Department of Mathematics, University of Regina, Regina S4S 0A2, Canada e-mail: lin243@uregina.ca

HARALD K. WIMMER, Mathematisches Institut, Universität Würzburg, 97074 Würzburg, Germany e-mail: wimmer@mathematik.uni-wuerzburg.de