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DEGREE ONE MAPS AND A 
REALIZATION THEOREM 

ANANT R. SHASTRI 

0. Introduction. In [8] we classified degree one maps denned on 
Sp X Sg X Sr. In this paper we shall study degree one maps defined on 
the w-dimensional torus T = Sl X Sl X . . . X 51 as well as certain 
general properties of degree one maps. Theorem 1.1 must be known to 
experts; however we could not find it in the literature. Theorem 1.5 b) 
says that a Poincaré complex is nilpotent if it admits a degree one map 
from another nilpotent Poincaré complex. Theorem 1.5 a) means that 
certain stable properties are preserved by degree one maps and we use 
it later in Section 2. 

Given a degree one m a p / : T —» X,f * : H*(X) Z) —• H*(T\ Z) is split 
infective in each dimension and this defines H*(X\ Z) as a 'split' sub-
algebra of the exterior algebra A*(w, Z) C^H*(T\7J). In Section 5 we 
deal with the following realization problem: Given a PZ)n-algebra P* over 
Z and a split injection a* : P* —> A*(w, Z) does there exist a Poincare 
complex X and a degree one m a p / : T —> X such t h a t / * : H*(X; Z) —» 
H*{T\ Z) will correspond to a* : P* —» A*(w, Z) under some algebra iso­
morphism P* ^ H*(X; Z)? Since 27" c^ 'a wedge of spheres', Theorem 
1.5 a) yields that if such a complex X exists then SX c^ 'a wedge of 
spheres'. In Section 2 we define a quadratic operation ^g on H*(X\ Z2) 
with respect to a homotopy equivalence g : "a wedge of spheres" ^ SX. 
If X and X' are two such spaces and / : X —> X' is a degree one map we 
show that / * (77* (X'; Z2)) is invariant under ^iQ for a suitable g. In the 
case of the torus, taking g to be the obvious homotopy equivalence with 
respect to a product structure of the torus, we obtain a simple algebraic 
description of ^&. Assuming that P* is invariant under tyg and that P* 
is highly connected we solve the problem positively in Section 5 (Theorem 
5.14). The method of proof is, first, to convert the problem to that of 
realization of split subalgebras of H*(T/T^k~l)) using the connectivity 
of P*. Then the structure of stunted tori are determined up to carefully 
chosen homotopy in Section 4. Using this, Proposition 5.3 solves this 
converted problem. However, the proof of 5.3 involves certain computa­
tional work which we have conveniently put at the end of the paper, in 
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770 ANANT R. SHASTRI 

Section 6. Section 3 deals with recalling certain results concerning the 
structure of homotopy groups of wedges of spheres from [1] and deriving 
a few useful corollaries. At the end of Section 5 we also give an example to 
illustrate the fact that not all split subalgebras, are ^-invariant . 

The author is thankful to the referee for his suggestions (particularly 
1.2, 1.3 and 4.2) leading to the present improved presentation of this 
paper. 

In the sequel, all spaces are assumed to be connected CW-complexes, 
with each cell oriented. All Poincaré complexes are oriented. Homology 
and cohomology modules are taken with trivial Z-coefficients unless 
specifically mentioned otherwise. T will always denote the w-dimensional 
torus Sl X . . . X S1 (n-copies). 

1. Some general results. 

1.1. THEOREM. Let f : X —> Y be any map of n-dimensional Poincaré 
complexes X and Y. Then /#(TIX) has finite index r in TT\Y if d e g / T* 0; 
moreover if r < oo then r divides deg / . In particular if deg / = 1 then 
fi : TIX —» 7Ti Y is onto. 

_ P 
Proof. We first claim that if Y —» F is an infinite covering of Y, then 

Hn(Y) = 0. For let *•' = TTIF, W = TTJF and A = Zw<g>Zir> Z where T' 
acts trivially on Z. Let Y be the universal covering space of Y (and hence 
that of F also). Then 

Ht(T) =Hi(C*(?)®z,.Z) and 

H^Y-A) = Hi(C^Y)^)ZvA) 

by definition. Since 

C * ( F ) ® z * ' Z ^ C * ( F ) ® z , Z i r ® Z r , Z = C * ( p ) ®z«A, 

we have Ht(?) ~ Ht(Y; A). Now by duality, 

Hn(Y;A) ^HQ(Y;A) ^HQ(w;A) = A\ 

the submodule of invariant elements in A. If 7r; has infinite index in T 
then Aw = 0 and hence Hn(V) = 0. 

We now let T' = f$(iriX). Clearly there is a l i f t / : X —> Y of / , i.e., 
P °f — f- If TT' has infinite index in 7r, then since Hn(T) = 0 we have 
/ • = p* o /* = 0 on Hn(X) i.e., d e g / = 0. Further if ir' has finite index r 
in 7T it is known that F is an w-dimensional Poincaré complex and p : F—> 
F is of degree r (see [4]). Since 

d e g / = deg (̂> o / ) = (deg£) • (deg / ) 

it follows that r\ deg/ . In particular if d e g / = 1 then r = 1 and hence 
/# : 7riZ —> 7Ti F is onto. 
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1.2. LEMMA. A simply connected CW-complex X has the homotopy type of 
a wedge of spheres if and only if the following conditions hold: 

1) H*(X) is free 
2) The Hurewicz homomorphism h : T+(X) —> H+iX) is surjective. 

Proof. Let «i : SHi —•> X be such that {A([a<])} * forms a basis for H+(X). 
Then V at : V SHi —» X induces a homology isomorphism. Since X is 
simply connected, nt ^ 2. Hence V S** is also simply connected. Hence 
V a t is a homotopy equivalence. The converse is clear. 

1.3. PROPOSITION. Let f : X -+Y be such that /* : #*(X) -*H*(Y) w 
s£/i/ surjective. If 2fcX, //te &-/0/d suspension of X, k è 1, &as ^e homotopy 
type of a wedge of spheres, then so does 2* F. 

Proof. Apply the above lemma. 

1.4. PROPOSITION. Let X be a nilpotent space, K>^>TTIX-»G be an 
exact sequence of groups and X —• X be the covering corresponding to the 
normal subgroup K of mX. Then G acts nilpotently on H*(X). 

The proof of this proposition can be found in [7] page 406-7 except for 
change of notations. 

1.5. THEOREM. Letf : X —» Y be a degree one map of Poincare complexes 
X and Y. 

a) If for some k ^ 1, 2*X has the homotopy type of a wedge of spheres 
so does 2* F. 

b) If X is a nilpotent space so is Y. 

Proof, a) Since/ is a degree one map/* : H*(X) —* H*(Y) is split sur­
jective. Hence we can apply Proposition 1.3. 

b) Since X is a nilpotent space wiX is nilpotent. From 1.1 /* : T\X —•> 
7Ti Y is surjective and hence TTI Y is also nilpotent. We shall now show that 
7i*iF acts nilpotently on H*(Y), where F is the universal covering space 
of F, and then appeal to 11.2.19 of [5] to conclude that F is a nilpotent 
space. Let K = ker/#. Then from 1.4 TT\Y acts nilpotently on H+(X), 
where X is the covering space of X corresponding to the subgroup K 
of TV\X. Treating Z,iri F as a 7riX-module via /# : wiX —> 7n F we have 

Z T I F ~ Z I T I A : ® Z K Z 

and hence 

H^X)^Hm(X;ZnY). 

Since/ : X —» F is of degree one, from Lemma 2.2 of part I in [9] 

U:H,(X;ZrlY)-+H,{Y;ZirlY) 

is surjective. Hence, by the compatibility of 7ri-actions it follows that 
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7TiF acts nilpotently on H*(Y] ZTTIY) = H*(Y). This completes the 
proof of the theorem. 

2. The quadratic fg. Let X be any space and 6 : S2k+r -» XrX be any 
map, r ^ l , We shall first define ^e ' Hk(X;Z2) —> Z2 as follows: for 
any x Ç Hk(X\ Z2) let <px : X —> K be the unique homotopy class such 
that <Pz*(ik) = x where K = K(Z2\ k) is the Eilengerg-Maclane space and 
Lk e Hk(K;Z2) is the fundamental class. Put 0 = (2V*) o 0. Then the 
functional Steenrod square, 

Sq/+r(2r*Lk) G H*+r(S*+T\Zi) = Z2, 

which we denote by &e(x), is defined and depends only on the homotopy 
class of 0. Note that 2 r* denotes the suspension isomorphism in co-
homology. 

2.1. LEMMA. / / SV* o 6 ~ 0, /Aew ¥*(#) = 0. 

2.2. LEMMA. For any map f : X —> Y and any y G Hk(Y\ Z2) we fowe 

2.3. LEMMA. 

*•(*! + ^2) = *•(*,) + **(*2) + ( x i U x ^ t V ) " 1 ^ ) ) 

where (0) is the element represented by 0 in H2k+r(2
rX; Z2), and 2*/ is the 

suspension isomorphism in homology. 

2.4. LEMMA. ^9l+e2(x) = ^ ( x ) + Ve2(x) for any two maps 01 : S
2k+r —> 

XTX, i = 1, 2, and for any x Ç Hk(X; Z2). (#>re /fee 5«m 0i + 02 w de-
/med using the 'folding map" 

A' : 2 rX V 2 rX -> 2TX. 

(See [2]).) 

Lemmas 2.1 and 2.2 are easily seen using functoriality of the functional 
Steenrod Squares. The proofs of 2.3 and 2.4 are similar to (in fact 
simpler than) those of 1.4 and 1.6 in [2]. 

2.5. For any space W which is a wedge of oriented spheres, 

W = V St
ri 

indexed over some (finite) set / we shall denote by 77/*' (or sometimes 
simply by 77 *) the ith inclusion map STi ^ W\ 77 /* (or 77 z) will also denote 
the image of the positive generator of irri{STi) under this inclusion in­
duced homomorphism. The Hurewicz-image of this element in Hri(W; Z) 
(and the corresponding element in Hri(W; Z2)) will be denoted by 77/* 
(or 77,). Similarly £/* : W —> STi denotes the ith-projection map and 
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pi* will be the element carried by pi\ in the cohomology. Now given a 
homotopy equivalence g : W —» S rZ, (r ^ 1), let 

«i = (W)-lg*(ni) a n d I* = ( S ' * ) - 1 * * - 1 ^ ) . 

Then clearly {g,}* and {gt} ̂  form bases for H*(X;Z2) and i f*(Z;Z 2 ) 
respectively dual to each other, viz.: 

Ii(gi) = gt^gj = No­

where i and 7 are such that r{ = r7. Define 

^ : i f * ( X ; Z 2 ) - > / f 2 * ( X ; Z 2 ) 

by 

(2.5)7 %(x) = Z *,o«(*)gi. 

2.6. THEOREM. \I^ is quadratic, i.e., for every x j Ç Hk(X; Z2) we ftaz/e 

**(* + y) = **(*) + **(:y) + * ^ y-
Proof. This follows directly from 2.3 and evaluating both the sides 

on each gj for j such that r$ — 2k + r. 

We shall now need the following two results about "nice" maps 
between wedges of spheres. Let V and W denote any two wedges of 
spheres V = V \ a S/*s W = V j G /S /> . A m a p / : V —» W is called «ice 
if the following condition holds for every i G I: 

f*(?)i) = ]Ç ^itfj in #*(W; Z) if and only if 

3 

3 

The following lemma is easily proved: 
2.7. LEMMA. Let f : V —> W be a map with a right homotopy inverse. 

Then there exists a homotopy equivalence h : V —•» V inducing identity on 
the homology groups and such that f o h is ilnicë\ 

2.8. PROPOSITION. Let f : X -> X' be any map g : V -> 2rX, g' : V -> 

2 rX' 6e homotopy equivalences where V and V are certain wedges of spheres 
and let p : V —» V be a "nice" map. Suppose (S r / ) o g ^ gr o p. r/^e« 

Proof. Let/*(g*) = SX^g/ where g*, g/ etc. have meanings as in 2.5. 
Then it follows that 

g.V»(2,) = (sr/)«og,(2<) = (2r/)*(V(g()) 

= £ x„V(g/) = g/fe w ) • 
3 ~ \ j ~ / 
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Hence 

3 

Since p is a "nice" map it follows that 

j 

The rest of the proof is easy, using 2.4 and the definition of tygi (2.5)'. 

2.9. THEOREM. Letf : X —» Y be a degree one map of Poincarê complexes. 
Suppose that S rX c^ V, a wedge of spheres. Then there exists a homotopy 
equivalence g : V —» 2 rX such thatf*(H*(Y; Z2)) is &g-invariant. 

Proof. From 1.5 a), 27F is also homotopic to a wedge of spheres. 
Since (S 7 / )* l l a s a right homotopy inverse (because / is a degree one 
map) it follows that 2 r / has a right homotopy inverse. Now by 2.7 it 
follows that we have homotopy equivalences g : V —> 2 rX, g' : W —> 2 r F, 
such that (g ') - 1 o ( 2 r / ) o g is a "nice" map. Applying 2.8 with p = 
(g') - 1 ° ( 2 r / ) o g, now, completes the proof of the theorem. 

We shall now give a simple algebraic description of tyg on H*{T\ Z2) for 
suitably chosen g with respect to the product structure of T. Let A*(w, Z2) 
denote the exterior algebra on n generators {ë*}i^^n over Z2. Let 
N ~ {1, 2, . . . , n\. The exterior product A gives rise to a Z2-basis 
<? = {ëA}AçN for A*(rc, Z2) where eA = êZl A . . . A êift for 4̂ = 
{ii, . . . , ik). We shall refer to such a basis S for A*(w, Z2) as a natural 
basis. With respect to such a natural basis $ we define 

¥ , : A*(n,Z2)-» A2*(nf Z2), ^ 1, 

by the formula 

(2.10) ¥,( 2 /AêJ = X WrfA A ê*, 

^4, ẑ? € Z2, where on the right hand side the summation is taken over 
all unordered pairs {A, B), with #A = #B = k, A, B Q N. The following 
proposition is easily seen. 

2.11. PROPOSITION. ^ is characterised by the following two properties: 

(i) V#(eA) = Qfor every A Q N 
(ii) ¥,(x + y) = ¥ , (*) + ¥ , ( ? ) + x A j . 

2.12. Let T = S1 X . . . X S1 («-copies) and fix a product cell structure 
on T. Let R denote either Z or Z2 throughout. The various projections 
T -* Sl give rise to a basis {ê,} of H*(T; R) c^ Horn (H^T; R);R). This 
defines an obvious isomorphism of H*(T; R) with the exterior algebra 
A*(n; R) of Horn (Hi(T; R); R) over i£, under which we shall identify 
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H*(T\ R) with A*(w; R). Note that the cup product corresponds to the 
exterior product under this identification. Given A C JV, let 

T(A) = {(#1, x2, . . . , #„) € 77#z = *i the base point, if * g ^4}. 

Let pA : T -+ T(A) denote the projection map and let qA : T(A) —> SA*A 

denote the quotient map obtained by collapsing all but the top dimen­
sional cell to a point. We now have: 

2.13. PROPOSITION. Let 

v= V sA
§A+\ 

Then there is a homotopy equivalence g : V —» 2 T such that 
(i) gA = ëA for every 0 ^ A C N 

(ii) 2qA oVpAog: V -» 5 ^ + 1 w "» i«" , 

Proof. The existence of g satisfying condition (i) is obvious. Let 
g' : F —» 2 T be one such. Let a : F —• F be defined by 

Then it is easily verified that a is a homotopy equivalence and taking 
g = a~l o g' then 

XqAo?:pAog: V->S#A+i 

is actually nomotopic to the projection map and hence "nice". 

2.14. THEOREM. If g satisfies the conditions in 2.13, then ^9 = ^e. 

Proof. By 2.11 it suffices to show that for every A C N, V0(gA) = 0. 
If vk : S

k —» K(Z2, k) represents the generator of Hk(Sk; Z2), then clearly 
gA is represented by 

vkoqAopA : T-+K(Zi9k), {§A = *). 

Hence for any B, with #J3 = 2k, 

^<PgA o g* ^ S ( ^ o g ^ o £A) o gB = (S^*) o ( 2 ^ ) o (2pA) 
o gorjs c^O 

by 2.13. Hence *0B(gA) = 0 for every B with #5 = 2k (by 2.1). Hence 
^ ( i u ) = 0- This completes the proof of 2.14. 

We conclude this section with the following proposition. Let Tk de­
note the quotient space T/T^h) and q : T—> Tk the quotient map, for 
any 4 ^ 1 . 

2.15. PROPOSITION. There is a homotopy equivalence g' : W —> ST* such 
that q* o ^g> = tygO q* (= ^ o q*) and hence ^ v vanishes on the natural 
basis of H*(Tk; Z2) obtained from that of H*(T, Z2) via q*. 
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Proof. Let W be the subspace of V consisting of all spheres of dimension 
>k, and g' = (2g) ogo i where i is the inclusion map W <—• V. If 
p : V —> PT is the obvious retraction map then g' o p = 2g o g. Clearly g' 
is a homotopy equivalence and from (2.8) we have ç* o ^g> = ^g o q*. 

3. 7r# of a wedge of spheres. In this section we shall recall the results 
from Section 3 of [1] concerning the structure of the homotopy groups 
of a wedge of spheres and derive two useful corollaries. So let Sf m

T — 
Sir V . . . V Sm

T, r > 2. Let 77/ £ Trr((fm
r) be as introduced in 2.5. For 

any p, the homomorphisms 

(Pi : Tp(S
r) —•> TTp(5rm

T) 

<Pijk:Tv(S*r-2)-*Tp(ym
r) 

are defined by 

(Pi(a) = riirOa,a G 7rp(.Sr) 

^ ^ ( « ) = h / > *?/] O a , a G T T ^ S 2 7 " - 1 ) 

P i # ( a ) = [fo*r, yf], Vkr] oa, a £ Trp(S
Sr~2). 

For p < 3r — 2, (pi and <̂ 0- are infective and one has 

*>(.SV) = ( © Im *>,) © ( © Im Vt) 

and for p = 3r — 2, ^ ^ are also infective and one has 

*zr-2(ym
T) = ( © I m J e l © I m ^ J 

0 ( © Im <pm 

There is an obvious generalization of these results giving direct sum 
decompositions of homotopy groups (in the appropriate range) of any 
finite wTedge of spheres of arbitrary dimensions ^ 2. As an immediate 
corollary we obtain: 

3.1. PROPOSITION. Let V= V ^ / 5 / * be a wedge of spheres where 
k ^ ri ^ 2k — 1 for some integer k ^ 2. Let J C I be any (nonempty) 
subset and W = V îG/5/»". Let p : V -—> W be the quotient map. Then for 
any i, j , k Ç J and any a G nP(V) for p 5̂  3& — 2, the component of a in 
Im (pi (respectively Im <ptj or Im (pijk) is the same as that of p*(a) in Im <pt 

(respectively Im (piô or Im <pijk). 

3.2. PROPOSITION. Let X = \ZielSir<, Y=\ZjeJSjrJ such that 
k ^ rô, <Z 2k — 1 for every j £ J and 2k — I ^ rt ^ 3k — 3, for every 
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i £ I, k è 2 and I and J be finite. Let 0 : X —» Y be any map, 6{ = 
0#(yiTi) € TTn{Y)- Let Qt : Tt(Y) —> iri+ri-i(Y) be the homomorphism 
defined by 

Oi(x) = [0it x]. 

Let c(6) denote the mapping cone and i : F —» c(6) be the inclusion. Then 
it : TTS(F) -> T8(C(6)) for 2k - 1 g 5 g 3fc - 2 feas *fce property 

Ker t# = Im 0# + ^ Im 6^. 

Proof. Since X is (2fe — 2)-connected and Y is (fe — l)-connected, the 
Blakers-Massey theorem gives an exact sequence of homotopy groups 

. . T , ( * ) ^ X , ( y ) ^ T , ( C ( t f ) ) . . 

for s :g 3& — 3, and hence the conclusion of the proposition holds for 
5 ^ 3& — 3, since in this case the 0* are trivial. Now consider the case 
5 = 3k - 2. Let 

xa= V s / \ xb = V s/< 

so that X = Xa V Xb. Let 0„ = 0/Xa and ta : Y —» c(0a) be the inclusion. 
Let 6b denote the composite map: 

Xb<^X-^Y^c(da) and ib :c(fia)<=+c(flb) 

be the inclusion. Clearly there is a homeomorphism c(0) —» c(0ô) such 
that the following diagram is commutative: 

X • Y C i m*) 

j& la 

J * Y 
Z& > c(da) C iî • C{6b) 

Hence Ker i# = (ta)#_1(Ker (i&)#). Again, the Blakers-Massey theorem 
applied to tb yields 

Ker (t6)# = Im (06) # = (ifl)#(Im (0oj&)#). 

On the other hand the homotopy exact sequence of the pair (c(0a), Y) 
yields that 

Ker (ta) # = Im d 

where 

d : 7T3,-1(C(0G), F ) - > 7 T 3 , - 2 ( F ) 
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is the boundary homomorphism. From Theorem II of [1] it follows that 

Im d = Im (da)* + X) Im0<. 
n=2k— 1 

Hence 

Ker t# = Im (6a) # + 2 I m e* + I m (* °^)# 

= Im0# + X) Im 0i. 

3.3. LEMMA. Le/ f : X —> Y be any map where X and Y are simply 
connected complexes of dimension < r. Then f extends to a map 

f:XUaer-^YUper 

such that 

U : Hr{X U« e\ X) -> Hr{ Y \Je er, Y) 

is an isomorphism if and only if f#[a] = +[£], in 7rr_i(F). 

Proof. This is straightforward. 

3.4. LEMMA. LetX = (Si* V S2
r) U « e^t+r where [a] = ô[rj1} -q2] for some 

integer d. Let Xt denote the integral cohomology element carried by the 
oriented sphere St (i = 1, 2) and let X 3 denote the homology element rep­
resented by the oriented cell e3. Then ( X i U X2) /^ X 3 = <5. 

Proof. If ô = 1, then X ~ 5 i * X «S1/ and hence the assertion follows. 
Now let 

X' = S," X 5 2
, r = W V S2'r) U«' e,ft+r 

with [</] = [ry/, 772']- L e t / : Z ' -> Z be a map such that 

is an orientation preserving homeomorphism and 

/ / S 2 ' r : £ / ' - > £ / 

has degree 5. Then it follows that/*(e3 ' ) = 3̂ and hence 

0 = /*((X/ u bx2
f) r\ X*') = /*((/* (xo u/*(X2» n x3') 

= (Xi u x2) r\f*(xj) = (x\ u x2) n x3. 

4. Cell structure of stunted tori. 

4.1. As in 2.12 fix a product structure on 7̂  = Sl X Sl X . . . X S1. 
For any complex X let X t denote the quotient space X / X ( 0 . The aim 
of this section is to describe the cell structure of Tt (for n ^ 3t + 2) 
obtained from the cell structure of T. Let pA : Tt —> T(A)t be the map 
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induced by pA : T —-> T(A). In what follows V will denote the wedge of 
spheres 

v = V s/1 

c 
where C ranges over all subsets of iV such that k ^ §C — m ^2k — 1, 
for a fixed integer k ^ 2. For any 4̂ C iV let V(A) denote the subspace 
of Vconsisting of all spheres Sc

m such that C Q A. Let L be the wedge of 
spheres 

L = V 5B'-1 

D 

where D ranges over subsets of N such that 2k — 1 < #B = r ^ 3fc — 1. 
For any 4̂ C JV let L (̂ 4 ) be defined likewise. Various inclusion maps will 
be denoted by t, the precise meaning being clear from the context. 

4.2. LEMMA. If K is a (t — I)-connected complex of dimension <2t and 
if HTK has the homotopy type of a wedge of spheres, then K has the homotopy 
type of a wedge of spheres. 

Proof. The attaching maps of the cells of K are all in the stable range 
and stably trivial and hence trivial. 

4.3. LEMMA. For any t ^ 1, T (^i_1), Tf^ and 2Tt all have the homotopy 
type of certain wedges of spheres. 

Proof. Apply 1.3 and 4.2. 

4.4. LEMMA. There is a family \h(r)}h^r^2k-i of homotopy equivalences 
h(r) : V^ -> T W * such that 

(i) h(r)/V^s) = h{s)for s ^ r. 
(ii) Ifh(r)(A) = h(r)/V^(A) then 

h(r)(A): V^(A)-^T(A)^1 

is a homotopy equivalence. 
(iii) If pA : V(r) —> V(r)(A) are the projection maps then 

h(r)(A) o PA c^pA oh(r). 

Proof. We construct {h(r)} cellullarly, by induction on r. Consider 
the first stage r = k. Let A C. N be any subset such that §A ~ k. Then 

V(A) = V(A)W = SA*. 

Moreover T(A)k-i = T(A)/T(A)^k~l) is homeomorphic to the sphere 
Sk and we take this homeomorphism as h(k)/V(A) with inverse a (A) 
say. Patching them up over all A with #A = k, we obtain a homeomor­
phism 

h(k) : V^ -> T{
k% 
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which satisfies (ii) and (iii). Now assume that h(r) has been defined for 
Y ^ 2k - 1, and let A C N be such that #A = r + 1. Consider the 
homotopy equivalence 

h(r)(A) : V^(A)^T(A)i^1. 

Note that 

V(A) = V<r+»(A) = V^(A) V SA
r+1. 

Also 

T(A)k^ = TiA)^ = r ( 4 ) & U e A ' + i 

where it follows from 4.3 that the attaching map of the cell eA
r+l is 

homotopy trivial. Hence h(r)(A) extends to a homotopy equivalence 

h(r+l)(A) : V(A)-^T(A)k.1 

with a homotopy inverse a (A ), say. It is not difficult to see that these will 
now patch up to define a homotopy equivalence 

h(r + 1) : F<r+1) -> TE?*. 

Again taking pA = a (̂ 4) o pA o h(r + 1) one can easily see that p^r ~ p^ 
which in turn implies (iii). This completes the proof of the lemma. 

4.5. Remark. Clearly there is a family {h(r))k^r^U-i of homotopy 
equivalences 

h(r) : r i i ^ F ) 
such that for any subset A, h(r)(A) is the homotopy inverse of h{r){A). 

4.6. THEOREM. There is a family {^(D)y h(D))D where D ranges over 
subsets of N such that 2k ^ #D ^ 3k — 1 of maps 

y.{D) :L(D)-> V{D) 

and homotopy equivalences 

h(D) : C(,i(D))-*r(£>)2_'r1) 

satisfying the following conditions: 
(i) For any D C Di, 

n(D1)/L(D)^,o„(D) 

and 

h{D{)/L(P) ~ toft(Z)) 

where i : F(D) —•> F(Z>i) is /fee inclusion. 
(ii) fe(£>)/F = A(2* - 1). 
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Proof. For any D} set T{D) = X. Then X2jt-i has the homotopy type 
of a wedge of spheres as seen in 4.3. Indeed Xn-\ — 2L(D). Consider 
the cofibration 

X(2*-D c+ x -> X2,_! ~ 2L(£>). 

Since X<2*-1> = TiD)^ is (ft - l)-connected and X2k-i is (2ft - 1)-
connected the Blakers-Massey theorem tells us that the homotopy 
sequence of the cofibration is exact, for maps of suspensions of dimension 
^ 3ft — 1 and in particular for maps of 2L(D). Taking 

v'iP) = a(ld2Lu,)) 

we obtain a homotopy equivalence 

h'(D):ctf(D))->X 

such that h'(D)/XU*-» is identity. Take 

n(D) = h(D) o ii'{D) : L{D) -> V(D). 

Then clearly one obtains a homotopy equivalence 

h(D) : C(M(Z))) -H. X 

such that 

h(D)/V(D) = h(2k - 1). 

By the naturality of the homotopy exact sequence and the fact that 

v'{D) = d(ldzL(D)) 

it is easily checked that for any D C Dj, 

VHP^/UD) = ioM '(£). 

The corresponding compatibility property for {M(£0> M£*)} now follows. 

4.7. In what follows we shall denote T^f^ by F. Note that the 
family {h(D)} of homotopy equivalences patch up to define a homotopy 
equivalence/* : c{n) —> Y where JU : L —> F is the map defined by {/i(Z})}z> 
i.e., jn|t(Z>) = n(D). Note that the positive dimensional cells of both 
c(n) and Y are indexed over the subsets D oi N such that ft ^ #Z> ^ 
3ft — 1 and h preserves this indexing. This cell structure of c(/x), (with 
the orientation induced from Y and h) gives a set of generators {XD

T}D 

of the homology module H+(c(n)). The corresponding dual basis ele­
ments of H*(c(n)) will be denoted by XD

r. Introduce the notations 

4.8 A2,B - (XA
m w xB

r-m) r\ xD
r 

for every subset D such that #Z> = r and for every A and 5 such that 
§A — m, #B = r — m, ft g m g 2ft — 1, and ft fi r — m ^ 2 f t — 1. 
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Clearly 

iAKJB = D and A C\ B = 0 
therwise 

and 

(4.10) AD
A,B = (-l)(tA)(tB)AD

B,A. 

Define 

(4.11) flD' = E A l B [ ^ M , W " ' " ] 
U,B) 

where the summation is taken over all ordered paris (A, B) such that 
§A = m} #B = r — m and k ^ m < r — m ^ 2k — 1. And define 

(4.12) Âz/ 
i 0 if r is odd 

U,A'\ 

where the summation is taken over all unordered pairs [A, Af) with 
#A = #A' = m. Let jiD

T be defined by 

(4.13) nD
r = MDr + £z/. 

For any subset D of N let 

i D : 7(Z>) ^ c W D ) ) 

and for any r let 

t r : 7c*c(M)( ' ) 

denote the inclusion maps. The following theorem now completes the 
description of cell structure of Y. 

4.14. THEOREM. In Theorem 4.6 the family {v{D), h(D)} can be so 
chosen that if \iD

r = MI^Z/ - 1 then 

[MZ/] = UD in irr-i(V), 2k - 1 ^ r ^ 3k - 1. 

We shall prove that, in 7rr_i(F), 

| (4.14) (2*) [MZ/] = Mz/, r = 2fc 
\ (4.14) (r) ( t ^ ) #[Mz/] = (ir-i) #(Pz/) 2fc + U r g 3 i - l . 

It will then follow that there is a homotopy commutative diagram 

r C •> «0») •> sz. 
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where X is a homotopy equivalence. Hence we can redefine the family 
[n(D)t h(D)} to satisfy 4.14 also together with 4.6. 

4.15. For the proof of 4.14 we shall need to study the structure of 
rs(V) and various subgroups of it in more detail. Let A denote the set 
of all subsets A of N such that k g #A g 2k - 1. Let E, F and G be 
subgroups of TS(V) defined by 

Ë = 0 Im <pA, F = 0 Im <pAlA>, G = 0 Im <pAA>A" 
A<A' A<A' 

A"^A' 

with respect to a fixed total ordering ^ on A. It is easily checked that 
F and G do not depend upon the total ordering, however. As in Section 3, 
ir&(V) is a direct sum of E, F and G. Note that <pAA>A>> is trivial if 
s < Sk — 2 since F is (k — l)-connected. When s = 3k — 2, again 
<PAA'A" is trivial if any of the sets A,Af,A" has more than k elements, 
and when all of them have k elements Im tpAA> A>> is isomorphic to the in­
finite cyclic group 7^-2(S3*-2) and is generated by [[Y]A, r\A>], y)A>>]. For 
any subset C of N let Fc and Gc be the subgroups of F and G respectively 
defined by 

Fc = X I m PA A'1 ^c = Z) * m PAA'A" 

and for any r ^ 2k let 7%. and Gr be the subgroups defined by 

Fr = Y) F c , G, = y Gc. 
#C^r #C^r 

Let G be the subgroup of G defined by 

G = 2l I"1 ^Ai ' i" . 
A U A' U A"=iV 

The elements p,D
T G 7rr_i(F) define homomorphisms, also denoted by 

by composition: x »—> jiD
T o x. Let 7C and / r be the subgroups defined by 

Ic = Z Im /ZD
r, /r = 22 Ic-

The elements ^D
2k Ç 7T2A;-I(F) define homomorphisms, say 

0D: wk(V) ->TZk-2(V), 

by 

x —» [/ïz>2fc, #]• 

Let M, Mr, .Mc and i(f be defined by 

M = X) Im 9z>, lf c = Gc Pi Af, M r = Gr C\ M, i f = G Pi M. 
#Z>=2fc 
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The lemma below is easily seen using the compatibility of the pro­
jection maps pc '• V —> V(C). 

4.16. LEMMA. Let x £ Fr © Mr be such that for every C with #C S r, 

(Pc)#(x) £ Ic ® Mc. 

Then x £ Ir © Tlf r. 

Now let / be the set of triples (A, A', A") of ft-element subsets of TV 
such that 

0) A r\ A' = 0 = A n A" 
(ii) A' C\ A" = a singleton set. 

4.17. LEMMA. / / n — 3ft — 1, /feew G zs a free abelian group over 

{[[VA,VA>IVA-)/(A,A'}A") tJ} 

and M is a direct summand of G. 

Proof. §A = #A' = §A" = ft and A U A' \J A" = N implies, since 
n = 3ft — 1, that at least one of the three sets, say A, is disjoint from 
the other two and A' C\ A" = a singleton set. Now 

G = 0 I m <pAA>A>, 
A U A' U A"=N 

with the restriction that A < A' and ^4" ^ vl' would imply 

(5 = 0 lm<pAA>A>>, 
U A ' , 4 " ) e ; 

using the Jacobi identity, if necessary. To see the second part of the lemma 
let 

J(D, B) = {(A, A'A") e J/A \J A' = D, A" = B). 

Then the family {J(D, B)} clearly defines a partition of the set / . 
Moreover, it is easily seen that M = M C\ G is generated by elements 

X(D,B)= YJ àA,D-A[[VA,VD-A],VB] 
A n B=$ 

where #£> = 2ft, #£ = ft and D KJ B = N, where each x(D, B) is an 
indivisible element in the subgroup 

0 I m <pAA>A"-
(A,A',A")£J(D,B) 

It follows that M is a direct summand of G. 

4.18. Let PN denote the symmetric group on n letters. Let / £ PN 
and A and B be any two nonempty subsets of TV. Define the numbers 
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n(f), nA(f) and n(A,B) by 

(n(f ) = n o - of pairs (i, j) such that i < j and f(j) < f(i). 
)nA(f) = no. of pairs {i, j) £ A X A such that i < j and 

) fuxm-
\n(A, B) = no. of pairs (i, j) £ A X B such tha t j < i. 

Let 

*(f) = ( - l ) w ( / ) , c r A ( / ) = ( - 1 ) » A < / > and 

A ( i 4 , 5 ) = ( - l ) " ^ . 
Note tha t A(A, B) = A$U

B
B as defined in 4.8 when A H B = 0. The 

following lemma is easily proved by a simple counting argument : 

4.19. LEMMA. For any f £ PN and any non empty subset A C N 

*U) = °A(f) • v^Af) • MA, N - A)- A(f(A),f(N - A)). 

4.20. PN operates on T in an obvious way, inducing an action on the 
quotient space Y. Using the homotopy equivalence h : c(n) —> Y, we 
obtain, to each / G PN, a homotopy equivalence / of c(ju). Clearly / 
restricts to a homotopy equivalence of V and hence induces an auto­
morphism, which we shall denote b y / # , of irs(V). I t is easily seen t ha t 
for every A £ A 

I t follows tha t the subgroup G of 7 ^ - 2 ( F ) is invariant under this 
action of PN. Let AN denote the al ternating subgroup of PN. 

4.21. LEMMA. The AN-invariant elements of G are contained in M. 

Proof. Let 

x = X n(A,A',A")[[riA,riA>],riA»]. 
(A,A'A")£J 

Let D and B be any two subsets of TV with §D = 2k, #B = k and 
Z) P\ B be a singleton set. Then for any two ^-element subsets A and A\ 
of A with 4 Pi 5 = A1 H B = id, we claim 

A%tD-An(Ai, D - Ax, B) = A^,D-Aln(A, D - A,B). 

Clearly, there exists / Ç PN such that f(A) = Alf f(D) = D and / is 
identity on B. Since k ^ 2, we can redefine / o n A such that a- ( / ) = 1 i.e., 
/ G 4 * . Since f/B = id, 4.19 yields 

1 = a(f) = <T-J>(/) = ^ ( / J C T / J - A C / J A S . Z ^ A A S L D - A I -

On the other hand x is 4̂ ̂ -invariant implies that/#(x) = x and hence 

comparing the coefficients of [[rjAl, VD-AI], VB] yields 

aA(f) • aD-A(f) - n(A, D - A, B) = n(Alf D - Au B). 

https://doi.org/10.4153/CJM-1982-054-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1982-054-6


786 ANANT R. SHASTRI 

The claim above now follows. Thus it follows that 

n(A,D-A,B) = A2 iD_A-n'(Z>,3) 

for some integer n'(D, B). Hence 

x = Zn'(D,B)x(D,B) £ M. 

4.22. LEMMA. For 2k g r g 3& - 2 ffce statements (4.14) (r') /or 
rf < r imply 

(4.22) (r) Ker (tr)# = / r 0 I f 

in 7rs(F) /or 2& — 1 ^ 5 g 3fc — 2. In particular if C C N is a subset 
with #C -^ r, then 

Ker (ic)# = Ic ® Mc. 

Proof. We induct on r. For r = 2k we have [MD2*] = i*D2k and from 3.2 
the conclusion follows. Now assume that for all r' < r the lemma holds 
and 2k < r <i 3k — 2. From (4.14) (r) we obtain 

[Mz/] = Mi/ + * / / , 

say, for some xD
r £ Ker (ir_i)# = Ir_i in 7r?_i(F) (since in this case 

M = 0). From 3.2 we obtain 

Ker (tr)# = J^ Im fie ® M = X) I m Mc' © M + X) I m Mz>r 

fC^r #C<r #D=r 

= Ker (ir_i)# + X I m (Mi>r + *i /) 
D=r 

= Ker (tr-i)# + Z^ Im /Zj/ 

(since xD
r £ Ker (ir-i)#) 

= Ir-i ® M + £ ImMV 
#D~ r 

(by the induction hypothesis) 

= Ir ® M. 

Proof of 4.14. Due to the compatibility of the family {h(D)\, in order 
to prove (4.14) (r) for a particular D C iV, we can as well assume D = N 
and hence r = w g 3fe — 1. 

S/e£ I. Here we claim that for any subset A of N with £ ^ #̂ 4 ^ 2& — 1, 

(a) Im ^-component of [fxN] is zero and 
(b) Im p ^ ^ - c o m p o n e n t of [nN] = &A,N-A[VA, VN-A]. 

So let (iA denote the composite map 

YÎ±+T{A)k-X >SA 

where the second arrow indicates the quotient map collapsing all but 
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the top dimensional cell in T(A)k-i to a point. Let qA : F —*SA be the 
quotient map collapsing all but the sphere SA to a point in V. Then 
from 4.4 (iii) it follows that 

0A o h o i : V —> SA 

is homotopic to qA where i : F —> C(JU) is the inclusion. Now l e t / be the 
composite map 

c(fx) - >Y ^ • F X F M H S . X V , 

where A is the diagonal map. (Note that k ^ #(N — A) ^ 2k — 1, 
since 2fe ^ » ^ 3fe — 1.) Let 

be the natural inclusion. It follows from the above observation that 

fot= ((pA o h i ) X (0N-A o h o 0) o A 

^ (SU X qN-A) o A = j o (qA V ÇAT-A) 

where 

qA V ÇAT-A : F - ^ ^ V SN-A 

is again the obvious quotient map. It is easily seen that / induces iso­
morphism of the top dimensional homology groups and hence using 3.3 
and 3.4 we conclude that 

(PA V PN-A)A»N] = fn' ' (tn-i)#[/*Ar] 

(where f is the restriction of/ to c(/i)(n-1) = A^tN-.A[rfA, rjN-A]). 

Now using 3.1 the proof of Step I is completed. 
Step II. For any subset C of N with #C < n, 

(PC)#[MAT] € Ker (tc)# 

where t c is the identity map if #C < 2k. 
As in Step I, using 4.4(iii) we first observe that the map a{C) o pc o h 

is homotopic to i c o p c and hence 

(*c)#o (PCMMAT] = 0. 

We shall now complete the proof of 4.14. Consider the case n = 2k. 
Step II, together with 3.1 implies that Im $AA>-components of [/x;vL for 
A C\ A' j£ Sb, are zero. Then Step I proves 4.14(2&). Now assume that 
we have proved (4.14) (r) for all r < n and 2k < n ^ 3ife — 1. From Step I 
we have [nN] = fiN + x for some x = Xi + #2 say, with Xi € Fn_i + 
Gn-i and x2 6 G (of course Gn_i and G are zero unless w = 3fe — 1). 
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From Step II we obtain that for every proper subset C oî N 

(PC)AHN] = (PC)#0*0 = (PC)#(*I) 6 Ker (ic)#. 

By induction hypothesis and Lemma 4.22 it follows that 

(Pc)#(*i) 6 / c ® Afc. 

Hence by 4.16 we have 

Hence 

xi G Ker (i„_i)#. 

Since, obviously M C Ker (in_i)#, we shall show that x2 € Af which then 
completes the proof of 4.14. 

L e t / £ AN be any. If/ is the homotopy equivalence defined b y / on 
c(/x) as in 4.20, then s ince/ induces the identity automorphism on the 
top dimensional homology group, it follows that 

/#(tn-i)#[/*;\r] = (I„-I)#[MJV]. 

Hence 

Also using 4.19 one can verify easily that /#(/ZJV) = M;v- Moreover, 
obviously Pn_i and Gw_i are invariant under /#. Hence we have both Xi 
and/#(xi) G Ker (tn_i)#. Thus it follows that 

/#(x2) - x2 e Ker (ttt_i)# = Jn_i 0 M. 

But both x2 and /#(x2) (i G and hence /#(x2) — x2 G M. Since this is 
true for eve ry / £ ^4N, summing ove r / Ç ^4^ and using 4.21, we obtain 
(nl/2)x2 G M. By 4.17 it follows that x2 (E M, as claimed. This com­
pletes the proof of 4.14. 

5. A realization theorem. 

5.1. Let R be a commutative ring with a unit 1 6 P . By a Poincaré 
duality algebra P* of dimension n (i.e., P* is a PDn-algebra) over P , 
we mean a graded, associative, anticommutative algebra 

p* = 2^ p«> 

such that 
(i) p(») = R and 

(ii) the pairing P^ } ® p<»-o -> p(»> = P given by x ® y H-> X U y is 
dual, i.e., defines an isomorphism 

P(<> ~ H o m (P^-*'>;P) 
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for every i. Here U denotes the multiplication in P*. An algebra map 
a * . p * _* Q* between two graded algebras P* and Q* is said to be 
split injective if a{i) : P ( ? ) —» Ç(ï) is split injective for every i. 

5.2. Examples, (i) Let P be a field. Then for any w-dimensional Poincaré 
complex X, H*(X\ R) is a PZ)n-algebra over R, where the action of 
ir\(X) on R is trivial. 

(ii) Let Rk,n[X) = R[X]/(Xn+1 - 1) be the truncated polynomial 
algebra over R generated by an indeterminate X of degree k. Let k be 
even or 2 = 0 in R. Then Rk>n[X] is a PZ}*w-algebra over R with the 
obvious gradation. If R is a field then 

RkJX]^H*(Pn(F);R) 

where F = R, C, or H according as k = 1, 2 or 4. 
(iii) For the w-dimensional torus T, H*(T) and H*(T\ Z2) are PDn-

algebras over Z and Z2 respectively. If X is a Poincaré complex of 
dimension n and / : P —> X is a degree one map, then H*(X) is also a 
PZ)"-algebra over Z and 

/ * : H*(X) ->H*(T) 

is split injective. A similar statement holds with Z2 coefficients also. 

This last example motivates the question of realization we have 
formulated in the introduction. The main theorem of this section will 
answer this question partially. Before that we have: 

5.3. PROPOSITION. Let c(/x) be as in 4.14 and let ^ be a quadratic on 
H*(c(n); Z2) such that ty(XA) = 0 for every A. Suppose 

a* : Q*-*H*(c(n)) 

is an algebra homomorphism, which is split infective, such that 

a* 0 Î: Q* 0 Z2 •-> JÏ*(C(M)) 0 Z2 = H*(c(n); Z2) 

is ^-invariant. Then there exists a complex X and a map f : c(n) —> X 
such that f* = a* where H*(X) is identified with Ç* by an algebra iso­
morphism. 

Proof. Choose a basis {a/) for each Q(r) over Z. Note that Q(r) is a free 
abelian group of finite rank, and also Q(r) = 0 for 1 ^ r ^ fe — 1. De­
fine the graded module Q* = Horn (Q*; Z) and a* : H*(c(n)) —> <2# by 
the formula 

a * t Y ) ( a ) = a*(â)(X) = a*(â) H X 

for every x £ Hr(C(n)), â £ <2(r), and for every r. The basis {â/} of (?(r) 

gives a dual basis {at
T\ of Ç(r). We shall use the notation a C\b = &(ô) 

for every 6 £ Ç(r) and â £ Q(r). In this notation â / P\ a / = 50-. By 
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tensoring with Z2 these give rise to bases of Q* ® Z2 and Q* ® Z2 etc. 
We shall drop the notation ® Z2 from now on and denote by the same 
symbol the corresponding elements with Z or Z2 coefficients, the precise 
meaning being clear from the context. The hypothesis that a* ® Ï (in 
our new notation, simply a*) is ^-invariant defines a quadratic V on 
<2* such that 

5.4 a* o ^ ' = \F o a*. 

Introduce the notations 

5.5 aA/ = a*(â,r) H X A
r (for #4 = r) 

and 

5.6 A M ' = (at
m*Uas

m») r\a/ 

for every /, s and j such that m* + ms = r j . Then clearly 

(5.7) «*(<*/) = ]CaA>^A r , a * ( X / ) = £ « ^ a / 

and 

5.8 A,,./' = ( - l ) w ^ » A , y . 

Moreover since a* is split injective and X ^J X is even for every X £ 
# * ( C ( M ) ) , it follows that 

5.9 At,t
j is even for every j and every /. 

Let Wr = V t Str where / ranges over the indexing set which is the 
same as that of the basis {at

r} of Q(r) and let 

W = V WT. 

Let Mr — V j S/"1 where j ranges over the indexing set which is the 
same as that of the basis [a/] of Q(r) for 2k ^ r g 3k — 1. Let 

M = V M r. 

Let ? / and ? / be the elements of 7rr_i(W0 given by 

(5.io) ?/= E *t.Avr,nn 
U.s) 

where the summation is taken over all ordered pairs (/, s) such that 
k ^ mt < ms ^ 2k — 1 and mt + ms = r; and 

So 2 ] A^/fo/" , rç*'m] if r = 2m for some m even. 

VO.ii; ^ = \ j J A < / h ; ^ ^ ] + 2 ^ ; ) n a / h / ^ n if, = 2m 

\0 otherwise. with m odd. 
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Note that because of 5.9 and 5.8 the first part of the definition of vf 
makes sense. Now let v : M —» W be a map such that for every j 

[„/] = ~vf + ?/ 

and let X = c(v). Then clearly H+{c{v)) can be identified with Ç* by 
identifing the bases of H*(c(p)) given by the obvious cell structure of 
c(y) with the chosen basis {at

m\ of Q*. Now define two maps/i : V -^ W 
and f2:L—^M such that 

(5.12) 
& g w g 2& - 1 

(h)f(nD
7-1) = Ç a ^ r 1 2* ^ rtk Zk - 1. 

We claim that 

(5.13) v of2~f1o p. 

Granting this for a moment, it follows that there is a map of cofibrations 

-> F C • > c(/i) > c(M)/7 -> 2L 

/« 2 /2 

AT -> T̂  c •> X -> cM/W -> 2 M 

and hence one can easily deduce that /* = a* and hence/* = a*. It now 
follows that, the identification of H*(c(p)) with <2* is actually an algebra 
isomorphism also, as desired. 

The proof of 5.13 is very much computational and we shall give it 
at the end of this paper. First we shall state and prove the main theorem 
of this section using Proposition 5.3 (and hence assuming 5.13). 

5.14. THEOREM. Let P* be a PDn-algebra over Z and 

a* :P*-+ A*(w;Z) 

be an algebra map which is split injective. Assume that 
(i) a* is ty^-invariant for some natural basis <f of A*(w, Z2) and 

(ii) for some k è 2, P<*> = 0 for 0 < i ^ k - 1 and n ^ 3k. 
Then there is a Poincare complex X and a map f : T —> X such thatf* = a* 
where H*(X) is identified with P* by some algebra isomorphism H*{X) ~ 
P*, and A*(w; Z) is identified with H*(T) using the basis S* and a product 
structure on T. 

5.15. Remark. (1) If we drop the "Poincaré duality" from the hypoth­
esis as well as from the conclusion, the theorem would still be true. 

(2) The necessity of condition i) above is seen in 2.9. Later in this 
section we shall illustrate that this is actually non-vacuous. 
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(3) The theorem is true for k = 1 also. In this case for P* to be a 
PZ}w-algebra satisfying the conditions of 5.14, there are only a few 
candidates and a complete classification can be obtained easily (see eg. 
[8]). 

Proof of 5.14. Let P* be the algebra obtained by truncating P* at 
the nth stage i.e., 

p(i) = jP(i) îori<n 
(0 for i = n 

and let a* : P* —> H*(T{n~l); Z) be the homomorphism defined by the 
composite, 

p***>H*(T; Z) -* ^*( r ( n _ 1 ) ; Z). 

Let Y = Tti1] and g : P (n-1} -> F be the quotient map. Since P ( z ) = 0 
for 1 ^ i ^ £ — 1 and g* is an isomorphism in dimension ^ &, it follows 
that there is a unique homomorphism /3* : P* —•» if * ( F) such that 
q* o ft* = a*. Clearly 0* is split injective. Let ^ i be the quadratic on 
H*{Y\ Z2) given by 2.15 such that 

q* o ^ i = ^ o#*. 

The homotopy equivalence ft : c(/i) —» F now defines a quadratic ^ on 
H* (c(JU) ; Z2), which clearly vanishes on the basic elements (i.e., ^ (XA ) = 
0 etc.). If X* = ft* o j8*, then clearly X* is ^-invariant. Hence we can 
apply Proposition 5.3 to obtain a m a p / ' : c(/u) —> X' such t ha t / ' * = X* 
under some identification H*{X') ^> P*. Take / i = / ' o ft o g (where ft is 
the homotopy inverse of ft). Then / i* = a*. If <p : S7*-1 —» r (w-1) denotes 
the attaching map of the w-cell of P, then take 

X = X' U en. 

Then clearly /x extends to a m a p / : 7̂  —» X such t ha t / * = a*. That X 
is a Poincaré complex now follows from the fact that X is simply con­
nected and P* is a PZ)w-algebra over Z. 

We shall now give an example to illustrate that there do exist PDn-
algebras P* over Z and split monomorphisms 

<**:P*-> A*(n;Z) 

which are not invariant under tyg for any basis S*. 

5.16. Example. Let w = 3& and & ̂  2. Let P* be the subalgebra of 
A*(n; Z) generated by eA + ëB and eBUC for any three mutually disjoint 
subsets A, B, C of N with fc elements each. Let a* be the inclusion homo­
morphism. The assertion that P* is a PDn-algebra and a* is split in-
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jective is trivial. That P* is not ^- invariant is also trivial. To show-
that P* is not ^ ' - invar iant for any ê', we argue as follows: 

For any n X n matrix M over Z2 the Laplacian identities can be given 
as follows (see e.g. [3], Theorem 8.2). For any two subsets D, Df of N 
with #D = #P>' = m let MDtD> denote the m X m minor of M with 
rows defined by D and columns defined D'. Then for any two fixed 
subsets P and P' of N with #P = m and #P' = n — w, we have 

,r ^x v- i , / i i , r i f\M\ if P H P ' = 0 
(5.17) Z\MG,F\.\MGC,F,\ = ^ . { p n F , ^ 0 

where Gc denotes N — G. 
Now let M be the matrix of change of basis i.e., 

(c i ' , . . . , en')M = («i, . . . , e t t)-

Then it follows that in the exterior algebra A*(w, Z2) we have 

(5.18) ^ = £ iMzy.alëz/ for every P> Ç TV. 
D' 

Hence from 2.11 one obtains 

(5.19) *e(ëA +êB)= £ \MDtA\ • \MD.,B\ëB' A e,y' 

- t = E I Z \MDtA\-\MD>,B\\ëE' = Z I ^ , A U B | ^ 

#E=2k 

(by applying 5.17 to the matrix ME,A\JB in place of M). 
If P* were ^ ' - invar iant , we should have 

(i) ^ê'{ëA + ëB) = 0 or 
(ii) ^ v ( ê A + ëB) = ëBUC. 

Now (i) implies \MEtAUB\ = 0 for every E with #P = 2&, and hence 

0 = Z |M*,A U*| • |M,e.c| = |M| (again by 5.17) 
E 

which is a contradiction to the fact that \M\ = 1. On the other hand (ii) 
implies (using 5.18 for D = B U C) 

\ME,A\JB\ = \ME,B\JC\ for every E with #£ = 2k 

and hence 

|M| = X) I ^ . A U B I |M*CIC| = £ |^ ,*uc |M*c, c | = 0 
# E 

which is again a contradiction. 
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6. Completion of proof of 5.3. It remains to prove the claim 5.13: 

1 / 0 / 2 ^ ^ 0 M- Clearly it suffices to show that 

(6.1) (/i)#(Mor) = X ) < w / and 
3 

(6.2) (/i)#fo>r) = E «»>'/ 
3 

for every D. 

6.3. LEMMA. Far any D and any two fixed t and s with mt + ms = 
#D = r 

U.J5) j 

Proo/. 

L.H.S. = E ( i ; u i n n i ; . a , ^ 

= ((ç«,^") v (ç«Bsx/-w)) n x ; 
= (a* (an v «*(<*,"")) n 1 ; = ««(a," u a/-m) n xD

r 

= «*(Z A j j / l n i ; = £ A[,a*(â/)niD
r 

= R.H.S. 
Hence 

(fi)t(piD
T)= E A 1 * [ ( / I M W ) , (/OiW-")] 

= Z-l A J , B X/ aA,tVtm> Z2 aBsVsr~m\ 
(A,B) I t s J 

= zZ A$,Bl Z Z °U* * aBS[Vtn\ VsT~M] ) 
(A,B) \(t,s) / 

= 12 I 2Z &A,B '<xA,taBs) - [ritmtV8T'~m] 
(t,s) \(A,B) / 

= Z (Z < J h«", v.™) (by 6.3) 

= S ^ X A«l,h/l\i7/~"wl] = ]Cai>^/ 

which proves 6.1. 
In order to prove 6.2, consider the case r = 2m when m is even. Now 

&A,A = 0 and AA,A> = &,A and hence 

Mz> = ^ 2L, ^A,A'[VA , *?A' J. 
Z (A,A') 
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Thus exactly as in the proof of 6.1 above we can see that 

( / I ) # ( M / / ) = J2aDjv/. 
J 

Now consider the case when r = 2ra with m odd. Let 

®A!A' = aAitaA>tt' — aA>,t-aA,t> a n d 

<*>A,Af = <*At ' aA'f 

Now 

A2.A' = ~&,A 

and hence 

{ 4 , A ' } (A ,A' ) j 

(by 6.3). Hence 

(6.4) E Ai^( i :^ /^hr^/ i ) 
{A, A'} \t<t' / 

= Z I Z AA^'ÏIAÏA' )[vtm, Vf™] 
t<t' MA,A'} / 

= X ( 13 &itf<XDj)[ntm>iit'm] = YlaDj[ Z) Al^fo/*,^'™]) • 
t<t' \ j / i \t<t' / 

On the other hand, 

Z2 ^i.A'A^.A' = X) aAtaAft{XA
m ^J XA'n) C\XD

r 

{A,A'} {A,A') 

(by 2.10 and 2.11) 

= (*(«*(a,m)) n x / = (a* o ¥(â,m)) n x / 

= «*(ç (*'(<*/") n a/)â/) n xD
T 

= X (*'(â;)n«/)'(«*(â/)nifl')=IaDi*'(â;)na/. 

Hence 

(6.5) £ A»,^- • Z *'A.Ar,r,vn = L«z>, E « ' ( « D H a / h , - , , , " ] . 
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Now 

{A,A'} 

= z tf.A> ( z ni.A'for,,,-*] + z * ^ 4 W \ v r \ ) 
{A,A'} \ K C * / 

= Z « » / Z *l«'fo *. n/"\ + Z *'(«/") n a/[r,r, vn) 
j \ t<ï t I 

(by 6.4 and 6.5) 

i 

This completes the proof of claim 5.13 and thereby the proofs of 5.3 and 
5.14 also. 
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