ASCENT AND DESCENT OF GORENSTEIN PROPERTY

ANTONIO GARCÍA R.* and JOSÉ J. M. SOTO*
Departamento de Álgebra, Facultad de Matemáticas, Universidad de Santiago de Compostela, E15782 Santiago de Compostela, Spain
e-mail: jjmsoto@zmat.usc.es

(Received 23 January, 2003; accepted 23 June, 2003)

Abstract

Let A be a commutative noetherian local ring, I an ideal of A, and $B=A / I$. Assume that the Andre-Quillen homology functors $H_{n}(A, B,-)=0$ for all $n \geq 3$. Then A is Gorenstein if and only if B is.

2000 Mathematics Subject Classification. 13H10, 13D03.

Let $f: A \rightarrow B$ be a surjective homomorphism of noetherian local commutative rings. If $\operatorname{Ker}(f)$ is generated by a regular sequence, it is well known that A is complete intersection (resp. Gorenstein, Cohen-Macaulay) if and only if B is. Another family of homomorphisms under which these properties ascend and descend is the one of local flat (non surjective) homomorphisms: B is complete intersection (resp. Gorenstein, Cohen-Macaulay) if and only if A and $B \otimes_{A} k$ are, where k is the residue field of A.

Ascent and descent of these properties was studied, mainly by L. L. Avramov and H.-B. Foxby, for a family of homomorphisms generalizing the two cases above: homomorphisms of finite flat dimension (see e.g. [4], [6], [7], and, in some sense, for a larger family of homomorphisms [5]).

Here we consider a different class of homomorphisms. Let $H_{n}(A, B,-)$ be the André-Quillen homology functors [1], [15]. If $f: A \rightarrow B$ is a surjective homomorphism of noetherian local rings, then $\operatorname{Ker}(f)$ is generated by a regular sequence if and only if $H_{n}(A, B,-)=0$ for all $n \geq 2$. The class of homomorphisms considered in this paper is the one satisfying $H_{n}(A, B,-)=0$ for all $n \geq 3$. In some sense it is related to complete intersection rings as $H_{n}(A, B,-)=0$ for all $n \geq 2$ is related to regular rings: if $B=k$ is the residue field of A, we have $[1,6.26,6.27]$

$$
\begin{array}{lll}
H_{n}(A, k,-)=0 & \text { for all } & n \geq 2 \Leftrightarrow \text { if } A \text { is regular } \\
H_{n}(A, k,-)=0 & \text { for all } & n \geq 3 \Leftrightarrow A \text { is complete intersection. }
\end{array}
$$

Moreover, this is a natural class of surjective homomorphisms under which the complete intersection property ascends and descends. So we may ask if the same is valid for Gorenstein and Cohen-Macaulay properties. On the other hand, this class of homomorphisms generalizes the one whose kernel is generated by a regular sequence in a very different way that the homomorphisms of finite flat dimension: if $H_{n}(A, B,-)=0$ for all $n \geq 3$ and B is of finite flat dimension over A, then $\operatorname{Ker}(f)$ is generated by a regular sequence $[1,17.2]$; moreover, it is easy to see that if A and B are complete intersection rings then $H_{n}(A, B,-)=0$ for all $n \geq 3$.

[^0]If $f: A \rightarrow B$ is a surjective homomorphism of noetherian local rings with $H_{n}(A, B,-)=0$ for all $n \geq 3$, we prove in this paper that A is Gorenstein if and only if B is, and if A is Cohen-Macaulay then B is Cohen-Macaulay. The main ingredients of the proof are:
a) A result of A. Blanco, J. Majadas and A. G. Rodicio [11] characterizing this class of homomorphisms in terms of the Koszul homology of the kernel ideal.
b) A relativization of a characterization, by Avramov and Golod, of Gorenstein rings in terms of the Koszul complex of the maximal ideal [9]. Once we get the adequate notion of Poincaré algebra in our context, our proof of this relativization follows closely [9], with a little more length, due to the non rigidity of $\operatorname{Ext}_{A}(B, A)$ when B is not a field. In fact, the proof in [9] of the absolute case shows that to deduce Gorensteiness it suffices the injectivity of Δ_{1} (see below for the definition of Δ_{i}), whereas in our case we need to assume the bijectivity of all Δ_{i}.

We want to point out two cases where our results are already known:

- The case where the kernel is a principal ideal (x) was obtained in [18] (in fact under the (a priori weaker) condition that the annihilator $(0: x)$ is a free B-module).
- The case where A is a supplemented B-algebra (i.e., the homomorphism $f: A \rightarrow B$ has a ring homomorphism section). In this case it is easy to show that Gorenstein and Cohen-Macaulay properties ascend and descend (this is essentially done in [3, Proposition 3]): we may assume that A is complete [1, 10.18]. Let $B \rightarrow R \rightarrow A$ be a Cohen factorization [8], i.e., R is a noetherian local ring, $B \rightarrow R$ is a local flat homomorphism with regular closed fiber $R \otimes_{B} k$, and $R \rightarrow A$ is surjective. We have exact sequences $[1,5.1]$

$$
\begin{aligned}
& 0=H_{3}(A, B, k) \rightarrow H_{2}(B, A, k) \rightarrow H_{2}(B, B, k)=0 \\
& 0=H_{2}(B, A, k) \rightarrow H_{2}(R, A, k) \rightarrow H_{1}(B, R, k)
\end{aligned}
$$

Since $H_{1}(B, R, k)=H_{1}\left(k, R \otimes_{B} k, k\right)=H_{2}\left(R \otimes_{B} k, k, k\right)=0 \quad[1,4.54,5.1,6.26]$, we have $H_{2}(R, A, k)=0$ and so $\operatorname{Ker}(R \rightarrow A)$ is generated by a regular sequence $[1,6.25]$. Therefore A is Gorenstein (resp. Cohen-Macaulay) if and only if R is if and only if B is.

Definition 1. Let B be a noetherian local ring, and

$$
H=\bigoplus_{i=0}^{n} H_{i}
$$

a graded (anti) commutative B-algebra of finite type. We say that H is a Poincaré B-algebra if:
i) $H_{0}=B$;
ii) $\operatorname{Ext}_{B}^{q}\left(H_{i}, B\right)=0$ for $0<i<n$ for all $q>0$;
iii) H_{n} is a free B-module;
iv) The canonical homomorphisms induced by multiplication

$$
\Delta_{i}: H_{n-i} \rightarrow \operatorname{Hom}_{B}\left(H_{i}, H_{n}\right)
$$

are all isomorphisms $0 \leq i \leq n$.
Note that from the isomorphism A_{n}, since H_{n} is a free B-module and $H_{0}=B, H_{n}$ is free of rank 1 .

The graded algebras that we are going to consider are Koszul homology algebras associated to a set of generators of A. For the definition and basic results on the Koszul complex, see [17, Chapitre IV.A)] or [12, Section 1.6].

Lemma 2. Let A be a noetherian local ring, I an ideal of A, and $B=A / I$. Let E be the Koszul complex associated to a finite set of generators of I. Then the fact that $H(E)$ is a Poincare B-algebra does not depend on the choice of the (finite) set of generators of I.

Proof. If $I=\left(x_{1}, \ldots, x_{r}\right)=\left(x_{1}, \ldots, x_{r}, y_{1}, \ldots, y_{s}\right)$, let $E(x), E(x, y)$ the Koszul complexes associated to x_{1}, \ldots, x_{r}, and to $x_{1}, \ldots, x_{r}, y_{1}, \ldots, y_{s}$ resp. Then we have isomorphisms [12, 1.6.21]

$$
H_{p}(x, y ; A)=\bigoplus_{u+v=p} \wedge_{B}^{u}\left(B^{s}\right) \otimes_{B} H_{v}(x ; A)
$$

compatible with the algebra structures. Having in mind the isomorphisms (since $\wedge_{B}^{u}\left(B^{s}\right)$ is B-free of finite type)

$$
\begin{array}{r}
\operatorname{Hom}_{B}\left(\wedge_{B}^{u}\left(B^{s}\right), \wedge_{B}^{s}\left(B^{s}\right)\right) \otimes_{B} \operatorname{Hom}_{B}\left(H_{v}(x ; A), H_{n}(x ; A)\right) \\
\quad=\operatorname{Hom}_{B}\left(\wedge_{B}^{u}\left(B^{s}\right) \otimes_{B} H_{v}(x ; A), \wedge_{B}^{s}\left(B^{s}\right) \otimes_{B} H_{n}(x ; A)\right)
\end{array}
$$

we deduce that $H(x ; A)$ is a Poincare B-algebra if and only if $H(x, y ; A)$ is. If y_{1}, \ldots, y_{s} and x_{1}, \ldots, x_{r} are two sets of generators of I, compare $H(x ; A)$ with $H(x, y ; A)$ and this one with $H(y ; A)$

The following proposition is [9, Proposition 2] (see also [12, 3.4.6]).
Proposition 3. Let A be a noetherian local ring, I an ideal of finite type of A of grade 0 , and $B=A / I$. Let E be the Koszul complex associated to a finite set of n generators of I. For each $0 \leq i \leq n$, let

$$
\Delta_{i}: H_{n-i}(E) \rightarrow \operatorname{Hom}_{B}\left(H_{i}(E), H_{n}(E)\right)
$$

be the homomorphism induced by the algebra structure on $H(E)$. Let $B_{i} \subset E_{i}, Z_{i} \subset E_{i}$, be the submodules of boundaries and cycles of E respectively. There exists an exact sequence

$$
\begin{aligned}
0 & \rightarrow \operatorname{Ext}_{A}^{1}\left(E_{i-1} / B_{i-1}, A\right) \rightarrow H_{n-i}(E) \xrightarrow{\Delta_{i}} \operatorname{Hom}_{B}\left(H_{i}(E), H_{n}(E)\right) \\
& \rightarrow \operatorname{Ext}_{A}^{1}\left(B_{i-1}, A\right) \rightarrow \operatorname{Ext}_{A}^{1}\left(E_{i} / B_{i}, A\right) \rightarrow \operatorname{Ext}_{A}^{1}\left(H_{i}(E), A\right) \\
& \rightarrow \operatorname{Ext}_{A}^{2}\left(B_{i-1}, A\right) \rightarrow \ldots
\end{aligned}
$$

Proposition 4. Let A be a noetherian local ring, I an ideal of A, and $B=A / I$. Let E be the Koszul complex associated to a finite set of m generators of I. Let $n=m-\operatorname{grade} I$. The following are equivalent:
i) $H(E)$ is a Poincaré B-algebra;
ii) $\operatorname{Ext}_{A}^{q}(B, A)=0$ for all $q \neq \operatorname{grade} I, \operatorname{Ext}_{B}^{q}\left(H_{i}(E), B\right)=0$ for $0<i<n$ for all $q>0$, and $H_{n}(E)$ is a free B-module.

Proof. First, we will see that we can assume grade $I=0$. If grade $I=g>0$, let x_{1}, \ldots, x_{g} be a regular sequence in I. By Lemma 2 and its proof, the conditions i) and ii) of the proposition do not depend on the set of generators of I. Let then $I=\left(x_{1}, \ldots, x_{g}, y_{1}, \ldots, y_{t}\right)$ and let E be the Koszul complex associated to this set of
generators of I. Let $A^{\prime}=A /\left(x_{1}, \ldots, x_{g}\right), I^{\prime}=I /\left(x_{1}, \ldots, x_{g}\right)$. Let E^{\prime} be the Koszul complex over A^{\prime} associated to the set of generators $\left(y_{1}^{\prime}, \ldots, y_{t}^{\prime}\right)$ of I^{\prime}. We have $H(E)=$ $H\left(E^{\prime}\right)[\mathbf{1 2}, 1.6 .13]$ and $\operatorname{Ext}_{A}^{q}(B, A)=\operatorname{Ext}_{A^{\prime}}^{q-g}\left(B, A^{\prime}\right)$ for all $q[\mathbf{1 6}]$ (or [17, p. IV-13]. Thus replacing (A, I) by $\left(A^{\prime}, I^{\prime}\right)$, we can assume grade $I=0$.
i) \Rightarrow ii) By Proposition 3, if Δ_{1} is injective, we have $\operatorname{Ext}_{A}^{1}(B, A)=0$. If Δ_{2} is injective, we have $\operatorname{Ext}_{A}^{1}\left(E_{1} / B_{1}, A\right)=0$, and so, if moreover Δ_{1} is surjective, we obtain $\operatorname{Ext}_{A}^{1}\left(B_{0}, A\right)=0$, i.e., $\operatorname{Ext}_{A}^{2}(B, A)=0$.

Let $r \geq 3$ and assume we have $\operatorname{Ext}_{A}^{j}(B, A)=0$ for all $1 \leq j \leq r-1$. Since $\operatorname{Ext}_{B}^{q}\left(H_{i}(E), B\right)=0$ for all $q>0$ and all i, and $\operatorname{Ext}_{A}^{0}(B, A)=\operatorname{Hom}_{A}(B, A)=H_{n}(E)$ is a free B-module by hypothesis, in the spectral sequence

$$
E_{2}^{p, q}=\operatorname{Ext}_{B}^{p}\left(H_{i}(E), \operatorname{Ext}_{A}^{q}(B, A)\right) \Rightarrow \operatorname{Ext}_{A}^{p+q}\left(H_{i}(E), A\right)
$$

we have $\mathrm{E}_{2}^{p, q}=0$ if $1 \leq p+q \leq r-1$ and so $\operatorname{Ext}_{A}^{j}\left(H_{i}(E), A\right)=0$ for $1 \leq j \leq r-1$. Therefore, from the exact sequences $0 \rightarrow H_{i}(E) \rightarrow E_{i} / B_{i} \rightarrow B_{i-1} \rightarrow 0,0 \rightarrow B_{i} \rightarrow$ $E_{i} \rightarrow E_{i} / B_{i} \rightarrow 0$, we obtain $\operatorname{Ext}_{A}^{q}\left(B_{i}, A\right)=\operatorname{Ext}_{A}^{q+1}\left(B_{i-1}, A\right)$ for all $1 \leq q \leq r-2$. If Δ_{r} is injective, from Proposition 3 we deduce $\operatorname{Ext}_{A}^{1}\left(E_{r-1} / B_{r-1}, A\right)=0$ and so, using that Δ_{r-1} is surjective, we obtain $\operatorname{Ext}_{A}^{1}\left(B_{r-2}, A\right)=0$. Thus $\operatorname{Ext}_{A}^{r}(B, A)=\operatorname{Ext}_{A}^{r-1}\left(B_{0}, A\right)=$ $\operatorname{Ext}_{A}^{1}\left(B_{r-2}, A\right)=0$. This completes the induction step.
ii) \Rightarrow i) Since $\operatorname{Ext}_{A}^{0}(B, A)=H_{n}(E)$ is a free B-module, $\operatorname{Ext}_{B}^{q}\left(H_{i}(E), B\right)=0$ for all $q>0$ and all i, and $\operatorname{Ext}_{A}^{q}(B, A)=0$ for all $q>0$, the spectral sequence

$$
E_{2}^{p, q}=\operatorname{Ext}_{B}^{p}\left(H_{i}(E), \operatorname{Ext}_{A}^{q}(B, A)\right) \Rightarrow \operatorname{Ext}_{A}^{p+q}\left(H_{i}(E), A\right)
$$

says that $\operatorname{Ext}_{A}^{q}\left(H_{i}(E), A\right)=0$ for all $q>0$ for all i. So from the exact sequences $0 \rightarrow H_{i}(E) \rightarrow E_{i} / B_{i} \rightarrow B_{i-1} \rightarrow 0,0 \rightarrow B_{i} \rightarrow E_{i} \rightarrow E_{i} / B_{i} \rightarrow 0,0 \rightarrow B_{0} \rightarrow$ $E_{0} \rightarrow B \rightarrow 0$, and from the hypothesis $\operatorname{Ext}_{A}^{q}(B, A)=0$ for all $q>0$, we obtain, by recurrence on $r, \operatorname{Ext}_{A}^{q}\left(B_{r}, A\right)=0$, and $\operatorname{Ext}_{A}^{q}\left(E_{r} / B_{r}, A\right)=0$ for all $r \geq 0$ and all $q>0$. So from the exact sequence of Proposition 3 with $i=r$ we deduce that Δ_{r} is an isomorphism for all $r \geq 0$.

Corollary 5. Let A be a noetherian local ring, I an ideal of A, and $B=A / I$. Let E be the Koszul complex associated to a finite set of generators of I. Assume that $H(E)$ is a Poincaré B-algebra. Then
i) A is Gorenstein if and only if B is,
ii) If A is Cohen-Macaulay, so is B.

Proof. i) It follows from Proposition 4 and from the spectral sequence

$$
E_{2}^{p, q}=\operatorname{Ext}_{B}^{p}\left(k, \operatorname{Ext}_{A}^{q}(B, A)\right) \Rightarrow \operatorname{Ext}_{A}^{p+q}(k, A)
$$

where k is the residue field of A and B, since, with the notation as in the proof of Proposition 4, if $g=\operatorname{grade} I$, $\operatorname{Ext}_{A}^{g}(B, A)=\operatorname{Ext}_{A^{\prime}}^{0}\left(B, A^{\prime}\right)=\operatorname{Hom}_{A^{\prime}}\left(B, A^{\prime}\right)=H_{n}\left(E^{\prime}\right)=$ $H_{n}(E)$ is a free B-module of rank 1 .
ii) The same spectral sequence

$$
E_{2}^{p, q}=\operatorname{Ext}_{B}^{p}\left(k, \operatorname{Ext}_{A}^{q}(B, A)\right) \Rightarrow \operatorname{Ext}_{A}^{p+q}(k, A)
$$

gives an isomorphism $\operatorname{Ext}_{B}^{p}(k, B)=\operatorname{Ext}_{A}^{p+g}(k, A)$ for all p, and so depth $A=$ $g+$ depth $B=\operatorname{grade} I+\operatorname{depth} B=\operatorname{ht}(I)+\operatorname{depth} B$, since A is Cohen-Macaulay, and depth $A=\operatorname{dim} A=\operatorname{ht}(I)+\operatorname{dim} B$. Thus depth $B=\operatorname{dim} B$.

Corollary 6. Let A be a noetherian local ring, I an ideal of A, and $B=A / I$. Assume that the André-Quillen homology functors $H_{n}(A, B,-)=0$ for all $n \geq 3$. Then
i) A is Gorenstein if and only if B is
ii) If A is Cohen-Macaulay, so is B.

Proof. Let E be the Koszul complex associated to a finite set of generators of I. By [11, Corollary $\left.3^{\prime}\right], H_{1}(E)$ is a free B-module and the canonical homomorphism $\wedge_{B} H_{1}(E) \rightarrow H(E)$ is an isomorphism. Therefore $H(E)$ is a Poincaré B-algebra, and Corollary 5 applies.

Remark 7. Let A be a noetherian local ring, I an ideal of A, and $B=A / I$. Let E be the Koszul complex associated to a finite set of generators of I. If A and B are Gorenstein, then $\operatorname{Ext}_{A}^{q}(B, A)=0$ for all $q \neq \operatorname{grade} I, H_{n}(E)=\operatorname{Hom}_{A}(B, A)$ is a free B-module of rank 1, but the condition $\operatorname{Ext}_{B}^{q}\left(H_{i}(E), B\right)=0$ for $0<i<n$ for all $q>0$ does not hold in general:
i) $\operatorname{Ext}_{A}^{q}(B, A)=0$ for all $q \neq \operatorname{grade} I$. This follows, replacing A by A^{\prime} as in the proof of Proposition 4, from [2, 4.20, 4.12]
ii) $H_{n}(E)=\operatorname{Hom}_{A}(B, A)$ is a free B-module of rank 1. In effect, if I contains a regular element, $\operatorname{Hom}_{A}(B, A)=0$. If not, grade $I=0$ and since A is Cohen-Macaulay, $\operatorname{dim} A=\operatorname{ht}(I)+\operatorname{dim} B=$ grade $I+\operatorname{dim} B=\operatorname{dim} B . \operatorname{Since} \operatorname{Ext}_{A}^{q}(B, A)=0$ for all $q>0$ by i, we have a spectral sequence

$$
E_{2}^{p, q}=\operatorname{Ext}_{A}^{p}\left(\operatorname{Ext}_{B}^{q}(k, B), A\right) \Rightarrow \operatorname{Tor}_{q-p}^{B}\left(\operatorname{Hom}_{A}(B, A), k\right)
$$

where k is the residue field of A, which is convergent since A is local Gorenstein. As $\operatorname{Ext}_{B}^{q}(k, B)=0$ for $q \neq \operatorname{dim} B$ and $=k$ for $q=\operatorname{dim} B$, and the same holds for $\operatorname{Ext}_{A}^{p}(k, A)$, the spectral sequence gives $\operatorname{Tor}_{t}^{B}\left(\operatorname{Hom}_{A}(B, A), k\right)=k$ for $t=0$ and is equal to 0 for $t>0$. Hence $\operatorname{Hom}_{A}(B, A)$ is a free B-module of rank 1.
iii) We cannot deduce the condition $\operatorname{Ext}_{B}^{q}\left(H_{i}(E), B\right)=0$ for $0<i<n$ for all $q>0$. In fact, in this case, this condition is equivalent to the Cohen-Macaulayness of the B modules $H_{i}(E)$ (it is said that I is a strongly Cohen-Macaulay ideal; see [14]), since $\operatorname{Ext}_{B}^{q}\left(H_{i}(E), B\right)=0$ for all $q>0 \Leftrightarrow \operatorname{depth} H_{i}(E)=\operatorname{depth} B=\operatorname{dim} B[2,4.20,4.12]$, and $\operatorname{dim} \mathrm{H}_{i}(E)=\operatorname{dim} B$ (see [14, Remark 1.3], sketch of proof: for the last non-vanishing Koszul homology module $H_{n-g}(E)$ is easy. Then, for the others, localize at associated prime ideals of $H_{n-g}(E)$ and use the rigidity of Koszul homology). In fact, under this additional hypothesis of a strongly Cohen-Macaulay ideal I, the Poincaré duality was already proved by J. Herzog (see [10, Proposition 2.3]).

Remark 8. Our results give some (little) evidence on a conjecture of Rodicio (an analogue of the theorem of Ferrand-Vasconcelos in "higher dimension"), which says that $H_{n}(A, B,-)=0$ for all $n \geq 3$ if and only if the complete intersection dimension of the A-module B is finite and $H_{1}(E)$ is a free B-module (see [19, Conjecture 11]. The unproved part of the conjecture is that if $H_{n}(A, B,-)=0$ for all $n \geq 3$ then the complete intersection dimension of B is finite. We deduce from Proposition 4 that if $H_{n}(A, B,-)=0$ for all $n \geq 3$ then the Gorenstein dimension of B over A is finite. For, if A^{\prime} is as in the proof of Proposition $4, G-\operatorname{dim}_{A} B<\infty\left(G-\operatorname{dim}_{A} B\right.$ denotes the Gorenstein dimension of the A-module B, see [2]) if and only if G-dim $A_{A^{\prime}} B<\infty$ [2, 4.33]. And the condition ii) of Proposition 4 says that $\mathrm{Ext}_{A^{\prime}}^{q}\left(B, A^{\prime}\right)=0$ for all $q>0$ and $\operatorname{Hom}_{A^{\prime}}\left(B, A^{\prime}\right)=H_{n}(E)=B$. Therefore B is reflexive as an A^{\prime}-module (see e.g. [13, 1.1.9]) and $G-\operatorname{dim}_{A^{\prime}} B=0[\mathbf{2}, 3.8(\mathrm{C})]$.

In fact, with the terminology of [5], having in mind also the proof of Corollary 5 and $[1,5.27]$, we have proven that if $H_{n}(A, B,-)=0$ for all $n \geq 3$ then $A \rightarrow B$ is quasi-Gorenstein.

REFERENCES

1. M. André, Homologie des algèbres commutatives (Springer-Verlag, 1974).
2. M. Auslander and M. Bridger, Stable module theory, Memoirs Amer. Math. Soc. No. 94 (1969).
3. L. L. Avramov, Complete intersections and symmetric algebras. J. Algebra 73 (1981), 248-263.
4. L. L. Avramov and H.-B. Foxby, Locally Gorenstein homomorphisms, Amer. J. Math. 114 (1992), 1007-1047.
5. L. L. Avramov and H.-B. Foxby, Ring homomorphisms and finite Gorenstein dimension, Proc. London Math. Soc. (3) 75 (1997), 241-270.
6. L. L. Avramov and H.-B. Foxby, Cohen-Macaulay properties of ring homomorphisms, Adv. Math. 133 (1998), 54-95.
7. L. L. Avramov, H.-B. Foxby and S. Halperin, Descent and ascent of local properties along homomorphisms of finite flat dimension, J. Pure Appl. Algebra 38 (1985), 167-185.
8. L. L. Avramov, H.-B. Foxby and B. Herzog, Structure of local homomorphisms, J. Algebra 164 (1994), 124-145.
9. L. L. Avramov and E. S. Golod, Homology algebra of the Koszul complex of a local Gorenstein ring, Math. Notes Acad. Sci USSR 9 (1971), 30-32.
10. L. L. Avramov and J. Herzog, The Koszul algebra of a codimension 2 embedding, Math. Z. 175 (1980), 249-260.
11. A. Blanco, J. Majadas and A. G. Rodicio, On the acyclicity of the Tate complex, J. Pure Appl. Algebra 131 (1998), 125-132.
12. W. Bruns and J. Herzog, Cohen-Macaulay rings (Cambridge University Press, 1993).
13. L. W. Christensen, Gorenstein dimensions, Lecture Notes in Mathematics No. 1747 (Springer-Verlag, 2000).
14. C. Huneke, Linkage and the Koszul homology of ideals, Amer. J. Math. 104 (1982), 1043-1062.
15. D. Quillen, On the (co-)homology of commutative rings, Proc. Symp. Pure Math. 17 (1970), 65-87.
16. D. Rees, A theorem of homological algebra, Proc. Cambridge Phil. Soc. 52 (1956), 605-610.
17. J.-P. Serre, Algèbre locale, multiplicités, Lecture Notes in Mathematics No. 11 (SpringerVerlag, 1975).
18. J. J. M. Soto, Gorenstein quotients by principal ideals of free Koszul homology, Glasgow Math. J. 42 (2000), 51-54.
19. J. J. M. Soto, Finite complete intersection dimension and vanishing of André-Quillen homology, J. Pure Appl. Algebra 146 (2000), 197-207.

[^0]: * Partially supported by Xunta de Galicia PGIDT99PXI20702B.

