SOME SERIES OF PARTIALLY BALANCED
INCOMPLETE BLOCK DESIGNS

D. A. SPROTT

1. Introduction. The use of incomplete block designs for estimating and
judging the significance of the difference of treatment effects is now a standard
statistical technique. A special kind of incomplete block design is the Partially
Balanced Incomplete Block Design (PBIBD) introduced in (3). A PBIBD is
an incomplete block design that obeys the following conditions:

(1) there are b blocks of & distinct varieties each;

(2) there are v varieties, each replicated 7 times;

(3) given any variety, the remaining ones fall into sets of 7, varieties each
(t=1,2,...,m) such that every variety of the sth set occurs \; times with
the given variety, A, being independent of the given initial variety;

(4) given any two varieties which are ith associates (that is, occur together
\; times), the number of varieties which are jth associates of the one and kth
associates of the other is

P’ = b

and is independent of the original pair of varieties.
From the definition of a PBIBD, certain fundamental identities concerning
the parameters of the design follow; for ease of reference, these are listed as

(1.1) bk = rv,

(1.2) v—1= én,,
(1.3) b — 1) = z: Nt
(1.4) ni—1= g:lpm’,
(1.5) n= 3 pu
(1.6) nipu' = n;pu’.

In (3), a module theorem was proved by which it is possible in certain cases
to construct the entire PBIBD by adding elements of a module to a given
initial block. The purpose of the present paper is to generalize the module
theorem of (3) to the case v > &, and then to apply the methods of (6) to
obtain some general series of PBIBD'’s.
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2. The general module theorem.

THEOREM 2.1. Let M be an additive abelian group (module) consisting of n
elements x; and suppose that there exist m blocks B, B, . . . , By, such that:
(1) every block contains k distinct elements;

(2) among the mk(k — 1) differences arising from the m blocks, just n; of the
non-zero elements of M are repeated \; times; we may denote these n; elements by
0111, a2i, .o ,a,,..‘;

(3) among the ni(n; — 1) differences
i

ot — oy (,w=1,2,...,n;;u #w)

every element of the set

[ [4 [
Q1 5 02y ¢ oy Oy,

occurs Py times, while among the n; n; differences

a—a), wW=12,...,n5w=12,...,n),
every element of the set
ale) a2ey .. ’anle
occurs p,4° times.
Then we can form blocks
B g=1,2,...,m;0€ M)

of elements x’, where x' = x + 0 (x ranging over the elements of B,). Since there
are m initial blocks and 0 assumes n values, we thus get mn blocks B,y (B, = B,),
and these blocks form a PBIBD with parameters

v=mn,b=mn,r=mkk;n,\; P;i= (px) (t=1,2,...,m).

Proof. The proof of Theorem 2.1 is omitted, since it is an exact parallel
of the proof given in (3) for the special case in which m = 1,v = b.

In the series which we shall derive from Theorem 2.1, it will be convenient
to reserve the letter p to denote a prime; M will always be a Galois Field
GF (p°), and x will always denote a primitive element of M.

3. Series with 4m(4A1) + 1 = p°.
THEOREM 3.1. Ifv = dm(4\ + 1) 4+ 1 = p°, and if among the 2\ expressions
' — 1 = & (s=1,2,...,2))
there are N + a even and X — a odd powers of x, then the design with parameters

v=4m@\N+1)+1, b=mv, r=m@\+1), k=4\+1;
n1=n2=2m(4)\+1), k1=)+d, )\2=)\—a;
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can be constructed from the initial blocks
(x2i, x2i+4m’ ey x2i+16km)

where © ranges from 0 to m — 1.

Proof. Asin (6, Theorem 5.1), we find, setting d = 4\ — s + 1, that

xqa = xq.+2m(d— s) .

Divide the elements of GF () into two sets; set 1 will be composed of elements

of the form x%, and set 2 will be composed of elements of the form x?*+!, The

differences

2i+4mr+qe 2i+2m(4N—25+1427)+¢,
x » X ,

for s fixed, range over set 1 or set 2 according as ¢, is even or odd. Hence, as
s ranges, each element of set 1 occurs Ay = X + a times and each element of
set 2 occurs A\; = X — @ times. Also, the number of elements in set 1 = the
number of elements in set 2 = 1(v — 1) = 2m(4\ + 1). Thus condition 2 of
Theorem 2.1 is satisfied and #; = n, = 2m(4\ + 1).

The differences between elements of set 1 have the form

KW — M = g2 (x® —1) (¢=0,1,...,5@—=3u=12,...,302-3)).

As t ranges, these differences cover set 1 or set 2 according as x* — 1 is an even
or an odd power of x. Hence, if ¥ of the expressions x** — 1 are odd powers of x,
we have

put=y, pu'=3@—3)—y.
The differences between elements of set 2 have the form
x2l+2u+l — x2l+l - x2l+l (x214 — 1).

These cover set 1 or set 2 according as ¥* — 1 is an odd or even power of x.
Hence
p' =y, pn’=3@—3) —y,
and condition 3 of Theorem 2.1 is satisfied.
Using the identities 1.4 and 1.5, we obtain

pultpit=m—1=3@—3), put=y,
and
pu' + Pt =nm=3@—1), pa'=3@v—1) —y.
Thus ¥y = (v — 1) = p1' = pai?; therefore P, and P, are as stated in the

theorem.
If @ = 0, the resulting series is the completely balanced series given in

(6, Theorem 5.1).

Example. If m = 1,\ = 3, we take x = 2 and obtain a design for 53
varieties in blocks of 13 by adding the integers modulo 53 to the initial block

1, 16, 44, 15, 28, 24, 13, 49, 42, 36, 46, 47, 10).
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THEOREM 3.2. If v =4m(4N — 1) + 1 = p° and if among the 2\ — 1

expressions

-1 = (s=1,2,...,2x = 1)
there are N — a even and N + a — 1 odd powers of x, then the design with para-
meters

v=4m@dN — 1)+ 1, b =mo, r = 4dm\, k = 4\;
nm=n=2m@x — 1), M1=A—a+1, a=A+a — 1;
Py, Py (cf. 3.1)

can be constructed from the initial blocks

(O’ x2i’ x2i+47’l’ ey x2i-(v-4m(4)\—2))Y
where 1 ranges from 0 tom — 1.

Proof. The differences involving the zero element are all distinct and cover
the even powers of x once. Hence, from Theorem 3.1, \y =X —a + 1,
Ne=AN+a—1; also ny=n,=3(v—1) =2m@l\ — 1). P, and P, are
obtained as before, and have the same form.

If @ = 1, a completely balanced series is obtained.

4. Series with 2am (2aA£1) + 1 = p°.

THEOREM 4.1. Ifv = 2am(2a\ + 1) + 1 = p°, and if among the exponents

qs, Where
X = — ] (s=1,2,...,a)),
the residue class of (1 — 1) modulo a is represented \; times, then the design with
parameters
v=2am2a\+ 1)+ 1,0 =mv,r = m(2a\ + 1), k = 2a\ + 1;

ng = 2m(2(1)\ + ].), )\1;; Pi,

can be constructed from the initial blocks

au  aut+2am _autdam au+4ma’\
(x™, x , X Yoy X )

’

where u ranges from 0 to m — 1. The p;}* are the number of expressions
xat+z'—j — 1 - xz,
where z = k — j (mod a), and ¢ ranges from 0 to (v — a — 1)/a.

Proof. The differences are

aut2arm+qs autam(2r+2ar+1—2s8)+q,
X y X .

Let set ¢ be the set of powers which are congruent to (¢ — 1) modulo a. There
are a such sets; hence n; = (v — 1)/a = 2m(2a\ + 1). Also, since each ele-
ment of set ¢z occurs among the differences A; times, condition 2 of Theorem 2.1
is satisfied.
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The number of times that every element of set & occurs among the differences

in (setz — setj) is p;/*; but (set 7 — set j) consists of elements of the form
xat+aw+i—1 — xaw—H’—l — xaw+j—1 (xat+i—j —_ 1) — xaw+j—1+z,
where
xtH=i — 1 = x2,
These elements are in set % if and only if
j—14+2=%k—1 (moda),
that is,
z=k —j (moda).
The work of finding the p;* can be simplified by noting that

xz. ‘= x?am(Za)\—H)—at - 1= (xat _ 1) xam(Za)\+1)—at — xz+am(2a)\+l)—at

’

that is, 2 = z; (mod a). Hence we need the expressions

x?=x" -1

only for t =0,1,..., (v — 1)/2a. The residue class of z corresponding to a
given ¢ is represented twice if ¢ < (v — 1)/2a and is represented once if
t= (v — 1)/2a.

Example. Takea =3, m =\N=1;thenv=b0=43,r =k =7, n, = n,
= n3 = 14. From the equations in GF (43)

38— 1=3"7 36_-1=232 39— 1=23% 312_-1=3, 315_—1=33%,
318 — 1 = 328 321 — 1 = 36,
we deduce that the g, are 22, 1, and 23, that is, 1, 1, and 2 (mod 3). Hence
)\1=0,)\2=2,)\3=1.

To find the p;F, take ¢ =j (mod 3); p;* is the number of expressions
x3* — 1 = x? where z=%k—14 (mod3), and ¢t =0,1,...,7. From the
preceding tabulation of these expressions, it is seen that z = 0 once for ¢ < 7
and once for ¢t = 7; z = 1 three times; z = 2 twice. Hence

Pl = P’ = pis® = 3; put = P’ = past = 65 pud = pal = pas® =
The remaining p’s can be obtained from the relations 1.4, 1.5, and 1.6; thus
3 6 4 6 4 4 4 4 6
Pr={6 4 4), P,=|4 3 6], P;=|4 6 4
4 4 6 4 6 4 6 4 3

In case a = 1, there is only one residue class modulo a; hence all the g, fall
in this single residue class and there is only one A; = A. The resulting series is
the completely balanced Series B of (6).

THEOREM 4.2. If v = 2am(2aX — 1) + 1 = p°, and if among the exponents
qs, Where
X% = P, (s=1,2,...,ax = 1),
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the residue class of (1 — 1) modulo a is represented \; times, then the design with
parameters

v =2am(2a\ — 1) + 1, b = my, r = 2am\, k = 2a);
ny = 2m2a\ — 1), Ny + 645 Py
can be constructed from the initial blocks

(0, xau, xau+2am, e, xau+2um(2a)\—2))'
where u ranges from 0 to m — 1.

Proof. Since the class of zero is represented once by all differences involving
the zero element, the frequency of occurrence of the residue class of zero among
the ¢; is A1 + 1. The p,,;* are found just as in Theorem 4.1.

5. Series with am(aA+£1) 4+ 1 = p°.

THEOREM 5.1. If v = am(a\ + 1) 4+ 1 = p°, where a is odd, and if among
the exponents q,, where
=1 =x" (s=1,2,...,a\)

the residue class of (1 — 1) modulo a is represented \; times, then the design with
parameters:

v=am(a\+1)+1,b=mv,r =m(ar+1), k=ar+1; n;=m(ar+1), \;; P,

can be constructed from the initial blocks

au _autam  au+2am au+mar\
(=™, x , X e, X )

’

where u ranges from 0 to m — 1.

Proof. The proof is similar to that of Theorem 4.1; the P; can be found as
before, except that here, since ¢ is odd, there are no relations among the g,
to simplify the work.

THEOREM 5.2. Ifv = am(ah — 1) + 1 = p°, where a is odd, and if among
the exponents q,, where
X —1 = x" (s=1,2,...,ax — 2)

the residue class of (1 — 1) modulo a is represented \; times, then the design with
parameters

v=am(a\ — 1)+ 1,b=mv,r =am\, k =a\; n; =m(a\ — 1), \; + 25,1; P,
can be constructed from the initial blocks

(0, xau, xau+am, ce, xau+am(a)\—2))
where u ranges from 0 tom — 1.

Proof. The proof is similar to that of Theorem 4.2.
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6. Series with ma 4+ 1 = p°. To every element y’ of GF(p°), let there
correspond 7 varieties

ylfy y2fy “ ey y"f.

Then designs with three associate classes can be formed by taking as first
associates of any variety

all varieties

v (f1 # f2);

) (u # w);
the third associates are all varieties

wan.

Thus the first associates of a variety are all varieties giving rise to pure dif-
ferences; the second associates are all varieties giving rise to zero mixed
differences; the third associates are all other varieties giving rise to non-zero
mixed differences.

THEOREM 6.1. If ma 4+ 1 = p°, then the design with parameters

v=nma+1),b=3imv(n — 1), r =am(n — 1), k = 2a;
ni=ma, ne=n—1 ny=man — 1), A1 = (@ — 1)(n — 1), \2 = ma,

)\3=a——1;
ma — 1 0 0
P, = 0 0 n—1 ,
0 n—1 (ma—1)(n—1)
0 0 ma
Po,={ 0 n-—-2 0 y
ma 0 ma(n — 2)
0 1 ma — 1
P3= 1 0 n—2

ma—1 n—2 (ma—1)(n—2)
can be constructed from the initial blocks
(e’ 2™y L 2 ITOTOT eyt T, L D),

where 1 ranges from 0 to m — 1, and (u, w) are the in(n — 1) pairs of integers
selected from 1 to n.

Proof. The pure differences of the type (u, ), arising from all blocks with
a fixed # and w, are each repeated ¢ — 1 times (6, Theorem 2.1). Since a fixed
# occurs with n — 1 values of w, \; = (# — 1)(a — 1). The zero mixed differ-
ences of the type (%, w) occur a times for 7 fixed, and ma times in all; hence
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A2 = ma. The non-zero mixed differences of the type (%, w) occur A3 = a — 1
times (6, Theorem 2.1). Since there are 3n(n — 1) pairs (%, w),

b = itm(ma+1) n(n — 1).
The number of first associates of a variety y,” is the number of varieties of
the form
yuf: ;
thus #; = ma. Also, 1, is the number of varieties of the form

1
Yuw s

that is, #o = # — 1; n3 = ma(n — 1) = the number of varieties of the form

waa-

Two first associates have the form
yu!l’ yuf';
hence pi:! is the number of varieties of the form
»." (fr #= f5, f2 # f3),

that is, ma — 1. Also, p12! = p1s! = pa! = 0. We obtain ps3! as the number
of varieties of the form

Voo (f1 fixed);
hence p23' = » — 1. The number of varieties of the form

¥ (u = w)
gives us ps3! = (ma — 1)(n — 1). This completes P; and the matrices P, and

P; can be found in a similar way.

THEOREM 6.2. If ma + 1 = p°, then the design with parameters

v=nma+1),b=mn—1Dv,r=m@+ 1n—-1), k=0a+1;
ny=amne=n—1l,nz=ma(n — 1), \i=(a — 1)(n — 1),\s =0, N; = 2;
Py, Py, P;3 (cf. 6.1)

can be constructed from the initial blocks
(xuiY xui+m1 AL ] x’lli+(a—1)m, Ow)!

where 1 ranges from 0 to m — 1 and (u, w) are the n(n — 1) permutations of the
integers from 1 to n, taken two at a time.

Proof. Each pure difference of the type (u, %) occurs ¢ — 1 times for w
fixed (6, Theorem 2.1) and (» — 1)(e — 1) times in all. The non-zero mixed
differences of the type (#, w) occur twice, since # and w can be interchanged;
the zero mixed differences do not occur at all. The #, and P, are found as in
Theorem 6.1 and have the same values.
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COROLLARY 6.21. If we permit u = w, we obtain a series with parameters
v=mn(em+1), b=mmw, r=mnle+1), k=a+1; n,;(cf. 6.2),
)\1 = n(a - 1) + 2, )\2 = O, )\3 = 2; .P,, (Cf 62).

Proof. Each pure difference of the type (u, #) arises @ 4+ 1 times from the
blocks in which # = w.

COROLLARY 6.22. Ifn = a + 1in Theorem 6.2 and the block (01, 0y, . . ., 041)
1s included twice in the set of initial blocks, we obtain a group-divisible design with

parameters
v=(a+Dm+1),b= {m@+1)+2}(am+1),r = ma(a + 1)+2,
k=a+1;

g=a+ 1L, h=am+1; \y=a(a — 1), 1 =2,
where g 1s the number of groups in the GD design, h is the number of treatments in
a group.

Proof. To combine the second and third classes of a PBIBD, the following
conditions must hold:

(1) A2 = A3,

(2) p15® + p12% = p13° + p1od,

(8) P22 4 pss® + pas? + P32 = pa® + pss® + pas® + piod
These conditions are satisfied; so classes 2 and 3 can be combined to give a
PBIBD with the stated parameters. For this design,

w1 = ma,ns = (ma+ 1)(n — 1);

b= (mao— " e 1)a>’ e = ("?a (me + 1)@ - D)'

COROLLARY 6.23. Ifn = a + 1 in Corollary 6.21 and the block (01,0, ...,
0,41) s included twice in the set of initial blocks, we obtain a GD design with

parameters
v=(am+ D@+ 1),b= {m@+ 12+ 2}(ma + 1),7r = (¢ + 1)*m+2,
k=a+4+1;

g=a+1Lh=am+1; i =a?4 1, A = 2.
Proof. Similar to that of Corollary 6.22.
COROLLARY 6.24. If in Theorem 6.2 the initial blocks are replaced by
(04, % 2, 5™, .., x, @0 0, (1=0,1,...,m—1)

where (u, w) are permutations of the integers from 1 to n, taken two at a time, then
the resulting design is a GD design with parameters

v=nlam+ 1),b=mn — Dov,r=(a+2)(n — 1)mk =a+ 2;
g=nh=am4+1; M= (a+ 1)(n — 1), xs = 2.

Proof. Here each zero mixed difference of the type (u#, w) also occurs twice;
hence classes 2 and 3 can be combined as in Corollary 6.22.

https://doi.org/10.4153/CJM-1955-040-3 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1955-040-3

378 D. A. SPROTT

Example. Take a = 2, m = 1, in Corollary 6.23; the GD design has para-
metersv = 9,5 =33, 7 =11,k =3; g = h = 3; \; = 5, A\s = 2. The initial
blocks are (1,2,0), (1,2,3), (1,2,6), (4,5,0), (4,5,3), (4,5,6), (7,8,0),
7,8,3), (7,8,6), (0,3,6), (0,3,6), where we set y1 =19, ya =13+ 3,
y3 = vy 4+ 6. The three groups of three varieties are 0, 1, 2; 3, 4, 5; and 6, 7, 8.
Thus, for instance, 3 occurs five times with 4 and 5 and twice with all the other
varieties.

7. Series with 2m (2\+£1) + 1 = p°.
TueoreM 7.1. If 2m(2\ + 1) + 1 = p¢, then the design with parameters

v={2m@N+ 1)+ 1}n,b =3i(n — Dmy,r = m(@\ + 1)(n — 1),
=4\ 4+ 2;

n=2m@2\+ 1), ne=n— 1,n;=n(n — 1),\1 = (n — 1A,

Ay = m(2)\ + 1),)\3 = X\;

nl—l 0 0
P1= 0 0 n—1 ,
0 n—1 (m—1DmE-—-1)
0 0 n1
P2=<0 n—2 0 ),
71 0 ni(n—2)

0 1 n1—1
P; = 1 0 n—2
m—1 n—2 (i —1)n-—2)

can be constructed from the initial blocks
(xuzy xui+2mv ceey xut+4m)\y xwiy xwl+2m) e e ey xwl+4m)\)'

where 1 ranges from 0 to m — 1 and (u, w) are the in(n — 1) pairs of integers
selected from 1 to n.

Proof. By (6, Theorem 3.1), the pure differences of the type (%, %) occur
\ times for a fixed w and \; = (#n — 1)\ times in all. Similarly, the non-zero
mixed differences of the type (%, w) occur s = A\ times while the zero mixed
differences of the type (u, w) occur (2\ 4+ 1) times for a fixed 7, that is, \s
= m(2\ + 1) times in all. The method employed in Theorem 6.1 gives the
values for the 7; and shows that the P; have the same form as in that theorem,
with ma replaced by 2m(2\ 4 1).

Example. m = 2, n = 3, \ = 1, gives a design withv = 39, b = 78,
1’=12,k=6; n1=12,n2=2,n3=24, )\1=2,)\2=6,>\3=1;

11 0 0 0 0 12 0 1 11
P1 = 0 0 2 y P2 = O 1 0 N P3 = ]. O 1 .
0o 2 22 12 0 12 1 1 11
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The initial blocks are
(Zuir 2ui+4y 2ui+8y 2wi7 zwi+4y 2wi+8)7
that is, reduced modulo 13,
(1’ + 1) (lur 3u1 9141 1wr 310) 9",), 1 = 0 or 1.

The pairs (#, w) are the pairs (1, 2), (1, 3), and (2, 3). Setting y; = y; for
y=0,1,...,12; y, = y 4+ 13; y; = y + 26; we find that the initial blocks
are

1, 3,9, 14,16, 22), (1,3,9,27,29,35), (2,6,5,15,19,18),
2,6,5,28,32,31), (14,16,22,27,29,35), (15,19, 18,28, 32, 31).

The other blocks are generated by addition modulo 13; thus the first block
generates (2, 4, 10, 15, 17, 23), (3, 5, 11, 16, 18, 24), ..., (0,2, 8, 13, 15, 21).
Given any variety, say 1, its first associates are 0,2, 3, ..., 12; its second
associates are 14 and 27; the remaining varieties are third associates.

TeEOREM 7.2. If2m(2\ 4+ 1) + 1 = p°, then the design with parameters

v={2m2\N+ 1)+ 1}n,b = (n — I)mv,r = m(2\ + 2)(n — 1),
E=2A+2;n (cf. 71, A1 = (n = 1)\, A =0, A3 =1; P, (cf. 7.1)

can be constructed from the initial blocks
(!, 707, L 2, 0,),

where 1 ranges from 0 to m — 1 and (u, w) are the n(n — 1) permutations of the
integers from 1 to n, taken two at a time.

Proof. Proceed as in Theorem 6.2.

Using proofs similar to those used in the Corollaries to Theorem 6.2, we
obtain
COROLLARY 7.21. If we permit u = w in Theorem 7.2, we obtain a series with

2m@\ + 1) + 1}n, b = mmw, r = mn(2\ + 2), £ = 2\ + 2;
2m(2)\+1),n2 = ‘ﬂ"‘l, ng = nl(n—-l), )\1 = ﬂ)\+1, }\2 = 0, )\3 = 1.

v
ni

CoROLLARY 7.22. If in Theorem 7.2 we set n = 2\ 4 2 and include the block
(01) 021 ce ey 02)\+2)

among the initial blocks, then we obtain a GD design with parameters

v = 2\ + 2){2m(@\ + 1) + 1},

b= {m@x+2)CN+ 1) + 1} {2m(2\ + 1) + 1},

r= @\ +2)@N+ Dm+1, B =2\ +2;

g=2+2 h=2m@ 4+ 1) +1; M =ACA+ 1)\ = L.
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CorOLLARY 7.23. If in Corollary 7.21 we set n = 2\ + 2 and include the
initial block
(Oly 02) ) 02)‘+2>!

then we obtain @ GD design with parameters

v=0CN+2){2m2\ + 1) + 1},

b= {m@2x+2)2+ 1} {2m(2\ + 1) + 1},
r=@N+2)m+ 1,k = 2\ + 2;
g=204+2,h=2m2N+ 1)+ 1; A\i = N+ 2)A + 1, x, = 1.

THEOREM 7.3. If 2m(2\ — 1) 4+ 1 = p°, then the design with parameters

v={2m@\ — 1) 4+ 1}n,b = tmov(n — 1),r = 2m(n — 1)\, k = 4X;
2m(2N — 1), no =n — 1, n3 = my(n — 1),
M= (n— 1)\ X = 2mA, A3 = X,

nl—l 0 0
P]=< 0 0 n—1 >,
0 n—1 (m—1mn-—-1)
O 0 ni
P2=<0 n—2 0 >,
ny 0 ni(n — 2)

0 1 711—1
P3= 1 0 n—2

can be constructed from the initial blocks

ni

(04 2% 2,727, L 20, THAOD™m (0 ,f, 20, H2 L a0, RO DY),

where 1 ranges from 0 to m — 1 and (u, w) are the 3n(n — 1) pairs of integers
selected from 1 to n.

Proof. Proceed as in Theorem 7.1.

THEOREM 7.4. If 2m(2\ — 1) + 1 = p¢, then the design with parameters

v={2m@A—1)+1}n,b = mv(n—1),r = C\+1)m(n—1),k = 22+1;
n; (Cf 73), A= (n - 1))\, Ag = 2, A3 = 1; Pi (Cf 73)

can be constructed from the initial blocks
(Ou, xuiy xui+2m1 A ] xu2+4mxi Ow)’

where 1 ranges from 0 to m — 1 and (u, w) are the n(n — 1) permutations of
the integers from 1 to n, taken two at a time.

Proof. Proceed as in Theorem 7.2.
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