ASCENT AND DESCENT OF GORENSTEIN PROPERTY

ANTONIO GARCÍA R.* and JOSÉ J. M. SOTO*

Departamento de Álgebra, Facultad de Matemáticas, Universidad de Santiago de Compostela, E15782 Santiago de Compostela, Spain e-mail: jjmsoto@zmat.usc.es

(Received 23 January, 2003; accepted 23 June, 2003)

Abstract. Let A be a commutative noetherian local ring, I an ideal of A, and B = A/I. Assume that the André-Quillen homology functors $H_n(A, B, -) = 0$ for all $n \ge 3$. Then A is Gorenstein if and only if B is.

2000 Mathematics Subject Classification. 13H10, 13D03.

Let $f: A \to B$ be a surjective homomorphism of noetherian local commutative rings. If Ker (f) is generated by a regular sequence, it is well known that A is complete intersection (resp. Gorenstein, Cohen-Macaulay) if and only if B is. Another family of homomorphisms under which these properties ascend and descend is the one of local flat (non surjective) homomorphisms: B is complete intersection (resp. Gorenstein, Cohen-Macaulay) if and only if A and $B \otimes_A k$ are, where k is the residue field of A.

Ascent and descent of these properties was studied, mainly by L. L. Avramov and H.-B. Foxby, for a family of homomorphisms generalizing the two cases above: homomorphisms of finite flat dimension (see e.g. [4], [6], [7], and, in some sense, for a larger family of homomorphisms [5]).

Here we consider a different class of homomorphisms. Let $H_n(A, B, -)$ be the André-Quillen homology functors [1], [15]. If $f : A \to B$ is a surjective homomorphism of noetherian local rings, then Ker(f) is generated by a regular sequence if and only if $H_n(A, B, -) = 0$ for all $n \ge 2$. The class of homomorphisms considered in this paper is the one satisfying $H_n(A, B, -) = 0$ for all $n \ge 3$. In some sense it is related to complete intersection rings as $H_n(A, B, -) = 0$ for all $n \ge 2$ is related to regular rings: if B = k is the residue field of A, we have [1, 6.26, 6.27]

 $H_n(A, k, -) = 0$ for all $n \ge 2 \Leftrightarrow$ if A is regular $H_n(A, k, -) = 0$ for all $n \ge 3 \Leftrightarrow A$ is complete intersection.

Moreover, this is a natural class of surjective homomorphisms under which the complete intersection property ascends and descends. So we may ask if the same is valid for Gorenstein and Cohen-Macaulay properties. On the other hand, this class of homomorphisms generalizes the one whose kernel is generated by a regular sequence in a very different way that the homomorphisms of finite flat dimension: if $H_n(A, B, -) = 0$ for all $n \ge 3$ and *B* is of finite flat dimension over *A*, then Ker(*f*) is generated by a regular sequence [1, 17.2]; moreover, it is easy to see that if *A* and *B* are complete intersection rings then $H_n(A, B, -) = 0$ for all $n \ge 3$.

^{*} Partially supported by Xunta de Galicia PGIDT99PXI20702B.

If $f: A \to B$ is a surjective homomorphism of noetherian local rings with $H_n(A, B, -) = 0$ for all $n \ge 3$, we prove in this paper that A is Gorenstein if and only if B is, and if A is Cohen-Macaulay then B is Cohen-Macaulay. The main ingredients of the proof are:

a) A result of A. Blanco, J. Majadas and A. G. Rodicio [11] characterizing this class of homomorphisms in terms of the Koszul homology of the kernel ideal.

b) A relativization of a characterization, by Avramov and Golod, of Gorenstein rings in terms of the Koszul complex of the maximal ideal [9]. Once we get the adequate notion of Poincaré algebra in our context, our proof of this relativization follows closely [9], with a little more length, due to the non rigidity of $\text{Ext}_A(B, A)$ when B is not a field. In fact, the proof in [9] of the absolute case shows that to deduce Gorensteiness it suffices the injectivity of Δ_1 (see below for the definition of Δ_i), whereas in our case we need to assume the bijectivity of all Δ_i .

We want to point out two cases where our results are already known:

- The case where the kernel is a principal ideal (x) was obtained in [18] (in fact under the (a priori weaker) condition that the annihilator (0 : x) is a free *B*-module).
- The case where A is a supplemented B-algebra (i.e., the homomorphism f: A → B has a ring homomorphism section). In this case it is easy to show that Gorenstein and Cohen-Macaulay properties ascend and descend (this is essentially done in [3, Proposition 3]): we may assume that A is complete [1, 10.18]. Let B → R → A be a Cohen factorization [8], i.e., R is a noetherian local ring, B → R is a local flat homomorphism with regular closed fiber R ⊗_B k, and R → A is surjective. We have exact sequences [1, 5.1]

$$0 = H_3(A, B, k) \to H_2(B, A, k) \to H_2(B, B, k) = 0$$

$$0 = H_2(B, A, k) \to H_2(R, A, k) \to H_1(B, R, k)$$

Since $H_1(B, R, k) = H_1(k, R \otimes_B k, k) = H_2(R \otimes_B k, k, k) = 0$ [1, 4.54, 5.1, 6.26], we have $H_2(R, A, k) = 0$ and so Ker $(R \to A)$ is generated by a regular sequence [1, 6.25]. Therefore A is Gorenstein (resp. Cohen-Macaulay) if and only if R is if and only if B is.

DEFINITION 1. Let B be a noetherian local ring, and

$$H = \bigoplus_{i=0}^{n} H_i$$

a graded (anti) commutative B-algebra of finite type. We say that H is a Poincaré B-algebra if:

i) $H_0 = B$;

ii) $\text{Ext}_{B}^{q}(H_{i}, B) = 0$ for 0 < i < n for all q > 0;

- iii) H_n is a free *B*-module;
- iv) The canonical homomorphisms induced by multiplication

$$\Delta_i: H_{n-i} \to \operatorname{Hom}_B(H_i, H_n)$$

are all isomorphisms $0 \le i \le n$.

Note that from the isomorphism Δ_n , since H_n is a free *B*-module and $H_0 = B$, H_n is free of rank 1.

The graded algebras that we are going to consider are Koszul homology algebras associated to a set of generators of A. For the definition and basic results on the Koszul complex, see [17, Chapitre IV.A)] or [12, Section 1.6].

LEMMA 2. Let A be a noetherian local ring, I an ideal of A, and B = A/I. Let E be the Koszul complex associated to a finite set of generators of I. Then the fact that H(E)is a Poincaré B-algebra does not depend on the choice of the (finite) set of generators of I.

Proof. If $I = (x_1, \ldots, x_r) = (x_1, \ldots, x_r, y_1, \ldots, y_s)$, let E(x), E(x, y) the Koszul complexes associated to x_1, \ldots, x_r , and to $x_1, \ldots, x_r, y_1, \ldots, y_s$ resp. Then we have isomorphisms [12, 1.6.21]

$$H_p(x, y; A) = \bigoplus_{u+v=p} \wedge^u_B(B^s) \otimes_B H_v(x; A).$$

compatible with the algebra structures. Having in mind the isomorphisms (since $\wedge_B^u(B^s)$ is *B*-free of finite type)

$$\operatorname{Hom}_{B}\left(\wedge_{B}^{u}\left(B^{s}\right),\wedge_{B}^{s}\left(B^{s}\right)\right)\otimes_{B}\operatorname{Hom}_{B}(H_{v}(x;A),H_{n}(x;A))$$

=
$$\operatorname{Hom}_{B}\left(\wedge_{B}^{u}\left(B^{s}\right)\otimes_{B}H_{v}(x;A),\wedge_{B}^{s}\left(B^{s}\right)\otimes_{B}H_{n}(x;A)\right)$$

we deduce that H(x; A) is a Poincaré *B*-algebra if and only if H(x, y; A) is. If y_1, \ldots, y_s and x_1, \ldots, x_r are two sets of generators of *I*, compare H(x; A) with H(x, y; A) and this one with H(y; A)

The following proposition is [9, Proposition 2] (see also [12, 3.4.6]).

PROPOSITION 3. Let A be a noetherian local ring, I an ideal of finite type of A of grade 0, and B = A/I. Let E be the Koszul complex associated to a finite set of n generators of I. For each $0 \le i \le n$, let

$$\Delta_i: H_{n-i}(E) \to \operatorname{Hom}_B(H_i(E), H_n(E))$$

be the homomorphism induced by the algebra structure on H(E). Let $B_i \subset E_i$, $Z_i \subset E_i$, be the submodules of boundaries and cycles of E respectively. There exists an exact sequence

$$0 \to \operatorname{Ext}_{A}^{1}(E_{i-1}/B_{i-1}, A) \to H_{n-i}(E) \xrightarrow{A_{i}} \operatorname{Hom}_{B}(H_{i}(E), H_{n}(E))$$

$$\to \operatorname{Ext}_{A}^{1}(B_{i-1}, A) \to \operatorname{Ext}_{A}^{1}(E_{i}/B_{i}, A) \to \operatorname{Ext}_{A}^{1}(H_{i}(E), A)$$

$$\to \operatorname{Ext}_{A}^{2}(B_{i-1}, A) \to \dots$$

PROPOSITION 4. Let A be a noetherian local ring, I an ideal of A, and B = A/I. Let E be the Koszul complex associated to a finite set of m generators of I. Let n = m - grade I. The following are equivalent:

i) *H*(*E*) is a Poincaré *B*-algebra;

ii) $\operatorname{Ext}_{A}^{q}(B, A) = 0$ for all $q \neq$ grade I, $\operatorname{Ext}_{B}^{q}(H_{i}(E), B) = 0$ for 0 < i < n for all q > 0, and $H_{n}(E)$ is a free B-module.

Proof. First, we will see that we can assume grade I = 0. If grade I = g > 0, let x_1, \ldots, x_g be a regular sequence in I. By Lemma 2 and its proof, the conditions i) and ii) of the proposition do not depend on the set of generators of I. Let then $I = (x_1, \ldots, x_g, y_1, \ldots, y_t)$ and let E be the Koszul complex associated to this set of

generators of *I*. Let $A' = A/(x_1, ..., x_g)$, $I' = I/(x_1, ..., x_g)$. Let E' be the Koszul complex over A' associated to the set of generators $(y'_1, ..., y'_l)$ of I'. We have H(E) = H(E') [12, 1.6.13] and $\operatorname{Ext}_A^q(B, A) = \operatorname{Ext}_{A'}^{q-g}(B, A')$ for all q [16] (or [17, p. IV-13]. Thus replacing (A, I) by (A', I'), we can assume grade I = 0.

i) \Rightarrow ii) By Proposition 3, if Δ_1 is injective, we have $\text{Ext}_A^1(B, A) = 0$. If Δ_2 is injective, we have $\text{Ext}_A^1(E_1/B_1, A) = 0$, and so, if moreover Δ_1 is surjective, we obtain $\text{Ext}_A^1(B_0, A) = 0$, i.e., $\text{Ext}_A^2(B, A) = 0$.

Let $r \ge 3$ and assume we have $\operatorname{Ext}_{A}^{i}(B, A) = 0$ for all $1 \le j \le r - 1$. Since $\operatorname{Ext}_{B}^{q}(H_{i}(E), B) = 0$ for all q > 0 and all *i*, and $\operatorname{Ext}_{A}^{0}(B, A) = \operatorname{Hom}_{A}(B, A) = H_{n}(E)$ is a free *B*-module by hypothesis, in the spectral sequence

$$E_2^{p,q} = \operatorname{Ext}_B^p(H_i(E), \operatorname{Ext}_A^q(B, A)) \Rightarrow \operatorname{Ext}_A^{p+q}(H_i(E), A)$$

we have $E_2^{p,q} = 0$ if $1 \le p + q \le r - 1$ and so $\operatorname{Ext}_A^i(H_i(E), A) = 0$ for $1 \le j \le r - 1$. Therefore, from the exact sequences $0 \to H_i(E) \to E_i/B_i \to B_{i-1} \to 0, 0 \to B_i \to E_i \to E_i/B_i \to 0$, we obtain $\operatorname{Ext}_A^q(B_i, A) = \operatorname{Ext}_A^{q+1}(B_{i-1}, A)$ for all $1 \le q \le r - 2$. If Δ_r is injective, from Proposition 3 we deduce $\operatorname{Ext}_A^1(E_{r-1}/B_{r-1}, A) = 0$ and so, using that Δ_{r-1} is surjective, we obtain $\operatorname{Ext}_A^1(B_{r-2}, A) = 0$. Thus $\operatorname{Ext}_A^r(B, A) = \operatorname{Ext}_A^{r-1}(B_0, A) = \operatorname{Ext}_A^1(B_{r-2}, A) = 0$. This completes the induction step.

ii) \Rightarrow i) Since $\text{Ext}_{A}^{0}(B, A) = H_{n}(E)$ is a free *B*-module, $\text{Ext}_{B}^{q}(H_{i}(E), B) = 0$ for all q > 0 and all *i*, and $\text{Ext}_{A}^{q}(B, A) = 0$ for all q > 0, the spectral sequence

$$E_2^{p,q} = \operatorname{Ext}_B^p(H_i(E), \operatorname{Ext}_A^q(B, A)) \Rightarrow \operatorname{Ext}_A^{p+q}(H_i(E), A)$$

says that $\operatorname{Ext}_{A}^{q}(H_{i}(E), A) = 0$ for all q > 0 for all *i*. So from the exact sequences $0 \to H_{i}(E) \to E_{i}/B_{i} \to B_{i-1} \to 0, 0 \to B_{i} \to E_{i} \to E_{i}/B_{i} \to 0, 0 \to B_{0} \to E_{0} \to B \to 0$, and from the hypothesis $\operatorname{Ext}_{A}^{q}(B, A) = 0$ for all q > 0, we obtain, by recurrence on *r*, $\operatorname{Ext}_{A}^{q}(B_{r}, A) = 0$, and $\operatorname{Ext}_{A}^{q}(E_{r}/B_{r}, A) = 0$ for all $r \ge 0$ and all q > 0. So from the exact sequence of Proposition 3 with i = r we deduce that Δ_{r} is an isomorphism for all $r \ge 0$.

COROLLARY 5. Let A be a noetherian local ring, I an ideal of A, and B = A/I. Let E be the Koszul complex associated to a finite set of generators of I. Assume that H(E) is a Poincaré B-algebra. Then

- i) A is Gorenstein if and only if B is,
- ii) If A is Cohen-Macaulay, so is B.

Proof. i) It follows from Proposition 4 and from the spectral sequence

$$E_2^{p,q} = \operatorname{Ext}_B^p(k, \operatorname{Ext}_A^q(B, A)) \Rightarrow \operatorname{Ext}_A^{p+q}(k, A)$$

where k is the residue field of A and B, since, with the notation as in the proof of Proposition 4, if g = grade I, $\text{Ext}_{A}^{g}(B, A) = \text{Ext}_{A'}^{0}(B, A') = \text{Hom}_{A'}(B, A') = H_{n}(E') = H_{n}(E)$ is a free B-module of rank 1.

ii) The same spectral sequence

$$E_2^{p,q} = \operatorname{Ext}_B^p(k, \operatorname{Ext}_A^q(B, A)) \Rightarrow \operatorname{Ext}_A^{p+q}(k, A)$$

gives an isomorphism $\operatorname{Ext}_{B}^{p}(k, B) = \operatorname{Ext}_{A}^{p+g}(k, A)$ for all p, and so depth $A = g + \operatorname{depth} B = \operatorname{grade} I + \operatorname{depth} B = \operatorname{ht}(I) + \operatorname{depth} B$, since A is Cohen-Macaulay, and depth $A = \dim A = \operatorname{ht}(I) + \dim B$. Thus depth $B = \dim B$.

COROLLARY 6. Let A be a noetherian local ring, I an ideal of A, and B = A/I. Assume that the André-Quillen homology functors $H_n(A, B, -) = 0$ for all $n \ge 3$. Then i) A is Gorenstein if and only if B is

ii) If A is Cohen-Macaulay, so is B.

Proof. Let *E* be the Koszul complex associated to a finite set of generators of *I*. By [11, Corollary 3'], $H_1(E)$ is a free *B*-module and the canonical homomorphism $\wedge_B H_1(E) \rightarrow H(E)$ is an isomorphism. Therefore H(E) is a Poincaré *B*-algebra, and Corollary 5 applies.

REMARK 7. Let A be a noetherian local ring, I an ideal of A, and B = A/I. Let E be the Koszul complex associated to a finite set of generators of I. If A and B are Gorenstein, then $\text{Ext}_{A}^{q}(B, A) = 0$ for all $q \neq \text{grade } I, H_{n}(E) = \text{Hom}_{A}(B, A)$ is a free B-module of rank 1, but the condition $\text{Ext}_{B}^{q}(H_{i}(E), B) = 0$ for 0 < i < n for all q > 0 does not hold in general:

i) $\operatorname{Ext}_{A}^{q}(B, A) = 0$ for all $q \neq \operatorname{grade} I$. This follows, replacing A by A' as in the proof of Proposition 4, from [2, 4.20, 4.12]

ii) $H_n(E) = \text{Hom}_A(B, A)$ is a free *B*-module of rank 1. In effect, if *I* contains a regular element, $\text{Hom}_A(B, A) = 0$. If not, grade I = 0 and since *A* is Cohen-Macaulay, dim A = ht(I) + dim B = grade I + dim B = dim B. Since $\text{Ext}_A^q(B, A) = 0$ for all q > 0 by *i*), we have a spectral sequence

$$E_2^{p,q} = \operatorname{Ext}_A^p(\operatorname{Ext}_B^q(k, B), A) \Rightarrow \operatorname{Tor}_{q-p}^B(\operatorname{Hom}_A(B, A), k)$$

where k is the residue field of A, which is convergent since A is local Gorenstein. As $\text{Ext}_B^q(k, B) = 0$ for $q \neq \dim B$ and = k for $q = \dim B$, and the same holds for $\text{Ext}_A^p(k, A)$, the spectral sequence gives $\text{Tor}_t^B(\text{Hom}_A(B, A), k) = k$ for t = 0 and is equal to 0 for t > 0. Hence $\text{Hom}_A(B, A)$ is a free B-module of rank 1.

iii) We cannot deduce the condition $\operatorname{Ext}_{B}^{q}(H_{i}(E), B) = 0$ for 0 < i < n for all q > 0. In fact, in this case, this condition is equivalent to the Cohen-Macaulayness of the *B*-modules $H_{i}(E)$ (it is said that *I* is a strongly Cohen-Macaulay ideal; see [14]), since $\operatorname{Ext}_{B}^{q}(H_{i}(E), B) = 0$ for all $q > 0 \Leftrightarrow$ depth $H_{i}(E) = \operatorname{depth} B = \operatorname{dim} B$ [2, 4.20, 4.12], and dim $H_{i}(E) = \operatorname{dim} B$ (see [14, Remark 1.3], sketch of proof: for the last non-vanishing Koszul homology module $H_{n-g}(E)$ is easy. Then, for the others, localize at associated prime ideals of $H_{n-g}(E)$ and use the rigidity of Koszul homology). In fact, under this additional hypothesis of a strongly Cohen-Macaulay ideal *I*, the Poincaré duality was already proved by J. Herzog (see [10, Proposition 2.3]).

REMARK 8. Our results give some (little) evidence on a conjecture of Rodicio (an analogue of the theorem of Ferrand-Vasconcelos in "higher dimension"), which says that $H_n(A, B, -) = 0$ for all $n \ge 3$ if and only if the complete intersection dimension of the A-module B is finite and $H_1(E)$ is a free B-module (see [19, Conjecture 11]. The unproved part of the conjecture is that if $H_n(A, B, -) = 0$ for all $n \ge 3$ then the complete intersection dimension of B is finite. We deduce from Proposition 4 that if $H_n(A, B, -) = 0$ for all $n \ge 3$ then the Gorenstein dimension of B over A is finite. For, if A' is as in the proof of Proposition 4, G-dim_A $B < \infty$ (G-dim_AB denotes the Gorenstein dimension of the A-module B, see [2]) if and only if G-dim_{A'} $B < \infty$ [2, 4.33]. And the condition ii) of Proposition 4 says that $\operatorname{Ext}_{A'}^q(B, A') = 0$ for all q > 0 and $\operatorname{Hom}_{A'}(B, A') = H_n(E) = B$. Therefore B is reflexive as an A'-module (see e.g. [13, 1.1.9]) and G-dim_{A'}B = 0 [2, 3.8(C)].

In fact, with the terminology of [5], having in mind also the proof of Corollary 5 and [1, 5.27], we have proven that if $H_n(A, B, -) = 0$ for all $n \ge 3$ then $A \to B$ is quasi-Gorenstein.

REFERENCES

1. M. André, Homologie des algèbres commutatives (Springer-Verlag, 1974).

2. M. Auslander and M. Bridger, *Stable module theory*, Memoirs Amer. Math. Soc. No. 94 (1969).

3. L. L. Avramov, Complete intersections and symmetric algebras. J. Algebra **73** (1981), 248–263.

4. L. L. Avramov and H.-B. Foxby, Locally Gorenstein homomorphisms, *Amer. J. Math.* 114 (1992), 1007–1047.

5. L. L. Avramov and H.-B. Foxby, Ring homomorphisms and finite Gorenstein dimension, *Proc. London Math. Soc.* (3) 75 (1997), 241–270.

6. L. L. Avramov and H.-B. Foxby, Cohen-Macaulay properties of ring homomorphisms, *Adv. Math.* **133** (1998), 54–95.

7. L. L. Avramov, H.-B. Foxby and S. Halperin, Descent and ascent of local properties along homomorphisms of finite flat dimension, *J. Pure Appl. Algebra* **38** (1985), 167–185.

8. L. L. Avramov, H.-B. Foxby and B. Herzog, Structure of local homomorphisms, J. Algebra 164 (1994), 124–145.

9. L. L. Avramov and E. S. Golod, Homology algebra of the Koszul complex of a local Gorenstein ring, *Math. Notes Acad. Sci USSR* **9** (1971), 30–32.

10. L. L. Avramov and J. Herzog, The Koszul algebra of a codimension 2 embedding, *Math. Z.* 175 (1980), 249–260.

11. A. Blanco, J. Majadas and A. G. Rodicio, On the acyclicity of the Tate complex, *J. Pure Appl. Algebra* 131 (1998), 125–132.

12. W. Bruns and J. Herzog, Cohen-Macaulay rings (Cambridge University Press, 1993).

13. L. W. Christensen, *Gorenstein dimensions*, Lecture Notes in Mathematics No. 1747 (Springer-Verlag, 2000).

14. C. Huneke, Linkage and the Koszul homology of ideals, Amer. J. Math. 104 (1982), 1043–1062.

15. D. Quillen, On the (co-)homology of commutative rings, *Proc. Symp. Pure Math.* 17 (1970), 65–87.

16. D. Rees, A theorem of homological algebra, Proc. Cambridge Phil. Soc. 52 (1956), 605–610.

17. J.-P. Serre, *Algèbre locale, multiplicités*, Lecture Notes in Mathematics No. 11 (Springer-Verlag, 1975).

18. J. J. M. Soto, Gorenstein quotients by principal ideals of free Koszul homology, *Glasgow Math. J.* **42** (2000), 51–54.

19. J. J. M. Soto, Finite complete intersection dimension and vanishing of André-Quillen homology, *J. Pure Appl. Algebra* **146** (2000), 197–207.