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A NON SYMMETRICAL VALUE FOR GAMES WITHOUT
TRANSFERABLE UTILITIES; APPLICATION TO REINSURANCE*

JEAN LEMAIRE

We define axiomatically a concept of value for games without transferable
utilities, without introducing the usual symmetry axiom. The model—a generali-
zation of a previous paper [6] extending Nash's bargaining problem—attempts to
take into account the affinities between the players, defined by an a priori set of
"distances". The general solution of all three- and four-person games is described,
and various examples are discussed, like the classical "Me and my Aunt" and a
reinsurance model.

Nous definissons de maniere axiomatique un concept de valeur pour les jeux a
utilites non-transf6rables, sans introduire l'axiome classique de symetrie. Le
modele — une generalisation d'un concept de valeur [6] etendant a plusieurs joueurs
le probleme de marchandage de Nash — tient compte des affinites entre les joueurs,
donnees sous forme d'une matrice de "distances" a priori. Nous donnons la solution
gen6rale de tous les jeux a, trois et quatre joueurs, et discutons plusieurs exemples
classiques, dont le celebre "Ma tante et moi" et le modele de reassurance de Borch.

1. INTRODUCTION

In most of the value concepts of the cooperative theory of games [6j, [10],
[12], the authors have enforced a symmetry axiom: every symmetrical game
has a symmetrical solution; that is, if the characteristic function of the game
is symmetrical with respect to the bissecting line passing through the initial
payoffs, the solution grants the same utility increase to each player. If this
axiom seems innocuous (it is evident that the final payoff must not depend on
a permutation, on a re-numbering of the players), it implies the implicit as-
sumptions that the game is adequately represented by the characteristic
function and that no element outside this function influences the behaviour of
the participants and the results of the game. But everyday observations sug-
gest that the players usually do not behave as one would expect from the
abstract study of the game: some coalitions are formed more easily than
others, two players that should coalize in order to make a profit do not unite
because of personal antipathy, some persons are more likely to enter in a
coalition with a given group than others, etc. . . ; the characteristic function
form of the game seems unable to forecast the coalitions that will effectively
form, since it does not take into account the personal affinities between the
players. For instance, the French Communist party, during the Fourth Re-
public consistently the largest party, never managed to enter into a govern-
ment coalition, because no other party was ever willing to join it in a coalition.

* Presented at the 14th ASTIN Colloquium, Taormina, October 1978.
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So the value—say the Shapley value, or any value computed on the basis of
the characteristic function only—of this party is largely overestimated, since
it does not consider the aversion of the other parties.

We shall in this paper develop a value concept that attempts to catch the
notion of "affinities", by suppressing the symmetry axiom and introducing
"distances" between players. It is a modification of our former [6] symmetrical
value.

2. AXIOMS

Let [N, v(C), i;] be a game without transferable utilities (shortly a non-trans-
ferable game), where

— N = {1, . . ., n) is the set of the n players;
— v(C) is the characteristic function, defined on all the non-void subsets C

of N (the coalitions); the image of this function is a subset v(C) of it ' c ' ,
the Euclidean space of dimension \C \, such that v(C) is non-empty, closed,
convex and super-additive:

V Ca, CbcND-Car\Cb = f v(Ca U Cb) D v{Ca) x v{Cb);

— E, is the prospect space for the grand coalition N, i.e. the space delimited by
the Pareto-optimal surface v(N) and the hyperplanes perpendicular to the
axes whose coordinates are the initial utilities of the players.

Let [C, v(C), E,cj be the subgame associated to the coalition C. The purpose
of this paper is to define a value for such games. We shall assume that the
players will sign a treaty

y(N) = [Vl(N), ...,yn(N)],

where y](N) specifies the monetary payoff to player j . Since such a treaty
usually involves side-payments (whose sum must be zero), the components of
y(N) must satisfy a linear admissibility condition

(1) yi{N) + ... + yn{N) = z

(the model can easily be extended to the games without side-payments. In
that case the treaties have to mention the commodities owned or exchanged by
each participant).

An example of a non-transferable game is the classical exchange of risks.
Let the players be n insurance companies, of respective situations [Sj, FJ(XJ)],

where 5; is the initial surplus of company j , and FJ(XJ) the distribution function
of its total claim amount. Each company evaluates its situation by an utility
function
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V,{x}) = U}[S},F){x})] = f ujiSi-xddFfa),
0

where Uj{x) is the utility of a monetary amount x, with u'j(x) > o and u'j'(x) < o.
The members of the pool will try to improve their situations by concluding a
treaty of risk exchanges

y = [ y i { x i , • • . , x n ) , . . . . y n [ x i , . . . , x n ) ] ,

where yj(xi, . . •, xn) is the amount that j has to pay if the claims for the dif-
ferent companies are respectively xi, . . ., xn.

Since all the claims must be indemnified, the yj(xi, . . ., xn) must satisfy the
admissibility condition

n n

(1') 2 y}(xi, ...,xn) = £ Xj = z
j - x j - x

the total amount of all claims. After the signature of y, the utility of/ becomes

U]{y) = J U][S}-y}(X)]dF(X),
e

where 9 is the positive orthant of En and F(x) the w-dimensional distribution
function of the claims x = (xi, . . ., xn).

y is Pareto-optimal if there is no y' such that Uj(y') ^ Uj [y) V j , with at
least one strict inequality. Borch (see for instance [l]) has demonstrated that
all the Pareto-optimal treaties are characterized by the following relations.

(2) kju'j \S, - yj(x)] = k l U [ [ S x - y i ( x ) ] k , > o V j .

Let K = {ki, . . ., kn}. The treaty is unique for given K, but there usually
exists an infinity of K satisfying (l') and (2).

It has been shown [5] that this reinsurance market is in fact a non-trans-
ferable game and that the problem of selecting an optimal set of constants kj
is identical to the determination of the value of the game. In [7] we have
computed the Shapley value and the Nash-Lemaire value [6] of this game.
Both values use the classical symmetry axiom. In the sequel, we shall extend
axiomatically the latter value to the non-symmetrical case. We shall use four
axioms.

Axiom 1: Linear invariance

The solution is not affected by a linear transformation performed on the
utilities of the players.

Justification: Since utilities are only defined up to a linear transformation,
it must obviously be the case for the solution.

,
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Axiom 2: Strong Pareto-optimality

The solution depends on all the sub-treaties relative to all the sub-coalitions
(with the exception of the sub-coalitions that form with probability zero—see
section 4). Each sub-treaty (and the final treaty) must be Pareto-optimal and
satisfy the admissibility condition.

Justification: The axiom expresses the fact that, during a negotiation, the
bargaining strength of a player depends on the terms he obtained during the
preceding discussions; a player will get more from his partners if he has signed
a favourable treaty in a sub-coalition. We thus authorize the formation of any
coalition during the bargaining process. Each one may negotiate with a
disjoint group in order to unify. During this partial bargain, we suppose that
each coalition acts as a single player: no one has the right to disavow his
signature and quit his coalition in order to negotiate separately. We also assume
that the grand coalition is formed step by step; at each step two coalitions
only merge, so that N is obtained after (n — 1) steps x). Since the power of a
player depends on all the already signed contracts, they must influence the
final payoff. Each sub-treaty must of course be Pareto-optimal in the cor-
responding sub-game, and the admissibility condition must be satisfied.

Axion 3: Independence of irrelevant alternatives

During each negotiation between two coalitions, exclusion from the prospect
space of possible payoffs other than the solution and the disagreement point
(the utilities that the players get in case they cannot reach an agreement)
does not affect the solution.

Justification: This axiom means that the solution, which by axiom 2 must
lie on the upper boundary of the prospect space, only depends on the shape of
this boundary in its neighbourhood, and not on distant points. This expresses
a structure property of the bargaining process: during the negotiations, the set
of the alternatives likely to be selected progressively reduces, so that at the end
of the discussion, the solution must only compete with very close points, and not
with propositions already eliminated during the prior stages of the bargaining.

Axiom 4: Partial symmetry

If, during a negotiation between two disjoint groups, the prospect space is
symmetrical, so must be the treaty signed.

x) Those behavioural hypotheses are not very restrictive since the axiom considers
all the grouping possibilities. For instance, we prohibit the simultaneous merging of
three disjoint groups Ca, Cb, Cc. But the solution will in particular study the grouping
of Ca and Cb at one step and the adjunction of Cc during the next step. The two other
cases (Ca and Cc unify first then absorb C&, and Cj, and Cc group and join Ca one step
later) will also be considered. In the same fashion, some schemes of coalition forming
where one player remains isolated until the final step, will intervene in the final treaty.
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Justification: The classical symmetry axiom is weakened, since we only en-
force it for the sets of two players or groups of players. It implies that the af-
finities between the players do not affect the discussions between two coalitions,
which consist of a tough haggling between two groups trying to take as much
advantage as they can from the situation. The affinities will intervene in the
kind of coalitions that tend to form, in the propensity that some players have to
start discussing with a particular group instead of another. In other words,
the affinities influence the choice of the groups that enter negotiation, but not
their negotiation itself. For example, the recent French political events demon-
strate that the fact that the Communists and the Socialists have a strong
affinity does not incite them to make concessions to each other: coalition
forming and bargaining are two different things.

Therefore, we shall separate the computation of the value of a game in two
distinct parts:

1. the coalition forming procedure, which consists of the determination of
a set of probabilities W = {WCatjciiC c N, V Ca c C,C~a = C\Ca, Ca # </>,
Ca T̂  (/>}, interpreted as "weights associated to orders of formation of the
coalitions C = CaU Ca";

2. the bargaining procedure, which attributes a payoff to each player, given
the set W.

3. THE BARGAINING PROCEDURE: EXISTENCE AND UNICITY THEOREM

Let us denote y(C) — y{%% \ i e C) the treaty signed by a coalition C

and Ui (C) — Ui [y< (C)] the utility i eC derives from this signature.

Suppose that, at a given moment of the negotiation, a first group Ca of
players has reached an agreement and signed a treaty y(Ca), allowing to each
of its members an utility Ui(Ca), while another group C& (such that Ca f"| C& =
<f>) has concluded a treaty y(Cb), giving to each j e C& an utility U](Cb). Both
groups meet in order to conclude a global treaty y(Ca U C&) (the symbol U has
a slightly different meaning than the usual reunion sign. Ca U C& means "Ca

joins Cb". The • is placed to recall that the result not only depends on the set
Ca U Cb, but also on the manner in which this coalition was formed, i.e. on

Ca and Cb). If both coalitions cannot agree on a treaty y[Ca UCb), they
necessarily return to the starting point of the negotiation, awarding to each
player Ui(Ca) (if i e Ca) or Uj(Cb) (iij e C&). For this reason, this point is called
the disagreement point.

Lemma:
There exists one and only one treaty satisfying the axioms. It can be obtained
by maximizing the expression
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(3) n iUi(caucb) - Ut(ca)j. n [u}{caucb) -
ieca i e c6

providing each term of the product is non-negative.

Proof

The demonstration is a slight generalization of Nash's result [6]. Denote I the
number of players of Ca (o < / < n) and L the cardinality of C& (o < L <
n—I). Number the players in such a way that the members of Ca occupy the
indices l to / and the players of C& the indices / + l to L. The vector

Ud = [Ui{Ctt), -.., Ui(Ca), UI+i(Cb), . . . . UI+L(Cb)-]

is the disagreement point of this negotiation. Let fy be the maximum of (3).
ty is unique because of the convexity of \ca u cb-

Suppose that <\> is distinct from Ua (otherwise the problem is trivial since the
prospect space consists of a single point). We can subject all the players'
utility functions to a linear transformation T, by changing their origins so as
to carry Ua to UT

d = (o, .. ., o) and their units to carry <\> to ^ = (1, . . ., 1). Let
%Ca v cs = T(?c0 u cb)

 b e t h e i m a g e of ZCa u cb
 b y T- Vc u cb

 i s convex. <]f is the
unique point of tangency between ^ v Cb and the hyperboloid whose equation
is

J + L

n Ui = 1.

%ba u cb i
s even completely under the hyperplane H^ of equation

I + L

2 Ui = I + L.

I + L

In fact, if a point P e ^Ca u Cb was such that S Ut > I + L, it would be
2 = 1

the same for any point of the segment P^T by convexity. Some of the points of
I + L

this segment would be inside the hyperboloid, with thus II U{ > 1, con-
l+L i - 1

tradicting the fact that ^ maximizes II Ui.
» - i

Under Hi we can construct a half hypersphere a around ij/ with a radius
sufficiently large as to include ££»e u Cb. Consider first the game whose prospect
space is limited by G and Hi. This game is symmetrical, and t|;T is its solution
by axioms 2 and 4. Axiom 3 allows us to withdraw all the points of CT\^C<, U cb

without altering the solution. Finally through axiom i we can perform the
inverse transformation

%Ca U Cb = T {%Ca V Cb)

and assert that <|> = T " 1 (ty'1) is the optimal point.
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Note that, as announced in the discussion of axiom 4, the negotiation
between two groups of players is a "pure" bargaining, i.e. not influenced by
affinities between players.

Theorem:

To each set of probabilities W can be associated one and only one treaty
y(N) satisfying all the axioms. It can be obtained by the recursion.

Vi{{i}) =

WOa61rayt(CaUCa)

yt(N) = S WCmtjc-.yt(CaUCa)
CaC N

c = \C\

V C D - I < c < n

C~a = C\Ca

» = 1, . . ., n. Ca = N\Ca,

(4)

where, at each step, S WCa jjc~a = 1 and WCa p Ca > o, and y4(Ca C7 C )̂ is
Ca C C

obtained by maximizing (3), with the disagreement point

Ui{Ca) i e Ca

U){Ca) j e Ca.

Proo/

1. Existence: It is sufficient to verify that y(N) satisfies all the axioms.
This proof is straightforward.

2. Suppose that, for a given set {WCa ^ ci}» there exist two different opti-
mal solutions y(N) and y~'(N), i.e. there exists at least an i such that

# y't(N).

We shall first show that the two solutions must differ in at least a partial
treaty. In other words, it is impossible that yt{Ca if Ca) = y'i{Ca U Ca) for
all Cac N and that y^N) # y'i{N). (4) expresses that the partial treaties
Jiipa U Ca) are summarized by a weighted arithmetic mean. One could of
course think of other parameters, like the geometric or the quadratic mean for
instance, but the only parameter satisfying the admissibility condition is the
weighted arithmetic mean

Ca C N
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We shall now show that the admissibility condition also implies that
Wi

Ca u(T= W1
Ca JJ(TV i. It is sufficient to prove it for n= 3. In this case,

there are only three ways to form the grand coalition, which we shall note to
simplify

A = {12} £7{3}

B = {13}*7{2}

C = {23}f7{i}.

Thus Vl(N) = WA Vl(A) + WB Vl(B) + W'c Vl{C)

y2(N) = WA y2(A) + W% y2(B) + W% y2{C)

ys(N) = WAy3(A) + WBy3(B) + W%y3(C).

(1) allows us to replace yi(A) by z — yz(A) — ys(A), with similar relations
for yi(B) and yi(C). We obtain
Vi(N) = Wl

A[z-y2(A)-y3(A)l + W\[z - ya(B) - y,(B)] + Wl
c[z - yt(C)-

- y*{C)]
ya(N) = WA y2(A) + W% y2(B) + W% ya(C)

y3(N) = WAy3(A) + W3
By3(B) + W%y3{C).

Summing, and using (1), we get

* = VM) (WA-WA) + y3(A) (W3
A-WA) + y2(B) {W%-WB) +

+ y3(B)(W%-WB) + ya(C) [Wl-W'c) + y3(C) (W%-Wx
c) +

+ WAz + WBz + W\,z.

Since the W's are the coefficients of a weighted arithmetic mean,

WA + WB+WC = L a n d t h e s u m

y2(A)(WA-WA) + y2(B)(WB-WB) +

+ y3(A)(WA-WA) + y3(B)(WB-WB) +

must be identically equal to zero, V y?, and ys. Thus W{ = W1 V i.

So there exists a coalition CacN such that yt{Ca UCa) # y'i{Ca UCa).
Since the solution of the maximization of (3) is unique, this result can only be
explained by a difference of the disagreement points y<(CJ and y'i{Ca). Sup-
pose Ut [y^Cn)] < TJi [y'i{Ca)]. There exists a player; ' e Ca such that U} [y}{CJ]
> Uj [y'jiCg)], for otherwise y{Ca) would not be Pareto-optimal in the subgame

[Ca, v{C'a), lCa).

The same argument can be repeated iteratively for the coalition Ca: there
exists a Cb cCa such that V{ [y^Ci,)] < Ul [yj(C6)j. j must also belong to Cb

(or another player j ' such that Uy [y ,̂ (C6)J > Uy [y'p (C6)]), in fact, if j were
a member of Ca\Cb, y{Cb) would not be Pareto-optimal in [Cb, v{C'b), ^CJ as
y'{CJCb) in [C\aCb, v{C'b), ^co^cj a n d axiom 2 would be violated.
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So we can present a finite succession of coalitions

ND Ca D CbD . . . 0 CfD . . . D CF

such that, for all/ < F:
i.jeCf,
UdViiCf)! < Ut[y't(Cf)y,
U, \y} (Cf)] > U}

The last term Cp can only be the coalition formed by players i and j (other-
wise we could have continued the process). There exists thus two treaties
y(Cp) and y'{Cp), Pareto-optimal in [{ij}, ^(C), ^yj], i.e. such that

max {Ut[yt({i,j})] - t/,[y«({*})]} • {U}[yi({i, j})} - U,

= max {Udy-di.j})] - Ut [yt(

This contradicts the lemma, applied to the coalitions Ca = {i} and C& = {_;'}.
The solution is constructed by induction on the number of players of the

coalitions: one must successively compute the value of all the two-player
coalitions, then all the three-player sets, . . . to end up finally with the grand
coalition. The optimal treaty for a coalition C of c players is obtained by
considering the set of its 2c~l — l (strict) sub-coalitions Ca for which there
already exists a computed sub-treaty. For each Ca, one computes by (3) a
treaty y\Ca U (C\Ca)]. The utility granted to a player never diminishes when
one or more partners are added to the coalition: (3) always provides a
Ui(Ca U Ca) greater or equal than U{(Ca). The higher his disagreement point,
the higher the utility awarded to a player. The procedure provides 2c~1 — \
(generally) different partial treaties, which are summed up by a weighted
arithmetic mean. The fact that Wi

Ca y ^r does not depend on * allows us to
interpret those weights as "probabilities associated to orders of formation of
the coalitions".

To sum up, the value concept takes into consideration all the possible
orders of formation of the grand coalition, weighted by their respective prob-
abilities; each player allies with other players or sets of players so that after
(»— 1) junctions N is formed and a treaty concluded. All the grouping pos-
sibilities are considered, weighted, and account in the final solution.

For n=2, the value coincides with the unweighted value [6], the Nash
solution [8] and the Shapley value [12].

For ^ = 3, the value weights three different partial treaties 5>[{i2} ^{3}],
^[{13} U{2}] and y[{i} U{23}]. Since the disagreement points are computed
on the basis of coalitions of one or two persons, the partial treaties are the same
as in the symmetrical value. The solution differs generally from the Shapley
value.

https://doi.org/10.1017/S0515036100006516 Published online by Cambridge University Press

https://doi.org/10.1017/S0515036100006516


204 J E A N LEMAIRE

For n > 3, however, the generalization is more than just "adding weights"
to the partial treaties, since the disagreement points already take the affinities
into account and favour the close partners.

Nothing was said up to now as far as the determination of the weights
WCa p ^r is concerned. This will be the subject of the next section.

4. FORMALIZATION OF THE AFFINITY CONCEPT: THE COALITION FORMING

PROCEDURE

We suppose that the affinity between two players can be expressed by a non-
negative number, dy, representing the "distance" (in a broad sense) between
* and_/': the larger the distance, the lesser the affinity between both players.
dtj = 00 means that the antipathy between them is so strong that they will
never join together a sub-coalition 2). On the other hand, dy = 0 implies that
the coalition {i, j} will immediately form. This is a relatively uninteresting
case, since it amounts to the same thing to consider {*', j} as a single player. It
is therefore not restrictive to suppose that the (symmetrical) matrix of the
distances (the figures of the diagonal are irrelevant) does not contain more
than one zero in each row or column (the reunion of three players in a single
step is indeed not allowed, although the model could be easily adapted to this
case, by introducing as a first stage the merging of the three players with
probability one).

Define the "distance" between two coalitions Ca and C& by

£ S dy

The value of all the two-player coalitions can easily be computed by (3).
Suppose, by induction, that we have already computed the solution for all the
sets containing at most (n— 1) players. It only remains to calculate the value
of the grand coalition.

A coalition configuration of order m (shortly a ^-configuration) is a vector

Ca H Cb = (f> aj=b

C « = ( C i , ...,Cm) U Ca=.N

V a,
2) However, the hypotheses of the model imply that they will be forced to cooperate

at the final step, since the grand coalition is bound to eventually form. This is a con-
sequence of the fact that we required the value of a w-person game, a value that is useless
if we know in advance that N will never form. But, as our theory also provides the
value of all the in—1)-person subgames, as well as the probabilities of formation of
each subcoalition, no modification is required when one (or more) of the distances is
infinite.
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indicating the coalitions formed after step (n—m). During a negotiation, m
successively takes all the integer values, decreasing from n to l. At the be-
ginning, n — m, and Cn = ({l}, {2}, . . . , {«}). After the final junction, m = 1 and
C1 = ({1 . . . «}). For 1 < m < n there exists several different coalition con-
figurations, denoted by C™, C™, . . . . Let Mm be the set of all the w-config-
urations. We shall denote i~j if i and j belong to the same coalition of Cm,
i~ j if they do not.

Each m-configuration Cm generates a number of descendants C"1"1 obtained
by joining two coalitions of Cm. Let Z)i be the set of all the descendants of Cm.
Of course, two different w-configurations can produce the same descendant.
Let WCm be the probability that Cm forms during the procedure, and WCm-i, Cm
the (conditional) probability that Cm generates C™"1.

Naturally, this probability is zero if Cm~x cannot be a descendant of Cm.

We must associate to each distance matrix D a set W of probabilities
wcuc-.- d e f i n e d VCcN,VCa c CD- C~a = C\Ca, C a # ^ , C

Of course not any rule R that associates a set W to a matrix D is suitable for
our problem. A rule will be said coherent if it satisfies the following conditions.

Condition 1 {Rules of probability calculus)

l.a. Wcm ^ o V O

l.b. 2 WCm = l m= 1, . . . , n
Mm

i.e. S WV--H c- = 1 V'O

l.d. PFc™-i = 2 Wc»-i , c» • Ŵ c™ V C » - i

Condition 2 {Relation between affinities and probabilities)

2.a. WCm is a non-increasing function of ^ V Cm D— i~y

^Fc». is a non-decreasing function of dq V Cm D—i~j

2.b. lim WCn^i = l *~y

2.c. lim TFCm = 0 V Cm, i~j

V mo— 1 < m < n

Condition 3 {Possible symmetry of two players)

3. If d}l = dtl V ,̂ then Wc™ = PFC», where C™ is obtained from C™ by

commuting i and y.
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Condition 4 {Relations between successive configurations)

4. If Wr« > Wrm, then Wr->-i > Wc™-± \f m, ifC™"1 is a descendant
x f x y *

of C™ and if C™"1 is the descendant of C™ obtained through the same
adjunction.

Condition 5 {Relations between configuration probabilities and weights)

5- Wc,tci= Wcl, V Ca, where C2 = {Ca, C~tt).

Condition 6 {Invariance with respect to a similarity)

6. W is not affected by a multiplication of the distances by a positive
constant: if d'^ = kdy \/ ij, W' = W.

Note that any coherent rule determines a set W whose cardinality exceeds
by far (for n > 2) the number of distances. It can be shown that \ D \ =

We obtain the following numbers for 3 ^ n < 10.

n

3
4
5
6
7
8
9

1 0

Number of
distances

2

5
9

H
2 0

27

35
44

Number of
probabilities

2

H
64

244
846

2,778
8,828

27,488

There exists few coherent rules. In the sequel, we shall use the following rule

" 1 I C" ~

y
c=1 d+c Cd

where C™-1 = (Ci, .. .,CaU C&, . . ., Cm) is the descendant of Cm = (Ci, . . .,
Ca, • • •» Cf,, • • •, Cm). We thus suppose the attraction between two coalitions
inversely proportional to the square of their distance.
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5. RESOLUTION SCHEME OF ALL THREE-PERSON GAMES

1. Suppose three players, 1, 2 and 3, of initial utilities Ui ({1}), U2 ({2}) and
Us ({3}), and of affinities defined by the set (̂ 12, dig, ̂ 23). For the sake of
simplicity, we shall in the sequel omit the braces, e.g. write 12 instead of
{12}.

2. The maximization of the products

[Ui (12) - Ui (1)] • [Ui (12) - U2 (2)]
[Ui (13) - Ui (1)] • [Us (13) - U, (3)]
[Ut (23) - Ua (2)] • [U3 (23) - U3 (3)]

provides the treaties

y{iz) = [yi (12), y2 (12)]
5(13) = [yi (13), y»(i3)]
5(23) = [y» (23), ys (23)].

3. Grand coalition

m Configuration Probability

3
2

( 1 .

( 1 2

(13

( i .

2 ,3 )

,3)
, 2 )

23)

where A =

m Configuration Probability Treaty Obtained by maximizing

(123) 1(123)—
r,( 1 2 3 ) - 0-3(3)]

17,(2)]
[^,(123)— [73(i3)]

• [^,(123)—

Example 1. The constant-sum three-person game.

The characteristic function of this game is

v(<f>) = v(l) = v{2) = w(3= 0

= 1.
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1.

2.

3-

Formation of

(121/3)
(l3t/2)

(i(723)

JEAN LEMAIRE

Initial utilities (

2-player coalitions

(117 2) (

( 1 ^ 3 ) (
(2P3) (

Grand coalition. Distances:

N Probability

W12i,3=Wl2:3 = .7O92
K^1Qr"rO= Wiv 0 = 1 7 7 3

^1023=1^1,23 = .1135

Value

.0 ,

•5 .

•5.
. 0 ,

' d l

Utilities
.0 ,

•5.
. 0 ,

•5,

2 = i , d13

(•5,
(•5,
(•0,

(•4433.

.0 )

.0 )

•5 )
•5 )
= 2 , ^23

•5,

. 0 ,

•5,
•4113,

= 2.5

.0 )

•5 )
•5 )

•1454)

We notice that 1 and 2 take a big advantage of their vicinity. Besides, the
solution converges towards (.5, .5, .0) as di2 approaches o. 1 becomes a little
more than 2 because he is slightly nearer of 3.

Example 2. A pair of shoes.
" l owns a left shoe. 2 and 3 are each in possession of a right shoe. The pair can
be sold for 1 unit. How much is 1 entitled to ?" This exemple is famous in game
theory because important concepts like the core, the bargaining set, the kernel
and the nucleolus completely fail to catch the threat possibilities of coalition
(23) and lead to the paradoxical allotment (1,0,0). Moreover, the solution is the
same if there are 999 left shoes and 1,000 right shoes: the situation becomes
nearly symmetrical and the owners of right shoes still get nothing. The Shapley
value, (§, g. g)> is certainly more intuitive, although it seems a bit too generous
towards 1. Our unweighted value is (|, j | , j6g).

The characteristic function is

v{4>) = v(l) = v{2) = v(3) = w(23) = 0

v(i2) = i>(i3) = 0(123) = i-

Using the same distances as in example 1, we obtain

Formation of N

(12(73)
(13U2)
(11/23)

Probability

Wi2cf3 = .7092

Wl3i,2 = -1773

Wlp23 = .1135

Value

(•5,

(•5,

(•3333-

(.4811,

Utility

• 5.
.0,

•3333,
•3924,

•0 )

•5 )
•3333)
.1265)
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One notices that 2 makes the most out of his friendship with l. The solution
converges towards (.5, .5, o) as 1̂2 -» 0. The share of 1, always included in the
interval [1/3, 1/2], diminishes when 2 and 3 feel more inclined to coalize before
entering discussion with him. For the set (di2 = 2, dw = 2.5, dm = 1), for
instance, the solution is (.3818, .3252, .2930). It tends to (1/3, 1/3, 1/3) asfe-^-o.

Example 3. The reinsurance model.

As Gerber [3], [4] has shown that exponential utility functions possess very
desirable properties for insurers, we shall suppose that

l
Uj(x) = — (1 - e~aix) j=i, • • •, n.

a,j

Solving equations (2), taking into account the admissibility condition ( l ' ) ,
leads to the solution

y}(x) = q
where

l

I1

and

yj{o) = Sj-qj ^ {Si+- Log'

This is a familiar quota-share treaty, with quotas qj and side-payments
yj{o). As qj does not depend on the constants kj, the bargaining procedure will
only have to determine the amount of the compensations 3^(0).

Suppose that the three companies only differ by their attitude towards risk:
a\ = .3, «2 = .6, as = .1, while the other parameters are equal: the reserves
equal to 10, and the total claim amounts are F-distributed, with a mean 1.2
and a variance 1.25.

The initial utilities are then
Ui(xi)-= 3.0778
U2{x2) = 1.6539
U3{xs) = 5.8242.

The treaties arising from the merging of two companies are

1. {1} U {2}: Quotas qi = 2/3 Side payment 3/1(0) = —0.6778
?2 = 1/3

Utilities after reinsurance Ui [^(12)] = 3.1014
£72[j/(i2)] = 1.6560;

14
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2. {1} C7 {3}: Quotas qi = 1/4 Side payment y 1(0) = 0.7111
?s = 3/4

Utilities after reinsurance C/i [y(i3)] = 3.08

3. {2}[/{3}: Quotas #2 = .1429 Side payment y 2(0) = -1.2180
q3 = .8571

Utilities after reinsurance U% [y (23)] = 1.6560
Us[y{23)l = 5-9599-

Adding the third player leads to quotas qi = 2/9, 172 = 1/9, q3 = 2/3. 3,
being the least risk averse, takes advantage of this to attract a large proportion
of its partners' portfolios. As a compensation for its increased liabilities, it will
naturally demand a high fixed sum. We obtain the following side payments
and utilities.

1. {12} U{3}

2. {13} U {2}

3- {i}U{23}

The last company to enter the bargaining has a solid disadvantage.
With the set of distances Di = (diz = l, dis = 2, d%a — 2.5), the final solution is

yi(o) = .2627 Ui{y) = 3.1031
y2(o) = 1.1156 U2(y) = 1.6565
y3(o) = -1.3783 ua{y) = 5-8897

1 and 2 take advantage of their vicinity to pay as less as possible to 3. If we
suppose that 1 and 3 are the closest friends, i.e. that D2 = (̂ 12 = 2, di3= 1,
dzs — 2.5), the final treaty is

yi(o) = .3029 Ui{y) = 3.1003
y2(o) = 1.2078 Uz{y) = 1.6557
y3(o) = -1.5107 U3{y) = 5-9438.

As the initial utilities correspond to side payments of (yi(o) = .6096,
y2(o) = 1.4659, ys(o) = — 1.2201) the final solution achieves the same
utility increase as a gain in capital of (.3469, .3503, .1582) for the set Di, and of
(.3067, .2581, .2906) for Dz.

Side
yi(o)
ya(o)
ys(o)

yi(o)
ya(o)
ys(o)

yi(o)
ya(o)
y3(°)

payments
= .2127
= 1.0844
= -1.2971

.2882
1.2576

= - 1-5458
•5356

= 1.0890
= - 1.6264

Utilities
Ui{y) = 3.1065
U2{y) = 1.6565
U3{y) = 5-8565
Ui{y) = 3-1013
Ut(3) = 1.6554
U3(y) = 5-9583
Ui(y) = 3-0834
U2{y) = 1.6565
^s(y) = 5-9897-
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6. RESOLUTION SCHEME OF ALL FOUR-PERSON GAMES

1. Treaties for all the sub-sets of two or three players: see § 5.

2. Treaty for the grand coalition. Distances (di2, diz, dxs, d%3, d24, d3i)

m Configuration Probability

(1, 2, 3 .4)

(12, 3. 4)

(13. 2 ,4)

(14, 2, 3)

(1. 23 .4)

(1, 24, 3)

(1, 2, 34)

Wl2,3,4 = A/d\,

^13,2,4 = A/d\3
with. A =

1^1,23,4 = A/dl

Wl,24,3 =

Wl.2,34 =

— + — + — + —

m

2

Parent Descendant Probability

(12, 3, 4)

(13, 2 ,4)

(14, 2, 3)

(1, 23, 4)

( 1 . 2 4 , 3 )

(1, 2, 34)

(123, 4)

(124, 3)

(12, 34)

(123. 4)

(134. 2)

(13. 24)

(124. 3)

(134, 2)

(H.23)

(123.4)

(1, 234)

(14, 23)

(124, 3)

(1,234)

(13, 24)

(1, 234)

(134,2)

(12, 34)

^123,4112,3,4

W^124,3| 12,3,4

Wl2,34|l2,3,4

H^134,2|l3,2,4

^13,24 13,2,4

Wl24,3|l4,2,3

I^134,2|l4,2,3

B/dl,3

B/dlA

B/dl

= Cjdz

4,23 14,2,3

yy 123,4 1,23,4

^1,23411,23,4

P^14,23|l,23,4

W^124,3|l,24,3

^1,23411,24,3

W713,24|l,24,3

W^l,234|l,2,34

^ 12,3411,2,34

D/dl,3

D/dl

E/dl,s

E/dlSli

E/dl

F/dl,3

F/dl

G/dl,3i

= Gjdtt

with-B =

^ +4-

withC =

+ ^r

with D =

with E =

"12,3 «23,4

with F =

+ dl

with G =

dt,m
+ -^r

m

1

Configuration Treaty

3,4 = A/dl, B/dl,,, + A/dl C/dl,,, + A/dl, E/dl,a =

= A/d\

^14 ,23 =

^ / d j , C/dl + A/dl F/dl

A/dl D/d'a + A/dl, E/dl

= ^134,2
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Example 4. The homogeneous weighted majority game (3; 2, 1, 1, i)u-
This four-person game, a simplification of the game "Me and my Aunt" was
studied by Owen [9] in his generalization of the Shapley value. The strongest
player, 1, possesses two votes, while each of his opponents has only one. As
three votes are required to win the game, the only winning coalitions are

(i) 1 and one, two or all three of his partners,
(ii) 234.

The game is however complicated by the fact that players l and 2 are
parents; in fact, 1 is 2's aunt. Since we only want to study the influence of this
relationship, we can set dn= 1 and all the other distances equal to 2.

Coalition formation

123C/4
124U3

134^2
1U234
12U34
13U24
14U23

Weight

Wl23,4 = .2527

^124,3 = .2527

Wl34,2 = .O774

Wl,284 = .O774

1^12,34 = .2222

Wl3,24 = .O588

H^14,23 = .O588

Utility

(.4722, .3889, .1389, .0 )
(.4722, .3889, .0 , .1389)
(.4444, .0 , .2778, .2778)

(•° . -3333, -3333, -3333)
(•5 . -5 , -o , .0 )
(-5 , .0 , .5 . .0 )
(•5 . o , -o , -5 )

Value (.4430, .3334, .1118, .1118)

The solution converges towards (.5 .5 , .0 , .0 )
when di2 —>• 0. Owen's modified version of Shapley's value tends to (2/3, 1/3,
0, 0, 0) in this case (see discussion of § 7).

7. A FIVE-PERSON GAME

Example 5. Me and my Aunt.
This is the original game introduced by Davis and Maschler, perhaps the most
celebrated game of the theory (see [2] for an interesting discussion of the game).
It is in fact the homogeneous weighted majority game (4;3, l, 1, 1, i)n with the
addition that player l (my aunt) and player 2 (me) "in principle" agree to form
a coalition.
The Shapley value is (.6, .1, .1, .1, .1 )
The kernel, the nucleolus and the (3/7, 1/7, 1/7, 1/7, 1/7 )
Nash-Lemaire value agree on a
division proportional to the weights = (.4286, .1428, .1428, .1428, .1428)

Most of the discussions among the game theorists in fact center on the words
"in principle": the problem is phrased in an asymmetric fashion, whereas it is
symmetric in terms of payoffs to coalitions. One way to capture into the model
the preferences between 1 and 2 is to introduce some external feature, like our
"affinities", independently of the characteristic function.
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The computation of the weighted value, assuming that di2 = l and dy = 2
V (ij) =£ (12) becomes rather lengthy. The solution is

(.4472, .2849, .0893, .0893, .0893)

and favour the nephew more than his aunt. The payoff vector converges
towards (.5, .5, .0, .0, .0) when diz^ o, a division that we feel more intuitive
than Owen's limiting value (.75, .25, .0, .0, .0). As a matter of fact, we think
that, if 2 knows that his aunt feels compelled to agree with him and that the
other players are consequently irrelevant, he should be able to "extract" \
from her. If the blood ties are strong enough, no other partnership is thinkable,
and any threat of the aunt to negotiate with somebody else will not be credible:
the asymmetry between 1 and 2 disappears and the equal division seems the
only fair payoff.

Remark that the limit value does not depend on the particular choice of the
rule R.

Note that the bargaining set for the configuration (12,345) grants player 1 a
payoff in the interval [.50 .75] (it of course does not introduce any consanguinity
in the problem). Our value thus stands at one end of this interval (the more
generous towards the weaker player), Owen's generalization at the other end.

The different concepts of value attempt to be good predictors of the actual
outcomes of negotiations. It is thus always interesting to compare the values
with experimental data. "Me and my Aunt" has been effectively played 12
times under the direction of Selten and Schuster [11] (no preference relationship
was introduced in the experiments). The game ended 8 times with a coalition
between 1 and 2, with a payoff to 1 always inferior than .75. The division
(.75, .25, .0, .0, .0) appeared twice during bargaining, but the stronger player
was never able to protect his share and the coalition broke off. The average
payoff was .4668 to 1, .1333 to the other players, a division that seems con-
sistent with the predictions of the kernel and our unweighted value.

The facts that:

(i) the average gain of 1 was well under the figure predicted by the Shapley
value;

(ii) even without affinities, l was never able to force a gain of .75,
naturally corroborates the idea that the Shapley value (or modified value)

seems to be too generous towards the stronger players, by overlooking the
threat possibilities of the weaker players.

It can besides be shown that, for n > 2, our value will always award more to
the weaker players than Shapley's value. It is due to the fact that, if one
accepts Shapley's axioms, the pivotal player becomes all of his admission
value, while the axioms of § 2 have the effects by (3) of sharing this quantity
between the members of the coalition according to their respective strengths.
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