ARTICLE

Forcing generalised quasirandom graphs efficiently*

Andrzej Grzesik ${ }^{1, \dagger}$ (D), Daniel Král ${ }^{2, \ddagger}$ (D) and Oleg Pikhurko ${ }^{3, \$}$ (D)
${ }^{1}$ Faculty of Mathematics and Computer Science, Jagiellonian University, Kraków, Poland, ${ }^{2}$ Faculty of Informatics, Masaryk University, Brno, Czech Republic, and ${ }^{3}$ Mathematics Institute and DIMAP, University of Warwick, Coventry, UK
Corresponding author: Oleg Pikhurko; Email: o.pikhurko@warwick.ac.uk

(Received 11 May 2023; revised 27 June 2023; accepted 20 July 2023; first published online 5 September 2023)

Abstract

We study generalised quasirandom graphs whose vertex set consists of q parts (of not necessarily the same sizes) with edges within each part and between each pair of parts distributed quasirandomly; such graphs correspond to the stochastic block model studied in statistics and network science. Lovász and Sós showed that the structure of such graphs is forced by homomorphism densities of graphs with at most $(10 q)^{q}+q$ vertices; subsequently, Lovász refined the argument to show that graphs with $4(2 q+3)^{8}$ vertices suffice. Our results imply that the structure of generalised quasirandom graphs with $q \geq 2$ parts is forced by homomorphism densities of graphs with at most $4 q^{2}-q$ vertices, and, if vertices in distinct parts have distinct degrees, then $2 q+1$ vertices suffice. The latter improves the bound of $8 q-4$ due to Spencer.

Keywords: Graph limits; Graphons; Homomorphism density; Quasirandomness
2020 MSC Codes: Primary: 05C60

1. Introduction

Quasirandom graphs play an important role in structural and extremal graph theory. The notion of quasirandom graphs can be traced to the works of Rödl [42], Thomason [46, 47] and Chung, Graham, and Wilson [9] in the 1980s and is also deeply related to Szemerédi's Regularity Lemma [44]. Indeed, the Regularity Lemma asserts that each graph can be approximated by partitioning it into a bounded number of quasirandom bipartite graphs. There is also a large body of literature concerning quasirandomness of various kinds of combinatorial structures such as groups [24], hypergraphs [$5,6,22,23,29,32,41,43$], permutations [$4,10,34,35$], Latin squares [$11,17,20$, 25], subsets of integers [8], tournaments [$3,7,13,14,26,28$], etc. Many of these notions have been treated in a unified way in the recent paper by Coregliano and Razborov [15].

The starting point of our work is the following classical result on quasirandom graphs [9]: a sequence of graphs $\left(G_{n}\right)_{n \in \mathbb{N}}$ is quasirandom with density p if and only if the homomorphism densities of the single edge K_{2} and the 4 -cycle C_{4} in $\left(G_{n}\right)_{n \in \mathbb{N}}$ converge to p and p^{4}, that is, to their expected densities in the Erdős-Rényi random graph with density p. In particular, quasirandomness is forced by homomorphism densities of graphs with at most 4 vertices. In this paper, we consider a generalisation of quasirandom graphs, which corresponds to the stochastic block

[^0]model in statistics. In this model, the edge density of a (large) graph is not homogeneous as in the Erdős-Rényi random graph model, however, the graph can be partitioned into q parts such that the edge density is homogeneous inside each part and between each pair of the parts. Lovász and Sós [37] established that the structure of such graphs is forced by homomorphism densities of graphs with at most $(10 q)^{q}+q$ vertices. Lovász [36, Theorem 5.33] refined this result by showing that homomorphism densities of graphs with at most $4(2 q+3)^{8}$ vertices suffice. Our main result, which we state below (we refer to Section 2 for not yet defined notation), improves this bound: the structure of generalised quasirandom graphs with $q \geq 2$ parts is forced by homomorphism densities of graphs with at most $4 q^{2}-q$ vertices.

Theorem 1. The following holds for every $q \geq 2$ and every q-step graphon W : if the density of each graph with at most $4 q^{2}-q$ vertices in a graphon W^{\prime} is the same as in W, then the graphons W and W^{\prime} are weakly isomorphic.

We remark that our line of arguments to prove Theorem 1 substantially differs from that in [36, 37], with the exception of initial application of Lemma 2. In particular, the key steps in our proof are more explicit and so of a more constructive nature, which is of importance in relation to applications [2, 19, 30, 31].

Spencer [45] considered generalised quasirandom graphs with q parts with an additional assumption that vertices in distinct parts have distinct degrees and established that the structure of such graphs is forced by homomorphism densities of graphs with at most $8 q-4$ vertices. Addressing a question posed in [45], we show (Theorem 11) that graphs with at most $2 q+1$ vertices suffice in this restricted setting for any $q \geq 2$.

We present our results and arguments using the language of the theory of graph limits, which is introduced in Section 2. We remark that similarly to arguments presented in [36,37], although not explicitly stated there, our arguments also apply in a more general setting of kernels in addition to graphons (see Section 2 for the definitions of the two notions). We present various auxiliary results in Section 3 and use them to prove our main result in Section 4. The case with the additional assumption that vertices in distinct parts have distinct degrees is analysed in Section 5.

2. Notation

We now introduce the notions and tools from the theory of graph limits that we need in our arguments; we refer the reader to the monograph by Lovász [36] for a more comprehensive introduction and further details. We also rephrase results concerning quasirandom graphs and generalised quasirandom graphs with q parts presented in Section 1 in the language of the theory of graph limits.

We start with fixing some general shorthand notation used throughout the paper. The set of the first q positive integers is denoted by $[q]$ and more generally the set of integers between a and b (inclusive) is denoted by $[a, b]$. If H and G are two graphs, the homomorphism density of H in G, denoted by $t(H, G)$, is the probability that a random function $f: V(H) \rightarrow V(G)$, with all $|V(G)|^{|V(H)|}$ choices being equally likely, is a homomorphism of H to G, that is, $f(u) f(v)$ is an edge of H for every edge $u v$ of G. A sequence $\left(G_{n}\right)_{n \in \mathbb{N}}$ of graphs is convergent if the number of vertices of G_{n} tends to infinity and the values of $t\left(H, G_{n}\right)$ converge for every graph H as $n \rightarrow \infty$. A sequence $\left(G_{n}\right)_{n \in \mathbb{N}}$ of graphs is quasirandom with density p if it is convergent and the limit of $t\left(H, G_{n}\right)$ is equal to $p^{|E(H)|}$ for every graph H, where $E(H)$ denotes the edge set of H. If the particular value of p is irrelevant or understood, we just say that a sequence of graphs is quasirandom instead of quasirandom with density p.

The theory of graph limits provides analytic ways of representing sequences of convergent graphs. A kernel is a bounded measurable function $U:[0,1]^{2} \rightarrow \mathbb{R}$ that is symmetric, that is,
$U(x, y)=U(y, x)$ for all $(x, y) \in[0,1]^{2}$. A graphon is a kernel whose values are restricted to $[0,1]$. The homomorphism density of a graph H in a kernel U is defined as follows:

$$
t(H, U)=\int_{[0,1]^{V(H)}} \prod_{u v \in E(H)} U\left(x_{u}, x_{v}\right) \mathrm{d} x_{V(H)}
$$

where $\mathrm{d} x_{A}$ for a set $A=\left\{a_{1}, \ldots, a_{k}\right\}$ is a shorthand for $\mathrm{d} x_{a_{1}} \ldots \mathrm{~d} x_{a_{k}}$; we often just briefly say the density of a graph H in a kernel U rather than the homomorphism density of H in U. A graphon W is a limit of a convergent sequence $\left(G_{n}\right)_{n \in \mathbb{N}}$ of graphs if $t(H, W)$ is the limit of $t\left(H, G_{n}\right)$ for every graph H. Every convergent sequence of graphs has a limit graphon and every graphon is a limit of a convergent sequence of graphs as shown by Lovász and Szegedy [38]; also see [16] for relation to exchangeable arrays. Two kernels (or graphons) U_{1} and U_{2} are weakly isomorphic if $t\left(H, U_{1}\right)=t\left(H, U_{2}\right)$ for every graph H. Note that any two limits of the same convergent sequence of graphs are weakly isomorphic, and we refer particularly to [1] for results on the structure of weakly isomorphic graphons and more generally kernels.

We phrase the results concerning quasirandom graphs using the language of the theory of graph limits. Observe that a sequence of graphs is quasirandom if and only if it converges to the graphon equal to p everywhere. The following holds for every graphon W and every real $p \in[0,1]$: a graphon W is weakly isomorphic to the constant graphon equal to p if and only if $t\left(K_{2}, W\right)=$ p and $t\left(C_{4}, W\right)=p^{4}$. This leads us to the following definition: a graphon U is forced by graphs contained in a set \mathcal{H} if every graphon U^{\prime} such that $t\left(H, U^{\prime}\right)=t(H, U)$ for every graph $H \in \mathcal{H}$ is weakly isomorphic to U. In particular, any constant graphon is forced by the graphs K_{2} and C_{4}. We refer particularly to $[12,27,33,39]$ for results on the structure of graphons forced by finite sets of graphs. Similarly, we say that a kernel U is forced by graphs from a set \mathcal{H} if every kernel U^{\prime} such that $t\left(H, U^{\prime}\right)=t(H, U)$ for every graph $H \in \mathcal{H}$ is weakly isomorphic to U. We emphasise that our results actually concern forcing kernels (rather than graphons), which makes them formally stronger.

A q-step kernel U is a kernel such that $[0,1]$ can be partitioned into q non-null measurable sets A_{1}, \ldots, A_{q} such that U is constant on $A_{i} \times A_{j}$ for all $i, j \in[q]$ but there is no such partition with $q-1$ parts. A q-step graphon is a q-step kernel that is also a graphon. If the number of parts is not important, we use a step kernel or a step graphon for brevity. Observe that step graphons correspond to stochastic block models and so to generalised quasirandom graphs discussed in Section 1. As mentioned in Section 1, Lovász and Sós [37, Theorem 2.3] showed that every q-step graphon W is forced by graphs with at most $(10 q)^{q}+q$ vertices, and Lovász [36, Theorem 5.33] further improved the bound on the number of vertices to $4(2 q+3)^{8}$; we remark that the proof of either of the results can be adapted to the setting of step kernels. Our main result (Theorem 1) states that every q-step graphon is forced by graphs with at most $\max \left\{4 q^{2}-q, 4\right\}$ vertices; our arguments also apply in the setting of step kernels as stated in Theorem 10.

In the rest of this section, we introduce some technical notation needed to present our arguments. A k-rooted graph is a graph with k distinguished pairwise distinct vertices, and more generally an $\left(s_{1}, \ldots, s_{q}\right)$-rooted graph is an $\left(s_{1}+\cdots+s_{q}\right)$-rooted graph whose roots are split into q groups, each of size $s_{i}, i \in[q]$. If H is a k-rooted graph with vertices v_{1}, \ldots, v_{n} such that its roots are v_{1}, \ldots, v_{k} then the density of H in a kernel U when $x_{1}, \ldots, x_{k} \in[0,1]$ are chosen as the roots is defined as:

$$
t_{x_{1}, \ldots, x_{k}}(H, U)=\int_{[0,1]^{n-k}} \prod_{v_{i} v_{j} \in E(H)} U\left(v_{i}, v_{j}\right) \mathrm{d} x_{[k+1, n]}
$$

By the Fubini-Tonelli Theorem, the integral exists for almost all choices of x_{1}, \ldots, x_{k} and we will often ignore exceptional null sets in this paper. Note that for $k=0$ this definition coincides with the definition of the density of an unrooted graph in a kernel. If the particular choice of the roots is understood, we write $t_{\star}(H, U)$ instead of $t_{x_{1}, \ldots, x_{k}}(H, U)$. We sometimes think of and refer to the
elements of $[0,1]$ as vertices of a kernel, which justifies the definition of the density of a rooted graph in a kernel and leads to the following definition: the degree of a vertex $x \in[0,1]$ in a kernel U is the density $t_{x}\left(K_{2}^{\bullet}, U\right)=\int_{0}^{1} U(x, y) \mathrm{d} y$, where K_{2}^{\bullet} is the 1-rooted graph obtained from K_{2} by choosing one of its vertices as the root.

A quantum graph is a formal finite linear combination $Q=\sum_{i=1}^{m} c_{i} H_{i}$ of graphs; a graph H_{i} with $c_{i} \neq 0$ is called a constituent of Q. More generally a quantum k-rooted graph is a formal finite linear combination of k-rooted graphs such that their roots induce the same (k-vertex) subgraph in each of the constituents. The density of a (rooted) quantum graph Q in a kernel U is the corresponding linear combination of the densities of the constituents forming Q.

For a k-rooted graph H, let $\llbracket H \rrbracket$ be the underlying unrooted graph. Note that it holds for every kernel U that

$$
t(\llbracket H \rrbracket, U)=\int_{[0,1]^{k}} t_{x_{1}, \ldots, x_{k}}(H, U) \mathrm{d} x_{[k]} .
$$

If H and H^{\prime} are k-rooted graphs such that every pair of corresponding roots is joined by an edge in at most one of the graphs H and H^{\prime}, we define the product $H \times H^{\prime}$ as follows: let $H^{\prime \prime}$ be the k-rooted graph isomorphic to H^{\prime} that has the same roots as H and is vertex disjoint otherwise, and let $H \times H^{\prime}$ be the graph with the vertex set $V(H) \cup V\left(H^{\prime \prime}\right)$, the edge set $E(H) \cup E\left(H^{\prime}\right)$ and the same set of roots. Note that $H \times H^{\prime}$ does not have parallel edges as each pair of corresponding roots is joined by an edge in at most one of the graphs H and H^{\prime}. Also observe that $\left|V\left(H \times H^{\prime}\right)\right|=$ $|V(H)|+\left|V\left(H^{\prime}\right)\right|-k$ and it holds for every choice of roots and every kernel U that

$$
t_{\star}\left(H \times H^{\prime}, U\right)=t_{\star}(H, U) \cdot t_{\star}\left(H^{\prime}, U\right)
$$

If $H=H^{\prime}$, we may write H^{2} instead of $H \times H$. The definition of the operator $\llbracket \cdot \rrbracket$ and that of the product extend to rooted quantum graphs by linearity. Observe that, for every k-rooted quantum graph Q and every kernel U, it holds that $t\left(\llbracket Q^{2} \rrbracket, U\right) \geq 0$ and the equality holds if and only if $t_{\star}(Q, U)=0$ for almost every choice of roots.

3. Forcing step structure

We start with recalling a construction from [36, Proposition 14.44], which forces the structure of a step kernel with at most q parts. For $k \in \mathbb{N}$ and $1 \leq i<j \leq k$, let $Q_{k}^{i j}$ be the following ($2 k$)-rooted quantum graph with roots v_{1}, \ldots, v_{k} and $v_{1}^{\prime}, \ldots, v_{k}^{\prime}$. The quantum graph $Q_{k}^{i j}$ has four constituents, each with a single non-root vertex: the graph with the non-root vertex adjacent to v_{i} and v_{i}^{\prime} and the graph with the non-root vertex adjacent to v_{j} and v_{j}^{\prime}, both with coefficient +1 , as well as the graph with the non-root vertex adjacent to v_{i} and v_{j}^{\prime} and the graph with the non-root vertex adjacent to v_{j} and v_{i}^{\prime}, both with coefficient -1 . See Figure 1 for an example. Let Q_{k} be the following quantum graph with each constituent having $2 k+2\binom{k}{2}=k(k+1)$ vertices:

$$
Q_{k}=\llbracket \prod_{1 \leq i<j \leq k}\left(Q_{k}^{i j}\right)^{2} \rrbracket
$$

The graph Q_{k} is the graph obtained in the proof of [36, Proposition 14.44] through an application [36, Lemma 14.37]. This gives the following lemma, whose proof we sketch for completeness.
Lemma 2. For every $q \in \mathbb{N}$ and every kernel U, the following holds: $t\left(Q_{q+1}, U\right)=0$ if and only if U is weakly isomorphic to a step kernel with at most q parts.

Figure 1. The 6-rooted quantum graph Q_{3}^{12}.

Proof. Observe that the value of $t\left(Q_{q+1}, U\right)$ for a kernel U is equal to

$$
\begin{equation*}
\int_{[0,1]^{2(q+1)}} \prod_{1 \leq i<j \leq q+1}\left(\int_{[0,1]}\left(U\left(x_{i}, y\right)-U\left(x_{j}, y\right)\right)\left(U\left(x_{i}^{\prime}, y\right)-U\left(x_{j}^{\prime}, y\right)\right) \mathrm{d} y\right)^{2} \mathrm{~d} x_{[q+1]} \mathrm{d} x_{[q+1]}^{\prime} \tag{1}
\end{equation*}
$$

If U is a step kernel with at most q parts, then for any choice of x_{1}, \ldots, x_{q+1}, there exist $1 \leq i<$ $j \leq q+1$ such that x_{i} and x_{j} are from the same part of U and so $U\left(x_{i}, y\right)=U\left(x_{j}, y\right)$ for all $y \in[0,1]$. Consequently, the product in (1) is zero for any choice of roots x_{1}, \ldots, x_{q+1}, which implies that $t\left(Q_{q+1}, U\right)=0$.

We now prove the other implication, that is, that if $t\left(Q_{q+1}, U\right)=0$, then U is weakly isomorphic to a step kernel with at most q parts. Let U be a kernel such that $t\left(Q_{q+1}, U\right)=0$. By (1), the following holds for almost all $x_{[q+1]} \in[0,1]^{q+1}$ and $x_{[q+1]}^{\prime} \in[0,1]^{q+1}$:

$$
\prod_{1 \leq i<j \leq q+1} \int_{[0,1]}\left(U\left(x_{i}, y\right)-U\left(x_{j}, y\right)\right)\left(U\left(x_{i}^{\prime}, y\right)-U\left(x_{j}^{\prime}, y\right)\right) \mathrm{d} y=0
$$

Using [36, Proposition 13.23], we get that the following holds for almost all $x_{[q+1]} \in[0,1]^{q+1}$:

$$
\begin{equation*}
\prod_{1 \leq i<j \leq q+1} \int_{[0,1]}\left(U\left(x_{i}, y\right)-U\left(x_{j}, y\right)\right)^{2} \mathrm{~d} y=0 \tag{2}
\end{equation*}
$$

Let us consider an equivalence relation on $[0,1]$ defined as $x \equiv x^{\prime}$ if $U(x, y)=U\left(x^{\prime}, y\right)$ for almost all $y \in[0,1]$. Observe that (2) holds for $x_{[q+1]} \in[0,1]^{q+1}$ if and only if there exist $1 \leq i<j \leq q+1$ such that $x_{i} \equiv x_{j}$. Hence, (2) holds for almost all $x_{[q+1]} \in[0,1]^{q+1}$ if and only if the measure of the q largest equivalence classes of \equiv is one, which is equivalent to U being weakly isomorphic to a step kernel with at most q parts.

We next present two rather similar auxiliary lemmas; since their statements and constructions somewhat differ depending on the parity of q, we state them separately for readability.
Lemma 3. For every even integer $q \geq 2$ and all integers $s_{1}, \ldots, s_{q} \in[q+2,2 q+2]$, there exists a graph G with vertex set formed by q disjoint sets V_{1}, \ldots, V_{q} that satisfies the following:

- the size of V_{i} is s_{i} for each $i \in[q]$,
- the edge set of G can be partitioned into four sets M_{1}, \ldots, M_{4} such that, for every $1 \leq i<j \leq$ q, each of the sets M_{1} and M_{2} restricted to vertices of $V_{i} \cup V_{j}$, is a matching of size $q+2$, and each of the sets M_{3} and M_{4} is a matching of size q, and
- the chromatic number of G is q and the colour classes of every q-colouring of G are precisely the sets V_{1}, \ldots, V_{q}; in particular, each of the sets $V_{i}, i \in[q]$, is independent.
Proof. Fix an even integer $q \geq 2$ and integers $s_{1}, \ldots, s_{q} \in[q+2,2 q+2]$. Let $V_{i}=\{i\} \times\left[s_{i}\right]$; note that the first coordinate of a vertex determines which of the sets contains the vertex. We now describe the graph G by listing the edges between V_{i} and $V_{j}, 1 \leq i<j \leq q$, contained in the matchings M_{1}, \ldots, M_{4}, where we abbreviate $\{(a, b),(c, d)\}$ to $(a, b)(c, d)$.
- The matching M_{1} consists of the edge $(i, 1)(j, 1)$, the edge $(i, q+2)(j, q+2)$, and the edges $(i, k)(j, k+1)$ and $(i, k+1)(j, k)$ for even values k between 2 and q.
- The matching M_{2} consists of the edges $(i, k)(j, k+1)$ and $(i, k+1)(j, k)$ for odd values k between 1 and $q+1$.
- The matching M_{3} consists of the edges $(i, k)\left(j, s_{j}-q+k\right)$ for all $k \in[q]$.
- The matching M_{4} consists of the edges $\left(i, s_{i}-q+k\right)(j, k)$ for all $k \in[q]$.

Observe that the following edges are always present between V_{i} and $V_{j}, 1 \leq i<j \leq q$:

- the edges $(i, 1)(j, 1)$,
- the edges $(i, k)(j, k+1)$ and $(i, k+1)(j, k)$ for $k \in[q+1]$, and
- the edges $(i, k)\left(j, s_{j}-q+k\right)$ and $\left(i, s_{i}-q+k\right)(j, k)$ for $k \in[q]$.

Since the sets V_{1}, \ldots, V_{q} are independent, the chromatic number of G is at most q. On the other hand, the vertices $(i, 1), i \in[q]$ form a complete graph of order q, which implies that the chromatic number of G is at least q and so it is equal to q.

Consider an arbitrary q-colouring of G and let $W_{i}, i \in[q]$, be the colour class containing the vertex $(i, 1)$. (Note that the vertices $(i, 1), i \in[q]$, are coloured with distinct colours as they form a complete graph.) We prove the following statement by induction on k : for every $i \in[q]$, if $k \leq s_{i}$, then the vertex (i, k) belongs to W_{i}. If $k=1$, the statement follows from the definition of the sets W_{i}. If $k \in[2, q+2]$, for every $i \in[q]$, the existence of the edges $(j, k-1)(i, k), j \in[q] \backslash\{i\}$, and the induction assumption, which states that $(j, k-1)$ belongs to W_{j} for $j \neq i$, imply that the vertex (i, k) belongs to W_{i}. Finally, if $k \in\left[q+3, s_{i}\right], i \in[q]$, the existence of the edges $(j, q+k-$ $\left.s_{i}\right)(i, k), j \in[q] \backslash\{i\}$, implies that the vertex (i,k) belongs to W_{i} (note that $q+k-s_{i} \leq q$ and so $\left(j, q+k-s_{i}\right) \in W_{j}$ for $j \neq i$). Hence, the q-colouring of G is unique up to a permutation of colour classes.

We next present the version of Lemma 4 for odd values of $q \geq 3$.
Lemma 4. For every odd integer $q \geq 3$ and all integers $s_{1}, \ldots, s_{q} \in[q+2,2 q+2]$, there exists a graph G with vertex set formed by q disjoint sets V_{1}, \ldots, V_{q} that satisfies the following:

- the size of V_{i} is s_{i} for each $i \in[q]$,
- the edge set of G can be partitioned into four sets M_{1}, \ldots, M_{4} such that each of the sets M_{1}, \ldots, M_{4} restricted to vertices of $V_{i} \cup V_{j}, 1 \leq i<j \leq q$, is a matching of size $q+1$, and
- the chromatic number of G is q and the colour classes of every q-colouring of G are precisely the sets V_{1}, \ldots, V_{q}; in particular, each of the sets $V_{i}, i \in[q]$, is independent.
Proof. Fix an odd integer $q \geq 3$ and integers $s_{1}, \ldots, s_{q} \in[q+2,2 q+2]$, and set $V_{i}=\{i\} \times\left[s_{i}\right]$. We describe the graph G by listing the edges between V_{i} and $V_{j}, 1 \leq i<j \leq q$, contained in the matchings M_{1}, \ldots, M_{4}.
- The matching M_{1} consists of the edge $(i, 1)(j, 1)$, the edge $(i, q+1)(j, q+1)$, and the edges $(i, k)(j, k+1)$ and $(i, k+1)(j, k)$ for even values k between 2 and $q-1$.
- The matching M_{2} consists of the edges $(i, k)(j, k+1)$ and $(i, k+1)(j, k)$ for odd values k between 1 and q.
- The matching M_{3} consists of the edges $(i, k)\left(j, s_{j}-q-1+k\right)$ for all $k \in[q+1]$ unless $s_{j}=$ $q+2$; if $s_{j}=q+2$, then the matching M_{3} consists of the edges $(i, q+1)(j, q+2),(i, q+$ $2)(j, 2)$ and $(i, k)(j, k+2)$ for $k \in[q-1]$.
- The matching M_{4} consists of the edges $\left(i, s_{i}-q-1+k\right)(j, k)$ for all $k \in[q+1]$ unless $s_{i}=q+2$; if $s_{i}=q+2$, then the matching M_{4} consists of the edges $(i, q+2)(j, q+1)$, $(i, 2)(j, q+2)$ and $(i, k+2)(j, k)$ for $k \in[q-1]$.

Observe that the following edges are always present between V_{i} and $V_{j}, 1 \leq i<j \leq q$:

- the edges $(i, 1)(j, 1)$,
- the edges $(i, k)(j, k+1)$ and $(i, k+1)(j, k)$ for $k \in[q]$,
- the edges $(i, k)\left(j, s_{j}-q-1+k\right)$ for $k=2 q+3-s_{j}, \ldots, q+1$, and
- the edges $\left(i, s_{i}-q-1+k\right)(j, k)$ for $k=2 q+3-s_{i}, \ldots, q+1$.

The rest of the argument now follows exactly the lines of the corresponding part of the proof of Lemma 3.

We are now ready to prove the main lemma of this section.
Lemma 5. For all integers $q \geq 2$ and $s_{1}, \ldots, s_{q} \in[q+2,2 q+2]$, there exists an $\left(s_{1}, \ldots, s_{q}\right)$-rooted quantum graph $P_{s_{1}, \ldots, s_{q}}$ such that

- each constituent of $P_{s_{1}, \ldots, s_{q}}$ has $2 q(q-1)$ non-root vertices,
- the $s_{1}+\cdots+s_{q}$ roots of $P_{s_{1}, \ldots, s_{q}}$ form an independent set,
- for every q-step kernel U, there exists $d_{0}=d_{0}(U)>0$ that does not depend on s_{1}, \ldots, s_{q} such that $t_{\star}\left(P_{s_{1}, \ldots, s_{q}}, U\right)$ is either 0 or d_{0} for all choices of roots, and it is non-zero if and only if all roots from each of the q groups of roots of $P_{s_{1}, \ldots, s_{q}}$ are chosen from the same part of U but the roots from different groups are chosen from different parts.

Proof. For q and $s_{1}, \ldots, s_{q} \in[q+2,2 q+2]$, let G be the graph from Lemma 3 or Lemma 4 (depending on the parity of q). Let V_{1}, \ldots, V_{q} be the sets forming the vertex set of G, and let M_{1}, \ldots, M_{4} be the sets forming the edge set of G as given by the lemma. We identify the vertices of V_{i} with the s_{i} roots in the i-th group. Let $M_{k}^{i j}$, for $1 \leq i<j \leq q$ and $k \in[4]$, consist of the edges of M_{k} between V_{i} and V_{j}, and let $\mathcal{M}_{k}^{i j}$ be the set of all $2^{\left|M_{k}^{i j}\right|}$ subsets of $V_{i} \cup V_{j}$ such that each set in $\mathcal{M}_{k}^{i j}$ contains exactly one vertex from each edge of $M_{k}^{i j}$. Next, if $W \subseteq V_{1} \cup \cdots \cup V_{q}$, we write $P[W]$ for the $\left(s_{1}, \ldots, s_{q}\right)$-rooted graph with a single non-root vertex such that the non-root vertex is adjacent to the roots in W. Finally, we define the $\left(s_{1}, \ldots, s_{q}\right)$-rooted quantum graph $P_{s_{1}, \ldots, s_{q}}$ as follows:

$$
P_{s_{1}, \ldots, s_{q}}=\prod_{1 \leq i<j \leq q} \prod_{k \in[4]} \sum_{W \in \mathcal{M}_{k}^{i j}}(-1)^{\left|W \cap V_{i}\right|} P[W] .
$$

Observe that each constituent of the quantum graph $P_{s_{1}, \ldots, s_{q}}$ has exactly $4 \cdot\binom{q}{2}=2 q(q-1)$ nonroot vertices, and the $s_{1}+\cdots+s_{q}$ roots form an independent set. We remark that the $\left(s_{1}, \ldots, s_{q}\right)$ rooted quantum graph

$$
\begin{equation*}
\sum_{W \in \mathcal{M}_{k}^{i j}}(-1)^{\left|W \cap V_{i}\right|} P[W] \tag{3}
\end{equation*}
$$

from the definition of $P_{s_{1}, \ldots, s_{q}}$ can also be obtained in the following alternative way, which gives additional insight into the definition of $P_{s_{1}, \ldots, s_{q}}$. Let $P^{\prime}[v]$ be the $\left(s_{1}, \ldots, s_{q}, 1\right)$-rooted graph such that $P^{\prime}[v]$ has no non-root vertices, v is a root contained in one of the first q groups of roots, and the only edge of $P^{\prime}[v]$ is an edge joining the vertex v and the single root contained in the last group.

For $1 \leq i<j \leq q$ and $k \in[4]$, the $\left(s_{1}, \ldots, s_{q}\right)$-rooted quantum graph (3) can be obtained from the $\left(s_{1}, \ldots, s_{q}, 1\right)$-rooted graph

$$
\prod_{v u \in M_{k}^{i j}}\left(P^{\prime}[v]-P^{\prime}[u]\right)
$$

by changing the single root contained in the last group to a non-root vertex.
For the rest of the proof, fix a q-step kernel U and let $z_{i}, i \in[q]$, be any vertex of U contained in the i-th part of U. Consider a choice $x_{v}, v \in V(G)$, of roots. Suppose that G has an edge $u v$ such that $u \in V_{i}, v \in V_{j}, 1 \leq i<j \leq q, u v \in M_{k}, k \in[4]$, and the vertices x_{u} and x_{v} belong to the same part of the kernel U. Observe that

$$
\begin{aligned}
& \sum_{W \in \mathcal{M}_{k}^{i j}}(-1)^{\left|W \cap V_{i}\right|} \prod_{w \in W} U\left(x_{w}, y\right) \\
& =\sum_{\substack{W \in \mathcal{M}_{k}^{i j} \\
u \in W^{i j}}}(-1)^{\left|W \cap V_{i}\right|} \prod_{w \in W} U\left(x_{w}, y\right)+\sum_{\substack{W \in \mathcal{M}_{k}^{i j} \\
v \in W^{i}}}(-1)^{\left|W \cap V_{i}\right|} \prod_{w \in W} U\left(x_{w}, y\right) \\
& =\sum_{\substack{W \in \mathcal{M}_{k}^{i j} \\
u \in W^{\mid}}}(-1)^{\left|W \cap V_{i}\right|} \prod_{w \in W} U\left(x_{w}, y\right)+\sum_{\substack{W \in \mathcal{M}_{k}^{i j} \\
u \in W^{k}}}(-1)^{\left|W \cap V_{i}\right|-1} U\left(x_{v}, y\right) \prod_{w \in W \backslash\{u\}} U\left(x_{w}, y\right) \\
& =\sum_{\substack{W \in \mathcal{M}_{k}^{i j} \\
u \in W^{i j}}}(-1)^{\left|W \cap V_{i}\right|}\left(U\left(x_{u}, y\right)-U\left(x_{v}, y\right)\right) \prod_{w \in W \backslash\{u\}} U\left(x_{w}, y\right) \\
& =0 .
\end{aligned}
$$

It follows that $t_{x_{V(G)}}\left(P_{s_{1}, \ldots, s_{q}}, U\right)=0$ if the colouring of the vertices of G such that v is coloured with the part containing x_{v} is not a proper colouring of G. Either Lemma 3 or Lemma 4 (depending on the parity of q) implies that $t_{x_{V(G)}}\left(P_{S_{1}, \ldots, s_{q}}, U\right) \neq 0$ only if all roots from each of the q groups of roots are chosen from the same part of U and the roots from different groups are chosen from different parts. If this is indeed the case and q is odd, the properties of the graph G given in Lemma 4 imply that

$$
\begin{equation*}
t_{x_{V(G)}}\left(P_{s_{1}, \ldots, s_{q}}, U\right)=\prod_{1 \leq i<j \leq q}\left(\int_{[0,1]}\left(U\left(z_{i}, y\right)-U\left(z_{j}, y\right)\right)^{q+1} \mathrm{~d} y\right)^{4} \tag{4}
\end{equation*}
$$

This is positive since for every distinct $i, j \in[q]$ there is a positive measure of y with $U\left(z_{i}, y\right) \neq$ $U\left(z_{j}, z\right)$ (as otherwise the i-th and j-th parts can be merged together contrary to the definition of a q-step kernel). Hence, the existence of d_{0} follows and it is equal to the right-hand side of (4), which does not depend on the values of s_{1}, \ldots, s_{q}. Similarly, if q is even, the existence of d_{0} follows from Lemma 3 and the definition of $P_{s_{1}, \ldots, s_{q}}$, and its value is

$$
\begin{equation*}
d_{0}=\prod_{1 \leq i<j \leq q}\left(\int_{[0,1]}\left(U\left(z_{i}, y\right)-U\left(z_{j}, y\right)\right)^{q+2} \mathrm{~d} y\right)^{2}\left(\int_{[0,1]}\left(U\left(z_{i}, y\right)-U\left(z_{j}, y\right)\right)^{q} \mathrm{~d} y\right)^{2} \tag{5}
\end{equation*}
$$

The proof of the lemma is now completed.
We emphasise that the value of d_{0} from the statement of Lemma 5 depends on the kernel U only, that is, it does not depend on s_{1}, \ldots, s_{q}; namely, d_{0} is given by the right-hand side of (4) or (5) depending on the parity of q, the number of parts of the step kernel U.

4. Main result

We start with a construction of a quantum graph that restricts the density of each part A of a step kernel U, that is, the value of U on $A \times A$.

Lemma 6. For all integers $q \geq 2, k \in[q]$ and reals d_{1}, \ldots, d_{k}, there exists a quantum graph $R_{d_{1}, \ldots, d_{k}}$ such that each constituent of $R_{d_{1}, \ldots, d_{k}}$ has $3 q^{2}$ vertices and the following holds for every q-step kernel $U: t\left(R_{d_{1}, \ldots, d_{k}}, U\right)=0$ if and only if the density of each part of U is one of the reals d_{1}, \ldots, d_{k}.

Proof. Fix $q \geq 2$ and reals d_{1}, \ldots, d_{k}. Let $P_{q+2, \ldots, q+2}$ be the graph from Lemma 5. Note that $P_{q+2, \ldots, q+2}$ has $q(q+2)+2 q(q-1)=3 q^{2}$ vertices. For $m \in[0,2 k]$, we set $P_{q+2, \ldots, q+2}^{(m)}$ to be a graph obtained from $P_{q+2, \ldots, q+2}$ by adding arbitrary m edges among the roots in the first group (without creating parallel edges); note that this is possible since $2 k \leq 2 q \leq\binom{ q+2}{2}$. Further, let $p(x)$ be the polynomial defined as

$$
p(x)=\prod_{i=1}^{k}\left(x-d_{i}\right)^{2}
$$

and set $R_{d_{1}, \ldots, d_{k}}$ to be the quantum graph obtained from the expansion of $p(x)$ into monomials by replacing each monomial x^{m}, including x^{0}, with $\left\lfloor P_{q+2, \ldots, q+2}^{(m)} \rrbracket\right.$.

Consider any q-step kernel U and let $d_{0}=d_{0}(U)>0$ be the constant from Lemma 5. Observe that

$$
t\left(\llbracket P_{q+2, \ldots, q+2}^{(m)} \rrbracket, U\right)=d_{0}(q-1)!\left(\prod_{i=1}^{q} a_{i}^{q+2}\right)\left(\sum_{i=1}^{q} p_{i}^{m}\right)
$$

where a_{i} is the measure and p_{i} is the density of the i-th part of $U, i \in[q]$; note that the term $(q-1)$! counts possible choices of parts of U for the second, third, etc. group of roots while the choices of the part for the first group of roots are accounted for by the last sum in the expression. It follows that

$$
t\left(R_{d_{1}, \ldots, d_{k}}, U\right)=d_{0}(q-1)!\left(\prod_{i=1}^{q} a_{i}^{q+2}\right)\left(\sum_{i=1}^{q} p\left(p_{i}\right)\right),
$$

which, using $p(x) \geq 0$ for all $x \in \mathbb{R}$, is equal to zero if and only if $p\left(p_{i}\right)=0$ for every $i \in[q]$. The latter holds if and only if each p_{i} is one of the reals d_{1}, \ldots, d_{k} (note that $p(x)>0$ unless $x \in\left\{d_{1}, \ldots, d_{k}\right\}$), and so the quantum graph $R_{d_{1}, \ldots, d_{k}}$ has the properties given in the statement of the lemma.

The next lemma provides a quantum graph restricting densities between pairs of parts of a step kernel; its proof is similar to that of Lemma 6, however, we include it for completeness.

Lemma 7. For all integers $q \geq 2, k \in[q(q-1) / 2]$ and reals d_{1}, \ldots, d_{k}, there exists a quantum graph $S_{d_{1}, \ldots, d_{k}}$ with $3 q^{2}$ vertices such that the following holds for every q-step kernel U : $t\left(S_{d_{1}, \ldots, d_{k}}, U\right)=0$ if and only if the density between each pair of distinct parts of U is one of the reals d_{1}, \ldots, d_{k}.

Proof. Fix $q \geq 2$ and reals d_{1}, \ldots, d_{k}. Let $P_{q+2, \ldots, q+2}$ be the graph from Lemma 5. Recall that $P_{q+2, \ldots, q+2}$ has $q(q+2)+2 q(q-1)=3 q^{2}$ vertices. For $m \in[0,2 k]$, we set $P_{q+2, \ldots, q+2}^{(m)}$ to be a graph obtained from $P_{q+2, \ldots, q+2}$ by adding arbitrary m edges joining a root in the first group and a root in the second group without creating parallel edges; note that this is possible since $2 k \leq q(q-1) \leq$ $(q+2)^{2}$. Further, let $p(x)$ be the polynomial defined as

$$
p(x)=\prod_{i=1}^{k}\left(x-d_{i}\right)^{2}
$$

and set $S_{d_{1}, \ldots, d_{k}}$ to be the quantum graph obtained from the expansion of $p(x)$ by replacing x^{m} with $\llbracket P_{q+2, \ldots, q+2}^{(m)} \rrbracket$.

Consider a q-step kernel U and let $d_{0}=d_{0}(U)>0$ be the constant from Lemma 5. Observe that

$$
t\left(\left\lfloor P_{q+2, \ldots, q+2}^{(m)} \rrbracket, U\right)=2 d_{0}(q-2)!\left(\prod_{i=1}^{q} a_{i}^{q+2}\right)\left(\sum_{1 \leq i<j \leq q} p_{i j}^{m}\right)\right.
$$

where a_{i} is the measure of the i-th part of $U, i \in[q]$, and $p_{i j}$ is the density between the i-th and j-th part of $U, 1 \leq i<j \leq q$. It follows that

$$
t\left(S_{d_{1}, \ldots, d_{k}}, U\right)=2 d_{0}(q-2)!\left(\prod_{i=1}^{q} a_{i}^{q+2}\right)\left(\sum_{1 \leq i<j \leq q} p\left(p_{i j}\right)\right)
$$

which (by $p \geq 0$) is equal to zero if and only if $p\left(p_{i j}\right)=0$ for all $1 \leq i<j \leq q$. The latter holds if and only if each $p_{i j}, 1 \leq i<j \leq q$, is one of the reals d_{1}, \ldots, d_{k}, and so the quantum graph $S_{d_{1}, \ldots, d_{k}}$ has the properties given in the statement of the lemma.

We next present a construction of a rooted quantum graph that "tests" whether there is a permutation of parts of a step kernel matching densities in a given matrix D. As the value of d_{0} in Lemma 5, the value of c_{0} in Lemma 8 does not depend on s_{1}, \ldots, s_{q}, namely, it depends on the matrix D and the kernel U only.
Lemma 8. For all integers $q \geq 2, s_{1}, \ldots, s_{q} \in[q+2,2 q+2]$ and a symmetric real matrix $D \in$ $\mathbb{R}^{q \times q}$, there exists an $\left(s_{1}, \ldots, s_{q}\right)$-rooted quantum graph $T_{s_{1}, \ldots, s_{q}}$ satisfying the following. Each constituent of $T_{s_{1}, \ldots, s_{q}}$ has $2 q(q-1)$ non-root vertices, and if U is a q-step kernel such that

- the density of each part of U is one of the diagonal entries of D, and
- the density between each pair of the parts of U is one of the off-diagonal entries of D,
then there exists $c_{0}=c_{0}(D, U) \neq 0$, which does not depend on s_{1}, \ldots, s_{q}, such that $t_{\star}\left(T_{s_{1}, \ldots, s_{q}}, U\right)$ is either 0 or c_{0} for all choices of roots and it is non-zero if and only if
- all roots from each of the q groups of roots are chosen from the same part of U,
- roots from different groups are chosen from different parts of U,
- $D_{i i}$ is the density of the part of U that the i-th group of roots is chosen from, and
- $D_{i j}$ is the density between the parts of U that the i-th and j-th groups of roots are chosen from.

Proof. Fix integers $q \geq 2, s_{1}, \ldots, s_{q} \in[q+2,2 q+2]$, and a matrix D. Let Z_{1} be the set containing the values of diagonal entries of D and Z_{2} the set containing the values of off-diagonal entries of D. We next define a polynomial p, whose $\binom{q+1}{2}$ are variables are indexed by pairs $i j$ with $1 \leq i \leq j \leq q$, as follows:

$$
p\left(x_{11}, x_{12}, \ldots, x_{q-1, q}, x_{q, q}\right)=\left(\prod_{i=1}^{q} \prod_{z \in Z_{1} \backslash\left\{D_{i i}\right\}}\left(x_{i i}-z\right)\right)\left(\prod_{1 \leq i<j \leq q} \prod_{z \in Z_{2} \backslash\left\{D_{i j}\right\}}\left(x_{i j}-z\right)\right) .
$$

Let $P_{s_{1}, \ldots, s_{q}}$ be the graph from Lemma 5. For $m_{i i} \in\left[0,\left|Z_{1}\right|\right], i \in[q]$, and $m_{i j} \in\left[0,\left|Z_{2}\right|\right], 1 \leq i<j \leq k$, let $P_{s_{1}, \ldots, s_{q}}^{m_{11}, \ldots, m_{q, q}}$ be an $\left(s_{1}, \ldots, s_{q}\right)$-rooted quantum graph obtained from $P_{s_{1}, \ldots, s_{q}}$ by adding arbitrary $m_{i j}$ edges joining roots in the i-th group and with the roots in the j-th group for $1 \leq i \leq j \leq q$ (without creating parallel edges). The (s_{1}, \ldots, s_{q})-rooted quantum graph $T_{s_{1}, \ldots, s_{q}}$ is
obtained from the expansion of $p\left(x_{11}, x_{12}, \ldots, x_{q, q}\right)$ into monomials by replacing each monomial $x_{11}^{m_{11}} x_{12}^{m_{12}} \cdots x_{q, q}^{m_{q, q}}$ with $P_{s_{1}, \ldots, s_{q}}^{m_{11}, \ldots, m_{q, q}}$ (including the monomial $x_{11}^{0} \cdots x_{q, q}^{0}$).

Fix a q-step kernel U such that

- the density of each part of U belongs to Z_{1}, and
- the density between each pair of the parts of U belongs to Z_{2}.

Let $d_{0}=d_{0}(U)>0$ be the constant from Lemma 5. Note that $t_{\star}\left(T_{s_{1}, \ldots, s_{q}}, U\right)=0$ unless

- all roots from each of the q groups of roots are chosen from the same part of U,
- roots from different groups are chosen from different parts of U,
- $D_{i i}$ is the density of the part of U that the i-th group of roots is chosen from, and
- $D_{i j}$ is the density between the parts of U that the i-th and j-th groups of roots are chosen from,
and if $t_{\star}\left(T_{s_{1}, \ldots, s_{q}}, U\right) \neq 0$, then it is equal to

$$
c_{0}=d_{0}\left(\prod_{i=1}^{q} \prod_{z \in Z_{1} \backslash\left\{D_{i i}\right\}}\left(D_{i i}-z\right)\right)\left(\prod_{1 \leq i<j \leq q} \prod_{z \in Z_{2} \backslash\left\{D_{i j}\right\}}\left(D_{i j}-z\right)\right) \neq 0 .
$$

Hence, the $\left(s_{1}, \ldots, s_{q}\right)$-rooted quantum graph $T_{s_{1}, \ldots, s_{q}}$ has the properties given in the statement of the lemma.

To prove the main result of this paper, we need the following well-known result, which we state explicitly for reference.
Lemma 9. For every $q \geq 1$ and reals z_{1}, \ldots, z_{q}, the following system of equations has at most one solution $x_{1}, \ldots, x_{q} \in \mathbb{R}$ (up to a permutation of the values):

$$
\begin{gathered}
x_{1}+\cdots+x_{q}=z_{1} \\
x_{1}^{2}+\cdots+x_{q}^{2}=z_{2} \\
\vdots \\
\vdots \\
\vdots \\
x_{1}^{q}+\cdots+x_{q}^{q}=z_{q} .
\end{gathered}
$$

Proof. The system of equations gives the first q power sums of x_{1}, \ldots, x_{q}. By Newton's identities (see e.g., [40, Equation (2.11')]), this determines the first q elementary symmetric polynomials, which are the coefficients of the polynomial $\prod_{i=1}^{q}\left(x+x_{i}\right)$. Therefore any other solution y_{1}, \ldots, y_{q} of the system satisfies that $\prod_{i=1}^{q}\left(x+x_{i}\right)=\prod_{i=1}^{q}\left(x+y_{i}\right)$, which yields the statement of the lemma because of the uniqueness of polynomial factorisation.

We are now ready to prove our main result, which implies Theorem 1 stated in Section 1.
Theorem 10. The following holds for every $q \geq 2$ and every q-step kernel U : if the density of each graph with at most $4 q^{2}-q$ vertices in a kernel U^{\prime} is the same as in U, then the kernels U and U^{\prime} are weakly isomorphic.
Proof. Fix a q-step kernel U. Let a_{1}, \ldots, a_{q} be the measures of the q parts. Further let $D \in \mathbb{R}^{q \times q}$ be the matrix such that $D_{i i}$ is the density of the i-th part of U and $D_{i j}, i \neq j$, is the density between the i-th and j-th part.

Consider a kernel U^{\prime} such that $t(H, U)=t\left(H, U^{\prime}\right)$ for all graphs with at most $4 q^{2}-q$ vertices. Since each constituent of the quantum graphs Q_{q} and Q_{q+1} from Lemma 2 has $q(q+1)$ and
$(q+1)(q+2) \leq 4 q^{2}-q$ vertices, respectively, it holds that $t\left(Q_{q}, U^{\prime}\right) \neq 0$ and $t\left(Q_{q+1}, U^{\prime}\right)=0$ (as they are the same as the corresponding densities in U). We conclude using Lemma 2 that U^{\prime} is a q-step kernel.

Let $R_{D_{11}, \ldots, D_{q q}}$ be the quantum graph from the statement of Lemma 6; note that each constituent of $R_{D_{11}, \ldots, D_{q q}}$ has $3 q^{2} \leq 4 q^{2}-q$ vertices. Since $t\left(R_{D_{11}, \ldots, D_{q q}}, U^{\prime}\right)=0$ (as the value is the same as for the kernel U), Lemma 6 yields that the density of each part of U^{\prime} is equal to one of the diagonal entries of D. Similarly, Lemma 7 applied with the off-diagonal entries of D yields that the density between any pair of parts of U^{\prime} is equal to one of the off-diagonal entries of D. In addition, the $(q+2, \ldots, q+2)$-rooted quantum graph $T_{q+2, \ldots, q+2}$ from Lemma 8 applied with the matrix D satisfies $t\left(\llbracket T_{q+2, \ldots, q+2} \rrbracket, U\right) \neq 0$; thus it holds that $t\left(\llbracket T_{q+2, \ldots, q+2} \rrbracket, U^{\prime}\right) \neq 0$. Hence, we derive using Lemma 8 that, after possibly permuting the parts of U^{\prime}, the density of the i-th part of U^{\prime} is $D_{i i}$ and the density between the i-th and j-th parts of U^{\prime} is $D_{i j}$.

Let $d_{0}=d_{0}(U)>0$ be the constant from Lemma 5 for the kernel U. Observe that, for each $k \in[0, q]$, the following holds for the rooted quantum graph $P_{q+k+2, q+2, \ldots, q+2}$ from Lemma 5:

$$
t\left(\llbracket P_{q+k+2, q+2, \ldots, q+2} \rrbracket, U\right)=d_{0}(q-1)!\left(\prod_{j=1}^{q} a_{j}^{q+2}\right)\left(\sum_{i=1}^{q} a_{i}^{k}\right)
$$

It follows that the following holds for every $k \in[q]$:

$$
\sum_{i=1}^{q} a_{i}^{k}=\frac{q \cdot t\left(\llbracket P_{q+k+2, q+2, \ldots, q+2} \rrbracket, U\right)}{t\left(\llbracket P_{q+2, q+2, \ldots, q+2} \rrbracket, U\right)}
$$

Similarly, with a_{i}^{\prime} denoting the measure of the i-th part of U^{\prime}, we obtain that

$$
\sum_{i=1}^{q}\left(a_{i}^{\prime}\right)^{k}=\frac{q \cdot t\left(\llbracket P_{q+k+2, q+2, \ldots, q+2} \rrbracket, U^{\prime}\right)}{t\left(\llbracket P_{q+2, q+2, \ldots, q+2} \rrbracket, U^{\prime}\right)}
$$

Hence, Lemma 9 and the assumption that the homomorphism densities of all graphs with at most $q(q+2)+q+2 q(q-1)=3 q^{2}+q \leq 4 q^{2}-q$ vertices are the same in U and U^{\prime} implies that the multisets a_{1}, \ldots, a_{q} and $a_{1}^{\prime}, \ldots, a_{q}^{\prime}$ are the same.

Let $c_{0}=c_{0}(D, U) \neq 0$ be the constant from Lemma 8 for the kernel U and let Π_{D} be the set of all permutations π of the parts of U such that the densities inside the parts and between the parts in U and after applying π to the parts of U are still as given by D. Observe that it holds that

$$
t\left(\llbracket T_{s_{1}, \ldots, s_{q}} \rrbracket, U\right)=c_{0} \sum_{\pi \in \Pi_{D}} \prod_{i=1}^{q} a_{\pi(i)}^{s_{i}} .
$$

Let $p\left(x_{1}, \ldots, x_{q}\right)$ be the polynomial defined as

$$
p\left(x_{1}, \ldots, x_{q}\right)=\left(\prod_{j=1}^{q} x_{j}^{q+2}\right)\left(\prod_{i=1}^{q} \prod_{a \in\left\{a_{1}, \ldots, a_{q}\right\} \backslash\left\{a_{i}\right\}}\left(x_{i}-a\right)\right) .
$$

Note that each variable in each monomial of p has degree between $q+2$ and $2 q+1$. Since each a_{i} is non-zero, we have for all q-tuples (x_{1}, \ldots, x_{q}) of reals with $\left\{x_{1}, \ldots, x_{q}\right\} \subseteq\left\{a_{1}, \ldots, a_{q}\right\}$ that $p\left(x_{1}, \ldots, x_{q}\right)=0$ if and only if there exists $i \in[q]$ such that $x_{i} \neq a_{i}$. Let T be the quantum graph obtained from the polynomial p by expanding it and then replacing each monomial $x_{1}^{s_{1}} \cdots x_{q}^{s_{q}}$ with
$\llbracket T_{s_{1}, \ldots, s_{q}} \rrbracket$ (including the monomial $x_{1}^{0} \cdots x_{1}^{0}$). Note that the number of vertices of each constituent of T is at most $q(2 q+1)+2 q(q-1)=4 q^{2}-q$ and

$$
t(T, U)=c_{0} \sum_{\pi \in \Pi_{D}} p\left(a_{\pi(1)}, \ldots, a_{\pi(q)}\right) .
$$

In particular, it holds that $t(T, U) \neq 0$ and so $t\left(T, U^{\prime}\right) \neq 0$. Along the same lines, we obtain that

$$
t\left(T, U^{\prime}\right)=c_{0}^{\prime} \sum_{\pi \in \Pi_{D}^{\prime}} p\left(a_{\pi(1)}^{\prime}, \ldots, a_{\pi(q)}^{\prime}\right),
$$

where $c_{0}^{\prime}=c_{0}\left(D, U^{\prime}\right) \neq 0$ is the constant from Lemma 8 for the kernel U^{\prime} and Π_{D}^{\prime} is the set of all permutations π of the parts of U^{\prime} such that the densities of the parts and between the parts after applying π are as given by D. Since it holds that $t\left(T, U^{\prime}\right) \neq 0$, the set Π_{D}^{\prime} is non-empty. It follows that Π_{D}^{\prime} contains a permutation π such that $a_{\pi(i)}^{\prime}=a_{i}$ for all $i \in[q]$, which implies that the kernels U and U^{\prime} are weakly isomorphic.

5. Parts with different degrees

In this section, we show that a q-step kernel such that its vertices contained in different parts have different degrees is forced by graphs with at most $2 q+1$ vertices.
Theorem 11. The following holds for every $q \geq 2$ and every q-step kernel U such that the degrees of vertices in different parts are different: if the density of each graph with at most $2 q+1$ vertices in a kernel U^{\prime} is the same as in U, then the kernels U and U^{\prime} are weakly isomorphic.

Proof. Fix $q \geq 2$, a q-step kernel U and a kernel U^{\prime} such that $t(H, U)=t\left(H, U^{\prime}\right)$ for every graph H with at most $2 q+1$ vertices. For $i \in[q]$, let A_{i} be the i-th part of U, a_{i} be the measure of A_{i}, and let d_{i} be the common degree of the vertices contained in A_{i}.

Let K_{1}^{\bullet} and K_{2}^{\bullet} be the 1 -rooted graphs obtained from K_{1} and K_{2}, respectively, by choosing one of their vertices to be the root. Note that $t_{x}\left(K_{2}^{\bullet}-d K_{1}^{\bullet}, V\right)=0$ if and only if the degree of x in a kernel V is d. It follows that a kernel V satisfies that

$$
\begin{equation*}
\left.t\left(\llbracket \prod_{i \in[q]}\left(K_{2}^{\bullet}-d_{i} K_{1}^{\bullet}\right)^{2}\right], V\right)=0 \tag{6}
\end{equation*}
$$

if and only if the degree of almost every vertex of V is one of the numbers d_{1}, \ldots, d_{q}. Next observe that if a kernel V satisfies (6) and

$$
\begin{equation*}
\left.t\left(\prod_{i \in[q] \backslash\{k\}}\left(K_{2}^{\bullet}-d_{i} K_{1}^{\bullet}\right)\right], V\right)=a_{k} \prod_{i \in[q\rceil \backslash\{k\}}\left(d_{k}-d_{i}\right) \tag{7}
\end{equation*}
$$

for $k \in[q]$, then the measure of the set of vertices of V with degree equal to d_{k} is a_{k}. Since U satisfies (6) and (7) for every $k \in[q]$ and the graphs appearing in (6) and (7) have at most $2 q+1$ and q vertices, respectively, the vertex set of the kernel U^{\prime} can be partitioned into q (measurable) sets $A_{1}^{\prime}, \ldots, A_{q}^{\prime}$ and a null set A_{0}^{\prime} such that the measure of A_{k}^{\prime} is a_{k} and all vertices contained in A_{k}^{\prime} have degree equal to d_{k} for every $k \in[q]$.

Let $G^{\bullet \bullet}, G^{\bullet \bullet}$ and $G^{\bullet \circ}$ be the following 2-rooted graphs: $G^{\bullet \bullet}$ consists of two isolated roots only, $G^{\circ \bullet}$ is obtained from $G^{\bullet \bullet}$ by adding a non-root vertex adjacent to the first root, and $G^{\bullet \bullet}$ is obtained
from $G^{\bullet \bullet}$ by adding a non-root vertex adjacent to the second root. For $k, \ell \in[q]$, let $H_{k \ell}$ be the 2-rooted quantum graph defined as

$$
H_{k \ell}=\left(\prod_{i \in[q] \backslash\{k\}}\left(G^{\bullet \bullet}-d_{i} G^{\bullet \bullet}\right)\right) \times\left(\prod_{j \in[q] \backslash\{\ell\}}\left(G^{\bullet \circ}-d_{j} G^{\bullet \bullet}\right)\right),
$$

and observe that

$$
t_{x y}\left(H_{k \ell}, U^{\prime}\right)=\left(\prod_{i \in[q] \backslash\{k\}}\left(d_{k}-d_{i}\right)\right)\left(\prod_{j \in\lceil q] \backslash\{\ell\}}\left(d_{\ell}-d_{j}\right)\right)
$$

if the degree of x is d_{k} and the degree of y is d_{ℓ}, and $t_{x y}\left(H_{k \ell}, U^{\prime}\right)=0$ otherwise. In particular, it follows that

$$
\begin{equation*}
t\left(\llbracket H_{k \ell} \rrbracket, U^{\prime}\right)=a_{k} a_{\ell}\left(\prod_{i \in[q] \backslash\{k\}}\left(d_{k}-d_{i}\right)\right)\left(\prod_{j \in[q] \backslash\{\ell\}}\left(d_{\ell}-d_{j}\right)\right) . \tag{8}
\end{equation*}
$$

Note that each constituent of the 2-rooted quantum graph $H_{k \ell}$ has at most $2 q$ vertices. Let $H_{k \ell}^{\prime}$ be the 2-rooted quantum graph obtained from $H_{k \ell}$ by joining the two roots in each of its constituents by an edge. Similarly as above, one can show that

$$
\begin{equation*}
t\left(\llbracket H_{k \ell}^{\prime} \rrbracket, U^{\prime}\right)=\left(\int_{A_{k}^{\prime} \times A_{\ell}^{\prime}} U^{\prime}(x, y) \mathrm{d} x \mathrm{~d} y\right)\left(\prod_{i \in[q] \backslash\{k\}}\left(d_{k}-d_{i}\right)\right)\left(\prod_{j \in[q] \backslash\{\ell\}}\left(d_{\ell}-d_{j}\right)\right) . \tag{9}
\end{equation*}
$$

Using (8) and (9), we obtain that

$$
\frac{\int_{A_{k}^{\prime} \times A_{\ell}^{\prime}} U^{\prime}(x, y) \mathrm{d} x \mathrm{~d} y}{a_{k} a_{\ell}}=\frac{t\left(\llbracket H_{k \ell}^{\prime} \rrbracket, U^{\prime}\right)}{t\left(\llbracket H_{k \ell} \rrbracket, U^{\prime}\right)}=\frac{t\left(\llbracket H_{k \ell}^{\prime} \rrbracket, U\right)}{t\left(\llbracket H_{k \ell} \rrbracket, U\right)}=\frac{\int_{A_{k} \times A_{\ell}} U(x, y) \mathrm{d} x \mathrm{~d} y}{a_{k} a_{\ell}},
$$

that is, the average density between the parts A_{k}^{\prime} and A_{ℓ}^{\prime} in the kernel U^{\prime} is the same as the density between the parts A_{k} and A_{ℓ} in the kernel U.

We now recall that each step kernel is the unique (up to weak isomorphism) minimiser of the density of C_{4} among all kernels with the same number of parts of the same measures and the same density between them. This statement for step graphons with parts of equal measure appears in [12, Lemma 11] and the same proof applies for kernels with parts not necessarily having the same sizes; also see [36, Propositions 14.13 and 14.14] for related results. Since $t\left(C_{4}, U\right)=t\left(C_{4}, U^{\prime}\right)$, it follows that U^{\prime} is weakly isomorphic to U.

6. Concluding remarks

Theorem 10 asserts that every q-step kernel is forced by graphs with at most $4 q^{2}-q$ vertices. We do not know whether it suffices to consider homomorphism densities of graphs with $o\left(q^{2}\right)$ vertices, both in the case of kernels and in the more restrictive case of graphons. We leave this as an open problem.

We finish by establishing that it is necessary to consider graphs with the number of vertices linear in q. The argument is similar to that used in analogous scenarios, for example, in [18, 21]. For reals $a_{1}, \ldots, a_{q} \in(0,1)$ such that $a_{1}+\cdots+a_{q}<1$, let $U_{a_{1}, \ldots, a_{q}}$ be the $(q+1)$-step graphon with parts of measures a_{1}, \ldots, a_{q} and $1-a_{1}-\cdots-a_{q}$ such that the graphon $U_{a_{1}, \ldots, a_{q}}$ is equal to one within each of the first q parts and to zero elsewhere. Observe that if H is a graph, which
consists of k components with n_{1}, \ldots, n_{k} vertices after the removal of isolated vertices, then

$$
t\left(H, U_{a_{1}, \ldots, a_{q}}\right)=\prod_{i=1}^{k} \sum_{j=1}^{q} a_{j}^{n_{i}}=\prod_{i=1}^{k} t\left(K_{n_{i}}, U_{a_{1}, \ldots, a_{q}}\right) .
$$

It follows that if

$$
\begin{equation*}
t\left(K_{\ell+1}, U_{a_{1}, \ldots, a_{q}}\right)=t\left(K_{\ell+1}, U_{a_{1}^{\prime}, \ldots, a_{q}^{\prime}}\right) \quad \text { for every } \ell \in[q-1] \tag{10}
\end{equation*}
$$

then the homomorphism density of every graph with at most q vertices is the same in $U_{a_{1}, \ldots, a_{q}}$ and in $U_{a_{1}^{\prime}, \ldots, a_{q}^{\prime}}$. When $f\left(a_{1}, \ldots, a_{q}\right)=\left(t\left(K_{\ell+1}, U_{a_{1}, \ldots, a_{q}}\right)\right)_{\ell=1}^{q-1}$ is viewed as a function of a_{1}, \ldots, a_{q}, then its Jacobian matrix J with respect to the first $q-1$ coordinates is

$$
\left[\begin{array}{ccc}
2 a_{1} & \cdots & 2 a_{q-1} \tag{11}\\
3 a_{1}^{2} & \cdots & 3 a_{q-1}^{2} \\
\vdots & & \vdots \\
q a_{1}^{q-1} & \cdots & q a_{q-1}^{a-1}
\end{array}\right]=\left[\begin{array}{ccc}
2 & & \\
& \ddots & \\
& & q
\end{array}\right]\left[\begin{array}{ccc}
1 & \cdots & 1 \\
a_{1} & \cdots & a_{q-1} \\
\vdots & & \vdots \\
a_{1}^{q-2} & \cdots & a_{q-1}^{a-2}
\end{array}\right]\left[\begin{array}{lll}
a_{1} & & \\
& & \ddots \\
& & a_{q-1}
\end{array}\right] .
$$

Fix any distinct positive reals a_{1}, \ldots, a_{q} with sum less than 1 . Note that the middle matrix in (11) is the Vandermonde matrix of $\left(a_{1}, \ldots, a_{q-1}\right)$ and thus the Jacobian matrix J is non-singular. By the Implicit Function Theorem, for every a_{q}^{\prime} sufficiently close to a_{q} there is a vector $\left(a_{1}^{\prime}, \ldots, a_{q-1}^{\prime}\right)$ close to $\left(a_{1}, \ldots, q_{q}\right)$ such that (10) holds. By making a_{q}^{\prime} sufficiently close but not equal to a_{q}, we can ensure that $a_{q}^{\prime} \notin\left\{a_{1}, \ldots, a_{q}\right\}$ and that all elements a_{i}^{\prime} are positive and sum to less than 1 . Thus we obtain two ($q+1$)-step graphons, namely $U_{a_{1}, \ldots, a_{q}}$ and $U_{a_{1}^{\prime}, \ldots, a_{q}^{\prime}}$, that have the same homomorphism density of every graph with at most q vertices but are not weakly isomorphic; the latter can be established by, for example, applying the proof of Theorem 10 to these two graphons (alternatively, it also follows from the general analytic characterisation of weakly isomorphic kernels [36, Theorem 13.10]).

Acknowledgement

The authors would like to thank both anonymous reviewers for their comments that have improved the presentation of the results in the paper.

References

[1] Borgs, C., Chayes, J. and Lovász, L. (2010) Moments of two-variable functions and the uniqueness of graph limits. Geom. Funct. Anal. 19 1597-1619.
[2] Borgs, C., Chayes, J. T., Cohn, H. and Ganguly, S. (2021) Consistent nonparametric estimation for heavy-tailed sparse graphs. Ann. Stat. 49 1904-1930.
[3] Bucić, M., Long, E., Shapira, A. and Sudakov, B. (2021) Tournament quasirandomness from local counting. Combinatorica 41 175-208.
[4] Chan, T., Král', D., Noel, J. A., Pehova, Y., Sharifzadeh, M. and Volec, J. (2020) Characterization of quasirandom permutations by a pattern sum. Random Struct. Algorithms 57 920-939.
[5] Chung, F. R. K. and Graham, R. L. (1990) Quasi-random hypergraphs. Random Struct. Algorithms 1 105-124.
[6] Chung, F. R. K. and Graham, R. L. (1991) Quasi-random set systems. J. Am. Math. Soc. 4 151-196.
[7] Chung, F. R. K. and Graham, R. L. (1991) Quasi-random tournaments. J. Graph Theory 15 173-198.
[8] Chung, F. R. K. and Graham, R. L. (1992) Quasi-random subsets of Z_{n}. J. Comb. Theory Ser. A 61 64-86.
[9] Chung, F. R. K., Graham, R. L. and Wilson, R. M. (1989) Quasi-random graphs. Combinatorica 9 345-362.
[10] Cooper, J. N. (2004) Quasirandom permutations. J. Comb. Theory Ser. A 106 123-143.
[11] Cooper, J. W., Král', D., Lamaison, A. and Mohr, S. (2022) Quasirandom Latin squares. Random Struct. Algorithms 61 298-308.
[12] Cooper, J. W., Král', D. and Martins, T. (2018) Finitely forcible graph limits are universal. Adv. Math. 340 819-854.
[13] Coregliano, L. N., Parente, R. F. and Sato, C. M. (2019) On the maximum density of fixed strongly connected subtournaments. Electron. J. Comb. 26 P1.44.
[14] Coregliano, L. N. and Razborov, A. A. (2017) On the density of transitive tournaments. J. Graph Theory 85 12-21.
[15] Coregliano, L. N. and Razborov, A. A. (2020) Natural quasirandomness properties, preprint arXiv: 2012.11773.
[16] Diaconis, P. and Janson, S. (2008) Graph limits and exchangeable random graphs. Rend. Mat. Appl. 28 33-61.
[17] Eberhard, S., Manners, F. and Mrazović, R. (2022) Transversals in quasirandom Latin squares, preprint arXiv: 2209.02180.
[18] Erdős, P., Lovász, L. and Spencer, J. (1979) Strong independence of graphcopy functions. In Graph Theory and Related Topics. Academic Press, pp. 165-172.
[19] Gao, C., Lu, Y. and Zhou, H. H. (2015) Rate-optimal graphon estimation. Ann. Stat. 43 2624-2652.
[20] Garbe, F., Hancock, R., Hladký, J. and Sharifzadeh, M. (2020) Limits of Latin squares, preprint arXiv: 2010.07854.
[21] Glebov, R., Grzesik, A., Klimošová, T. and Král', D. (2015) Finitely forcible graphons and permutons. J. Comb. Theory Ser. B 110 112-135.
[22] Gowers, W. T. (2006) Quasirandomness, counting and regularity for 3-uniform hypergraphs. Comb. Probab. Comput. 15 143-184.
[23] Gowers, W. T. (2007) Hypergraph regularity and the multidimensional Szemerédi theorem. Ann. Math. 166 897-946.
[24] Gowers, W. T. (2008) Quasirandom groups. Comb. Probab. Comput. 17 363-387.
[25] Gowers, W. T. and Long, J. (2020) Partial associativity and rough approximate groups. Geom. Funct. Anal. 30 1-65.
[26] Grzesik, A., Il'kovič, D., Kielak, B. and Král', D. (2022) Quasirandom forcing orientations of cycles, preprint arXiv: 2212.09343.
[27] Grzesik, A., Král', D. and Lovász, L. M. (2020) Elusive extremal graphs. Proc. Lond. Math. Soc. 121 1685-1736.
[28] Hancock, R., Kabela, A., Král', D., Martins, T., Parente, R., Skerman, F. and Volec, J. (2023) No additional tournaments are quasirandom-forcing. Eur. J. Comb. 108103632.
[29] Haviland, J. and Thomason, A. (1989) Pseudo-random hypergraphs. Discrete Math. 75 255-278.
[30] Klopp, O., Tsybakov, A. B. and Verzelen, N. (2017) Oracle inequalities for network models and sparse graphon estimation. Ann. Stat. 45 316-354.
[31] Klopp, O. and Verzelen, N. (2019) Optimal graphon estimation in cut distance. Probab. Theory Relat. Fields 174 10331090.
[32] Kohayakawa, Y., Rödl, V. and Skokan, J. (2002) Hypergraphs, quasi-randomness, and conditions for regularity. J. Comb. Theory Ser. A 97 307-352.
[33] Král', D., Lovász, L. M., Noel, J. A. and Sosnovec, J. (2020) Finitely forcible graphons with an almost arbitrary structure. Discrete Anal. 2020 Article 9, 36pp.
[34] Král', D. and Pikhurko, O. (2013) Quasirandom permutations are characterized by 4-point densities. Geom. Funct. Anal. 23 570-579.
[35] Kureĉka, M. (2022) Lower bound on the size of a quasirandom forcing set of permutations. Comb. Probab. Comput. 31 304-319.
[36] Lovász, L. (2012) Large Networks and Graph Limits, Vol. 60 of Colloquium Publications, American Mathematical Society.
[37] Lovász, L. and Sós, V. (2008) Generalized quasirandom graphs. J. Comb. Theory Ser. B 98 146-163.
[38] Lovász, L. and Szegedy, B. (2006) Limits of dense graph sequences. J. Comb. Theory Ser. B 96 933-957.
[39] Lovász, L. and Szegedy, B. (2011) Finitely forcible graphons. J. Comb. Theory Ser. B 101 269-301.
[40] Macdonald, I. G. (1995) Symmetric Functions and Hall Polynomials, 2nd edition. Oxford University Press.
[41] Nagle, B., Rödl, V. and Schaht, M. (2006) The counting lemma for regular k-uniform hypergraphs. Random Struct. Algorithms 28 113-179.
[42] Rödl, V. (1986) On universality of graphs with uniformly distributed edges. Discrete Math. 59 125-134.
[43] Rödl, V. and Skokan, J. (2004) Regularity lemma fork-uniform hypergraphs. Random Struct. Algorithms 25 1-42.
[44] Simonovits, M. and Sós, V. T. (1991) Szemerédi's partition and quasirandomness. Random Struct. Algorithms 2 1-10.
[45] Spencer, J. (2010) Quasirandom multitype graphs. In An Irregular Mind, Vol. 21 of Bolyai Society Mathematical Studies, Springer, pp. 607-617.
[46] Thomason, A. (1987) Pseudo-random graphs. Ann. Discrete Math. 144, 307-331.
[47] Thomason, A. (1987) Random graphs, strongly regular graphs and pseudo-random graphs. In Surveys in Combinatorics, Vol. 123 of London Mathematical Society Lecture Note Series, pp. 173-196.

Cite this article: Grzesik A, Král' D, and Pikhurko O (2024). Forcing generalised quasirandom graphs efficiently. Combinatorics, Probability and Computing 33, 16-31. https://doi.org/10.1017/S0963548323000263

[^0]: *An extended abstract announcing the results presented in this paper has been published in the Proceedings of Eurocomb'23.
 ${ }^{\dagger}$ Andrzej Grzesik: Supported by the National Science Centre grant number 2021/42/E/ST1/00193.
 ${ }^{\ddagger}$ Daniel Král': Supported by the MUNI Award in Science and Humanities (MUNI/I/1677/2018) of the Grant Agency of Masaryk University.
 ºleg Pikhurko: Supported by ERC Advanced Grant 101020255 and Leverhulme Research Project Grant RPG-2018-424.

