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Abstract
We study generalised quasirandom graphs whose vertex set consists of q parts (of not necessarily the same
sizes) with edges within each part and between each pair of parts distributed quasirandomly; such graphs
correspond to the stochastic block model studied in statistics and network science. Lovász and Sós showed
that the structure of such graphs is forced by homomorphism densities of graphs with at most (10q)q + q
vertices; subsequently, Lovász refined the argument to show that graphs with 4(2q+ 3)8 vertices suffice.
Our results imply that the structure of generalised quasirandom graphs with q≥ 2 parts is forced by homo-
morphism densities of graphs with at most 4q2 − q vertices, and, if vertices in distinct parts have distinct
degrees, then 2q+ 1 vertices suffice. The latter improves the bound of 8q− 4 due to Spencer.
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1. Introduction
Quasirandom graphs play an important role in structural and extremal graph theory. The notion
of quasirandom graphs can be traced to the works of Rödl [42], Thomason [46, 47] and Chung,
Graham, and Wilson [9] in the 1980s and is also deeply related to Szemerédi’s Regularity Lemma
[44]. Indeed, the Regularity Lemma asserts that each graph can be approximated by partitioning
it into a bounded number of quasirandom bipartite graphs. There is also a large body of literature
concerning quasirandomness of various kinds of combinatorial structures such as groups [24],
hypergraphs [5, 6, 22, 23, 29, 32, 41, 43], permutations [4, 10, 34, 35], Latin squares [11, 17, 20,
25], subsets of integers [8], tournaments [3, 7, 13, 14, 26, 28], etc. Many of these notions have been
treated in a unified way in the recent paper by Coregliano and Razborov [15].

The starting point of our work is the following classical result on quasirandom graphs [9]:
a sequence of graphs (Gn)n∈N is quasirandom with density p if and only if the homomorphism
densities of the single edge K2 and the 4-cycle C4 in (Gn)n∈N converge to p and p4, that is, to
their expected densities in the Erdős-Rényi random graph with density p. In particular, quasiran-
domness is forced by homomorphism densities of graphs with at most 4 vertices. In this paper,
we consider a generalisation of quasirandom graphs, which corresponds to the stochastic block
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model in statistics. In this model, the edge density of a (large) graph is not homogeneous as in
the Erdős-Rényi random graph model, however, the graph can be partitioned into q parts such
that the edge density is homogeneous inside each part and between each pair of the parts. Lovász
and Sós [37] established that the structure of such graphs is forced by homomorphism densities of
graphs with at most (10q)q + q vertices. Lovász [36, Theorem 5.33] refined this result by showing
that homomorphism densities of graphs with at most 4(2q+ 3)8 vertices suffice. Our main result,
which we state below (we refer to Section 2 for not yet defined notation), improves this bound:
the structure of generalised quasirandom graphs with q≥ 2 parts is forced by homomorphism
densities of graphs with at most 4q2 − q vertices.

Theorem 1. The following holds for every q≥ 2 and every q-step graphon W: if the density of each
graph with at most 4q2 − q vertices in a graphon W′ is the same as in W, then the graphons W and
W′ are weakly isomorphic.

We remark that our line of arguments to prove Theorem 1 substantially differs from that in
[36, 37], with the exception of initial application of Lemma 2. In particular, the key steps in our
proof are more explicit and so of a more constructive nature, which is of importance in relation to
applications [2, 19, 30, 31].

Spencer [45] considered generalised quasirandom graphs with q parts with an additional
assumption that vertices in distinct parts have distinct degrees and established that the struc-
ture of such graphs is forced by homomorphism densities of graphs with at most 8q− 4 vertices.
Addressing a question posed in [45], we show (Theorem 11) that graphs with at most 2q+ 1
vertices suffice in this restricted setting for any q≥ 2.

We present our results and arguments using the language of the theory of graph limits, which is
introduced in Section 2.We remark that similarly to arguments presented in [36, 37], although not
explicitly stated there, our arguments also apply in a more general setting of kernels in addition to
graphons (see Section 2 for the definitions of the two notions).We present various auxiliary results
in Section 3 and use them to prove our main result in Section 4. The case with the additional
assumption that vertices in distinct parts have distinct degrees is analysed in Section 5.

2. Notation
We now introduce the notions and tools from the theory of graph limits that we need in our
arguments; we refer the reader to the monograph by Lovász [36] for a more comprehensive
introduction and further details. We also rephrase results concerning quasirandom graphs and
generalised quasirandom graphs with q parts presented in Section 1 in the language of the theory
of graph limits.

We start with fixing some general shorthand notation used throughout the paper. The set of
the first q positive integers is denoted by [q] and more generally the set of integers between a
and b (inclusive) is denoted by [a, b]. If H and G are two graphs, the homomorphism density of
H in G, denoted by t(H,G), is the probability that a random function f :V(H)→V(G), with all
|V(G)||V(H)| choices being equally likely, is a homomorphism ofH to G, that is, f (u)f (v) is an edge
ofH for every edge uv ofG. A sequence (Gn)n∈N of graphs is convergent if the number of vertices of
Gn tends to infinity and the values of t(H,Gn) converge for every graph H as n→ ∞. A sequence
(Gn)n∈N of graphs is quasirandom with density p if it is convergent and the limit of t(H,Gn) is
equal to p|E(H)| for every graph H, where E(H) denotes the edge set of H. If the particular value
of p is irrelevant or understood, we just say that a sequence of graphs is quasirandom instead of
quasirandom with density p.

The theory of graph limits provides analytic ways of representing sequences of convergent
graphs. A kernel is a bounded measurable function U : [0, 1]2 →R that is symmetric, that is,
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U(x, y)=U(y, x) for all (x, y) ∈ [0, 1]2. A graphon is a kernel whose values are restricted to [0, 1].
The homomorphism density of a graph H in a kernel U is defined as follows:

t(H,U)=
∫
[0,1]V(H)

∏
uv∈E(H)

U(xu, xv)dxV(H),

where dxA for a set A= {a1, . . . , ak} is a shorthand for dxa1 . . . dxak ; we often just briefly say the
density of a graph H in a kernel U rather than the homomorphism density of H in U. A graphon
W is a limit of a convergent sequence (Gn)n∈N of graphs if t(H,W) is the limit of t(H,Gn) for
every graph H. Every convergent sequence of graphs has a limit graphon and every graphon is a
limit of a convergent sequence of graphs as shown by Lovász and Szegedy [38]; also see [16] for
relation to exchangeable arrays. Two kernels (or graphons) U1 and U2 are weakly isomorphic if
t(H,U1)= t(H,U2) for every graph H. Note that any two limits of the same convergent sequence
of graphs are weakly isomorphic, and we refer particularly to [1] for results on the structure of
weakly isomorphic graphons and more generally kernels.

We phrase the results concerning quasirandom graphs using the language of the theory of
graph limits. Observe that a sequence of graphs is quasirandom if and only if it converges to the
graphon equal to p everywhere. The following holds for every graphonW and every real p ∈ [0, 1]:
a graphon W is weakly isomorphic to the constant graphon equal to p if and only if t(K2,W)=
p and t(C4,W)= p4. This leads us to the following definition: a graphon U is forced by graphs
contained in a set H if every graphon U ′ such that t(H,U ′)= t(H,U) for every graph H ∈H is
weakly isomorphic to U. In particular, any constant graphon is forced by the graphs K2 and C4.
We refer particularly to [12, 27, 33, 39] for results on the structure of graphons forced by finite
sets of graphs. Similarly, we say that a kernel U is forced by graphs from a setH if every kernel U ′
such that t(H,U ′)= t(H,U) for every graphH ∈H is weakly isomorphic toU. We emphasise that
our results actually concern forcing kernels (rather than graphons), which makes them formally
stronger.

A q-step kernel U is a kernel such that [0, 1] can be partitioned into q non-null measurable
sets A1, . . . ,Aq such that U is constant on Ai ×Aj for all i, j ∈ [q] but there is no such partition
with q− 1 parts. A q-step graphon is a q-step kernel that is also a graphon. If the number of parts
is not important, we use a step kernel or a step graphon for brevity. Observe that step graphons
correspond to stochastic block models and so to generalised quasirandom graphs discussed in
Section 1. As mentioned in Section 1, Lovász and Sós [37, Theorem 2.3] showed that every q-step
graphon W is forced by graphs with at most (10q)q + q vertices, and Lovász [36, Theorem 5.33]
further improved the bound on the number of vertices to 4(2q+ 3)8; we remark that the proof
of either of the results can be adapted to the setting of step kernels. Our main result (Theorem 1)
states that every q-step graphon is forced by graphs with at most max{4q2 − q, 4} vertices; our
arguments also apply in the setting of step kernels as stated in Theorem 10.

In the rest of this section, we introduce some technical notation needed to present our argu-
ments. A k-rooted graph is a graph with k distinguished pairwise distinct vertices, and more
generally an (s1, . . . , sq)-rooted graph is an (s1 + · · · + sq)-rooted graph whose roots are split into
q groups, each of size si, i ∈ [q]. IfH is a k-rooted graph with vertices v1, . . . , vn such that its roots
are v1, . . . , vk then the density of H in a kernel U when x1, . . . , xk ∈ [0, 1] are chosen as the roots
is defined as:

tx1,...,xk(H,U)=
∫
[0,1]n−k

∏
vivj∈E(H)

U(vi, vj)dx[k+1,n].

By the Fubini–Tonelli Theorem, the integral exists for almost all choices of x1, . . . , xk and we will
often ignore exceptional null sets in this paper. Note that for k= 0 this definition coincides with
the definition of the density of an unrooted graph in a kernel. If the particular choice of the roots
is understood, we write t�(H,U) instead of tx1,...,xk(H,U). We sometimes think of and refer to the
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elements of [0, 1] as vertices of a kernel, which justifies the definition of the density of a rooted
graph in a kernel and leads to the following definition: the degree of a vertex x ∈ [0, 1] in a kernel
U is the density tx(K•

2 ,U)= ∫ 1
0 U(x, y)dy, where K•

2 is the 1-rooted graph obtained from K2 by
choosing one of its vertices as the root.

A quantum graph is a formal finite linear combination Q=∑m
i=1 ciHi of graphs; a graph Hi

with ci 	= 0 is called a constituent of Q. More generally a quantum k-rooted graph is a formal
finite linear combination of k-rooted graphs such that their roots induce the same (k-vertex) sub-
graph in each of the constituents. The density of a (rooted) quantum graph Q in a kernel U is the
corresponding linear combination of the densities of the constituents forming Q.

For a k-rooted graphH, let [[H]] be the underlying unrooted graph. Note that it holds for every
kernel U that

t([[H]],U)=
∫
[0,1]k

tx1,...,xk(H,U)dx[k].

If H and H′ are k-rooted graphs such that every pair of corresponding roots is joined by an edge
in at most one of the graphs H and H′, we define the product H ×H′ as follows: let H′′ be the
k-rooted graph isomorphic to H′ that has the same roots as H and is vertex disjoint otherwise,
and let H ×H′ be the graph with the vertex set V(H)∪V(H′′), the edge set E(H)∪ E(H′) and the
same set of roots. Note that H ×H′ does not have parallel edges as each pair of corresponding
roots is joined by an edge in at most one of the graphsH andH′. Also observe that |V(H ×H′)| =
|V(H)| + |V(H′)| − k and it holds for every choice of roots and every kernel U that

t�(H ×H′,U)= t�(H,U) · t�(H′,U).

If H =H′, we may write H2 instead of H ×H. The definition of the operator [[·]] and that of the
product extend to rooted quantum graphs by linearity. Observe that, for every k-rooted quantum
graph Q and every kernel U, it holds that t([[Q2]],U)≥ 0 and the equality holds if and only if
t�(Q,U)= 0 for almost every choice of roots.

3. Forcing step structure
We start with recalling a construction from [36, Proposition 14.44], which forces the structure of
a step kernel with at most q parts. For k ∈N and 1≤ i< j≤ k, let Qij

k be the following (2k)-rooted
quantum graph with roots v1, . . . , vk and v′

1, . . . , v
′
k. The quantum graphQij

k has four constituents,
each with a single non-root vertex: the graph with the non-root vertex adjacent to vi and v′

i and the
graph with the non-root vertex adjacent to vj and v′

j, both with coefficient +1, as well as the graph
with the non-root vertex adjacent to vi and v′

j and the graph with the non-root vertex adjacent to
vj and v′

i, both with coefficient −1. See Figure 1 for an example. Let Qk be the following quantum
graph with each constituent having 2k+ 2

(k
2
)= k(k+ 1) vertices:

Qk =
⎡
⎣
⎡
⎣ ∏
1≤i<j≤k

(
Qij
k

)2⎤⎦
⎤
⎦ .

The graphQk is the graph obtained in the proof of [36, Proposition 14.44] through an application
[36, Lemma 14.37]. This gives the following lemma, whose proof we sketch for completeness.

Lemma 2. For every q ∈N and every kernel U, the following holds: t(Qq+1,U)= 0 if and only if U
is weakly isomorphic to a step kernel with at most q parts.
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Figure 1. The 6-rooted quantum graph Q123 .

Proof. Observe that the value of t(Qq+1,U) for a kernel U is equal to∫
[0,1]2(q+1)

∏
1≤i<j≤q+1

(∫
[0,1]

(
U(xi, y)−U(xj, y)

)(
U(x′

i, y)−U(x′
j, y)

)
dy
)2
dx[q+1]dx′

[q+1]. (1)

If U is a step kernel with at most q parts, then for any choice of x1, . . . , xq+1, there exist 1≤ i<
j≤ q+ 1 such that xi and xj are from the same part ofU and soU(xi, y)=U(xj, y) for all y ∈ [0, 1].
Consequently, the product in (1) is zero for any choice of roots x1, . . . , xq+1, which implies that
t(Qq+1,U)= 0.

We now prove the other implication, that is, that if t(Qq+1,U)= 0, then U is weakly isomor-
phic to a step kernel with at most q parts. Let U be a kernel such that t(Qq+1,U)= 0. By (1), the
following holds for almost all x[q+1] ∈ [0, 1]q+1 and x′

[q+1] ∈ [0, 1]q+1:
∏

1≤i<j≤q+1

∫
[0,1]

(
U(xi, y)−U(xj, y)

) (
U(x′

i, y)−U(x′
j, y)

)
dy= 0.

Using [36, Proposition 13.23], we get that the following holds for almost all x[q+1] ∈ [0, 1]q+1:∏
1≤i<j≤q+1

∫
[0,1]

(
U(xi, y)−U(xj, y)

)2 dy= 0. (2)

Let us consider an equivalence relation on [0, 1] defined as x≡ x′ if U(x, y)=U(x′, y) for almost
all y ∈ [0, 1]. Observe that (2) holds for x[q+1] ∈ [0, 1]q+1 if and only if there exist 1≤ i< j≤ q+ 1
such that xi ≡ xj. Hence, (2) holds for almost all x[q+1] ∈ [0, 1]q+1 if and only if the measure of the
q largest equivalence classes of ≡ is one, which is equivalent to U being weakly isomorphic to a
step kernel with at most q parts. �

We next present two rather similar auxiliary lemmas; since their statements and constructions
somewhat differ depending on the parity of q, we state them separately for readability.

Lemma 3. For every even integer q≥ 2 and all integers s1, . . . , sq ∈ [q+ 2, 2q+ 2], there exists a
graph G with vertex set formed by q disjoint sets V1, . . . ,Vq that satisfies the following:

• the size of Vi is si for each i ∈ [q],
• the edge set of G can be partitioned into four sets M1, . . . ,M4 such that, for every 1≤ i< j≤
q, each of the sets M1 and M2 restricted to vertices of Vi ∪Vj, is a matching of size q+ 2, and
each of the sets M3 and M4 is a matching of size q, and

• the chromatic number of G is q and the colour classes of every q-colouring of G are precisely
the sets V1, . . . ,Vq; in particular, each of the sets Vi, i ∈ [q], is independent.

Proof. Fix an even integer q≥ 2 and integers s1, . . . , sq ∈ [q+ 2, 2q+ 2]. Let Vi = {i} × [si]; note
that the first coordinate of a vertex determines which of the sets contains the vertex. We now
describe the graph G by listing the edges between Vi and Vj, 1≤ i< j≤ q, contained in the
matchingsM1, . . . ,M4, where we abbreviate {(a, b), (c, d)} to (a, b)(c, d).
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• The matchingM1 consists of the edge (i, 1)(j, 1), the edge (i, q+ 2)(j, q+ 2), and the edges
(i, k)(j, k+ 1) and (i, k+ 1)(j, k) for even values k between 2 and q.

• The matching M2 consists of the edges (i, k)(j, k+ 1) and (i, k+ 1)(j, k) for odd values k
between 1 and q+ 1.

• The matchingM3 consists of the edges (i, k)(j, sj − q+ k) for all k ∈ [q].
• The matchingM4 consists of the edges (i, si − q+ k)(j, k) for all k ∈ [q].

Observe that the following edges are always present between Vi and Vj, 1≤ i< j≤ q:

• the edges (i, 1)(j, 1),
• the edges (i, k)(j, k+ 1) and (i, k+ 1)(j, k) for k ∈ [q+ 1], and
• the edges (i, k)(j, sj − q+ k) and (i, si − q+ k)(j, k) for k ∈ [q].

Since the sets V1, . . . ,Vq are independent, the chromatic number of G is at most q. On the
other hand, the vertices (i, 1), i ∈ [q] form a complete graph of order q, which implies that the
chromatic number of G is at least q and so it is equal to q.

Consider an arbitrary q-colouring of G and let Wi, i ∈ [q], be the colour class containing the
vertex (i, 1). (Note that the vertices (i, 1), i ∈ [q], are coloured with distinct colours as they form a
complete graph.) We prove the following statement by induction on k: for every i ∈ [q], if k≤ si,
then the vertex (i, k) belongs to Wi. If k= 1, the statement follows from the definition of the
sets Wi. If k ∈ [2, q+ 2], for every i ∈ [q], the existence of the edges (j, k− 1)(i, k), j ∈ [q] \ {i},
and the induction assumption, which states that (j, k− 1) belongs to Wj for j 	= i, imply that the
vertex (i, k) belongs to Wi. Finally, if k ∈ [q+ 3, si], i ∈ [q], the existence of the edges (j, q+ k−
si)(i, k), j ∈ [q] \ {i}, implies that the vertex (i, k) belongs to Wi (note that q+ k− si ≤ q and so
(j, q+ k− si) ∈Wj for j 	= i). Hence, the q-colouring of G is unique up to a permutation of colour
classes. �

We next present the version of Lemma 4 for odd values of q≥ 3.

Lemma 4. For every odd integer q≥ 3 and all integers s1, . . . , sq ∈ [q+ 2, 2q+ 2], there exists a
graph G with vertex set formed by q disjoint sets V1, . . . ,Vq that satisfies the following:

• the size of Vi is si for each i ∈ [q],
• the edge set of G can be partitioned into four sets M1, . . . ,M4 such that each of the sets
M1, . . . ,M4 restricted to vertices of Vi ∪Vj, 1≤ i< j≤ q, is a matching of size q+ 1,
and

• the chromatic number of G is q and the colour classes of every q-colouring of G are precisely
the sets V1, . . . ,Vq; in particular, each of the sets Vi, i ∈ [q], is independent.

Proof. Fix an odd integer q≥ 3 and integers s1, . . . , sq ∈ [q+ 2, 2q+ 2], and set Vi = {i} × [si].
We describe the graph G by listing the edges between Vi and Vj, 1≤ i< j≤ q, contained in the
matchingsM1, . . . ,M4.

• The matchingM1 consists of the edge (i, 1)(j, 1), the edge (i, q+ 1)(j, q+ 1), and the edges
(i, k)(j, k+ 1) and (i, k+ 1)(j, k) for even values k between 2 and q− 1.

• The matching M2 consists of the edges (i, k)(j, k+ 1) and (i, k+ 1)(j, k) for odd values k
between 1 and q.

• The matchingM3 consists of the edges (i, k)(j, sj − q− 1+ k) for all k ∈ [q+ 1] unless sj =
q+ 2; if sj = q+ 2, then the matching M3 consists of the edges (i, q+ 1)(j, q+ 2), (i, q+
2)(j, 2) and (i, k)(j, k+ 2) for k ∈ [q− 1].
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• The matching M4 consists of the edges (i, si − q− 1+ k)(j, k) for all k ∈ [q+ 1] unless
si = q+ 2; if si = q+ 2, then the matching M4 consists of the edges (i, q+ 2)(j, q+ 1),
(i, 2)(j, q+ 2) and (i, k+ 2)(j, k) for k ∈ [q− 1].

Observe that the following edges are always present between Vi and Vj, 1≤ i< j≤ q:

• the edges (i, 1)(j, 1),
• the edges (i, k)(j, k+ 1) and (i, k+ 1)(j, k) for k ∈ [q],
• the edges (i, k)(j, sj − q− 1+ k) for k= 2q+ 3− sj, . . . , q+ 1, and
• the edges (i, si − q− 1+ k)(j, k) for k= 2q+ 3− si, . . . , q+ 1.

The rest of the argument now follows exactly the lines of the corresponding part of the proof
of Lemma 3. �

We are now ready to prove the main lemma of this section.

Lemma 5. For all integers q≥ 2 and s1, . . . , sq ∈ [q+ 2, 2q+ 2], there exists an (s1, . . . , sq)-rooted
quantum graph Ps1,...,sq such that

• each constituent of Ps1,...,sq has 2q(q− 1) non-root vertices,
• the s1 + · · · + sq roots of Ps1,...,sq form an independent set,
• for every q-step kernel U, there exists d0 = d0(U)> 0 that does not depend on s1, . . . , sq such
that t�(Ps1,...,sq ,U) is either 0 or d0 for all choices of roots, and it is non-zero if and only if all
roots from each of the q groups of roots of Ps1,...,sq are chosen from the same part of U but the
roots from different groups are chosen from different parts.

Proof. For q and s1, . . . , sq ∈ [q+ 2, 2q+ 2], let G be the graph from Lemma 3 or Lemma 4
(depending on the parity of q). Let V1, . . . ,Vq be the sets forming the vertex set of G, and let
M1, . . . ,M4 be the sets forming the edge set of G as given by the lemma. We identify the vertices
of Vi with the si roots in the i-th group. LetMij

k , for 1≤ i< j≤ q and k ∈ [4], consist of the edges

of Mk between Vi and Vj, and let Mij
k be the set of all 2

∣∣∣Mij
k

∣∣∣ subsets of Vi ∪Vj such that each set
in Mij

k contains exactly one vertex from each edge of Mij
k . Next, if W ⊆V1 ∪ · · · ∪Vq, we write

P[W] for the (s1, . . . , sq)-rooted graph with a single non-root vertex such that the non-root vertex
is adjacent to the roots in W. Finally, we define the (s1, . . . , sq)-rooted quantum graph Ps1,...,sq as
follows:

Ps1,...,sq =
∏

1≤i<j≤q

∏
k∈[4]

∑
W∈Mij

k

(−1)|W∩Vi|P[W].

Observe that each constituent of the quantum graph Ps1,...,sq has exactly 4 · (q2)= 2q(q− 1) non-
root vertices, and the s1 + · · · + sq roots form an independent set.We remark that the (s1, . . . , sq)-
rooted quantum graph

∑
W∈Mij

k

(−1)|W∩Vi|P[W] (3)

from the definition of Ps1,...,sq can also be obtained in the following alternative way, which gives
additional insight into the definition of Ps1,...,sq . Let P′[v] be the (s1, . . . , sq, 1)-rooted graph such
that P′[v] has no non-root vertices, v is a root contained in one of the first q groups of roots, and
the only edge of P′[v] is an edge joining the vertex v and the single root contained in the last group.
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For 1≤ i< j≤ q and k ∈ [4], the (s1, . . . , sq)-rooted quantum graph (3) can be obtained from the
(s1, . . . , sq, 1)-rooted graph ∏

vu∈Mij
k

(
P′[v]− P′[u]

)

by changing the single root contained in the last group to a non-root vertex.
For the rest of the proof, fix a q-step kernel U and let zi, i ∈ [q], be any vertex of U contained

in the i-th part of U. Consider a choice xv, v ∈V(G), of roots. Suppose that G has an edge uv such
that u ∈Vi, v ∈Vj, 1≤ i< j≤ q, uv ∈Mk, k ∈ [4], and the vertices xu and xv belong to the same
part of the kernel U. Observe that∑

W∈Mij
k

(−1)|W∩Vi| ∏
w∈W

U(xw, y)

=
∑

W∈Mij
k

u∈W

(−1)|W∩Vi| ∏
w∈W

U(xw, y)+
∑

W∈Mij
k

v∈W

(−1)|W∩Vi| ∏
w∈W

U(xw, y)

=
∑

W∈Mij
k

u∈W

(−1)|W∩Vi| ∏
w∈W

U(xw, y)+
∑

W∈Mij
k

u∈W

(−1)|W∩Vi|−1U(xv, y)
∏

w∈W\{u}
U(xw, y)

=
∑

W∈Mij
k

u∈W

(−1)|W∩Vi| (U(xu, y)−U(xv, y)
) ∏
w∈W\{u}

U(xw, y)

= 0.

It follows that txV(G) (Ps1,...,sq ,U)= 0 if the colouring of the vertices ofG such that v is coloured with
the part containing xv is not a proper colouring of G. Either Lemma 3 or Lemma 4 (depending on
the parity of q) implies that txV(G) (Ps1,...,sq ,U) 	= 0 only if all roots from each of the q groups of roots
are chosen from the same part of U and the roots from different groups are chosen from different
parts. If this is indeed the case and q is odd, the properties of the graph G given in Lemma 4 imply
that

txV(G)
(
Ps1,...,sq ,U

)
=

∏
1≤i<j≤q

(∫
[0,1]

(
U(zi, y)−U(zj, y)

)q+1 dy
)4

. (4)

This is positive since for every distinct i, j ∈ [q] there is a positive measure of y with U(zi, y) 	=
U(zj, z) (as otherwise the i-th and j-th parts can be merged together contrary to the definition of a
q-step kernel). Hence, the existence of d0 follows and it is equal to the right-hand side of (4), which
does not depend on the values of s1, . . . , sq. Similarly, if q is even, the existence of d0 follows from
Lemma 3 and the definition of Ps1,...,sq , and its value is

d0 =
∏

1≤i<j≤q

(∫
[0,1]

(
U(zi, y)−U(zj, y)

)q+2 dy
)2 (∫

[0,1]

(
U(zi, y)−U(zj, y)

)q dy)2
. (5)

The proof of the lemma is now completed. �
We emphasise that the value of d0 from the statement of Lemma 5 depends on the kernel U

only, that is, it does not depend on s1, . . . , sq; namely, d0 is given by the right-hand side of (4) or
(5) depending on the parity of q, the number of parts of the step kernel U.
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4. Main result
We start with a construction of a quantum graph that restricts the density of each part A of a step
kernel U, that is, the value of U on A×A.

Lemma 6. For all integers q≥ 2, k ∈ [q] and reals d1, . . . , dk, there exists a quantum graph Rd1,...,dk
such that each constituent of Rd1,...,dk has 3q

2 vertices and the following holds for every q-step kernel
U: t

(
Rd1,...,dk ,U

)= 0 if and only if the density of each part of U is one of the reals d1, . . . , dk.

Proof. Fix q≥ 2 and reals d1, . . . , dk. Let Pq+2,...,q+2 be the graph from Lemma 5. Note that
Pq+2,...,q+2 has q(q+ 2)+ 2q(q− 1)= 3q2 vertices. Form ∈ [0, 2k], we set P(m)

q+2,...,q+2 to be a graph
obtained from Pq+2,...,q+2 by adding arbitrarym edges among the roots in the first group (without
creating parallel edges); note that this is possible since 2k≤ 2q≤ (q+2

2
)
. Further, let p(x) be the

polynomial defined as

p(x)=
k∏

i=1
(x− di)2,

and set Rd1,...,dk to be the quantum graph obtained from the expansion of p(x) into monomials by
replacing each monomial xm, including x0, with

[[
P(m)
q+2,...,q+2

]]
.

Consider any q-step kernel U and let d0 = d0(U)> 0 be the constant from Lemma 5. Observe
that

t
([[

P(m)
q+2,...,q+2

]]
,U
)

= d0(q− 1)!
( q∏
i=1

aq+2
i

)( q∑
i=1

pmi

)
,

where ai is the measure and pi is the density of the i-th part ofU, i ∈ [q]; note that the term (q− 1)!
counts possible choices of parts of U for the second, third, etc. group of roots while the choices of
the part for the first group of roots are accounted for by the last sum in the expression. It follows
that

t
(
Rd1,...,dk ,U

)= d0(q− 1)!
( q∏
i=1

aq+2
i

)( q∑
i=1

p(pi)

)
,

which, using p(x)≥ 0 for all x ∈R, is equal to zero if and only if p(pi)= 0 for every i ∈ [q].
The latter holds if and only if each pi is one of the reals d1, . . . , dk (note that p(x)> 0 unless
x ∈ {d1, . . . , dk}), and so the quantum graph Rd1,...,dk has the properties given in the statement of
the lemma. �

The next lemma provides a quantum graph restricting densities between pairs of parts of a step
kernel; its proof is similar to that of Lemma 6, however, we include it for completeness.

Lemma 7. For all integers q≥ 2, k ∈ [q(q− 1)/2] and reals d1, . . . , dk, there exists a quan-
tum graph Sd1,...,dk with 3q2 vertices such that the following holds for every q-step kernel U:
t
(
Sd1,...,dk ,U

)= 0 if and only if the density between each pair of distinct parts of U is one of the
reals d1, . . . , dk.

Proof. Fix q≥ 2 and reals d1, . . . , dk. Let Pq+2,...,q+2 be the graph from Lemma 5. Recall that
Pq+2,...,q+2 has q(q+ 2)+ 2q(q− 1)= 3q2 vertices. Form ∈ [0, 2k], we set P(m)

q+2,...,q+2 to be a graph
obtained from Pq+2,...,q+2 by adding arbitrary m edges joining a root in the first group and a root
in the second group without creating parallel edges; note that this is possible since 2k≤ q(q− 1)≤
(q+ 2)2. Further, let p(x) be the polynomial defined as

p(x)=
k∏

i=1
(x− di)2,
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and set Sd1,...,dk to be the quantum graph obtained from the expansion of p(x) by replacing xm with[[
P(m)
q+2,...,q+2

]]
.

Consider a q-step kernel U and let d0 = d0(U)> 0 be the constant from Lemma 5. Observe
that

t
([[

P(m)
q+2,...,q+2

]]
,U
)

= 2d0(q− 2)!
( q∏
i=1

aq+2
i

)⎛
⎝ ∑

1≤i<j≤q
pmij

⎞
⎠ ,

where ai is the measure of the i-th part ofU, i ∈ [q], and pij is the density between the i-th and j-th
part of U, 1≤ i< j≤ q. It follows that

t
(
Sd1,...,dk ,U

)= 2d0(q− 2)!
( q∏
i=1

aq+2
i

)⎛⎝ ∑
1≤i<j≤q

p
(
pij
)⎞⎠ ,

which (by p≥ 0) is equal to zero if and only if p(pij)= 0 for all 1≤ i< j≤ q. The latter holds if and
only if each pij, 1≤ i< j≤ q, is one of the reals d1, . . . , dk, and so the quantum graph Sd1,...,dk has
the properties given in the statement of the lemma. �

We next present a construction of a rooted quantum graph that “tests” whether there is a per-
mutation of parts of a step kernel matching densities in a given matrix D. As the value of d0 in
Lemma 5, the value of c0 in Lemma 8 does not depend on s1, . . . , sq, namely, it depends on the
matrix D and the kernel U only.

Lemma 8. For all integers q≥ 2, s1, . . . , sq ∈ [q+ 2, 2q+ 2] and a symmetric real matrix D ∈
R
q×q, there exists an (s1, . . . , sq)-rooted quantum graph Ts1,...,sq satisfying the following. Each

constituent of Ts1,...,sq has 2q(q− 1) non-root vertices, and if U is a q-step kernel such that

• the density of each part of U is one of the diagonal entries of D, and
• the density between each pair of the parts of U is one of the off-diagonal entries of D,

then there exists c0 = c0(D,U) 	= 0, which does not depend on s1, . . . , sq, such that t�
(
Ts1,...,sq ,U

)
is either 0 or c0 for all choices of roots and it is non-zero if and only if

• all roots from each of the q groups of roots are chosen from the same part of U,
• roots from different groups are chosen from different parts of U,
• Dii is the density of the part of U that the i-th group of roots is chosen from, and
• Dij is the density between the parts of U that the i-th and j-th groups of roots are chosen from.

Proof. Fix integers q≥ 2, s1, . . . , sq ∈ [q+ 2, 2q+ 2], and a matrixD. Let Z1 be the set containing
the values of diagonal entries ofD and Z2 the set containing the values of off-diagonal entries ofD.
We next define a polynomial p, whose

(q+1
2
)
are variables are indexed by pairs ijwith 1≤ i≤ j≤ q,

as follows:

p
(
x11, x12, . . . , xq−1,q, xq,q

)=
⎛
⎝ q∏

i=1

∏
z∈Z1\{Dii}

(xii − z)

⎞
⎠
⎛
⎝ ∏

1≤i<j≤q

∏
z∈Z2\{Dij}

(xij − z)

⎞
⎠ .

Let Ps1,...,sq be the graph from Lemma 5. Formii ∈ [0, |Z1|], i ∈ [q], andmij ∈ [0, |Z2|], 1≤ i< j≤ k,
let Pm11,m12,...,mq,q

s1,...,sq be an (s1, . . . , sq)-rooted quantum graph obtained from Ps1,...,sq by adding
arbitrary mij edges joining roots in the i-th group and with the roots in the j-th group for
1≤ i≤ j≤ q (without creating parallel edges). The (s1, . . . , sq)-rooted quantum graph Ts1,...,sq is
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obtained from the expansion of p
(
x11, x12, . . . , xq,q

)
into monomials by replacing each monomial

xm11
11 xm12

12 · · · xmq,q
q,q with Pm11,m12,...,mq,q

s1,...,sq
(
including the monomial x011 · · · x0q,q

)
.

Fix a q-step kernel U such that

• the density of each part of U belongs to Z1, and
• the density between each pair of the parts of U belongs to Z2.

Let d0 = d0(U)> 0 be the constant from Lemma 5. Note that t�
(
Ts1,...,sq ,U

)
= 0 unless

• all roots from each of the q groups of roots are chosen from the same part of U,
• roots from different groups are chosen from different parts of U,
• Dii is the density of the part of U that the i-th group of roots is chosen from, and
• Dij is the density between the parts of U that the i-th and j-th groups of roots are chosen
from,

and if t�
(
Ts1,...,sq ,U

)
	= 0, then it is equal to

c0 = d0

⎛
⎝ q∏

i=1

∏
z∈Z1\{Dii}

(Dii − z)

⎞
⎠
⎛
⎝ ∏

1≤i<j≤q

∏
z∈Z2\{Dij}

(Dij − z)

⎞
⎠ 	= 0.

Hence, the (s1, . . . , sq)-rooted quantum graph Ts1,...,sq has the properties given in the statement of
the lemma. �

To prove the main result of this paper, we need the following well-known result, which we state
explicitly for reference.

Lemma 9. For every q≥ 1 and reals z1, . . . , zq, the following system of equations has at most one
solution x1, . . . , xq ∈R (up to a permutation of the values):

x1 + · · · + xq = z1
x21 + · · · + x2q = z2
...

...
...

...

xq1 + · · · + xqq = zq.

Proof. The system of equations gives the first q power sums of x1, . . . , xq. By Newton’s identities
(see e.g., [40, Equation (2.11′)]), this determines the first q elementary symmetric polynomials,
which are the coefficients of the polynomial

∏q
i=1 (x+ xi). Therefore any other solution y1, . . . , yq

of the system satisfies that
∏q

i=1 (x+ xi)=∏q
i=1 (x+ yi), which yields the statement of the lemma

because of the uniqueness of polynomial factorisation. �
We are now ready to prove our main result, which implies Theorem 1 stated in Section 1.

Theorem 10. The following holds for every q≥ 2 and every q-step kernel U: if the density of each
graph with at most 4q2 − q vertices in a kernel U ′ is the same as in U, then the kernels U and U ′ are
weakly isomorphic.

Proof. Fix a q-step kernel U. Let a1, . . . , aq be the measures of the q parts. Further let D ∈R
q×q

be the matrix such that Dii is the density of the i-th part of U and Dij, i 	= j, is the density between
the i-th and j-th part.

Consider a kernel U ′ such that t(H,U)= t(H,U ′) for all graphs with at most 4q2 − q vertices.
Since each constituent of the quantum graphs Qq and Qq+1 from Lemma 2 has q(q+ 1) and
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(q+ 1)(q+ 2)≤ 4q2 − q vertices, respectively, it holds that t
(
Qq,U ′) 	= 0 and t

(
Qq+1,U ′)= 0 (as

they are the same as the corresponding densities in U). We conclude using Lemma 2 that U ′ is a
q-step kernel.

Let RD11,...,Dqq be the quantum graph from the statement of Lemma 6; note that each constituent
of RD11,...,Dqq has 3q2 ≤ 4q2 − q vertices. Since t(RD11,...,Dqq ,U ′)= 0 (as the value is the same as for
the kernel U), Lemma 6 yields that the density of each part of U ′ is equal to one of the diagonal
entries of D. Similarly, Lemma 7 applied with the off-diagonal entries of D yields that the den-
sity between any pair of parts of U ′ is equal to one of the off-diagonal entries of D. In addition,
the (q+ 2, . . . , q+ 2)-rooted quantum graph Tq+2,...,q+2 from Lemma 8 applied with the matrix
D satisfies t

(
[[Tq+2,...,q+2]],U

) 	= 0; thus it holds that t
(
[[Tq+2,...,q+2]],U ′) 	= 0. Hence, we derive

using Lemma 8 that, after possibly permuting the parts of U ′, the density of the i-th part of U ′ is
Dii and the density between the i-th and j-th parts of U ′ is Dij.

Let d0 = d0(U)> 0 be the constant from Lemma 5 for the kernel U. Observe that, for each
k ∈ [0, q], the following holds for the rooted quantum graph Pq+k+2,q+2,...,q+2 from Lemma 5:

t
(
[[Pq+k+2,q+2,...,q+2]],U

)= d0(q− 1)!
⎛
⎝ q∏

j=1
aq+2
j

⎞
⎠( q∑

i=1
aki

)
.

It follows that the following holds for every k ∈ [q]:

q∑
i=1

aki = q · t([[Pq+k+2,q+2,...,q+2]],U
)

t
(
[[Pq+2,q+2,...,q+2]],U

) .

Similarly, with a′
i denoting the measure of the i-th part of U ′, we obtain that

q∑
i=1

(
a′
i
)k = q · t([[Pq+k+2,q+2,...,q+2]],U ′)

t
(
[[Pq+2,q+2,...,q+2]],U ′) .

Hence, Lemma 9 and the assumption that the homomorphism densities of all graphs with at most
q(q+ 2)+ q+ 2q(q− 1)= 3q2 + q≤ 4q2 − q vertices are the same in U and U ′ implies that the
multisets a1, . . . , aq and a′

1, . . . , a′
q are the same.

Let c0 = c0(D,U) 	= 0 be the constant from Lemma 8 for the kernel U and let �D be the set of
all permutations π of the parts of U such that the densities inside the parts and between the parts
in U and after applying π to the parts of U are still as given by D. Observe that it holds that

t
(
[[Ts1,...,sq]],U

)
= c0

∑
π∈�D

q∏
i=1

asi
π(i).

Let p(x1, . . . , xq) be the polynomial defined as

p(x1, . . . , xq)=
⎛
⎝ q∏

j=1
xq+2
j

⎞
⎠
⎛
⎝ q∏

i=1

∏
a∈{a1,...,aq}\{ai}

(xi − a)

⎞
⎠ .

Note that each variable in each monomial of p has degree between q+ 2 and 2q+ 1. Since each
ai is non-zero, we have for all q-tuples (x1, . . . , xq) of reals with {x1, . . . , xq} ⊆ {a1, . . . , aq} that
p(x1, . . . , xq)= 0 if and only if there exists i ∈ [q] such that xi 	= ai. Let T be the quantum graph
obtained from the polynomial p by expanding it and then replacing eachmonomial xs11 · · · xsqq with
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[[Ts1,...,sq]] (including themonomial x01 · · · x01). Note that the number of vertices of each constituent
of T is at most q(2q+ 1)+ 2q(q− 1)= 4q2 − q and

t(T,U)= c0
∑

π∈�D

p(aπ(1), . . . , aπ(q)).

In particular, it holds that t(T,U) 	= 0 and so t(T,U ′) 	= 0. Along the same lines, we obtain that

t(T,U ′)= c′0
∑

π∈�′
D

p
(
a′
π(1), . . . , a

′
π(q)

)
,

where c′0 = c0(D,U ′) 	= 0 is the constant from Lemma 8 for the kernel U ′ and �′
D is the set of all

permutations π of the parts of U ′ such that the densities of the parts and between the parts after
applying π are as given by D. Since it holds that t(T,U ′) 	= 0, the set �′

D is non-empty. It follows
that�′

D contains a permutation π such that a′
π(i) = ai for all i ∈ [q], which implies that the kernels

U and U ′ are weakly isomorphic. �

5. Parts with different degrees
In this section, we show that a q-step kernel such that its vertices contained in different parts have
different degrees is forced by graphs with at most 2q+ 1 vertices.

Theorem 11. The following holds for every q≥ 2 and every q-step kernel U such that the degrees of
vertices in different parts are different: if the density of each graph with at most 2q+ 1 vertices in a
kernel U ′ is the same as in U, then the kernels U and U ′ are weakly isomorphic.

Proof. Fix q≥ 2, a q-step kernel U and a kernel U ′ such that t(H,U)= t(H,U ′) for every graph
H with at most 2q+ 1 vertices. For i ∈ [q], let Ai be the i-th part of U, ai be the measure of Ai, and
let di be the common degree of the vertices contained in Ai.

Let K•
1 and K•

2 be the 1-rooted graphs obtained from K1 and K2, respectively, by choosing one
of their vertices to be the root. Note that tx(K•

2 − dK•
1 ,V)= 0 if and only if the degree of x in a

kernel V is d. It follows that a kernel V satisfies that

t

⎛
⎝
⎡
⎣
⎡
⎣∏
i∈[q]

(
K•
2 − diK•

1
)2⎤⎦
⎤
⎦ ,V

⎞
⎠= 0 (6)

if and only if the degree of almost every vertex ofV is one of the numbers d1, . . . , dq. Next observe
that if a kernel V satisfies (6) and

t

⎛
⎝
⎡
⎣
⎡
⎣ ∏
i∈[q]\{k}

(
K•
2 − diK•

1
)⎤⎦
⎤
⎦ ,V

⎞
⎠= ak

∏
i∈[q]\{k}

(
dk − di

)
(7)

for k ∈ [q], then the measure of the set of vertices of V with degree equal to dk is ak. Since U
satisfies (6) and (7) for every k ∈ [q] and the graphs appearing in (6) and (7) have at most 2q+ 1
and q vertices, respectively, the vertex set of the kernel U ′ can be partitioned into q (measurable)
sets A′

1, . . . ,A′
q and a null set A′

0 such that the measure of A′
k is ak and all vertices contained in A′

k
have degree equal to dk for every k ∈ [q].

Let G••, G◦• and G•◦ be the following 2-rooted graphs: G•• consists of two isolated roots only,
G◦• is obtained fromG•• by adding a non-root vertex adjacent to the first root, andG•◦ is obtained
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from G•• by adding a non-root vertex adjacent to the second root. For k, � ∈ [q], let Hk� be the
2-rooted quantum graph defined as

Hk� =
⎛
⎝ ∏

i∈[q]\{k}

(
G◦• − diG••)

⎞
⎠×

⎛
⎝ ∏

j∈[q]\{�}

(
G•◦ − djG••)

⎞
⎠ ,

and observe that

txy
(
Hk�,U ′)=

⎛
⎝ ∏

i∈[q]\{k}

(
dk − di

)⎞⎠
⎛
⎝ ∏

j∈[q]\{�}

(
d� − dj

)⎞⎠
if the degree of x is dk and the degree of y is d�, and txy

(
Hk�,U ′)= 0 otherwise. In particular, it

follows that

t
(
[[Hk�]],U ′)= aka�

⎛
⎝ ∏

i∈[q]\{k}

(
dk − di

)⎞⎠
⎛
⎝ ∏

j∈[q]\{�}

(
d� − dj

)⎞⎠ . (8)

Note that each constituent of the 2-rooted quantum graph Hk� has at most 2q vertices. Let H′
k� be

the 2-rooted quantum graph obtained fromHk� by joining the two roots in each of its constituents
by an edge. Similarly as above, one can show that

t
(
[[H′

k�]],U
′)=

(∫
A′
k×A′

�

U ′(x, y)dxdy
)⎛⎝ ∏

i∈[q]\{k}

(
dk − di

)⎞⎠
⎛
⎝ ∏

j∈[q]\{�}

(
d� − dj

)⎞⎠ . (9)

Using (8) and (9), we obtain that∫
A′
k×A′

�
U ′(x, y)dxdy

aka�

= t
(
[[H′

k�]],U
′)

t([[Hk�]],U ′)
= t

(
[[H′

k�]],U
)

t([[Hk�]],U)
=
∫
Ak×A�

U(x, y)dxdy
aka�

,

that is, the average density between the parts A′
k and A

′
� in the kernel U ′ is the same as the density

between the parts Ak and A� in the kernel U.
We now recall that each step kernel is the unique (up to weak isomorphism) minimiser of the

density of C4 among all kernels with the same number of parts of the same measures and the same
density between them. This statement for step graphons with parts of equal measure appears in
[12, Lemma 11] and the same proof applies for kernels with parts not necessarily having the same
sizes; also see [36, Propositions 14.13 and 14.14] for related results. Since t(C4,U)= t(C4,U ′), it
follows that U ′ is weakly isomorphic to U. �

6. Concluding remarks
Theorem 10 asserts that every q-step kernel is forced by graphs with at most 4q2 − q vertices.
We do not know whether it suffices to consider homomorphism densities of graphs with o(q2)
vertices, both in the case of kernels and in the more restrictive case of graphons. We leave this as
an open problem.

We finish by establishing that it is necessary to consider graphs with the number of vertices
linear in q. The argument is similar to that used in analogous scenarios, for example, in [18, 21].
For reals a1, . . . , aq ∈ (0, 1) such that a1 + · · · + aq < 1, let Ua1,...,aq be the (q+ 1)-step graphon
with parts of measures a1, . . . , aq and 1− a1 − · · · − aq such that the graphon Ua1,...,aq is equal
to one within each of the first q parts and to zero elsewhere. Observe that if H is a graph, which
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consists of k components with n1, . . . , nk vertices after the removal of isolated vertices, then

t
(
H,Ua1,...,aq

)
=

k∏
i=1

q∑
j=1

anij =
k∏

i=1
t
(
Kni ,Ua1,...,aq

)
.

It follows that if

t
(
K�+1,Ua1,...,aq

)
= t
(
K�+1,Ua′

1,...,a′
q

)
for every � ∈ [q− 1], (10)

then the homomorphism density of every graph with at most q vertices is the same inUa1,...,aq and

in Ua′
1,...,a′

q
. When f

(
a1, . . . , aq

)=
(
t
(
K�+1,Ua1,...,aq

))q−1

�=1
is viewed as a function of a1, . . . , aq,

then its Jacobian matrix J with respect to the first q− 1 coordinates is⎡
⎢⎢⎢⎢⎢⎢⎣

2a1 · · · 2aq−1

3a21 · · · 3a2q−1
...

...

qaq−1
1 · · · qaa−1

q−1

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣
2

. . .

q

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

1 · · · 1

a1 · · · aq−1
...

...

aq−2
1 · · · aa−2

q−1

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣
a1

. . .

aq−1

⎤
⎥⎥⎥⎦ . (11)

Fix any distinct positive reals a1, . . . , aq with sum less than 1. Note that the middle matrix in (11)
is the Vandermonde matrix of (a1, . . . , aq−1) and thus the Jacobian matrix J is non-singular. By
the Implicit Function Theorem, for every a′

q sufficiently close to aq there is a vector
(
a′
1, . . . , a

′
q−1

)
close to (a1, . . . , qq) such that (10) holds. By making a′

q sufficiently close but not equal to aq, we
can ensure that a′

q 	∈ {a1, . . . , aq} and that all elements a′
i are positive and sum to less than 1. Thus

we obtain two (q+ 1)-step graphons, namelyUa1,...,aq andUa′
1,...,a′

q
, that have the same homomor-

phism density of every graph with at most q vertices but are not weakly isomorphic; the latter can
be established by, for example, applying the proof of Theorem 10 to these two graphons (alterna-
tively, it also follows from the general analytic characterisation of weakly isomorphic kernels [36,
Theorem 13.10]).
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