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Abstract

We conjecture that five well-known identities universally satisfied by commutators in a group
generate all such universal commutator identities. We use homological techniques to partially
prove the conjecture.

1991 Mathematics subject classification (Amer. Math. Soc): primary 20 A 05; secondary
08 A 99.

0. Introduction

For elements x, y of a group we write xy — xyx"1 and [x, y] = xyx~ly~l .
The following commutator identities are universal in the sense that they hold
for any elements x, x , y, y , z of an arbitrary group:

(i) [*,*] = 1,
(ii) [x,yy'] = [x,yf[x,y],
(iii) [xx',y] = x[x',y][x,y].
(iv) [\y,x], xz][[x, z] , zy][[z ,y],yx]=l,
(v) z[x,y] = [zx,zy].

In this article we ask: is any universal commutator identity a consequence of
these five? We obtain a partial answer in the affirmative.

At first sight it might seem that either of the two papers [ 11 ] or [ 13] contain
a complete answer to our question. Both these papers claim to give a set of
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commutator identities from which all universal commutator identities can be
deduced. However, both papers use an identity essentially of the form

[[x, y], A = [xyx ly ' , z]

as one of the generating identities. Commutators of weight 3 have thus to be
treated as commutators of weight 2. So these two papers should be seen as
giving a set of identities which generate all universal identities between com-
mutators of weight 2. In the present paper we interpret our question about
identities (i)-(v) as: do these five identities generate all universal identities
between commutators of weight n? For n = 2 and 3 we prove that they do.
[7, Theorem 1.2] would seem to suggest that in fact they do for all « .

For any group P it is known that the quotients yn{P)lyn+l{P) of the
lower central series of P form a Lie algebra. (Here y,(P) = P, yn(P) =
[yn-\(P)> P] and all Lie algebras are assumed to be over the ground ring
Z.) Another way to obtain a Lie algebra from P is to construct the free
Lie algebra L{Pab) on the abelian group Pab . A theorem of Magnus and
Witt says that if P = F is a free group then these two Lie algebras are
isomorphic. This theorem can be seen as saying that any identity modulo
yn+\{F) between commutators in yn{F) (that is between commutators of
weight n) is a consequence of the defining relations of a Lie algebra. These
defining relations resemble identities (i)-(v).

One way of showing that identities (i)-(v) generate all universal identi-
ties between commutators of weight n is to give a non-abelian version of
the Magnus-Witt isomorphism in which: the quotient yn{F)/yn+l(F) is re-
placed by yn{F); and the free Lie algebra L{Fab) is replaced by the free
"multiplicative Lie algebra" on F, where by a multiplicative Lie algebra we
mean a (not necessarily abelian) multiplicative group with a binary bracket
operation satisfying (i)-(v) (see below for a precise definition). We attempt
to obtain such an isomorphism but only succeed in proving injectivity on
yn{F) for n = 1 , 2 , 3 . The proof uses a new description (in terms of the
non-abelian tensor product defined in [3]) of the triple Pontryagin product
Hx{Pab) x H{{Pab) x Hx{Pab) -» H3(Pab) in integral group homology.

Multiplicative Lie algebras are interesting algebraic objects in their own
right, and so this paper also contains various results about them which are of
purely intrinsic interest.

Our main definitions and results are stated in Section 1. Most of the proofs
are deferred to subsequent sections.

I would like to thank Daniel Conduche for helpful conversations about
this work.
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[3] On five well-known commutator identities 3

1. Definitions and main results

A multiplicative Lie algebra consists of a multiplicative group G together
with a function { , }: G x G —> G, which we shall call the lie product,
satisfying the following identities for all x, x , y, y , z in G:

(i)' {*,*} = 1,
(ii)' {x,yy'} = {x,y}y{x,y'},
(iii)' {xx ,y} = x{x', y}{x, y} ,
(iv)' • {{y, x}, xz}{{x, z}, zy}{{z,y},yx} = l,
(v)' z{x,y} = {zx,zy}.
From (ii') and (iii)' we easily deduce
(vi) {1, *} = {*, 1} = 1.
We have, using (ii)' and (iii)' to expand {xy, xy}, and then applying

(i)', that
(vii) {x,y} = {y,x}~i .
We have, using (ii)' and (iii)' to expand {xx , yy'} in two different

ways, that
(viii) ^^{x',y'} = [x'y]{x',y'}. f

Another consequence of (ii)' and (iii)' is
(ix) [{x,y},x'] = {[x;y],x'}.

Two consequences of (ii)', (iii)' and (vi) are

(x) {x-l,y} = x~'{x,yyl and {y, x~1} - x~'{y, x}'1

Note that (vi)-(x) do not depend on (iv)'; in fact (vi), (viii), (ix) and (x) do
not even depend on (i)'. As an example let us assume (viii) and prove (ix):

[{x,y},x'] = {x,y}x'{x,y}-1

= {x, y}x {xx'1, y}x {x, y}~1

= {x, y}xx{x~l, y}

= {x, y}{x, x'}"1 xx {x~l, y}{x, x'} by (viii)

= {x,y}{xx ,x}{x,x} {x ,y}{x,x}

= {x,y}x{x-l,x'}xx'{x-l,y}{x,x'}
r tX r — 1 ' i r 'l

= {x,y} {x ,xy}{x,x}
= {x, y}{xx~{, y}~1 x{x~l, x'y}{x, x'}

X , - 1 , - 1 X ( - 1 - 1 ' i r ' i

= {x ,y} {x ,yy xy}{x,x}

= xy{x-\y-lx'y}{x,x'}
= f X ,X}{X,X}
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This calculation is, modulo notation, the same as that given for the proof
of [3, Proposition 2.3(d)].

By imposing conditions on the multiplicative group G certain of the iden-
tities (i)'-(v)' can be made redundant. As an example we give the following
proposition. The proof, which is left to the reader, relies on identity (ix).

PROPOSITION 1. If the group G is perfect then (i)' and (iv)' are conse-
quences of (ii)', (iii)' and (v)'.

There are three obvious examples of multiplicative Lie algebras.
EXAMPLE 1. Any group P is a multiplicative Lie algebra with {x, y) -

xyx~iy~l for all x , y i n P.
EXAMPLE 2. Any group P can also be given the structure of a multiplica-

tive Lie algebra by denning {x, y} = 1 for all x, y in P.
EXAMPLE 3. Any Lie algebra L over Z is a multiplicative Lie algebra

with {x, y} the ordinary Lie product for all x, y in L.
Unless otherwise stated, when considering a group P as a multiplicative

Lie algebra we take the Lie bracket of Example 1.
A slightly less obvious example is the following.
EXAMPLE 4. Let E -» P be a central extension of a group P. Then x e P

acts on u € E by xu = ~xux~{ where x e E is any element in the preimage
of x. Let G = E xP be the semi-direct product, and define the Lie product
{ , }:GxG^G by {(«, x), («', x')} = ([ux, H Y ] , 1).

Let G and G' be multiplicative Lie algebras. By a map (j>: G -* G' we
mean a group homomorphism such that <f){x, y} = {<f>x, <f>y} for all x, y
in G. By the kernel of a map <j) we just mean the kernel of </> considered
as a group homomorphism.

A subgroup N of G will be a subalgebra if {x ,y}eJV for all x , y in
N. It will be an ideal if it is a normal subgroup and if {x, y} e N for
all x in N and y in G. It follows from (vii) that if N is an ideal then
{y, x} e N for all x in TV and j ' in G.

Clearly for any map </>: G —> G', the kernel ker(</>) is an ideal of G. Con-
versely if JV is an ideal of G, the quotient group G/N inherits the structure
of a multiplicative Lie algebra, and we have a quotient map
G -> G/N.

For any group P there exists the free multiplicative Lie algebra L(P) on P
which is characterised (up to isomorphism) by the following two properties:

P is a subgroup of L(P);
any group homomorphism P —> G from P to a multiplicative Lie algebra

G extends uniquely to a map L(P) —• G.

https://doi.org/10.1017/S1446788700036934 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700036934


[5] On five well-known commutator identities 5

The existence of L(P) poses no problems. Its construction is a straightfor-
ward generalisation of the construction of a free Lie algebra from a magma
[15]. The crucial role played in the abelian case by bilinearity of the Lie
bracket is played in the non-abelian case by identities (ii)' and (iii)'.

PROPOSITION 2. For any group P the free multiplicative Lie algebra L(P
on the abelianised group Pab is just the usual free Lie algebra over Z on P

ab)
ab.

PROOF. Identities (v)' and (viii) imply that the underlying group of L(Pab)
is abelian. Thus identities (i)'-(v)' imply that L(Pab) is a Lie algebra. The
defining universal property of L(Pab) therefore coincides with the universal
property of the free Lie algebra over Z on Pab .

In view of Proposition 2 (or in view of Example 3) the identity homomor-
phism Pab -> Pat> extends uniquely to a surjective map 8 from L(Pab) to
the (restricted) direct sum of the quotients yn(P)lyn+l{P) , n = \ ,2,3, ... ,

since the direct sum is a Lie algebra over Z with Lie product induced by the
functions

)> (x, y) ~ [x, y].

A theorem of Magnus and Witt [12, Theorem 5.12] states that 0 is a Lie
isomorphism if P - F is a free group.

With a non-abelian version of this Magnus-Witt isomorphism as our aim
(see Theorem 3 and Proposition 4), we let Tn(P) be the subgroup of L(P)
generated by the elements {{• • • {{x{, x2}, x 3 } , . . . } , xn} for xi in P. In
particular F, (P) = P. Then the identity group homomorphism on P in-
duces a surjective map of multiplicative Lie algebras

d:L(P)-*P

in which P has the structure of Example 1, and which restricts to surjective
group homomorphisms

0 n : r n ( P ) - y n ( P )

for all n > 1.
We can now state our main result, in which Hn(P) denotes the nth ho-

mology group of P with integral coefficients.

THEOREM 3. (i) For any group P the homomorphism 8X is by definition
an isomorphism.
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(ii) If H2(P) = 0 (for instance if P is free) then 62 is an isomorphism,

?

(iii) If HX(P) is torsion-free and if H2(P) = 0 (for instance if P is free)
then 03 is an isomorphism 6i: F3(P) = y^(P).

We prove Theorem 3 in Section 3.

PROPOSITION 4. Any element y of L(P) can be expressed as a finite prod-
uct y = yly2---yn with yi in Yt(P).

In order to prove Proposition 4 we need to define subgroups P{P] of L(P)
for any "bracketing" /?. We call the bracket arrangement ft — * involving no
brackets, the bracketing of weight 1, and for this bracketing we set fi{P} =
P. We say that /? is a bracketing of weight n > 2 if it is of the form
/? = (/?,, P2) with pt a bracketing of weight ni such that «, + n2 = n . For
a particular bracketing /? of weight n and elements x{, ... , xn of P the
expression f}{xx, ... , xn} denotes in an obvious way an element of L(P).
For instance, given the bracketing /? = (((*,*),*)>(*>*)) of weight 5, then
P{xx, x2, JC3 , x4, x5} denotes the element {{{xl, x2}, x3}, {x4, x5}} . For
a particular bracketing fi of weight n we take p{P] to be the subgroup
of L(P) generated by the elements fS{xx, ... , xn) for xt in P. Thus for
example if /? = ( ( • • • ( (* ,* ) ,* ) , . . . ) , * ) is the left normed bracketing of
weight n, then p{P} = Fn(P).

With this notation we can give a
PROOF OF PROPOSITION 4. We first show that if /? is any bracketing of

weight i then /?{/>} C rt(P). This inclusion can be proved by induction on
/. It is trivially true for i = 1 , 2 , 3 . Suppose it is true for all bracketings
of weight less then / . Assume that i > 4 and that /? is of the form /? —
(/?', /?") with /?' of weight / ' , /?" of weight /'" and /' + /" = /'. By
the inductive hypothesis any generator g of P{P) can be written in the
form g = {M, • • • uk<, v{ •• -vk,} with each M*1 a generator of r(./(P) and
each vfl a generator of r,.»(P). It follows from identities (ii)', (iii)', (v)'

and (viii) that g is a product of elements of the form {u,v} with w*1

a generator of rt>(P) and V±x a generator of Fi,,(P). Identities (x) and
(v)' imply that g is a product of elements of the form {u,v}±l with u a
generator of Tti(P) and v a generator of T^^P). If i" — 1 then any such
{u, v} is a generator of T^P). Hence g is in Ft(P) and consequently
P{P) Q ri(P) • I f i" ? 1 then by (vii) and (iv)' we have

{u, v} = {u, {v , x}} (with xeP, v a generator of r/-/_,(/>))
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= {{v', x}, xu'}~ (with u = x M a generator of

= { { * , « } , v }{{u,v}, x}

= {{u, u), %'}{{«' , v'}, x'} (with x € P).

Since " v can be replaced by a generator of Tj,,_l (P) it follows by a subsid-
uary induction on i" that {u,v} is in rt(P). Hence the generator g is in
T.(P), and consequently fi{P} C T.(P) for all i > 1. As a group L(P) is
generated by the elements )3{x,, . . . , xt} for x. G P and )S any bracketing
of weight 1 = 1 , 2 , 3 . . . . It follows that L(P) is generated as a group by
the subgroups r.(P) for i = 1, 2, . . . . Identities (v)' and (viii) show that
Tt(P) is a normal subgroup of L(P) for i >2. This proves the proposition.

So far we have completely determined the structure of the free multiplica-
tive Lie algebra L{P) for P a free abelian group, and we have partially
determined the structure for P a free group. For purely intrinsic interest we
now investigate the structure of L(P) for other classes of groups P.

For N a normal subgroup of a group P we let y{(N, P) — N and
?n+l(N,P) = [yn(N,P),P].

THEOREM 5. Let R be a normal subgroup of a free group F, and let
P = F/R. Then for n > 1 there is an isomorphism of abelian groups

"{ ab> yn+l(F)vn(R,F)-

Consequently there is a Lie algebra isomorphism

We prove Theorem 5 in Section 4. An immediate consequence of this
theorem is that the kernel of the canonical homomorphism

which we shall denote by B(P, n), is given by the formula

n ) - yn+i(F)yn(R,F)

when P = F/R with F a free group. Clearly B(P, n) is an invariant of
P. In fact B(P, h) is one of the invariants of Pab due to R. Baer (see [1]
or [10]). Theorem 5 has the following obvious corollary.
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COROLLARY 6. The Lie homomorphism of Magnus and Witt

n>\

is an isomorphism if and only if B(P, n) — 0 for n > 2.

Note that any finite cyclic group P is an example of a non-free group
satisfying B(P, n) = 0 for all « > 2 . It would be interesting to know if
there exist other non-free groups P satisfying B(P, n) = 0 for all n > 2.
It would also be interesting to investigate the relationship between Corollary
6 and the main result in [8].

THEOREM 7. Let G — L{P) be the free multiplicative Lie algebra on a
group P.

(i) If P is a p-group then G is a p-group.
(ii) If P is finite then Tn{P) is finite for n>\.
(iii) If P is nilpotent of class c then Tn(P) is abelianfor n > c + 1.
(iv) If y2{P) is nilpotent of class c then T2(P) is nilpotent of class c or

c ' + l .
(v) If P is prefect then G = U x P where U is the universal central

extension of P (cf. Example 4).

We prove Theorem 7 in Section 4. Part (iv) is presumably a genuine
dichotomy, although we have no example to prove this. (For any group P we
recall below the construction of its non-abelian tensor square P <g> P. There
is a surjection P ® P -» V2(P) whose kernel is generated by the elements
x <g> x with x e P. There are a couple of examples in [2] of groups P with
y2(P) abelian and P ® P non-abelian. Such examples might yield a group
P with y2(P) of class 1 and T2(P) of class two.)

The following result shows that the underlying group of L(F) is not free
when F is a free group of rank > 2 .

PROPOSITION 8. Let G be a free group. Then there are only two possible
Lie products under which G becomes a multiplicative Lie algebra: {x, y} =
[x, y] for all x, y e G; or {x, y) - 1 for all x, y € G.

PROOF. If G is of rank 1 then the result follows from the easily deduced
identity

{x' , xJ} = 1, for x e G, / , j € Z.

So suppose that G is free on more than two generators. For any x, y in
G identity (viii) implies [[x,y], {x,y}]=l. Thus {x, y} and [x, y] are
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both powers of some element in G. Since [x, y] — z' implies / = - 1 , 0 , 1
(see [14]), we must have {x, y} = [x, y]" for some n e Z . Let a, b,c be
free generators of G with c ^ a, b. Then there are integers / , m, n such
that

{ab, c} = [ab, c]n = (a[b, c])'[a, cf = °{b, c}{a, c}.

For n / 0, 1 this last identity is false. Hence n = 0 or 1, and consequently
{a, c) - \ or {a, c} — [a, c]. This is the case for all pairs a, c of distinct
free generators. But the Lie product is determined by its effect on the free
generators. This proves the proposition.

The proofs of Theorems 3 and 7 depend on the non-abelian tensor and
exterior products introduced in [3] (see also [2]). For convenience we recall
these constructions here. They depend on the notion of a crossed module.

A crossed P-module is a group homomorphism d: M —> P with a group
action (x, y) t-» xy of x e P on y e M satisfying d(xy) = x(dy)x~l and
' yy' — yy'y~x for all JC G P, y, y e M. Thus for example any normal
subgroup M of P is a crossed P-module with d the inclusion, and action
given by conjugation in P.

Given two crossed P-modules d: M —> P and d: N —> P, the tensor
product M ® N is the group generated by the symbols x <8> y with x e M,
y e N subject to the following relations for x, x e M, y, y e N (in which
M and N are assumed to act on each other via the actions of P):

(Tl) x ® yy' = (x ® y)(yx ® V ) ;
(T2) xx ® y = ( V ® *>>)(* ® y) .
There is a homomorphism d: M®N —> P given by 9(x®y) = [3x, dy].

There is an action of z e P on M ® N given by z(x ® y) = (zx ® z y ) . The
homomorphism and action satisfy the conditions of a crossed module.

For any group P the crossed P-module d: P ® P —> P is constructed
from the identity homomorphism P —> P (which of course is itself a crossed
module). Note that if P is abelian then P ® P is the usual tensor product
of abelian groups.

The exterior product M A N is obtained from the tensor product M ® N
by imposing the extra relation:

(T3) JC ® y = 1 whenever dx = dy.
The canonical image of x ® y in MAN is denoted x A y . The crossed
P-module d: M ® N ^> P induces a crossed P-module 0: M A JV —> P .

For any group P the crossed P-module d: P A P —> P is constructed
from the identity homomorphism. Note that if P is abelian than P A P is
the usual (associative) exterior product of abelian groups.
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THEOREM 9. If P is a group with normal subgroup N such that P/N is
abelian, then there is a homomorphism

y: (P/N) A (P/N) A (P/N) -» N A P,

(x,y,z)~(\y,x]/\ xz)([x, z] A zy)([z, y] A y x)

where x e P is a representative ofx& P/N. If Hx (P) is torsion-free and if
H2(P) — 0 (for instance if P is free), then there is an exact sequence

If in addition //3(P) = 0 then y/ is injective.

We prove Theorem 9 in Section 2.
In [3] (and also in [5]) it is shown that for any group P with normal

subgroup ./V such that H2(P) = H3(P) — 0, there is an isomorphism

H3(P/N) 2 ker(N AP^[N,P]).

Under this isomorphism the homomorphism y/ of Theorem 10 is such that
- V is induced by the Pontryagin product Hx (P/N) x Hi (P/N) x Hl (P/N) ->
H^P/N). The details are given in Lemma 11.

The exact sequence in Theorem 9 gives us an interesting presentation of
y3(F) for F a free group. We can generalise this presentation to a presen-
tation of [R, F] for any subgroup R containing [F, F]. To do this we let
M7\N be the quotient of M <s> N obtained by imposing the relation

(T4) x ® y = 1 whenever dx is a power of dy.

THEOREM 10. Let F be a free group with normal subgroup R such that
F/R is abelian. Then the homomorphisms y/ and d of Theorem 9 induce
an exact sequence

We prove Theorem 10 in Section 2.
REMARK 1. One possible method of proving that 8n: Tn(F) -> yn(F) is

an isomorphism for all n when F is free is to use the free generating set of
the free group yn(F) given in [16, Lemma 8]. This lemma says that 7n(F) is
freely generated by all invertators (= commutators sprinkled with inverses)
of the form [c, by , b2

2, ... , b^] where q > 1, c and the bt are basic

commutators of weight < n , weight of [c, b['] > n , c = [c,, c2] implies
c2 < b x , /?, = ± 1 , c > bx < b 2 < ••• < b q , a n d b( = bj i m p l i e s /?. =
Pj. There is thus a homomorphism d'n: yn(F) -+ Tn(F) which sends each
free generator to the element of Tn(F) obtained by replacing commutator
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brackets by Lie product brackets. Certainly d'n is injective, since 6nd'n is the
identity. It may be possible to show that d'n is also surjective.

REMARK 2. For N and P two subgroups of some group we define

yi(N,P) = N and ym+l(N, P) = [ym(N, P),P].

With this notation there is, for any free group F and integers, m, n > 1,
an isomorphism

0 r,(F) a yn(F)
m'n'ym+i(rn(F),F) 7m+n{F)-

The existence of such a surjection 8m n is clear. Injectivity is proved as
follows.

The group yn(F)/yn+l(F) is known to be a free abelian group with a basis
consisting of all basic commutators of weight n (see [12]). Identity (viii)
implies that the group Tn(F)/y2(Vn(F), F) is abelian. The surjection 6X n is
thus split by a homomorphism which sends each basic commutator of weight
n to the element obtained by replacing commutator brackets by Lie product
brackets. Since only identities (i)-(v) are needed to show that yn(F)/yn+l(F)
is generated by the basic commutators of weight n , it follows by analogous
arguments that Tn(F)/y2(Tn{F), F) is generated by the images of these basic
commutators. Thus the splitting is actually surjective, and consequently 0, n

is an isomorphism for all n > 1. The following commutative diagram in
which the columns are short exact shows, by induction on m, that 6m n is
an isomorphism for all m > 2.

1 1

1-

yim-i)+n(p)

i I
1 1

The homomorphism co is induced by replacing m - 1 pairs of Lie product
brackets by commutator brackets. For instance if m = 3 and n — 2 then
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{{{{t, u}, v}, w}x} i-> {{[[t, u],v],w},x}. Of course, there is a certain
amount of choice as to which pairs of brackets are replaced, and we leave
to the reader the details of the proof (which uses identity (ix)) that co is
well defined. The injectivity of co follows from the injectivity of 6m nco =
*#i m+n_i where / is the canonical inclusion.

Since free groups are residually nilpotent the isomorphisms 6m n show
that for each n there is an isomorphism

There seems to be no easy argument showing Dm=i Ym(
REMARK 3. Theorem 3 can be generalised. For any bracketing p and free

group F the map L(F) —> F which extends the identity on F (thinking of
F as a multiplicative Lie algebra as in Example 1) restricts to a homomor-
phism P{F} -» F. We denote by P[F] the image of this restricted homo-
morphism. We call any bracketing P of weight 1, 2, 3 torsion free abelian or
tfa. More generally a bracketing P = (/?,, p2) is tfa if both /?, and P2 are
tfa, and if for any free group F either PX[F] c P2[F] with P2[F]/Pl[F] a
torsion-free abelian group, or P2[F] c px[F] with Pi[F]ffi2[F] torsion-free
abelian. In general it seems a difficult problem to decide whether a particular
bracketing is tfa. The following is an example of a tfa bracketing of weight
5: (((* , * ) , * ) , ( * , *)). It can be shown that for any free group F and tfa
bracketing P the surjection P{F} -» p[F\ is in fact an isomorphism. The
details are sketched at the end of Section 3.

2. Proof of Theorems 9 and 10

Let P be a group with normal subgroup N. Then Hx {P/N) ^ (P/N)ab .
It is shown by topological methods in [3] (and algebraically in [5]) that if
H2(P) = H3(P) = 0 then there is an isomorphism H3(P/N) s ker(iV A P —
P).

LEMMA 11. Let P be a group with normal subgroup N such that P/N
is abelian and H2{P) = H3(P) = 0. For x e P let x = xN. Then, under
the isomorphisms H^P/N) ^ P/N and H3(P/N) £* ker(A^ A P -» P), the
Pontryagin product

H{(P/N) x H^P/N) x HX{P/N) -+ H3(P/N)
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corresponds to the function

P/N x P/N x P/N -> NAP

(3T1, JT1, z"1) ~ (\y, x] Axz){[x, z] Azy)([z, y] Ayx).

PROOF. Let Q = P/N. Let {Bn(Q), dn} be the Bar resolution over Q.
Thus Bn(Q) is the free ZQ-module on the symbols [3c, pc2| ••• \xn] with
x~i; € Q for n > 0; in particular B0(Q) = Z g . In low dimensions the
boundary homomorphisms are:

dx:Bx(Q)^B0(Q), [x]»x-l;

d2: B2(Q) -* BX(Q), [x\y] -> x\y] - [xy] + [x];

d,: B3(Q) - B2(Q), [x\y\1] ~ x\y\t] - \xy\z] + \x\yz\ - [x\y].

The Pontryagin product HX(P/N) x HX{P/N) x HX{P/N) - • H3(P/N) is
induced by the function BX(Q) x BX(Q) x BX(Q) -» B3{Q), ([x], \y], [z]) ~

m\y]m = mm - mf)+vs\m - &\m + m^m - mm • (see
for instance [4] for further details.)

The isomorphism H3(Q) = ker(JV A P - » P ) was obtained in [5] as a
sequence of isomorphisms:

H3(Q) =l H2(Q, IQ) ̂ 2 HX(Q, Nab) ̂  ker(iVai ®?Q IQ - Nab)

S4 ker((iV A P)/i(N A N) -• P/[N, N]) S5 ker(A^ AP-^P).
The first three isomorphisms are well known and follow from the long exact
Tor-sequences induced by a short exact sequence of modules (see for instance
[9]). The fourth isomorphism is got from the the exact sequence N A N -^-*

N A P - i* Nab ®ZQ IQ - 1 where n{w A x) = w[N, N] ® QT1 - 1) for

w € N, x e P. Note that l e g acts on Nab on the right by

(w[N,N])-x = x~lwx[N, N].

The fifth isomorphism is got by lifting. The element [3c] • [y] • [z] e B3(Q)
corresponds "under" = ' to the element

(3c - 1) ® (fflz] - [zffl) + (P - 1) ® (P|3c] - [x\z]) + (z - 1) ® ([x\y] -

in IQ ®ZQ B2(Q). Under =2 this element corresponds to

[x, y][N, N] ® y 3c[z] + [y, z][iV, iV] ® z y[x] + [z, x][N, N] ® 3c zfj]

in Nab®ZQBx{Q). Under s 3 this in turn corresponds to [JC"1 1

(z-V + ly-1, z-*][N, N]®(x-l) + [z~l, x~l][N, N]®(y-\) in

/ G . Under =4 this corresponds to

https://doi.org/10.1017/S1446788700036934 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700036934


14 Graham J. Ellis [14]

iniVA P/i{N A N). This lifts to

(\y , x ] A z )([x , z ] A y )([z , .y ] A' x )

in N A P. This proves the lemma.

Suppose now that P is an arbitrary group with normal subgroup N such
that P/N is abelian. We can always choose a free group P' with normal
subgroup TV' such that P/N = P'/N' and such that there exists a surjection
P' -» P. Now the Pontryagin product on the homology of P'/N' induces a
homomorphism (see [4]) W- (P'/N1) A (P'/N') A (P'/N1) -* H3(P'/N'). Also,
the surjection P' -» P induces a surjective homomorphism N' AP' -» NAP.
We let y/' be the following composite homomorphism

y/': (P/N) A (P/N) A (P/N) -=» (P'/N1) A (P'/N') A (P'/N1)

- ^ N' A P' -» TV A P.

Lemma 11 enables us to set yi = —y/' in Theorem 9.
By [4, Theorem V6.4 (ii)] if Pab is torsion-free then the Pontryagin prod-

uct induces an isomorphism Pab A Pab A Pab = H3(Pab). In [3] and also in
[5] it is shown that for any group P with normal subgroup N there is a ho-
momorphism H3(P/N) —* ker(NAP —> P), and that this homomorphism is:
surjective when H2(P) = 0; an isomorphism when H2(P) - H3(P) = 0. The
exact sequence of Theorem 9, and the injectivity of y/, thus follows from the
composite homomorphism Pab^Pab^Pab = H^P^) -> ker([/>, P]AP -• P).

We now turn our attention to Theorem 10.
Let A be an abelian group and for some integer n > 2 consider the

canonical short exact sequence nZ^->A®Z^A® (Z/nZ). Associated to
this sequence is a natural long exact homology sequence (see [3, Corollary
4.6] or sequence 1 in [5]) part of which is:

H3(A © Z) -> H3(A © Z/nZ) -> nZ A (A © Z) -> (A © Z) A (A © Z) .

From this we can deduce an exact sequence

(*) H3(A®Z)-+H3(A®Z/nZ) -^nZAZ^O.

Suppose we have a free presentation S >-» F -» A © (Z/nZ). Then we can
identify #3(,4 © Z/nZ) with the kernel of d: S A F -> F. For any x e F
such that x" 6 5" we clearly have x" Ax e H3(A®Z/nZ). Since the elements
£(x" A x) for x" e S generate nZ A Z (in fact «Z A Z is cyclic), the exact
sequence (*) implies the following lemma.

LEMMA 12. With the above notation H3(A © Z/nZ) is generated by the
image of H3(A ©Z) together with the element x" Ax where x" e S.
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Let us now suppose that R is a normal subgroup of a free group F such
that F/R is a finitely generated abelian group. Thus

F/R =* Z/n{Z © Z/«2Z © • • • © Z/nkZ.

There is a family 5, < S2 < • • • < Sk = R of normal subgroups of F such
that F /Si is isomorphic to

Z/nx © • • • © Z/n .Z © Z © • • • © Z.

The following lemma follows by induction on / , from Lemma 12.

LEMMA 13. W/i/i the above notation H3(F/R) is generated by the image
of H3{F/[F, F]) together with those elements x" Ax where x e F is such
that xn G R for some integer n.

We can generalise Lemma 13 to infinitely generated abelian groups. Sup-
pose that R is a normal subgroup of a free group F such that F/R is
abelian. Suppose that z is an element in H3(F/R) = ker(RAF —> F). Then
we can find a finitely generated subgroup F of F and a normal subgroup R
of R with R contained in R such that z lies in the image of the canonical
homomorphism RAF —> RAF. Let z e RAF be an element in the preim-
age of z . Then by Lemma 14, z is in the subgroup of H}(F/R) generated
by the image of H^F^) together with those elements x" A x with x e R
for some n . It follows that z lies in the subgroup of H3(F/R) generated by
the image of the composite homomorphism H3{Fab) —> H3{Fab) —> H}(F/R)
together with those elements x" A x where xn € R for some n . This proves
the following lemma.

LEMMA 14. For any free group F with normal subgroup R such that F/R
is abelian, H3(F/R) is generated by the image of H3(Fab) together with those
elements x" Ax where x e F is such that x" e R for some integer n.

By Theorem 9 the image of H3(Fab) in H3(F/R) is just the image of the
homomorphism y/: Fab A Fab A Fab —> H3(F/R). Thus Theorem 10 follows
immediately from Lemma 14.

3. Proof of Theorem 3

When H2{P) = 0 the injectivity of 62 follows from the exact sequence

H2(P) -» P A P -£-> y2(P) -> 1 and the fact that d factors as a surjection

PAP^ Y2{P), x Ay •-» {x, y} followed by 02: T2(P) -» y2{P).
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If H2(P) = 0 and H{(P) is torsion-free then we have a commutative
diagram of group homomorphisms:

Pab*Pab*
Pab " ^ [P , P] * P • ?3(P) • 1

' " ' A i d l -

The homomorphism £3 is the restriction of the composite homomorphism
PAPAP - ^ L(P)AL{P)AL{P) -̂ -> L{P) where T is induced by the inclusion
P <-» L(/>), and where C3((xA>>)Az) = {{*, j>}, z} for all x, y e , z € L(P).
So C3 is surjective. The top row is exact by Theorem 9. The isomorphism
d: P A P = y2(P) allows us to construct the homomorphism d~l A id, and
this homomorphism is an isomorphism since it is inverse to d A id. By
identity (iv)' we see that £3(c?~ A id) maps the image of y/ to the trivial
element in F3(P). Hence 63 is an isomorphism. This proves Theorem 3.

We now sketch a proof of the result mentioned in Remark 3. For any
bracketing /? and free group F there is a canonical surjection #„: p{F] -»

fi[F], and we can construct a crossed module /\ F —> F. For instance
if p = ( ( (* ,*) ,*) , (* ,*)) then /\fiF = {(F A F) A F) A (F A F). The
construction of the above homomorphism £3- /\ F -» T3(F) can be mim-
icked to yield a surjective homomorphism Cp'- l\^F ^ P{F) . So suppose
that 6g has been shown to be an isomorphism for all tfa bracketings of
weight < n - 1. Let /? = (/?', /?") be a tfa bracketing of weight n with
say /^[f] c /?"[.F]. The following commutative diagram can be constructed
in which the rows are exact and in which the image of H3(fi"[F]/fi'[F]) is
trivial in P{F} . Hence dp is an isomorphism.

1 • H3(P"[F]/P'[F]) • P'[F]AP"[F] • p[F] • 1

1 - _ }»,
(AP'F) A {AP"F) — ^ U p{F) > 1.

4. Proof of Theorems 5 and 7

For N a normal subgroup of P and n > 2 we denote by Vn(N, P) the
subgroup of L{P) generated by the elements {{• • • {{xl, x2}, x3}, ..., } , xn)
with xt e P at at least one of the xt in N. It follows from (v)' and (viii)
that rn(N, P) is a normal subgroup of L{P). We let YX{N, P) be the
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normal closure of the group N in (the underlying group of) L(P). We
let L{N, P) denote the subgroup of L(P) generated by all the subgroups
Tn{N, P), n = 1, 2 . . . . Certainly L(N, P) is a normal subgroup. It is
in fact an ideal. For if w e L(P) and if g is a generator of Tn(N, P)
then {w, g} can be written, by Proposition 4, as a product {w, g} =
yn+iyn+2 "ym

 w ^ ^i G ^ ( P ) . A careful analysis of the proof of Proposi-
tion 4 shows that we can take each yi to be in T^N, P). Thus {w , g} e
L(N, P). Now use identities (ii)' and (iii)'.

LEMMA 15. If P is a group with normal subgroup N, then there is a short
exact sequence L{N, P) >-» L(P) 4> L(P/N).

PROOF. The map n is induced by the quotient homomorphism P -» P/N
and is clearly surjective. Identity (vi) implies that n maps L{N, P) to
the trivial element. The inclusion P <-+ L(P) induces a group homomor-
phism P/N -> L(P)/L(N, P) which in turn induces a map 4>: L{P/N) ->
L(P)/L(N, P). Since <f> has a section induced by n it follows that ker(7i) =
L(P,N).

For F a free group we have the Magnus-Witt isomorphism L(Fab) =
© n > i ^ ( f ) / ^ + i ( - F ) - I f p ~ FIR t h e n Lemma 1 5 applied to the exact
sequence R[F, F]/[F, F] >-> Fab -* Pab yields Theorem 5.

We now turn our attention to Theorem 7.
For any group P we define the crossed module /\n P ^ P inductively

from the crossed modules A " ' P ^ P and P -> P by setting f\l P - P
and A"P = (A""1 P) A P.

We have already obtained homomorphisms £2: A L{P) -* L{P), (x A
y)~{x,y} and C3: tf L{P) ^ L(P), ((x Ay) A z) ~ {{x, y}, z} . The
homomorphism £3 was obtained from £2 • A similar argument shows that we
can construct a homomorphism £„: A" L(P) —» L(P)((- • • (A:, AX2) AX3 • • •) A
^n) ^ {{• • • {{^i, -x2}, x3 , . . . }xn} inductively from £„_,.

We take C|,: A" ^ ~" !"„(/*) to be the restriction of the homomorphism
got by composing £n with the homomorphism A" P ~* A" ^(^) • (This
last homomorphism is induced by the inclusion P <—> L(P).) Clearly C,'n is
surjective.

In [6] it is shown that if M —* P, N —> P are crossed modules such that
M and N are p-groups, then the exterior product MAN is a p-group.
By induction this result shows that if P is a /7-group then A" P is also a

p-group. It follows from the surjection £'n that Tn(P) is a p-group. Since
L(P) is generated by the subgroups Fn(P), which are normal for n > 2, the
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following easy lemma from group theory shows that L(P) is a p-group.

LEMMA. Let Q, Q' be subgroups of some group and suppose that Q' is
normal. Suppose also that both Q and Q' are p-groups. Then the group
QQ' generated by Q and Q' is a p-group.

It is shown in [6] that M A N is finite whenever M and N are finite.
Hence for any finite group P we see by induction that /\n P *s finite, and
hence that Tn(P) is finite.

Let P be a nilpotent group of class c. An arbitrary commutator in
Fn(P) can be written, using (ii), (iii) and (viii), as a product of commu-
t a t o r s [ t o , , t o 2 ] w i t h t o . = { { • • • { { x l , x 2 } , x i } , ... , } , x n } f o r x( e P .
From (viii) we see that [wl, w2] = [wi, 6w2] where 6 just replaces curly
brackets by commutator brackets. If n > c + 1 then 6w2 = 1 and thus
Fn(P) is abelian.

Suppose that y2{P) is nilpotent of class c . An arbitrary element in
7C'+2(T2(P)) can be written, from (ii), (iii) and (viii), as a product of el-
e m e n t s [•••[[wl,w2],w3], ...],wc+2] w i t h to . = {x{,x2} f o r x t e P.
From (viii) and (ix) the term [w{, w2] can be replaced by {8wl, 6w2} . By
continuing this argument we find that

{[[•••[[dwl,0w2],6wi], . . . ] , 0wc,+l], wc,+2} = {I, wc,+2} = 1.

Hence F2(P) is nilpotent of class < c + 1. But the surjection 82: T2(P) —>
72(/

>) implies that T2(P) is of class <c .
If P is a perfect then it is shown in [3] that P AP -» P is the universal

central extension of P. As in Example 4 we can form the multiplicative Lie
algebra (P/\P)xP. Thehomomorphisms P <-* L(P) and C2: P^P -* T2(P)
combine to form a homomorphism T: (P A P) x P -> L(P), (to, JC) ^
(C2W)JC . By the universal property of L(P) the inclusion P ^ ( P A P ) x P
extends to a map T': L(P) —> (PAP)xP. Since T'T is the identity it follows
that T is injective. To see that T is surjective let g = {••• {xx, x2}..., xn}
with xt e P be an arbitrary generator of Fn(P) for n > 3. Since P is
perfect we can use identities (ii)', (iii)', (viii) and (ix) to write g as a
product of elements

^[{-{[al,bl],[a2,b2],...},{an,bn}fl

with a., fe. e P This shows that Tn(P) C Fn_,(P). By induction Fn(P) C
F2(P). It follows that T is surjective and hence an isomorphism.
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