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Abstract
We study some combinatorial properties of higher-dimensional partitions which generalize plane partitions. We
present a natural bijection between d-dimensional partitions and d-dimensional arrays of nonnegative integers. This
bijection has a number of important applications. We introduce a statistic on d-dimensional partitions, called the
corner-hook volume, whose generating function has the formula of MacMahon’s conjecture. We obtain multivariable
formulas whose specializations give analogues of various formulas known for plane partitions. We also introduce
higher-dimensional analogues of dual stable Grothendieck polynomials which are quasisymmetric functions and
whose specializations enumerate higher-dimensional partitions of a given shape. Finally, we show probabilistic
connections with a directed last passage percolation model in Z𝑑 .

1. Introduction

Higher-dimensional partitions are classical combinatorial objects introduced by MacMahon over a
century ago. While the concept itself is a straightforward generalization of the usual (1-dimensional)
integer partitions, the problems related to it are very challenging. For (2-dimensional) plane partitions,
MacMahon obtained his celebrated enumerative formulas [Mac16] (cf. [Sta99, Ch. 7]). For general
d-dimensional partitions, he only conjectured a formula of the volume generating function, which was
later computed to be incorrect [ABMM67].

Despite long interest and many connections to various fields including algebra, combinatorics,
geometry, probability and statistical physics, the subject remains rather mysterious – very little is known
about d-dimensional partitions for 𝑑 ≥ 3 (e.g., according to Stanley [Sta99, Ch. 7.20], ‘almost nothing
significant is known’). See [ABMM67, Knu70, Gov13] on some computational and enumerative aspects;
[MR03, BGP12, DG15] on asymptotic data and connections to physics; [BBS13, Nek17, CK18] on
further aspects particularly related to the theory of Donaldson–Thomas invariants. A few more remarks
and some early references can also be found in [Sta71].

At the same time, the theory of plane partitions has greatly developed; see [And98, Sta99, Krat16] and
many references therein. Its success mainly comes from the theory of symmetric functions, especially
by using the Robinson–Schensted–Knuth (RSK) correspondence and Schur polynomials. The lack of
tools for higher-dimensional generalizations makes it difficult to approach them, and here, one can try
to develop analogous methods. This paper is in this direction.

Let us summarize our results.
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2 A. Amanov and D. Yeliussizov

1.1. Higher-dimensional partitions and hypermatrices

First, we present a natural bijection between d-dimensional arrays of nonnegative integers and
d-dimensional partitions; see Section 3. Roughly speaking, any d-dimensional partition can be viewed
as a hypermatrix of largest paths for some source weight hypermatrix. The bijection has nice properties
which relate natural statistics for both objects. We then give a number of applications.

1.2. Corner-hook volume and interpretation of MacMahon’s numbers

One of the main consequences of this bijection is the multivariable generating series presented in
Theorem 4.1 whose specializations allow to explicitly compute generating functions for certain statistics
on d-dimensional partitions. In particular, we introduce two statistics on d-dimensional partitions:
corners cor(·) and corner-hook volume | · |𝑐ℎ (see Sections 3.3 and 5 for definitions) with generating
functions shown below.

Theorem 1.1 (Corner-hook generating function, cf. Corollary 5.4). We have the following generating
function:

∑
𝜋

𝑡cor(𝜋)𝑞 |𝜋 |𝑐ℎ =
∞∏
𝑛=1

(1 − 𝑡𝑞𝑛)−(
𝑛+𝑑−2
𝑑−1 ) ,

where the sum runs over d-dimensional partitions 𝜋.

For 𝑑 = 2, this formula is equidistributed with Stanley’s trace generating function [Sta99, Thm.
7.20.1], but the statistics are not identical. MacMahon conjectured [Mac16] that the generating function
defined as

∞∑
𝑛=0

𝑚𝑑 (𝑛) 𝑞𝑛 :=
∞∏
𝑛=1

(1 − 𝑞𝑛)−(
𝑛+𝑑−2
𝑑−1 )

gives the volume generating function
∑

𝜋 𝑞
|𝜋 | for d-dimensional partitions. This was shown to be

incorrect for 𝑑 ≥ 3 [ABMM67]. However, from Theorem 1.1, we obtain the following interpretation
of MacMahon’s numbers 𝑚𝑑 (𝑛), thus showing that (instead of the volume) they count d-dimensional
partitions via the corner-hook volume statistic so that

𝑚𝑑 (𝑛) = |{𝑑-dimensional partitions 𝜋 : |𝜋 |𝑐ℎ = 𝑛}|.

More generally, we also prove results for generating functions over partitions with fixed shape.

Theorem 1.2 (Corner-hook generating function with fixed shape, cf. Theorem 5.2). Let 𝜌 ⊂ Z𝑑+ be a
fixed shape of a d-dimensional partition. We have the following generating function:

∑
sh(𝜋) ⊆𝜌

𝑡cor(𝜋)𝑞 |𝜋 |𝑐ℎ =
∏

(𝑖1 ,...,𝑖𝑑) ∈𝜌

(
1 − 𝑡𝑞𝑖1+...+𝑖𝑑−𝑑+1

)−1
,

where the sum runs over d-dimensional partitions 𝜋 whose shape is contained in 𝜌.

1.3. d-dimensional Grothendieck polynomials

To develop tools for studying d-dimensional partitions, one might be looking for analogues of Schur
polynomials whose specializations allow to enumerate them. We work in a slightly different direction.
In Section 6, we define higher-dimensional analogues of dual stable Grothendieck polynomials. These
new functions are indexed by shapes of d-dimensional partitions, and in specializations they compute
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the number of such partitions. For 𝑑 = 2, they turn into the dual stable Grothendieck polynomials
(indexed by partitions) known as K-theoretic analogues of Schur polynomials introduced in [LP07] (see
also [Yel17, Yel19] for more on these functions).

Let us illustrate our results in the special case for (3-dimensional) solid partitions. We define the
polynomials (see Equation (8)) 𝑔𝜋 (x; y; z) in three sets of variables indexed by plane partitions {𝜋}.
These polynomials enumerate solid partitions within a given shape. For example, we have

𝑔 [𝑏]×[𝑐 ]×[𝑑 ] (1𝑎+1; 1𝑏; 1𝑐) = number of solid partitions inside the box [𝑎] × [𝑏] × [𝑐] × [𝑑] .

We show that the following generating series identity holds.

Theorem 1.3 (Cauchy–Littlewood-type identity for 3d Grothendieck polynomials, cf. Corollary 6.5).
We have

∑
𝜋

𝑔𝜋 (x; y; z) =
𝑎∏
𝑖=1

𝑏∏
𝑗=1

𝑐∏
𝑘=1

1
1 − 𝑥𝑖𝑦 𝑗 𝑧𝑘

,

where the sum runs over plane partitions 𝜋 with shape inside the rectangle 𝑏 × 𝑐 and x = (𝑥1, . . . , 𝑥𝑎),
y = (𝑦1, . . . , 𝑦𝑏), z = (𝑧1, . . . , 𝑧𝑐).

It is known that dual stable Grothendieck polynomials (for 𝑑 = 2) are symmetric (in x). As we show,
this is no longer the case for 𝑑 ≥ 3. However, we prove that these new functions are quasisymmetric (cf.
Proposition 6.9), the next known class containing symmetric functions (see, for example, [Sta99, Ch.
7.19]).

1.4. Last passage percolation in Z𝑑

It turns out that these problems are closely related to the directed last passage percolation model
with geometric weights in Z𝑑 (see [Mar06] for a survey on this probabilistic model). We prove that
d-dimensional Grothendieck polynomials naturally compute distribution formulas for this model (see
Theorem 7.1). See Section 7 for details.

2. Preliminary definitions

We use the following basic notation: N is the set of nonnegative integers; Z+ is the set of positive
integers; {e1, . . . , e𝑑} is the standard basis of Z𝑑; and [𝑛] := {1, . . . , 𝑛}.

A d-dimensional N-hypermatrix is an array
(
𝑎𝑖1 ,...,𝑖𝑑

)
𝑖1 ,...,𝑖𝑑≥1 of nonnegative integers with only

finitely many nonzero elements. A d-dimensional partition is a d-dimensional N-hypermatrix
(
𝜋𝑖1 ,...,𝑖𝑑

)
such that

𝜋𝑖1 ,...,𝑖𝑑 ≥ 𝜋 𝑗1 ,..., 𝑗𝑑 for 𝑖1 ≤ 𝑗1, . . . , 𝑖𝑑 ≤ 𝑗𝑑 .

Let M(𝑑) be the set of d-dimensional N-hypermatrices and P (𝑑) be the set of d-dimensional partitions.
For 𝜋 = (𝜋𝑖1 ,...,𝑖𝑑 ) ∈ P (𝑑) , the volume (or size) of 𝜋 denoted by |𝜋 | is defined as

|𝜋 | =
∑

𝑖1 ,...,𝑖𝑑

𝜋𝑖1 ,...,𝑖𝑑 .

Any partition 𝜋 is uniquely determined by its diagram 𝐷 (𝜋) which is the set

𝐷 (𝜋) := {(𝑖1, . . . , 𝑖𝑑 , 𝑖) ∈ Z𝑑+1
+ : 1 ≤ 𝑖 ≤ 𝜋𝑖1 ,...,𝑖𝑑 }.
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4 A. Amanov and D. Yeliussizov

The shape of 𝜋 denoted by sh(𝜋) is the set

sh(𝜋) := {(𝑖1, . . . , 𝑖𝑑) ∈ Z𝑑+ : 𝜋𝑖1 ,...,𝑖𝑑 > 0}.

Note that sh(𝜋) is a diagram of some (𝑑 − 1)-dimensional partition. Let

M(𝑛1, . . . , 𝑛𝑑) = {(𝑎i) : 𝑎i ∈ N, i ∈ [𝑛1] × · · · × [𝑛𝑑]}

be the set of [𝑛1] × · · · × [𝑛𝑑] N-hypermatrices and

P (𝑛1, . . . , 𝑛𝑑+1) := {𝜋 ∈ P (𝑑) : 𝐷 (𝜋) ⊆ [𝑛1] × · · · × [𝑛𝑑+1]}

be the set of boxed d-dimensional partitions.
For 𝑑 = 2, 3, partitions are called plane partitions and solid partitions.1
Let us note that for a set 𝜌 ⊂ Z𝑑+ , the following three conditions are equivalent:

(1) The set 𝜌 is the shape of some d-dimensional partition.
(2) The set 𝜌 is the diagram of some (𝑑 − 1)-dimensional partition.
(3) The set 𝜌 is finite and has the property that if i ∈ Z𝑑+ and ℓ ∈ [𝑑] satisfy i + eℓ ∈ 𝜌, then i ∈ 𝜌.

Sometimes we will identify a partition with its diagram (but never with its shape).

3. A bijection between d-dimensional N-hypermatrices and partitions

3.1. Last passage hypermatrix

A lattice path in Z𝑑 is called directed if it uses only steps of the form i → i + eℓ for i ∈ Z𝑑 and ℓ ∈ [𝑑].
Given a d-dimensional N-hypermatrix 𝐴 = (𝑎𝑖1 ,...,𝑖𝑑 ), define the last passage times 2

𝐺𝑖1 ,...,𝑖𝑑 := max
Π : (𝑖1 ,...,𝑖𝑑)→(∞,...,∞)

∑
( 𝑗1 ,..., 𝑗𝑑) ∈Π

𝑎 𝑗1 ,..., 𝑗𝑑 ,

where the maximum is over directed lattice paths Π which start at (𝑖1, . . . , 𝑖𝑑) ∈ Z𝑑+ . It is easy to see
that the following recurrence relation holds:

𝐺 i = 𝑎i + max
ℓ∈[𝑑 ]

𝐺 i+eℓ , i ∈ Z𝑑+ . (1)

Notice that the hypermatrix 𝐺 = (𝐺 i)i∈Z𝑑+ ∈ P (𝑑) is a d-dimensional partition.

3.2. The bijection

Define the map Φ : M(𝑑) → P (𝑑) as follows:

Φ : 𝐴 ↦−→ 𝐺 (2)

Let 𝜌 ⊂ Z𝑑+ be a shape of some d-dimensional partition (or a diagram of a (𝑑−1)-dimensional partition).
Let

P (𝜌, 𝑛) :=
{
𝜋 ∈ P (𝑑) : sh(𝜋) ⊆ 𝜌, 𝜋1,...,1 ≤ 𝑛

}

be the set of d-dimensional partitions whose shape is a subset of 𝜌 and the largest entry is at most n. Let

M(𝜌, 𝑛) :=
{
𝐴 = (𝑎i) ∈ M(𝑑) : 𝑎i > 0 =⇒ i ∈ 𝜌, 𝐺1,...,1 ≤ 𝑛

}

1In some literature, there is a +1 shift in dimensions, when partitions are associated with their diagrams.
2We use terminology related to probabilistic model of last passage percolation; see Section 7.
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be the set of d-dimensional N-hypermatrices whose support (i.e., the set of indices corresponding to
positive entries) lies inside 𝜌 and whose largest last passage time is at most n.

Theorem 3.1. The map Φ defines a bijection between the sets M(𝜌, 𝑛) and P (𝜌, 𝑛).

Proof. Let 𝐴 = (𝑎i) ∈ M(𝜌, 𝑛). By construction of the map, it is not difficult to see that 𝜋 = Φ(𝐴) ∈
P (𝜌, 𝑛). Indeed, we have the largest last passage time 𝜋1,...,1 ≤ 𝑛, and sh(𝜋) ⊆ 𝜌 since if 𝑎i > 0, then
i ∈ 𝜌.

Conversely, given 𝜋 ∈ P (𝜌, 𝑛), to reconstruct the inverse map Φ−1, using the recurrence (1) we
define the hypermatrix 𝐴 = (𝑎i) given by

𝑎i = 𝜋i − max
ℓ∈[𝑑 ]

𝜋i+eℓ ≥ 0, i ∈ Z𝑑+ . (3)

Let 𝐺 = (𝐺 i) = Φ(𝐴). Let us check that 𝐺 = 𝜋 and 𝐴 ∈ M(𝜌, 𝑛). Since sh(𝜋) ⊆ 𝜌, we have 𝑎i = 0 for
all i ∉ 𝜌 (in particular, 𝐴 ∈ M(𝜌,∞)). Hence, 𝐺 i = 𝜋i = 0 for all i ∉ 𝜌. Consider the directed graph Γ
on the vertex set 𝜌 and edges i → i + eℓ (when i + eℓ ∈ 𝜌) for ℓ ∈ [𝑑]. Then Γ is acyclic (i.e., has no
directed cycles). Notice that 𝑎i = 𝜋i = 𝐺 i if a vertex i ∈ Γ has no outgoing edges. Since Γ is acyclic, we
can sort its vertices in linear order (i(1) , . . . , i(𝑚) ) so that the edges go only in one direction i(ℓ) → i(𝑘)
for ℓ < 𝑘 . We already noticed that 𝜋i(𝑚) = 𝐺 i(𝑚) . Then inductively on ℓ = 𝑚 − 1, . . . , 1, we have

𝜋i(ℓ) = 𝑎i(ℓ) + max
i(ℓ)→i(𝑘)

𝜋i(𝑘) = 𝑎i(ℓ) + max
i(ℓ)→i(𝑘)

𝐺 i(𝑘) = 𝐺 i(ℓ) .

Therefore, 𝜋 = 𝐺. In particular, 𝐺1,...,1 ≤ 𝑛 and hence, 𝐴 ∈ M(𝜌, 𝑛). �

Corollary 3.2. The map Φ defines a bijection between each of the following pairs of sets:

(i) M([𝑛1] × · · · × [𝑛𝑑], 𝑛𝑑+1) and P (𝑛1, . . . , 𝑛𝑑+1)
(ii) M(𝑛1, . . . , 𝑛𝑑) and P (𝑛1, . . . , 𝑛𝑑 ,∞)

(iii) M(𝜌,∞) and P (𝜌,∞)
(iv) M(𝑑) and P (𝑑) .

Remark 1. The item (i) above states that the number of boxed d-dimensional partitions with diagrams
inside the box [𝑛1] × · · · × [𝑛𝑑+1] is equal to the number of [𝑛1] × · · · × [𝑛𝑑] N-hypermatrices whose
largest last passage time is at most 𝑛𝑑+1.

Remark 2. The mapΦ−1 is essentially Stanley’s ‘transfer map’ between order and chain poset polytopes
[Sta86a], specific to d-dimensional partitions. For 𝑑 = 2, the map Φ gives a bijection between N-
hypermatrices and plane partitions. This bijection is essentially equivalent (up to diagram rotations) to
the one studied in [Yel21a, Yel21b]. Note that one can construct d-dimensional partitions G dynamically
using an insertion type procedure as in RSK, similarly as in [Yel21a, Yel21b] for 𝑑 = 2; we plan to
address this in more detail in [AY23+]. Note also that similar largest path (last passage time) properties
hold for RSK as well; see [Pak01, Sag01].

3.3. Corners and the inverse map Φ−1

Now we are going to describe the inverse map Φ−1 more concretely using a structure of d-dimensional
partitions.

Given a partition 𝜋 ∈ P (𝑑) , define the set of corners as follows:

Cor(𝜋) :=
{
i ∈ Z𝑑+1

+ : i ∈ 𝐷 (𝜋), i + eℓ ∉ 𝐷 (𝜋) for all ℓ ∈ [𝑑]
}
⊆ 𝐷 (𝜋).
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Figure 1. A plane partition 𝜋 ∈ P (2) whose sh(𝜋) is the diagram of the partition (3, 2); its boxed
diagram presentation as a pile of cubes in R3; and boxes of this diagram which correspond to corners.

(Here {eℓ } is the standard basis in Z𝑑+1.) Let cor(𝜋) := |Cor(𝜋) | be the number of corners of 𝜋. Define
also the set of top corners as follows:

Cr(𝜋) :=
{
i ∈ Z𝑑+1

+ : i ∈ 𝐷 (𝜋), i + eℓ ∉ 𝐷 (𝜋) for all ℓ ∈ [𝑑 + 1]
}
⊆ Cor(𝜋).

Let cr(𝜋) := |Cr(𝜋) | be the number of top corners of 𝜋. More intuitively, a top corner (resp. corner) of
𝜋 is an element removable from the diagram of (resp. the shape of) 𝜋. Note that the set of top corners
Cr(𝜋) uniquely determines the partition 𝜋.

Example 3.3. Let 𝑑 = 2 and 𝜋 be the plane partition given in Figure 1. We then have

Cor(𝜋) = {(𝑖, 𝑗 , 𝑘) ∈ 𝐷 (𝜋) : (𝑖 + 1, 𝑗 , 𝑘), (𝑖, 𝑗 + 1, 𝑘) ∉ 𝐷 (𝜋)}
= {(1, 1, 4), (1, 3, 1), (1, 3, 2), (2, 2, 1), (2, 2, 2), (2, 2, 3)}

Cr(𝜋) = {(𝑖, 𝑗 , 𝑘) ∈ 𝐷 (𝜋) : (𝑖 + 1, 𝑗 , 𝑘), (𝑖, 𝑗 + 1, 𝑘), (𝑖, 𝑗 , 𝑘 + 1) ∉ 𝐷 (𝜋)}
= {(1, 1, 4), (1, 3, 2), (2, 2, 3)},

where corners in Figure 1 correspond to local configurations and top corners correspond to the
configurations .

Consider the corner projection map 𝜑 : P (𝑑) → M(𝑑) given by 𝜋 ↦→ (𝑎i), where

𝑎i = |{𝑖𝑑+1 : (i, 𝑖𝑑+1) ∈ Cor(𝜋)}|, i ∈ Z𝑑+ .

Lemma 3.4. We have: 𝜑 = Φ−1.

Proof. The key observation is that (i, 𝑖𝑑+1) ∈ Cor(𝜋) if and only if 𝜋i ≥ 𝑖𝑑+1 > 𝜋i+eℓ for all ℓ ∈ [𝑑].
Hence,

𝑎i = |{𝑖𝑑+1 : (i, 𝑖𝑑+1) ∈ Cor(𝜋)}| = 𝜋i − max
ℓ∈[𝑑 ]

𝜋i+eℓ , i ∈ Z𝑑+ ,

which gives Φ−1 : 𝜋 ↦→ (𝑎i). �

We will also use the following properties relating shapes of partitions and top corners.

Lemma 3.5. Let 𝜌 ⊂ Z𝑑+ be a shape of a d-dimensional partition, 𝐴 = (𝑎i) ∈ M (𝜌,∞) and 𝜋 = (𝜋i) =
Φ(𝐴) ∈ P (𝜌,∞). The following are equivalent:

(a) 𝑎i > 0 for all (i, ·) ∈ Cr(𝜌)
(b) sh(𝜋) = 𝜌.

Proof. Let (i, ·) ∈ Cr(𝜌). Assume (a) holds. Since 𝐴 ∈ M (𝜌,∞), we have 𝑎i+eℓ = 0 for all ℓ ∈ [𝑑].
Therefore, 𝜋i = 𝑎i > 0 and 𝜋i+eℓ = 0. Hence, sh(𝜋) = 𝜌.

Assume (b) holds. Then we have 𝜋i+eℓ = 0 for all ℓ ∈ [𝑑]. Therefore, 𝑎i = 𝜋i > 0. �
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4. Multivariate identities

4.1. Main formulas

Let (𝑥𝑖1 ,...,𝑖𝑑 ) be indeterminate variables.

Theorem 4.1. Let 𝜌 ⊂ Z𝑑+ be a fixed shape of a d-dimensional partition. We have the following
multivariate generating function identities:

∑
𝜋∈P (𝑑) ,
sh(𝜋)⊆𝜌

∏
(𝑖1 ,...,𝑖𝑑+1) ∈Cor(𝜋)

𝑥𝑖1 ,...,𝑖𝑑 =
∏

(𝑖1 ,...,𝑖𝑑) ∈𝜌

(
1 − 𝑥𝑖1 ,...,𝑖𝑑

)−1
, (4)

∑
𝜋∈P (𝑑) ,
sh(𝜋)=𝜌

∏
(𝑖1 ,...,𝑖𝑑+1) ∈Cor(𝜋)

𝑥𝑖1 ,...,𝑖𝑑 =
∏

(𝑖1 ,...,𝑖𝑑) ∈Cr(𝜌)
𝑥𝑖1 ,...,𝑖𝑑

∏
(𝑖1 ,...,𝑖𝑑) ∈𝜌

(
1 − 𝑥𝑖1 ,...,𝑖𝑑

)−1
, (5)

where Cr(𝜌) := Cr(the partition whose diagram is 𝜌).

It is convenient to define weights of hypermatrices and partitions as follows. Given a hypermatrix
𝐴 = (𝑎𝑖1 ,...,𝑖𝑑 ) ∈ M(𝑑) , we associate to it a multivariable monomial weight

𝑤𝐴 :=
∏

(𝑖1 ,...,𝑖𝑑) ∈Z𝑑+

(
𝑥𝑖1 ,...,𝑖𝑑

)𝑎𝑖1 ,...,𝑖𝑑 .

Given a partition 𝜋 ∈ P (𝑑) , we associate to it a multivariable monomial weight

𝑤(𝜋) :=
∏

(𝑖1 ,...,𝑖𝑑+1) ∈Cor(𝜋)
𝑥𝑖1 ,...,𝑖𝑑 .

The following lemma shows that the bijection Φ is weight-preserving.

Lemma 4.2. Let 𝐴 = (𝑎i) ∈ M(𝑑) and 𝜋 = (𝜋i) = Φ(𝐴) ∈ P (𝑑) . Then 𝑤𝐴 = 𝑤(𝜋).

Proof. Using the corner projection map 𝜑 = Φ−1, by Lemma 3.4, we have

𝑤𝐴 =
∏

(𝑖1 ,...,𝑖𝑑) ∈Z𝑑+

(
𝑥𝑖1 ,...,𝑖𝑑

)𝑎𝑖1 ,...,𝑖𝑑

=
∏

(𝑖1 ,...,𝑖𝑑) ∈Z𝑑+

(
𝑥𝑖1 ,...,𝑖𝑑

) | {𝑖𝑑+1:(𝑖1 ,...,𝑖𝑑 ,𝑖𝑑+1) ∈Cor(𝜋) } |

=
∏

(𝑖1 ,...,𝑖𝑑+1) ∈Cor(𝜋)
𝑥𝑖1 ,...,𝑖𝑑

= 𝑤(𝜋),

which gives what is needed. �

Proof of Theorem 4.1. First, note that
∑

𝐴=(𝑎i) ∈M(𝜌,∞)
𝑤𝐴 =

∑
𝐴=(𝑎i) ∈M(𝜌,∞)

∏
(𝑖1 ,...,𝑖𝑑) ∈𝜌

(
𝑥𝑖1 ,...,𝑖𝑑

)𝑎𝑖1 ,...,𝑖𝑑

=
∏

(𝑖1 ,...,𝑖𝑑) ∈𝜌

(
1 − 𝑥𝑖1 ,...,𝑖𝑑

)−1
.
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On the other hand, using Corollary 3.2 (iii) and Lemma 4.2, we have
∑

𝐴=(𝑎i) ∈M(𝜌,∞)
𝑤𝐴 =

∑
𝜋∈P (𝜌,∞)

𝑤(𝜋) =
∑

𝜋∈P (𝑑) , sh(𝜋) ⊆𝜌

∏
(𝑖1 ,...,𝑖𝑑+1) ∈Cor(𝜋)

𝑥𝑖1 ,...,𝑖𝑑

and hence the identity (4) follows.
Let M(𝜌,∞) = {𝐴 ∈ M(𝜌,∞) : i ∈ Cr(𝜌) =⇒ 𝑎i > 0}. Similarly, note that

∑
𝐴=(𝑎i) ∈M(𝜌,∞)

𝑤𝐴 =
∑

𝐴=(𝑎i) ∈M(𝜌,∞)

∏
(𝑖1 ,...,𝑖𝑑) ∈Cr(𝜌)

𝑥𝑖1 ,...,𝑖𝑑

∏
(𝑖1 ,...,𝑖𝑑) ∈𝜌

(
𝑥𝑖1 ,...,𝑖𝑑

)𝑎𝑖1 ,...,𝑖𝑑

=
∏

(𝑖1 ,...,𝑖𝑑) ∈Cr(𝜌)
𝑥𝑖1 ,...,𝑖𝑑

∏
(𝑖1 ,...,𝑖𝑑) ∈𝜌

(
1 − 𝑥𝑖1 ,...,𝑖𝑑

)−1
.

On the other hand, using Lemma 3.5 we have
∑

𝐴=(𝑎i) ∈M(𝜌,∞)

𝑤𝐴 =
∑

𝜋∈P (𝜌,∞) ,sh(𝜋)=𝜌
𝑤(𝜋) =

∑
𝜋∈P (𝑑) , sh(𝜋)=𝜌

∏
(𝑖1 ,...,𝑖𝑑+1) ∈Cor(𝜋)

𝑥𝑖1 ,...,𝑖𝑑

and hence, the identity (5) follows. �

4.2. Some special cases

Let us list a few immediate special cases of the above formulas.

Corollary 4.3 (Boxed case). For any 𝑛1, . . . , 𝑛𝑑 ≥ 0, we have

∑
𝜋∈P (𝑛1 ,...,𝑛𝑑 ,∞)

∏
(𝑖1 ,...,𝑖𝑑+1) ∈Cor(𝜋)

𝑥𝑖1 ,...,𝑖𝑑 =
𝑛1∏
𝑖1=1

· · ·
𝑛𝑑∏
𝑖𝑑=1

(
1 − 𝑥𝑖1 ,...,𝑖𝑑

)−1
.

Corollary 4.4 (Solid partitions, 𝑑 = 3). Let 𝜌 be a plane partition. We have

∑
𝜋∈P (3) , sh(𝜋) ⊆𝐷 (𝜌)

∏
(𝑖, 𝑗 ,𝑘,ℓ) ∈Cor(𝜋)

𝑥𝑖 𝑗𝑘 =
∏

(𝑖, 𝑗 ,𝑘) ∈𝐷 (𝜌)

(
1 − 𝑥𝑖 𝑗𝑘

)−1

∑
𝜋∈P (3) , sh(𝜋)=𝐷 (𝜌)

∏
(𝑖, 𝑗 ,𝑘,ℓ) ∈Cor(𝜋)

𝑥𝑖 𝑗𝑘 =
∏

(𝑖, 𝑗 ,𝑘) ∈𝐷 (𝜌)

(
1 − 𝑥𝑖 𝑗𝑘

)−1 ∏
(𝑖, 𝑗 ,𝑘) ∈Cr(𝜌)

𝑥𝑖 𝑗𝑘 .

For 𝑑 = 2 we obtain the following new identity for plane partitions.

Corollary 4.5 (Plane partitions, 𝑑 = 2). Let 𝜆 be a partition. We have

∑
𝜋∈P (2) , sh(𝜋) ⊆𝐷 (𝜆)

∏
(𝑖, 𝑗 ,𝑘) ∈Cor(𝜋)

𝑥𝑖 𝑗 =
∏

(𝑖, 𝑗) ∈𝐷 (𝜆)

(
1 − 𝑥𝑖 𝑗

)−1

∑
𝜋∈P (2) , sh(𝜋)=𝐷 (𝜆)

∏
(𝑖, 𝑗 ,𝑘) ∈Cor(𝜋)

𝑥𝑖 𝑗 =
∏

(𝑖, 𝑗) ∈𝐷 (𝜆)

(
1 − 𝑥𝑖 𝑗

)−1 ∏
(𝑖, 𝑗) ∈Cr(𝜆)

𝑥𝑖 𝑗 .

Remark 3. For 𝑑 = 2, the formula in the special rectangular case (with 𝑥𝑖 𝑗 = 𝑥𝑖𝑦 𝑗 up to rotation of
diagrams of plane partitions) was proved in [Yel21b].
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5. MacMahon’s numbers and statistics

5.1. Corner-hook volume

Let 𝜋 ∈ P (𝑑) be a d-dimensional partition. For each point (𝑖1, . . . , 𝑖𝑑), define the cohook length

ch(𝑖1, . . . , 𝑖𝑑) := 𝑖1 + . . . + 𝑖𝑑 − 𝑑 + 1.

Define now the corner-hook volume statistic | · |𝑐ℎ : P (𝑑) → N, computed as follows:

|𝜋 |𝑐ℎ :=
∑

(i,𝑖𝑑+1) ∈Cor(𝜋)
ch(i).

Example 5.1. Let 𝑑 = 2 and 𝜋 be the plane partition given in Figure 1. Recall that

Cor(𝜋) = {(𝑖, 𝑗 , 𝑘) ∈ 𝐷 (𝜋) : (𝑖 + 1, 𝑗 , 𝑘), (𝑖, 𝑗 + 1, 𝑘) ∉ 𝐷 (𝜋)}
= {(1, 1, 4), (1, 3, 1), (1, 3, 2), (2, 2, 1), (2, 2, 2), (2, 2, 3)},

and hence, we have

|𝜋 |𝑐ℎ = (1 + 1 − 1) + (1 + 3 − 1) + (1 + 3 − 1) + (2 + 2 − 1) + (2 + 2 − 1) + (2 + 2 − 1) = 16.

Theorem 5.2. Let 𝜌 ⊂ Z𝑑+ be a fixed shape of a d-dimensional partition. We have the following
generating functions:

∑
𝜋∈P (𝑑) , sh(𝜋) ⊆𝜌

𝑡cor(𝜋)𝑞 |𝜋 |𝑐ℎ =
∏

(𝑖1 ,...,𝑖𝑑) ∈𝜌

(
1 − 𝑡𝑞𝑖1+···+𝑖𝑑−𝑑+1

)−1
,

∑
𝜋∈P (𝑑) , sh(𝜋)=𝜌

𝑡cor(𝜋)𝑞 |𝜋 |𝑐ℎ = 𝑡cr(𝜌)𝑞 |𝜌 |𝑐𝑟
∏

(𝑖1 ,...,𝑖𝑑) ∈𝜌

(
1 − 𝑡𝑞𝑖1+···+𝑖𝑑−𝑑+1

)−1
,

where

|𝜌 |𝑐𝑟 :=
∑

(𝑖1 ,...,𝑖𝑑) ∈Cr(𝜌)
ch(𝑖1, . . . , 𝑖𝑑).

Proof. In Theorem 4.1 set 𝑥𝑖1 ,...,𝑖𝑑 = 𝑡𝑞𝑖1+...+𝑖𝑑−𝑑+1. �

Corollary 5.3 (Boxed version). We have

∑
𝜋∈P (𝑛1 ,...,𝑛𝑑 ,∞)

𝑡cor(𝜋)𝑞 |𝜋 |𝑐ℎ =
𝑛1∏
𝑖1=1

· · ·
𝑛𝑑∏
𝑖𝑑=1

(
1 − 𝑡𝑞𝑖1+···+𝑖𝑑−𝑑+1

)−1
.

Corollary 5.4 (Full generating function). We have
∑

𝜋∈P (𝑑)

𝑡cor(𝜋)𝑞 |𝜋 |𝑐ℎ =
∏
𝑛≥1

(1 − 𝑡𝑞𝑛)−(
𝑛+𝑑−2
𝑑−1 ) .

Corollary 5.5 (Interpretation of MacMahon’s numbers). We have

∑
𝜋∈P (𝑑)

𝑞 |𝜋 |𝑐ℎ =
∏
𝑛≥1

(1 − 𝑞𝑛)−(
𝑛+𝑑−2
𝑑−1 ) =

∞∑
𝑛=0

𝑚𝑑 (𝑛)𝑞𝑛,

https://doi.org/10.1017/fms.2023.61 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2023.61


10 A. Amanov and D. Yeliussizov

and hence,

𝑚𝑑 (𝑛) = |{𝜋 ∈ P (𝑑) : |𝜋 |𝑐ℎ = 𝑛}|

(i.e., 𝑚𝑑 (𝑛) is the number of d-dimensional partitions whose corner-hook volume is n).

Corollary 5.6 (Pyramid partitions). Let Δ𝑑 (𝑚) be a d-dimensional partition whose diagram is
𝐷 (Δ𝑑 (𝑚)) = {(𝑖1, . . . , 𝑖𝑑+1) : Z𝑑+1

+ : 𝑖1 + · · · + 𝑖𝑑+1 − 𝑑 ≤ 𝑚}. We have

∑
𝜋∈P (𝐷 (Δ𝑑−1 (𝑚)) ,∞)

𝑡cor(𝜋)𝑞 |𝜋 |𝑐ℎ =
𝑚∏
𝑛=1

(1 − 𝑡𝑞𝑛)−(
𝑛+𝑑−2
𝑑−1 ) .

Corollary 5.7 (𝑞 = 1 specialization). We have
∑

𝜋∈P (𝑑) , sh(𝜋) ⊆𝜌

𝑡cor(𝜋) = (1 − 𝑡)−|𝜌 | ,

∑
𝜋∈P (𝑑) , sh(𝜋)=𝜌

𝑡cor(𝜋) = 𝑡cr(𝜌) (1 − 𝑡)−|𝜌 | .

Then the number of 𝜋 ∈ P (𝑑) of shape 𝜌 with k corners is equal to
(𝑘−cr(𝜌)+ |𝜌 |−1

|𝜌 |−1
)
.

5.2. Solid partitions, 𝑑 = 3

Let us restate some of these results for solid partitions. Let 𝜋 ∈ P (3) be a solid partition. We then have

|𝜋 |𝑐ℎ =
∑

(𝑖, 𝑗 ,𝑘,ℓ) ∈Cor(𝜋)
(𝑖 + 𝑗 + 𝑘 − 2).

Corollary 5.8. Let 𝜌 be a fixed plane partition. We have

∑
𝜋∈P (3) , sh(𝜋) ⊆𝐷 (𝜌)

𝑡cor(𝜋)𝑞 |𝜋 |𝑐ℎ =
∏

(𝑖, 𝑗 ,𝑘) ∈𝐷 (𝜌)

(
1 − 𝑡𝑞𝑖+ 𝑗+𝑘−2

)−1
,

∑
𝜋∈P (3) , sh(𝜋)=𝐷 (𝜌)

𝑡cor(𝜋)𝑞 |𝜋 |𝑐ℎ = 𝑡cr(𝜌)𝑞 |𝜌 |𝑐𝑟
∏

(𝑖, 𝑗 ,𝑘) ∈𝐷 (𝜌)

(
1 − 𝑡𝑞𝑖+ 𝑗+𝑘−2

)−1
,

and, in particular, the boxed version

∑
𝜋∈P (𝑛1 ,𝑛2 ,𝑛3 ,∞)

𝑡cor(𝜋)𝑞 |𝜋 |𝑐ℎ =
𝑛1∏
𝑖=1

𝑛2∏
𝑗=1

𝑛3∏
𝑘=1

(
1 − 𝑡𝑞𝑖+ 𝑗+𝑘−2

)−1
.

5.3. Plane partitions, 𝑑 = 2

Similarly, let us restate some of these results for plane partitions. Let 𝜋 ∈ P (2) be a plane partition. We
then have

|𝜋 |𝑐ℎ =
∑

(𝑖, 𝑗 ,𝑘) ∈Cor(𝜋)
(𝑖 + 𝑗 − 1).
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Corollary 5.9. Let 𝜆 be a fixed partition. We have

∑
𝜋∈P (2) , sh(𝜋) ⊆𝐷 (𝜆)

𝑡cor(𝜋)𝑞 |𝜋 |𝑐ℎ =
∏

(𝑖, 𝑗) ∈𝐷 (𝜆)

(
1 − 𝑡𝑞𝑖+ 𝑗−1

)−1
,

∑
𝜋∈P (2) , sh(𝜋)=𝐷 (𝜆)

𝑡cor(𝜋)𝑞 |𝜋 |𝑐ℎ = 𝑡cr(𝜆)𝑞 |𝜆 |𝑐𝑟
∏

(𝑖, 𝑗) ∈𝐷 (𝜆)

(
1 − 𝑡𝑞𝑖+ 𝑗−1

)−1
,

and, in particular, the boxed version

∑
𝜋∈P (𝑛1 ,𝑛2 ,∞)

𝑡cor(𝜋)𝑞 |𝜋 |𝑐ℎ =
𝑛1∏
𝑖=1

𝑛2∏
𝑗=1

(
1 − 𝑡𝑞𝑖+ 𝑗−1

)−1
.

Let us compare the last boxed formula with known results. The following trace generating function
is known for plane partitions (see, for example, [Sta99, Thm 7.20.1]):

𝑛1∏
𝑖=1

𝑛2∏
𝑗=1

(
1 − 𝑡𝑞𝑖+ 𝑗−1

)−1
=

∑
𝜋∈P (𝑛1 ,𝑛2 ,∞)

𝑡tr(𝜋)𝑞 |𝜋 | ,

where tr(𝜋) :=
∑

𝑖 𝜋𝑖,𝑖 is the trace of a plane partition. Therefore, in this case, we actually have the
following equidistribution result.

Theorem 5.10 (Equidistribution of (tr, vol) and (cor, ch-vol) for plane partitions). We have
∑

𝜋∈P (𝑛1 ,𝑛2 ,∞)
𝑡cor(𝜋)𝑞 |𝜋 |𝑐ℎ =

∑
𝜋∈P (𝑛1 ,𝑛2 ,∞)

𝑡tr(𝜋)𝑞 |𝜋 | .

Remark 4. Up to a rotation of coordinates, this equidistribution result was proved by the second author
in [Yel21b]. We also have a direct bijective argument for (a stronger version of) this identity which is
somewhat long and will be addressed elsewhere.

Remark 5. The formulas in Theorem 5.2 can be viewed as higher-dimensional analogues of the well-
known formula

∑
sh(𝜋)=𝜆

𝑞 |𝜋 | =
∏

(𝑖, 𝑗) ∈𝐷 (𝜆)

(
1 − 𝑞ℎ𝜆 (𝑖, 𝑗)

)−1
,

where 𝜆 is a (usual) partition, ℎ𝜆 (𝑖, 𝑗) := 𝜆𝑖 − 𝑖 +𝜆′𝑗 − 𝑗 + 1 are hook lengths and the sum runs over weak
reverse plane partitions 𝜋; see [Sta99, Ch. 7.22]. Its combinatorial proof is known as the Hillman–Grassl
correspondence [HG76]. Now, setting 𝑥𝑖 𝑗 = 𝑞ℎ𝜆 (𝑖, 𝑗) in Corollary 4.5 gives

∑
sh(𝜋) ⊆𝜆

𝑞 |𝜋 |ℎ =
∏

(𝑖, 𝑗) ∈𝐷 (𝜆)

(
1 − 𝑞ℎ𝜆 (𝑖, 𝑗)

)−1
,

where the sum runs over plane partitions 𝜋 and

|𝜋 |ℎ :=
∑

(𝑖, 𝑗 ,𝑘) ∈Cor(𝜋)
ℎ𝜆 (𝑖, 𝑗).

These formulas give another interesting equidistribution result.

Remark 6. There are various enumeration and generating function formulas known for classes of
symmetric plane partitions; see [Sta86b]. Similarly, one can define classes of symmetries of diagrams
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for d-dimensional partitions. Are there any explicit corner-hook generating functions over symmetric
d-dimensional partitions as in Theorem 5.2?

5.4. Other statistics

Theorem 4.1 is a source for many statistics over d-dimensional partitions, whose generating functions can
be computed explicitly by taking appropriate specializations. For instance, another interesting statistic
| · |𝑐 : P (𝑑) → N is given by

|𝜋 |𝑐 :=
∑

(𝑖1 ,...,𝑖𝑑+1) ∈Cor(𝜋)
𝑖1, 𝜋 ∈ P (𝑑) .

Then via the substitution 𝑥𝑖1 ,...,𝑖𝑑 = 𝑞𝑖1 we obtain the following generating function:

∑
𝜋∈P (𝑛1 ,...,𝑛𝑑 ,∞)

𝑞 |𝜋 |𝑐 =
𝑛1∏
𝑖=1

(1 − 𝑞𝑖)−𝑛2 · · ·𝑛𝑑 .

Another curious statistic is given by

|𝜋 |𝑝 :=
∑

(𝑖1 ,...,𝑖𝑑+1) ∈Cor(𝜋)
(𝑖1 + 2 𝑖2 + . . . + 𝑑 𝑖𝑑), 𝜋 ∈ P (𝑑)

for which via the substitution 𝑥𝑖1 ,...,𝑖𝑑 = 𝑞𝑖1+2𝑖2+...+𝑑𝑖𝑑 we obtain the following generating function:

∑
𝜋∈P (𝑑)

𝑞 |𝜋 |𝑝 =
∞∏
𝑛=1

(1 − 𝑞𝑛)−𝑝 (𝑛,𝑑) ,

where 𝑝(𝑛, 𝑑) is the number of integer partitions of n into d distinct parts.

6. d-dimensional Grothendieck polynomials

From now on, we specialize 𝑥𝑖1 ,...,𝑖𝑑 = 𝑥 (1)𝑖1
· · · 𝑥 (𝑑)𝑖𝑑

.

6.1. Definitions

Let 𝜋 be a d-dimensional partition. Define the set

sh1(𝜋) := {(𝑖2, . . . , 𝑖𝑑+1) : (𝑖1, . . . , 𝑖𝑑+1) ∈ 𝐷 (𝜋)} = {(𝑖2, . . . , 𝑖𝑑+1) : (1, 𝑖2, . . . , 𝑖𝑑+1) ∈ 𝐷 (𝜋)},

which can be viewed as a shape of 𝜋 with respect to the first coordinate. Note that if 𝜋 ∈ P (𝑛1, . . . , 𝑛𝑑+1),
then sh1(𝜋) is a diagram of (𝑑 − 1)-dimensional partition from P (𝑛2, . . . , 𝑛𝑑+1). Concretely, sh1 (𝜋) is
the diagram of the partition (𝜋1,𝑖2 ,...,𝑖𝑑 ). For example, if 𝜋 is the plane partition in Figure 1, then sh1(𝜋)
corresponds to the partition (4, 3, 2), which is the first row of 𝜋.

Throughout this section, let us assume that 𝑛1, . . . , 𝑛𝑑 are fixed and we have the sets of variables

x(𝑖) := (𝑥 (𝑖)1 , . . . , 𝑥 (𝑖)𝑛𝑖 ), 𝑖 ∈ [𝑑] .

Definition 6.1. Let 𝜌 be a (𝑑 − 1)-dimensional partition from the set P (𝑛2, . . . , 𝑛𝑑+1). Define the d-
dimensional Grothendieck polynomials in d sets of variables as follows:

𝑔𝜌 (x(1) ; . . . ; x(𝑑) ) :=
∑

𝜋 : sh1 (𝜋)=𝜌

∏
(𝑖1 ,...,𝑖𝑑+1) ∈Cor(𝜋)

𝑥 (1)𝑖1
· · · 𝑥 (𝑑)𝑖𝑑

, (6)
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Figure 2. A plane partition 𝜋 and its transpose 𝜋′ of the shape 𝜆 = (432) with the corresponding
diagrams in which the corner boxes of 𝜋 are highlighted.

where the sum runs over d-dimensional partitions 𝜋 ∈ P (𝑛1, . . . , 𝑛𝑑+1) with sh1(𝜋) = 𝜌 (here 𝜌 is
identified with its diagram).

In the specialization 𝑥 (𝑘)𝑖 = 1 for all 𝑘 ≥ 2, we simply denote these polynomials by 𝑔𝜌 (x) =
𝑔𝜌 (𝑥1, 𝑥2, . . .) in one set of variables x(1) = x = (𝑥1, . . . , 𝑥𝑛1 ) so that

𝑔𝜌 (x) =
∑

𝜋 : sh1 (𝜋)=𝜌

𝑛1∏
𝑖=1

𝑥𝑐𝑖 (𝜋)𝑖 , where 𝑐𝑖 (𝜋) := |{i : (𝑖, i) ∈ Cor(𝜋)}| (7)

and the sum runs over 𝜋 ∈ P (𝑛1, . . . , 𝑛𝑑+1).

6.2. Examples

Example 6.2. Consider the case 𝑑 = 2. Let 𝜆 ∈ P (𝑛2, 𝑛3) be a partition and x(1) = x, x(2) = y. Then
(7) becomes

𝑔𝜆 (x) =
∑

𝜋 : sh1 (𝜋)=𝜆

𝑛1∏
𝑖=1

𝑥𝑐𝑖 (𝜋)𝑖 , where 𝑐𝑖 (𝜋) = |{( 𝑗 , 𝑘) : (𝑖, 𝑗 , 𝑘) ∈ Cor(𝜋)}|,

and the sum runs over plane partitions 𝜋 ∈ P (𝑛1, 𝑛2, 𝑛3). Let us transpose 𝜋 to 𝜋′ via cyclic shift of
the diagram so that (𝑖, 𝑗 , 𝑘) ∈ 𝐷 (𝜋) ⇐⇒ ( 𝑗 , 𝑘, 𝑖) ∈ 𝐷 (𝜋′). Note that sh1(𝜋) = sh(𝜋′) = 𝜆 and
𝑐𝑖 (𝜋) is equal to the number of columns of 𝜋′ (viewed as a 2d array) containing the entry 𝑖 ∈ [𝑛1]; see
Figure 2. This shows that {𝑔𝜆 (x)} are the dual stable Grothendieck polynomials introduced3 in [LP07],
but phrased in a slightly different yet equivalent form.

More generally, (6) becomes

𝑔𝜆 (x; y) =
∑

𝜋 : sh1 (𝜋)=𝜆

∏
(𝑖, 𝑗 ,𝑘) ∈Cor(𝜋)

𝑥𝑖𝑦 𝑗 ,

which by rescaling �̃�𝜆 (x; y) = y𝜆𝑔𝜆 (x; y−1) gives the refined version of dual stable Grothendieck
polynomials introduced in [GGL16], where it was shown that these polynomials are symmetric in the
variables x.

Example 6.3. Let 𝑑 = 3, (𝑛1, 𝑛2, 𝑛3, 𝑛4) = (3, 2, 2, 2) and x(1) = x = (𝑥1, 𝑥2, 𝑥3), x(2) = y = (𝑦1, 𝑦2),
x(3) = z = (𝑧1, 𝑧2). Note that in this case, 3-dimensional Grothendieck polynomials are indexed by
plane partitions and defined as sums over solid partitions. Consider a few examples.

3In [LP07], the polynomials {𝑔𝜆 } are equivalently defined using reverse plane partitions.
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Figure 3. Each picture here represents a solid partition as a filling of a diagram of some plane
partition with numbers written on top of each box (to make entries of inner boxes visible, some facets are
removed). On the left, we have sh1(𝜋) = 𝜌. The next two are solid partitions 𝜋 (1) and 𝜋 (2) represented
as fillings of diagrams of plane partitions sh(𝜋 (1) ) = 2 1

2 1
1 1

and sh(𝜋 (2) ) = 2 1
2 1
2

; each has the weight

𝑤(𝜋 (𝑖) ) = 𝑥2
2𝑥3 · 𝑦2

1𝑦2𝑧
2
1𝑧2; and both have the same sh1(𝜋 (𝑖) ) = 𝜌 (𝑖 = 1, 2) displayed on the left.

(a) Let 𝜌 = 2 1 . Then we have

𝑔𝜌 (x; y; z) = (𝑥2
1𝑥2 + 𝑥2

1𝑥3 + 𝑥1𝑥
2
2 + 𝑥1𝑥

2
3 + 𝑥

2
2𝑥3 + 𝑥2𝑥

2
3 + 2𝑥1𝑥2𝑥3) · 𝑦3

1𝑧
2
1𝑧2

+ (𝑥2
1 + 𝑥

2
2 + 𝑥

2
3 + 𝑥1𝑥2 + 𝑥1𝑥3 + 𝑥2𝑥3) · 𝑦2

1𝑧1𝑧2,

which coincides with the ordinary dual stable Grothendieck polynomial indexed by the partition 𝜆 =
(2, 1) (i.e., in this case, we have 𝑔𝜆 (x) = 𝑔𝜌 (x, 1, 1)).

(b) Let 𝜌 = 1 1
1

. Then we have

𝑔𝜌 (x; y; z) = (𝑥2
1𝑥2 + 𝑥2

1𝑥3 + 𝑥2
2𝑥3) · 𝑦2

1𝑦2𝑧
2
1𝑧2 + 2𝑥1𝑥2𝑥3 · 𝑦2

1𝑦2𝑧
2
1𝑧2

+ (𝑥2
1 + 𝑥

2
2 + 𝑥

2
3 + 2𝑥1𝑥2 + 2𝑥1𝑥3 + 2𝑥2𝑥3) · 𝑦1𝑦2𝑧1𝑧2,

and in particular,

𝑔𝜌 (x) = 𝑥2
1𝑥2 + 𝑥2

1𝑥3 + 𝑥2
2𝑥3 + 2𝑥1𝑥2𝑥3 + 𝑥2

1 + 𝑥
2
2 + 𝑥

2
3 + 2(𝑥1𝑥2 + 𝑥1𝑥3 + 𝑥2𝑥3).

(c) Let 𝜌 = 2 1
1

. Then we have

𝑔𝜌 (x, y, z) = (3𝑥2
1𝑥2𝑥3 + 3𝑥1𝑥

2
2𝑥3 + 2𝑥1𝑥2𝑥

2
3 + 𝑥

2
1𝑥

2
2 + 𝑥

2
1𝑥

2
3 + 𝑥

2
2𝑥

2
3 + 𝑥

3
1𝑥2 + 𝑥3

1𝑥3 + 𝑥3
2𝑥3) · 𝑦3

1𝑦2𝑧
3
1𝑧2

+ (4𝑥1𝑥2𝑥3 + 2𝑥2
1𝑥2 + 2𝑥2

1𝑥3 + 2𝑥2
2𝑥3 + 3𝑥1𝑥

2
2 + 3𝑥1𝑥

2
3 + 3𝑥2𝑥

2
3 + 𝑥

3
1 + 𝑥

3
2 + 𝑥

3
3) · 𝑦

2
1𝑦2𝑧

2
1𝑧2.

Figure 3 illustrates a few examples of solid partitions contributing to the last expansion.

6.3. Properties

We now prove some properties of d-dimensional Grothendieck polynomials.

Theorem 6.4 (Cauchy–Littlewood-type identity). Let 𝜂 ∈ P (𝑛2, . . . , 𝑛𝑑) be a (𝑑 − 2)-dimensional
partition. Let 𝑛 × 𝜂 be a (𝑑 − 1)-dimensional partition with the diagram 𝐷 (𝑛 × 𝜂) = {(𝑖, i) : 𝑖 ∈ [𝑛], i ∈
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𝐷 (𝜂)}. Then we have the following generating series:

∑
𝜌∈P (𝜂,∞)

𝑔𝜌 (x(1) ; . . . ; x(𝑑) ) =
∏

(𝑖1 ,...,𝑖𝑑) ∈𝐷 (𝑛1×𝜂)

(
1 − 𝑥 (1)𝑖1

· · · 𝑥 (𝑑)𝑖𝑑

)−1
.

Proof. Notice that we have
∑

𝜌∈P (𝜂,∞)
𝑔𝜌 (x(1) ; . . . ; x(𝑑) ) =

∑
𝜌∈P (𝜂,∞)

∑
sh1 (𝜋)=𝜌

𝑤(𝜋) =
∑

𝜋∈P (𝑛1×𝜂,∞)
𝑤(𝜋).

On the other hand, from Theorem 4.1, we have

∑
𝜋∈P (𝑛1×𝜂,∞)

𝑤(𝜋) =
∏

(𝑖1 ,...,𝑖𝑑) ∈𝐷 (𝑛1×𝜂)

(
1 − 𝑥 (1)𝑖1

· · · 𝑥 (𝑑)𝑖𝑑

)−1

which gives the result. �

Corollary 6.5. We have

∑
𝜌∈P (𝑛2 ,...,𝑛𝑑 ,∞)

𝑔𝜌 (x(1) ; . . . ; x(𝑑) ) =
𝑛1∏
𝑖1=1

· · ·
𝑛𝑑∏
𝑖𝑑=1

(
1 − 𝑥 (1)𝑖1

· · · 𝑥 (𝑑)𝑖𝑑

)−1
.

Lemma 6.6 (Simple branching rule). We have

𝑔𝜋 (1, 𝑥1, . . . , 𝑥𝑛) =
∑
𝜌⊆𝜋

𝑔𝜌 (𝑥1, . . . , 𝑥𝑛).

Proof. Given a d-dimensional partition 𝜏 with sh1 (𝜏) = 𝜋, it contributes to the l.h.s. the weight∏𝑛
𝑖=1 𝑥

𝑐𝑖+1 (𝜏)
𝑖 (see Equation (7)). Let us form the new partition 𝜂 ⊆ 𝜋 with the diagram

{(𝑖, i) : (𝑖 + 1, i) ∈ 𝐷 (𝜏)}

so that
∏𝑛

𝑖=1 𝑥
𝑐𝑖+1 (𝜏)
𝑖 =

∏𝑛
𝑖=1 𝑥

𝑐𝑖 (𝜂)
𝑖 , which contributes to the r.h.s. In other words, remove from 𝐷 (𝜏)

the points with the first coordinate 1, then decrease by 1 the first coordinates for the remaining points.
It is not difficult to see that this defines a proper weight-preserving bijection between both sides of the
equation. �

Denote 1𝑘 = (1, . . . , 1) with k ones.

Proposition 6.7 (Boxed specialization). We have

𝑔 [𝑛2 ]×···×[𝑛𝑑+1 ] (1𝑛1+1) = 𝑔 [𝑛2 ]×···×[𝑛𝑑+1 ] (1𝑛1+1; 1𝑛2 ; . . . ; 1𝑛𝑑 ) = |P (𝑛1, . . . , 𝑛𝑑+1) |.

Proof. Denote 𝐵 = [𝑛2] × · · · × [𝑛𝑑+1]. Let 𝜌 be a partition diagram inside B. From the definition of g,
we immediately obtain that

𝑔𝜌 (1𝑛1 ; . . . ; 1𝑛𝑑 ) = |{𝜋 ∈ P (𝑛1, . . . , 𝑛𝑑+1) : sh1 (𝜋) = 𝜌}|.
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Therefore, using the branching formula above, we get

𝑔𝐵 (1𝑛1+1; 1𝑛2 ; . . . ; 1𝑛𝑑 ) =
∑
𝜌⊆𝐵

𝑔𝜌 (1𝑛1 ; 1𝑛2 ; . . . ; 1𝑛𝑑 )

=
∑
𝜌⊆𝐵

|{𝜋 ∈ P (𝑛1, . . . , 𝑛𝑑+1) : sh1 (𝜋) = 𝜌}|

= |P (𝑛1, . . . , 𝑛𝑑+1) |,

which gives what is needed. �

6.4. Quasisymmetry

It is known that the dual stable Grothendieck polynomials 𝑔𝜆 (x) are symmetric in x (in the case 𝑑 = 2).
As Example 6.3 shows, the generalized polynomials 𝑔𝜌 are not necessarily symmetric for 𝑑 ≥ 3.
However, as we show in this subsection, these polynomials are always quasisymmetric.

Definition 6.8. A polynomial 𝑓 ∈ Z[𝑥1, . . . , 𝑥𝑛] is called quasisymmetric if for all 1 ≤ ℓ1 < · · · < ℓ𝑘 ≤
𝑛, 1 ≤ 𝑗1 < · · · < 𝑗𝑘 ≤ 𝑛, and 𝑎1, . . . , 𝑎𝑘 ∈ Z+, we have

[𝑥𝑎1
ℓ1

· · · 𝑥𝑎𝑘

ℓ𝑘
] 𝑓 = [𝑥𝑎1

𝑗1
· · · 𝑥𝑎𝑘

𝑗𝑘
] 𝑓 ,

where [x𝛼] 𝑓 denotes the coefficient of the monomial x𝛼 in f.

Proposition 6.9. We have: 𝑔𝜌 (x(1) ; . . . ; x(𝑑) ) is quasisymmetric in the variables x(1) .

Proof. To simplify notation, let us denote x(1) = x = (𝑥1, 𝑥2, . . .). We need to show that for all
𝑎1, . . . , 𝑎𝑘 ∈ Z+, 1 ≤ ℓ1 < · · · < ℓ𝑘 ≤ 𝑛1, 1 ≤ 𝑗1 < · · · < 𝑗𝑘 ≤ 𝑛1, we have

[𝑥𝑎1
ℓ1

· · · 𝑥𝑎𝑘

ℓ𝑘
] 𝑔𝜌 = [𝑥𝑎1

𝑗1
· · · 𝑥𝑎𝑘

𝑗𝑘
] 𝑔𝜌

(where the indeterminates x(2) , . . . , x(𝑑) are regarded as constants). Let L and R be the sets of d-
dimensional partitions which contribute to the l.h.s. and r.h.s., respectively. We are going to construct a
weight-preserving bijection 𝜙 : 𝐿 → 𝑅.

Let 𝜋 ∈ 𝐿 for which we have 𝜋 ∈ P (𝑛1, . . . , 𝑛𝑑+1) with sh1(𝜋) = 𝐷 (𝜌) and 𝑤(𝜋) = 𝑥𝑎1
ℓ1

· · · 𝑥𝑎𝑘

ℓ𝑘
×𝑤′,

where 𝑤′ is the remaining product which does not contain the variables x.
For a hypermatrix 𝑋 = (𝑥i)i∈Z𝑑+ , define the slices 𝑋 (ℓ) = (𝑥ℓ,i)i∈Z𝑑−1

+
. Let |𝑋 | denote the sum of the

entries of X.
Let 𝐴 = (𝑎i) = Φ−1(𝜋) ∈ M(𝑛1, . . . , 𝑛𝑑). Note that 𝐴(ℓ) ∈ M(𝑛2, . . . , 𝑛𝑑) for ℓ ∈ [𝑛1]. Since Φ

preserves weights (i.e., 𝑤𝐴 = 𝑤(𝜋); see Lemma 4.2), we must have 𝐴(ℓ) ≠ 0 iff ℓ ∈ {ℓ1, . . . , ℓ𝑘 }. We
then have

𝑤(𝜋) = 𝑤𝐴 =
𝑛1∏
𝑖=1

𝑥 |𝐴
(𝑖) |

𝑖

∏
i=(𝑖2 ,...,𝑖𝑑)

(𝑥 (2)𝑖2
· · · 𝑥 (𝑑)𝑖𝑑

)𝑎𝑖,i =
𝑘∏
𝑖=1

𝑥𝑎𝑖ℓ𝑖 × 𝑤′.

Let us now construct another hypermatrix 𝐵 = (𝑏i) ∈ M(𝑛1, . . . , 𝑛𝑑) so that 𝐵 ( 𝑗) ≠ 0 iff
𝑗 ∈ { 𝑗1, . . . , 𝑗𝑘 } and 𝐵 ( 𝑗𝑖) = 𝐴(ℓ𝑖) for all 𝑖 ∈ [𝑘]. Let 𝜋′ = Φ(𝐵). We then clearly have

𝑤(𝜋′) = 𝑤𝐵 =
𝑘∏
𝑖=1

𝑥𝑎𝑖𝑗𝑖 × 𝑤′.

Let us show that sh1(𝜋′) = 𝐷 (𝜌) = sh1(𝜋). Recall that sh1(𝜋′) is the diagram of the partition
(𝜋′1,𝑖2 ,...,𝑖𝑑 ). By definition of Φ, each entry 𝜋′1,𝑖2 ,...,𝑖𝑑 is the largest weight of a directed path from
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(1, 𝑖2, . . . , 𝑖𝑑) to (𝑛1, . . . , 𝑛𝑑) through the hypermatrix B. This holds as the maximum of
∑

j∈Π 𝑏j among
all paths Π : (1, 𝑖2, . . . , 𝑖𝑑) → ∞𝑑 is achieved for some path that passes through (𝑛1, . . . , 𝑛𝑑), as any
other path could be redirected to (𝑛1, . . . , 𝑛𝑑) from the point where it first leaves the box [𝑛1] ×· · ·× [𝑛𝑑]
without lowering

∑
j∈Π 𝑏j. Similarly, each entry 𝜋1,𝑖2 ,...,𝑖𝑑 is the largest weight of a directed path from

(1, 𝑖2, . . . , 𝑖𝑑) to (𝑛1, . . . , 𝑛𝑑) through the hypermatrix A. In addition, note that when taking the maximum
over lattice paths, we can ‘skip’ zero slices 𝐴(ℓ) = 0. We then have

𝜋1,𝑖2 ,...,𝑖𝑑 = max
Π:(1,𝑖2 ,...,𝑖𝑑)→(𝑛1 ,...,𝑛𝑑)

∑
(ℓ,i) ∈Π, ℓ∈{ℓ1 ,...,ℓ𝑘 }

𝑎 (ℓ,i)

= max
Π:(1,𝑖2 ,...,𝑖𝑑)→(𝑛1 ,...,𝑛𝑑)

∑
( 𝑗 ,i) ∈Π, 𝑗∈{ 𝑗1 ,..., 𝑗𝑘 }

𝑏 ( 𝑗 ,i)

= 𝜋′1,𝑖2 ,...,𝑖𝑑 .

Hence 𝜋′ ∈ 𝑅, we can set 𝜙 : 𝜋 ↦→ 𝜋′ and it is a well-defined bijection between L and R. �

Note also that d-dimensional Grothendieck polynomials satisfy the stability: 𝑔𝜌 (x(1) ; . . . ; x(𝑑) ) does
not change for 𝑛1 → 𝑛1 + 1 and 𝑥 (1)𝑛1+1 = 0 (i.e., if we add an extra 0 at the end of x(1) ). Therefore,
𝑔𝜌 (x(1) ; . . . ; x(𝑑) ) can be treated as a quasisymmetric function in infinitely many variables x(1) (The
stability is just the projective limit of quasisymmetric functions).

Let us define the boxed polynomials

𝐹(𝑛1 ,...,𝑛𝑑+1) (x(1) ; . . . ; x(𝑑) ) :=
∑

𝜋∈P (𝑛1 ,...,𝑛𝑑+1)

∏
(𝑖1 ,...,𝑖𝑑+1) ∈Cor(𝜋)

𝑥 (1)𝑖1
· · · 𝑥 (𝑑)𝑖𝑑

,

which are bounded versions of the Cauchy product as by Corollary 4.3; we have

lim
𝑛𝑑+1→∞

𝐹(𝑛1 ,...,𝑛𝑑+1) (x(1) ; . . . ; x(𝑑) ) =
𝑛1∏
𝑖1=1

· · ·
𝑛𝑑∏
𝑖𝑑=1

(
1 − 𝑥 (1)𝑖1

· · · 𝑥 (𝑑)𝑖𝑑

)−1
.

These polynomials can also be expanded as follows:

𝐹(𝑛1 ,...,𝑛𝑑+1) (x(1) ; . . . ; x(𝑑) ) =
∑

𝜌∈P (𝑛2 ,...,𝑛𝑑+1)

∑
sh1 (𝜋)=𝜌

𝑤(𝜋) =
∑

𝜌∈P (𝑛2 ,...,𝑛𝑑+1)
𝑔𝜌 (x(1) ; . . . ; x(𝑑) ).

Corollary 6.10 (Full quasisymmetry of boxed polynomials). We have: 𝐹(𝑛1 ,...,𝑛𝑑+1) is quasisymmetric
in each set of the variables x(1) , . . . , x(𝑑) independently.

Proof. The quasisymmetry in x(1) is immediate from the previous proposition. The same holds for any
other set of variables by noting that the definitions of Cor(𝜋) and weights 𝑤(𝜋) are symmetric in the
first d coordinates, and hence we may repeat the proof by ‘rotation’ (i.e., moving any coordinate to the
position of the first one). �

Definition 6.11. Let 𝐴 = (𝑎𝑖1 ,...,𝑖𝑑 ) ∈ M (𝑛1, . . . , 𝑛𝑑). For each ℓ ∈ [𝑑], consider the hypermatrices
𝐵 (ℓ)
𝑖 = (𝑎𝑖1 ,...,𝑖𝑑 )𝑖ℓ=𝑖 (i.e., slices of A with fixed ℓ-th coordinate). Define the vectors

𝑠ℓ (𝐴) := (|𝐵 (ℓ)
1 |, |𝐵 (ℓ)

2 |, . . .),

where |𝐵 | denotes the sum of entries of B. For example, if 𝑑 = 2, then 𝑠1(𝐴) is the vector of row sums
of A, and 𝑠2(𝐴) is the column sums of A. Let us also say that A is a packed hypermatrix if for each
ℓ ∈ [𝑑], the sequence 𝑠ℓ (𝐴) does not contain zeros between its positive entries. Denote by pack(𝐴) the
packed hypermatrix formed from A by removing its zero slices 𝐵 (ℓ)

𝑖 = 0.
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Note that for any 𝐴 ∈ M(𝑛1, . . . , 𝑛𝑑), we have

𝑤𝐴 =
𝑑∏

ℓ=1

(
x(ℓ)

)𝑠ℓ (𝐴)
,

where for a set of variables x = (𝑥1, 𝑥2, . . .) and a vector 𝑠 = (𝑠1, 𝑠2, . . .), we use the notation
x𝑠 = 𝑥𝑠1

1 𝑥
𝑠2
2 · · ·.

For a composition 𝛼 = (𝛼1, . . . , 𝛼𝑘 ) ∈ Z𝑘+ , recall the monomial quasisymmetric functions

𝑀𝛼 (x) :=
∑

𝑖1<...<𝑖𝑘

𝑥𝛼1
𝑖1

· · · 𝑥𝛼𝑘

𝑖𝑘
.

Note that they form a basis of the algebra of quasisymmetric functions.
It is easy to see that

𝐹(𝑛1 ,...,𝑛𝑑 ,∞) =
∑

𝐴∈M(𝑛1 ,...,𝑛𝑑)
𝑤𝐴 =

∑
𝛼(1) ,...,𝛼(𝑑)

compositions

𝑚
𝛼(1) ,...,𝛼(𝑑) (x(1) )𝛼(1) · · · (x(𝑑) )𝛼(𝑑)

,

where 𝑚
𝛼(1) ,...,𝛼(𝑑) is the number of 𝐴 ∈ M(𝑛1, . . . , 𝑛𝑑) with 𝑠ℓ (𝐴) = 𝛼 (ℓ) ∈ N𝑛ℓ . The following result

is a finite boxed version of this expansion.

Theorem 6.12 (Monomial basis expansion of boxed polynomials). We have

𝐹(𝑛1 ,...,𝑛𝑑+1) =
∑

𝛼(1) ,...,𝛼(𝑑)

𝑚 (𝑛𝑑+1)
𝛼(1) ,...,𝛼(𝑑) 𝑀𝛼(1) (x(1) ) · · ·𝑀𝛼(𝑑) (x(𝑑) ),

where the sum runs over compositions 𝛼 (1) , . . . , 𝛼 (𝑑) such that |𝛼 (𝑖) | = |𝛼 ( 𝑗) | for all 𝑖, 𝑗 , and the
coefficient 𝑚 (𝑛𝑑+1)

𝛼(1) ,...,𝛼(𝑑) is equal to the number of packed hypermatrices 𝐴 ∈ M([𝑛1] × · · · × [𝑛𝑑], 𝑛𝑑+1)
such that 𝑠ℓ (𝐴) = 𝛼 (ℓ) for all ℓ ∈ [𝑑].

Proof. Note that replacing a hypermatrix A by pack(𝐴) does not change its last passage time 𝐺1,...,1.
Let 𝑃 ∈ M([𝑛1] × · · · × [𝑛𝑑], 𝑛𝑑+1) be a packed hypermatrix and let 𝑀 (𝑃) be the set of hypermatrices
𝐴 ∈ M([𝑛1] × · · · × [𝑛𝑑], 𝑛𝑑+1) such that pack(𝐴) = 𝑃. Let 𝑠ℓ (𝑃) = 𝛼 (ℓ) . Then (by an argument as in
Proposition 6.9) it is not difficult to obtain that we have

∑
𝐴∈𝑀 (𝑃)

𝑤𝐴 = 𝑀𝛼(1) (x(1) ) · · ·𝑀𝛼(𝑑) (x(𝑑) ).

Therefore, we obtain

𝐹(𝑛1 ,...,𝑛𝑑+1) =
∑

𝜋∈P (𝑛1 ,...,𝑛𝑑+1)
𝑤(𝜋)

=
∑

𝐴∈M( [𝑛1 ]×···×[𝑛𝑑 ],𝑛𝑑+1)
𝑤𝐴

=
∑

𝑃 packed

∑
𝐴∈𝑀 (𝑃)

𝑤𝐴

=
∑

𝛼(1) ,...,𝛼(𝑑)

𝑚 (𝑛𝑑+1)
𝛼(1) ,...,𝛼(𝑑) 𝑀𝛼(1) (x(1) ) · · ·𝑀𝛼(𝑑) (x(𝑑) )

as needed. �
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Remark 7. For 𝑑 = 2, packed matrices appear in the algebra of matrix quasisymmetric functions; see
[DHT02].

6.5. Some remarks

Remark 8 (Dual stable Grothendieck polynomials, 𝑑 = 2). Recall that in this case (see Example 6.2),
we get the following definition of polynomials 𝑔𝜆 (x; y) indexed by partitions 𝜆. We define

𝑔𝜆 (x; y) :=
∑

𝜋 : sh1 (𝜋)=𝜆

∏
(𝑖, 𝑗 ,𝑘) ∈Cor(𝜋)

𝑥𝑖𝑦 𝑗 ,

where the sum runs over plane partitions 𝜋. The polynomials 𝑔𝜆 (x; y) are generalizations of dual stable
Grothendieck polynomials which correspond to the specialization 𝑔𝜆 (x) = 𝑔𝜆 (x; 1). In fact, 𝑔𝜆(x; y) is
symmetric in x. The Cauchy–Littlewood-type identity in Corollary 6.5 becomes

∑
𝜆∈P (𝑛2 ,∞)

𝑔𝜆 (x; y) =
𝑛1∏
𝑖=1

𝑛2∏
𝑗=1

1
1 − 𝑥𝑖𝑦 𝑗

,

which was proved in [Yel21a, Yel21b]. The boxed specialization formula in Proposition 6.7 becomes
the following:

𝑔 [𝑛2 ]×[𝑛3 ] (1𝑛1+1) = |P (𝑛1, 𝑛2, 𝑛3) |,

the number of plane partitions inside the box [𝑛1] × [𝑛2] × [𝑛3], for which there is also the famous
MacMahon boxed product formula

|P (𝑛1, 𝑛2, 𝑛3) | =
𝑛1∏
𝑖=1

𝑛2∏
𝑗=1

𝑛3∏
𝑘=1

𝑖 + 𝑗 + 𝑘 − 1
𝑖 + 𝑗 + 𝑘 − 2

.

Using determinantal formulas for dual stable Grothendieck polynomials [Yel17], we also have the
following ‘coincidence’ formula (see [Yel21a, Lemma 3.4], [Yel21b, Lemma 6.9]) connecting them
with the Schur polynomials {𝑠𝜆} as follows:

𝑔 [𝑛2 ]×[𝑛3 ] (x) = 𝑠 [𝑛2 ]×[𝑛3 ] (x, 1𝑛2−1).

Remark 9 (3d Grothendieck polynomials, 𝑑 = 3). In this case, we get the following definition of
polynomials 𝑔𝜌 (x; y; z) indexed by plane partitions 𝜌. We define

𝑔𝜌 (x; y; z) :=
∑

𝜋 : sh1 (𝜋)=𝜌

∏
(𝑖, 𝑗 ,𝑘,ℓ) ∈Cor(𝜋)

𝑥𝑖𝑦 𝑗 𝑧𝑘 , (8)

where the sum runs over solid partitions 𝜋 ∈ P (𝑛1, 𝑛2, 𝑛3, 𝑛4). Note also that if 𝜌 satisfies 𝐷 (𝜌) =
{(1, 𝑖, 𝑗) : (𝑖, 𝑗) ∈ 𝐷 (𝜆)} where 𝜆 is a partition, we then have 𝑔𝜌 (x; 1; z) = 𝑔𝜆 (x; z) reduces to the 2d
case discussed above. The polynomials 𝑔𝜌 (x; y; z) are quasisymmetric in x. The Cauchy–Littlewood-
type identity in Corollary 6.5 becomes

∑
𝜌∈P (𝑛2 ,𝑛3 ,∞)

𝑔𝜌 (x; y; z) =
𝑛1∏
𝑖=1

𝑛2∏
𝑗=1

𝑛3∏
𝑘=1

(
1 − 𝑥𝑖𝑦 𝑗 𝑧𝑘

)−1
.

The boxed specialization formula becomes the following:

𝑔 [𝑛2 ]×[𝑛3 ]×[𝑛4 ] (1𝑛1+1) = |P (𝑛1, 𝑛2, 𝑛3, 𝑛4) |,

the number of solid partitions inside the box [𝑛1] × [𝑛2] × [𝑛3] × [𝑛4].
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Remark 10 (On higher-dimensional Schur polynomials and SSYT). Note that the d-dimensional
Grothendieck polynomials 𝑔𝜌 (x) are inhomogeneous. It is well known that for 𝑑 = 2, we have
𝑔𝜆 = 𝑠𝜆 + lower degree terms. By analogy, the top degree homogeneous component of 𝑔𝜌 (x) denoted
by 𝑠𝜌 (x) can be viewed as a higher-dimensional analogue of Schur polynomials. It sums over a sub-
set of d-dimensional partitions which are analogous to semistandard Young tableaux (SSYT) for the
case 𝑑 = 2. By Proposition 6.9, {𝑠𝜌} are also quasisymmetric polynomials. Are there any interesting
properties of these functions and tableaux?

7. Last passage percolation in Z𝑑

In this section, we consider a directed last passage percolation model with geometric weights and show
its connections with d-dimensional Grothendieck polynomials studied in the previous section.

Let 𝑊 = (𝑤i)i∈Z𝑑+ be a random hypermatrix with i.i.d. entries 𝑤i which have geometric distribution
with parameter 𝑞 ∈ (0, 1); that is,

Prob(𝑤i = 𝑘) = (1 − 𝑞) 𝑞𝑘 , 𝑘 ∈ N.

Define the last passage times as follows:

𝐺 (i) = 𝐺 (1 → i) = max
Π:1→i

∑
j∈Π

𝑤j, i ∈ Z𝑑+ ,

where the maximum is over directed lattice paths Π from (1, . . . , 1) to i.
Now we are going to show that d-dimensional Grothendieck polynomials naturally appear in distri-

bution formulas for this model.

Theorem 7.1. Let 𝑛1, . . . , 𝑛𝑑 ∈ Z+ and 𝜌 ∈ P (𝑛2, . . . , 𝑛𝑑 ,∞) be a (𝑑 − 1)-dimensional partition.
Denote n = (𝑛2 + 1, . . . , 𝑛𝑑 + 1) and 𝑁 = 𝑛1 · · · 𝑛𝑑 . We have the following joint distribution formula:

Prob(𝐺 (𝑛1, n − i) = 𝜌i : i ∈ [𝑛2] × · · · × [𝑛𝑑]) = (1 − 𝑞)𝑁 𝑔𝜌 (𝑞, . . . , 𝑞︸���︷︷���︸
𝑛1 times

).

Proof. Let us flip and truncate the hypermatrix W to get 𝑊 ′ = (𝑤′
i ) = (𝑤 (𝑛1+1,n)−i)i∈[𝑛1 ]×···×[𝑛𝑑 ] .

Let 𝜋 = (𝜋i) ∈ P (𝑛1, . . . , 𝑛𝑑 ,∞) and (𝑎i) = Φ−1(𝜋). We obtain

Prob(𝑊 ′ = Φ−1(𝜋)) =
∏

i∈[𝑛1 ]×···×[𝑛𝑑 ]
Prob(𝑤′

i = 𝑎i) = (1 − 𝑞)𝑁 𝑞𝑆 (𝜋) ,

where 𝑆(𝜋) =
∑

i 𝑎i. Note that

𝑆(𝜋) = # corners of 𝐷 (𝜋) = 𝑐1 (𝜋) + . . . + 𝑐𝑛1 (𝜋),

where we defined 𝑐𝑖 (𝜋) = |{i : (𝑖, i) ∈ Cor(𝜋)}|. Then from (7), we have

(1 − 𝑞)𝑁 𝑔𝜌 (𝑞, . . . , 𝑞︸���︷︷���︸
𝑛1 times

) = (1 − 𝑞)𝑁
∑

𝜋 : sh1 (𝜋)=𝜌
𝑞𝑐1 (𝜋)+...+𝑐𝑛1 (𝜋)

=
∑

𝜋 : sh1 (𝜋)=𝜌
(1 − 𝑞)𝑁 𝑞𝑆 (𝜋)

=
∑

𝜋 : sh1 (𝜋)=𝜌
Prob(𝑊 ′ = Φ−1(𝜋)),

where the sum runs over 𝜋 ∈ P (𝑛1, . . . , 𝑛𝑑 ,∞).
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Note that we have Φ(𝑊 ′) = (𝐺 ((𝑛1 +1, n) − i))i∈[𝑛1 ]×···×[𝑛𝑑 ] since the maximum of
∑

j∈Π𝑊
′
j among

all paths Π : j → ∞𝑑 is achieved for some path that passes through (𝑛1 + 1, n) and therefore equals the
maximum of

∑
j∈Π𝑊

′
j among all paths Π : j → (𝑛1 + 1, n). Therefore, now we get

Prob(𝐺 (𝑛1, n − i) = 𝜌i : i ∈ [𝑛2] × · · · × [𝑛𝑑]) =
∑

𝜋 : sh1 (𝜋)=𝜌
Prob(Φ(𝑊 ′) = 𝜋)

= (1 − 𝑞)𝑁 𝑔𝜌 (𝑞, . . . , 𝑞︸���︷︷���︸
𝑛1 times

),

as needed. �

Remark 11. The same proof (with slight modifications) works in a more general case if (𝑤i) are
independent geometric random variables with different parameters 𝑥 (1)𝑖1

· · · 𝑥 (𝑑)𝑖𝑑
∈ (0, 1). Then the

corresponding probability will be proportional to the d-dimensional Grothendieck polynomial 𝑔𝜌 of
variables 𝑥 (ℓ)𝑖 . As it was pointed out by one of the referees, a proof can also be given using an analogue
of Gelfand–Tsetlin patterns and conditioning as in [MS20] for 𝑑 = 2.

Corollary 7.2 (Single point distribution formula). We have

Prob(𝐺 (𝑛1, . . . , 𝑛𝑑) ≤ 𝑛) = (1 − 𝑞)𝑁 𝑔 [𝑛2 ]×···×[𝑛𝑑 ]×[𝑛] (1, 𝑞, . . . , 𝑞︸���︷︷���︸
𝑛1 times

).

Proof. Follows by combining the theorem with Lemma 6.6. �

Corollary 7.3 (The case 𝑑 = 2). Let 𝜆 ∈ P (𝑛2,∞) be a partition. We have

Prob(𝐺 (𝑛1, 𝑛2 + 1 − 𝑖) = 𝜆𝑖 : 𝑖 ∈ [𝑛2]) = (1 − 𝑞)𝑛1𝑛2 𝑔𝜆 (𝑞, . . . , 𝑞︸���︷︷���︸
𝑛1 times

).

Remark 12. This formula (which shows that dual stable Grothendieck polynomials arise naturally in
the last passage percolation model) was proved in [Yel21a] and in a more general case with different
parameters in [Yel20]. Note that in this case we can obtain many determinantal formulas.

Remark 13. Theorem 7.1 suggests a probability distribution on the set P (𝑛2, . . . , 𝑛𝑑 ,∞) of (𝑑 − 1)-
dimensional partitions defined as follows:

Prob𝑔 (𝜌) := (1 − 𝑞)𝑛1 · · ·𝑛𝑑 𝑔𝜌 (𝑞, . . . , 𝑞︸���︷︷���︸
𝑛1 times

), 𝜌 ∈ P (𝑛2, . . . , 𝑛𝑑 ,∞).

Remark 14. Using Kingman’s subadditivity theorem, one can show that there is a deterministic limit
shape 𝜓 : R𝑑≥0 → R≥0 (see [Mar06]) such that as 𝑛 → ∞, we have a.s. convergence

1
𝑛
𝐺 (𝑛x�) → 𝜓(x), x ∈ R𝑑≥0.

The case 𝑑 = 2 is exactly solvable and𝜓(𝑥, 𝑦) = (𝑥+𝑦+2√𝑞𝑥𝑦)/(1−𝑞); moreover, the point fluctuations
around the shape are of order 𝑛1/3 and tend to the Tracy-Widom distribution [Joh00]. However, much
less is known for 𝑑 ≥ 3.
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8. Concluding remarks and open questions

8.1. Asymptotics

MacMahon’s numbers 𝑚𝑑 (𝑛) have the following asymptotics [BGP12]:

lim
𝑛→∞

𝑛−𝑑/(1+𝑑) log𝑚𝑑 (𝑛) =
1 + 𝑑
𝑑

(𝑑 𝜁 (1 + 𝑑))1/(1+𝑑) ,

where 𝜁 is the Riemann zeta function (which is computed based on the explicit formula for the
generating function). Let 𝑝𝑑 (𝑛) be the number of d-dimensional partitions of volume n. Supported
by numerical experiments for solid partitions, it was conjectured in [MR03] that 𝑝3 (𝑛) has the same
asymptotics as 𝑚3 (𝑛). However, later computations reported in [DG15] suggest that this is not the case
and that 𝑝3 (𝑛) is asymptotically larger than 𝑚3 (𝑛), despite the fact that 𝑚3(𝑛) = 𝑝3 (𝑛) for 𝑛 ≤ 5
and 𝑚3(𝑛) > 𝑝3 (𝑛) for the next many values of n [ABMM67, DG15]; cf. the sequences A000293,
A000294 in [OEIS]). See also [Ekh12] and a useful resource [Gov] for more related data. Using our
interpretation for 𝑚𝑑 (𝑛) (Corollary 5.5) and bounds on the corner-hook volume, it was shown in [Yel23]
that 𝑝𝑑 (𝑛) < 𝑑𝑛 ·𝑚𝑑 (𝑑𝑛), and obtaining a more accurate comparison between these sequences (e.g., by
showing that log 𝑝𝑑 (𝑛) ∼ log𝑚𝑑 (𝛼𝑛) for some 𝛼) will be important for understanding the asymptotics
of 𝑝𝑑 (𝑛).

8.2. d-dimensional Grothendieck polynomials

Are there any (algebraic, determinantal) formulas for d-dimensional Grothendieck polynomials? They
will be important for at least two applications: enumeration of boxed higher-dimensional partitions and
computing distribution formulas (or performing asymptotic analysis) for the last passage percolation
problem discussed above. Note that for 𝑑 = 2, there are several determinantal formulas (Jacobi-Trudi,
bialternant types) known; see, for example, [Yel17, AY22, Iwa20, Kim22, HJKSS21, Iwa21].
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