THE GENERALIZED SYLVESTER MATRIX EQUATION, RANK MINIMIZATION AND ROTH'S
 EQUIVALENCE THEOREM

MINGHUA LIN and HARALD K. WIMMER ${ }^{\boxtimes}$

(Received 5 February 2011)

Abstract

Roth's theorem on the consistency of the generalized Sylvester equation $A X-Y B=C$ is a special case of a rank minimization theorem.

2010 Mathematics subject classification: primary 15A24.
Keywords and phrases: Sylvester's matrix equation, Roth's equivalence theorem, rank minimization, Roth's similarity theorem.

Let $A \in K^{m \times m}, B \in K^{n \times n}$ and $C \in K^{m \times n}$ be matrices over a field K. Set $\mathrm{Gl}(n)=$ $\left\{M \in K^{n \times n} \mid \operatorname{det} M \neq 0\right\}$. The following theorem is due to Roth [1]. It gives a necessary and sufficient condition for the consistency of the generalized Sylvester equation (1) in terms of an equivalence of two associated matrices.

ThEOREM 1. The matrix equation

$$
\begin{equation*}
A X-Y B=C \tag{1}
\end{equation*}
$$

is solvable with $X, Y \in K^{m \times n}$ if and only if there exist matrices $P, Q \in \operatorname{Gl}(m+n)$ such that

$$
P\left(\begin{array}{cc}
A & C \\
0 & B
\end{array}\right)=\left(\begin{array}{cc}
A & 0 \\
0 & B
\end{array}\right) Q .
$$

We shall see that Roth's theorem is a special case of a result on rank minimization. It is the purpose of this note to prove the following.

Theorem 2. We have

$$
\begin{aligned}
& \min \left\{\operatorname{rank}(A X-Y B-C) \mid X, Y \in K^{m \times n}\right\} \\
& \quad=\min \left\{\left.\operatorname{rank}\left[P\left(\begin{array}{cc}
A & C \\
0 & B
\end{array}\right)-\left(\begin{array}{cc}
A & 0 \\
0 & B
\end{array}\right) Q\right] \right\rvert\, P, Q \in \mathrm{Gl}(m+n)\right\} .
\end{aligned}
$$

[^0]Proof. Let $X, Y \in K^{m \times n}$ and $P, Q \in \mathrm{Gl}(m+n)$. Set

$$
\phi(X, Y)=A X-Y B-C \quad \text { and } \quad \Phi(P, Q)=P\left(\begin{array}{cc}
A & C \\
0 & B
\end{array}\right)-\left(\begin{array}{cc}
A & 0 \\
0 & B
\end{array}\right) Q
$$

and

$$
\gamma=\min \operatorname{rank}\left\{\phi(X, Y) \mid X, Y \in K^{m \times n}\right\}
$$

and

$$
\Gamma=\min \operatorname{rank}\{\Phi(P, Q) \mid P, Q \in \mathrm{Gl}(m+n)\}
$$

From [2] we know that

$$
\gamma=\operatorname{rank}\left(\begin{array}{cc}
A & C \\
0 & B
\end{array}\right)-\operatorname{rank}\left(\begin{array}{cc}
A & 0 \\
0 & B
\end{array}\right)
$$

For $P, Q \in \mathrm{Gl}(m+n)$, we obtain

$$
\begin{aligned}
\operatorname{rank} \Phi(P, Q) & \geq \operatorname{rank} P\left(\begin{array}{cc}
A & C \\
0 & B
\end{array}\right)-\operatorname{rank}\left(\begin{array}{cc}
A & 0 \\
0 & B
\end{array}\right) Q \\
& =\operatorname{rank}\left(\begin{array}{cc}
A & C \\
0 & B
\end{array}\right)-\operatorname{rank}\left(\begin{array}{cc}
A & 0 \\
0 & B
\end{array}\right)=\gamma
\end{aligned}
$$

Hence $\Gamma \geq \gamma$. With $X, Y \in K^{m \times n}$, we associate the matrices

$$
P_{Y}=\left(\begin{array}{cc}
I & Y \\
0 & I
\end{array}\right) \quad \text { and } \quad Q_{X}=\left(\begin{array}{cc}
I & X \\
0 & I
\end{array}\right)
$$

Then

$$
\Phi\left(P_{Y}, Q_{X}\right)=\left(\begin{array}{cc}
0 & -\phi(X, Y) \\
0 & 0
\end{array}\right)
$$

Hence

$$
\Gamma \leq \min \left\{\operatorname{rank} \Phi\left(P_{Y}, Q_{X}\right) \mid X, Y \in K^{m \times n}\right\}=\min \{\operatorname{rank} \phi(X, Y)\}=\gamma
$$

This completes the proof.
The following theorem deals with the Sylvester equation (2). It is known as Roth's similarity theorem.

THEOREM 3 [1]. The matrix equation

$$
\begin{equation*}
A X-X B=C \tag{2}
\end{equation*}
$$

is solvable with $X \in K^{m \times n}$ if and only if there exists a matrix $P \in \mathrm{Gl}(m+n)$ such that

$$
P\left(\begin{array}{cc}
A & C \\
0 & B
\end{array}\right)=\left(\begin{array}{cc}
A & 0 \\
0 & B
\end{array}\right) P
$$

There is evidence that Theorem 3 is also a special case of a result on rank minimization. We conjecture that the identity

$$
\begin{aligned}
& \min \left\{\operatorname{rank}(A X-X B-C) \mid X \in K^{m \times n}\right\} \\
& \quad=\min \left\{\left.\operatorname{rank}\left[P\left(\begin{array}{cc}
A & C \\
0 & B
\end{array}\right)-\left(\begin{array}{cc}
A & 0 \\
0 & B
\end{array}\right) P\right] \right\rvert\, P \in \mathrm{Gl}(m+n)\right\}
\end{aligned}
$$

holds, which extends Theorem 3.

References

[1] R. E. Roth, 'The equations $A X-Y B=C$ and $A X-X B=C$ in matrices', Proc. Amer. Math. Soc. 3 (1952), 392-396.
[2] Y. Tian, 'The minimal rank of the matrix expression $A-B X-Y C$ ', Missouri J. Math. Sci. 14 (2002), 40-48.

MINGHUA LIN, Department of Mathematics, University of Regina, Regina S4S 0A2, Canada
e-mail: lin243@uregina.ca
HARALD K. WIMMER, Mathematisches Institut, Universität Würzburg, 97074 Würzburg, Germany
e-mail: wimmer@mathematik.uni-wuerzburg.de

[^0]: (C) 2011 Australian Mathematical Publishing Association Inc. 0004-9727/2011 \$16.00

