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The flow within an oscillatory boundary layer, which approximates the flow generated
by propagating sea waves of small amplitude close to the bottom, is simulated
numerically by integrating the Navier–Stokes and continuity equations. The bottom
is made up of spherical particles, free to move, which mimic sediment grains. The
approach allows one to fully resolve the flow around the particles and to evaluate
the forces and torques that the fluid exerts on their surface. Then, the dynamics of
sediments is explicitly computed by means of the Newton–Euler equations. For the
smallest value of the flow Reynolds number presently simulated, the flow regime
turns out to fall in the intermittently turbulent regime such that turbulence appears
when the free-stream velocity is close to its largest value but the flow recovers a
laminar-like behaviour during the remaining phases of the cycle. For the largest value
of the Reynolds number, turbulence is significant during almost the whole flow cycle.
The evaluation of the sediment transport rate allows one to estimate the reliability
of the empirical predictors commonly used to estimate the amount of sediments
transported by sea waves. For large values of the Shields parameter, the sediment
flow rate during the accelerating phases does not differ from that observed during
the decelerating phases. However, for relatively small values of the Shields parameter,
the amount of moving particles depends not only on the bottom shear stress but also
on flow acceleration. Moreover, the numerical results provide information on the role
that turbulent eddies have on sediment dynamics.

Key words: sediment transport, particle/fluid flow, turbulent boundary layers

1. Introduction
In nature, flows that involve the motion of solid particles coupled to that of a fluid

are quite common, and different models have been developed to predict phenomena
involving the motion of sediment particles in either air or water. The approaches
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employed to describe sediment and fluid motions are different depending on the
spatial scale of interest, which can range from a few millimetres to hundreds of
kilometres, i.e. from the scale of the sediment grains to the scale of the largest
morphological patterns observed on the Earth’s surface (e.g. tidal sandbanks).

Depending on the problem under investigation, the interstitial fluid can play a
minor role in the transport of momentum, and the rheology of the mixture is mainly
controlled by phenomena occurring during direct grain–grain contacts. On the other
hand, under different conditions, as happens in dilute suspensions, the motion of the
fluid plays a primary role in the dynamics of the mixture. Finally, the hydrodynamic
force acting on sediment grains and the force due to grain–grain contacts could
be equally important, as happens at the bottom of water bodies (seas, lakes, rivers,
estuaries, etc.), where flow drag can mobilise sediment grains arrested on the bed
surface by gravity and frictional contacts.

The threshold conditions for the initiation of sediment transport and the sediment
transport rate are usually determined by considering the average velocity field and
neglecting the turbulent fluctuations (see e.g. Graf (1984), Fredsøe & Deigaard (1992),
Soulsby (1997), Gyr & Hoyer (2006)). However, the vortex structures that characterise
a turbulent flow might induce local high values of the fluid velocity and mobilise the
sediment particles even when the average flow is relatively weak. Despite a lot of
experimental studies having been devoted to investigate the mechanisms responsible
for the initiation of sediment transport and the complex dynamics of sediment grains, a
clear and detailed picture of the interaction of coherent vortex structures and sediment
particles is still missing.

The flow generated by a monochromatic surface wave of small amplitude
propagating over a flat sandy bottom provides a fair description of the actual flow
that is observed in coastal environments seawards of the breaker zone. Close to the
bottom, the surface wave induces oscillations of the pressure gradient and originates
an oscillatory boundary layer (OBL). The OBL is characterised by (i) the amplitude
U∗0 of the irrotational velocity oscillations close to the bottom, (ii) the order of
magnitude δ∗ =√2ν∗/ω∗ of the thickness of the viscous bottom boundary layer and
(iii) the angular frequency ω∗ = 2π/T∗ of the surface wave, where T∗ is the wave
period. Hereinafter, an asterisk is used to denote a dimensional quantity, while the
same symbol without the asterisk denotes its dimensionless counterpart. Moreover,
we let the mechanical properties of sea water be assumed constant and represented
by the density %∗ and the kinematic viscosity ν∗. The sediments are assumed to be
cohesionless, monodisperse and characterised by the density %∗s and the diameter d∗
of the grains.

The dynamics of the OBL over the seabed is rich because features typical of
the laminar, transitional and turbulent regimes might coexist during a flow cycle
depending on the values of the Reynolds number Rδ =U∗0δ

∗/ν∗ and the dimensionless
particle diameter d= d∗/δ∗.

The OBL over a smooth wall (i.e. for d= 0) becomes turbulent if Rδ is larger than
550 (Costamagna, Vittori & Blondeaux 2003), while, in the presence of particles,
this value progressively decreases, being approximately equal to 500 for d = 2.32,
400 for d = 2.80 and 150 for d = 6.95 (Ghodke & Apte 2016, 2018; Mazzuoli
& Vittori 2016, 2019). Laboratory observations show that different flow regimes
exist within the OBL over a smooth wall, namely, the laminar regime, the disturbed
laminar regime, the intermittently turbulent regime and the fully developed turbulent
regime. In the disturbed laminar regime, small perturbations of the Stokes flow
appear but the average flow does not deviate significantly from that observed in
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the laminar regime. The intermittently turbulent regime is characterised by the
appearance of turbulent bursts during the decelerating phases of the cycle but the
flow recovers a laminar-like behaviour during the accelerating phases. Finally, in the
fully developed turbulent regime, turbulence is present during the whole oscillation
cycle (Hino, Sawamoto & Takasu 1976; Hino et al. 1983; Jensen, Sumer & Fredsøe
1989; Akhavan, Kamm & Shapiro 1991; Carstensen, Sumer & Fredsøe 2010). Later,
the experimental observations found a theoretical interpretation by Wu (1992) and
Blondeaux & Vittori (1994), who showed that the appearance of turbulence is
due to both nonlinear three-dimensional effects and a receptivity mechanism. These
theoretical findings were later supported by the results of direct numerical simulations
(DNS) of Navier–Stokes and continuity equations (Akhavan et al. 1991; Verzicco &
Vittori 1996; Costamagna et al. 2003; Ozdemir, Hsu & Balachandar 2014). It is
worth pointing out that similar results were obtained by considering a rough wall,
even though the roughness of the wall causes turbulence to appear for smaller values
of the Reynolds number (Jensen et al. 1989; Carstensen, Sumer & Fredsøe 2012;
Mazzuoli & Vittori 2019).

Even when, for small values of both Rδ and d, the flow never becomes turbulent
during the flow cycle, the prediction of the sediment transport rate is challenging
because sediments are subject both to the viscous drag and to the effects of
the wave-driven pressure gradient. Mazzuoli, Kidanemariam & Uhlmann (2019)
investigated the formation of ripples in the OBL for Rδ = 72 and 128 over a bed
of spherical mono-sized particles of dimensionless diameter d equal to 0.25. By
means of DNS, Mazzuoli et al. (2019) showed that the contribution of the pressure
gradient to the particle dynamics can be significant. Indeed, they observed that a
significant amount of sediment was mobilised also during phases characterised by
small values of the bed shear stress. However, if the size d∗ of the sediment is
noticeably smaller than δ∗, this contribution can be neglected and the sediment flow
rate is well correlated with the bed shear stress, which is fairly well approximated
by that of a Stokes boundary layer.

Laboratory experiments carried out by Lobkovsky et al. (2008), in the absence
of turbulent fluctuations, revealed that sediment dynamics rapidly adapts to the slow
changes of the driving flow, and the sediment flow rate could be estimated, also in
unsteady conditions, by a power-law function of the excess of bed shear stress with
respect to the critical value for incipient sediment motion. Mazzuoli et al. (2019)
concluded that, as long as the appearance of turbulence is not triggered, both the
viscous and pressure-gradient contributions were mainly controlled by the parameter
Ψ/Rδ, with Ψ =U∗20 /[((%∗s − %∗)/%∗)g∗d∗] denoting the mobility number and g∗ being
the modulus of the gravitational acceleration.

For small values of d, transition to turbulence occurs in the early stages of the
decelerating phases, in a way apparently similar to that over a smooth wall (Mazzuoli
& Vittori 2016). The effect of the transition to turbulence can be observed in figure 1,
where the bottom shear stress measured by Jensen et al. (1989) at the bottom of an
oscillatory boundary layer over a smooth bottom for Rδ = 761 is plotted versus
the phase ϕ of the cycle. The phase variable, ϕ ∈ [0, 2π[, is expressed in radians
and defined in order to be equal to zero when the maximum absolute value of the
velocity far from the bottom is attained. Turbulence appears during the decelerating
phases, but the flow recovers a laminar-like behaviour during the accelerating phases
(intermittently turbulent regime). As discussed in Blondeaux, Vittori & Porcile (2018),
it can be easily verified that the intermittently turbulent regime is present in a
significant part of the coastal region, which shifts towards the shore during mild
wave conditions whereas it shifts towards the offshore region during storms.
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FIGURE 1. Dimensionless wall shear stress |τb| = |τ ∗b |/( 1
2%
∗U∗0ω

∗δ∗) plotted versus the
phase ϕ of the cycle for a smooth wall and Rδ = 761. The dots are the experimental
data by Jensen et al. (1989) and the continuous line is the dimensionless external velocity
magnitude in the experiment, |Ue| = |U∗e |/U∗0 .

Then, by increasing either Rδ or d, transition to turbulence occurs earlier and
earlier, therefore pervading also the accelerating phase. It is noteworthy that, for
Rδ > 150 and d= 6.95, the wall is hydrodynamically rough and turbulent fluctuations
practically never disappear (Ghodke & Apte 2016; Mazzuoli & Vittori 2016) even
though turbulence strength during the decelerating phases differs from that observed
during the accelerating phases. In fact, one of the difficulties of modelling of the
wave-averaged sediment transport induced by propagating surface waves lies in the
fact that the sediment transport rate during the accelerating phases of the cycle
differs from that observed during the decelerating phases even though the free-stream
velocity has the same value. Although, in a large number of the empirical formulae
used to quantify the sediment transport rate, the sediment flux is independent of
the sign of the flow acceleration, figure 1 suggests that the bottom shear stress and
the sediment transport rate observed during the decelerating phases are associated
with levels of turbulence much larger than those observed during the accelerating
phases. A further difficulty comes from the experimental evidence that the threshold
conditions for the initiation of sediment motion differ from those leading particles to
stop. In the former case, the probability that sediment particles are set into motion
depends on the occurrence of a favourable particle–flow interaction, while in the
latter situation, particles can stop moving depending on the likelihood that they find
a stable configuration on the bed surface (Clark et al. 2017).

The results of the DNS, which are described in the following, are aimed at
verifying that the picture we have drawn previously is realistic and significantly
affects sediment dynamics. In particular, we want: (I) to verify whether the differences
in the hydrodynamics of the boundary layer and the dynamics of sediment grains
during the accelerating and decelerating phases of the wave-induced bottom flows
are significant; and (II) to evaluate the dependence of the sediment flow rate q∗s on
quantities characterising the flow properties, like the bottom shear stress τ ∗b (t) or the
turbulent kinetic energy, for values of the parameters such that the flow regime is
intermittently turbulent (see table 1).
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Run Rδ Red Ψ Rep Kc s δ∗dis/δ
∗ u∗τ ,maxd

∗/ν∗ maxt |θ | Simulated
cycles

Run 1 450 150.7 11.12 45.2 672 2.65 1.41 12 0.07 4
Run 2 750 251.3 30.89 45.2 1119 2.65 4.85 21 0.22 2
Run 2 (fix) 750 251.3 30.89 45.2 1119 2.65 2.81 18 0.16 2
Run 3 1000 335.0 60.50 43.1 1493 2.65 7.15 25 0.33 1

TABLE 1. Flow parameters for the present runs. From left to right: the Reynolds
numbers Rδ =U∗0δ

∗/ν∗ and Red =U∗0 d∗/ν∗; the mobility number Ψ =U∗20 /v
∗2
s , with v∗s =√

(s− 1)g∗d∗ indicating the sediment fall velocity; the Reynolds number of the sediment
Rep = v∗s d∗/ν∗ (also known as the Galileo number); the Keulegan–Carpenter number Kc =
U∗0/(ω

∗d∗); and the specific gravity s= %∗s /%∗. Note that the ratio d∗/δ∗=Red/Rδ is equal
to 0.335 for all the runs. Also shown are: the dimensionless displacement thickness δ∗dis/δ

∗;
the grain Reynolds number u∗τ ,maxd

∗/ν∗, with the maximum friction velocity defined as
u∗τ ,max = maxt

√|τ ∗b |/%∗; and the maximum value of the Shields parameter |θ |. The last
column gives the number of periods used in the post-processing, after the transient was
removed.

The paper is structured as follows. In the next section we formulate the problem
and we briefly describe the numerical approach used to evaluate the flow field and
the sediment dynamics. In § 3, we describe the flow field and the sediment transport.
Finally, § 4 is devoted to the conclusions.

2. Formulation of the problem and numerical approach
The flow within the boundary layer at the bottom of a sea wave is investigated by

assuming that the wave steepness, i.e. the ratio between the amplitude and the length
of the wave, is small and the linear Stokes theory describes the flow generated far
from the bottom by wave propagation. Even though this approach neglects nonlinear
effects and in particular the existence of a steady streaming, it provides a fair
description of the oscillatory flow generated by propagating sea waves close to the
bottom when their amplitude is small. Then, the flow within the bottom boundary
layer can be determined by approximating it as the flow generated by an oscillating
pressure gradient close to a fixed wall. Nonlinear effects, which become significant
when the wave propagates into shallow water because of the increase of its amplitude,
are neglected. In particular, the presence of steady streaming and wave asymmetry,
which produce a skewness of the flow velocity and acceleration in the OBL (van
der A et al. 2011; Scandura, Faraci & Foti 2016), are not presently considered. Hence
the pressure gradient, which drives the flow, can be written in the form

∂p∗

∂x∗1
=−%∗U∗0ω∗ sin(ω∗t∗),

∂p∗

∂x∗2
= 0,

∂p∗

∂x∗3
= 0, (2.1a−c)

where (x∗1, x∗2, x∗3) is a Cartesian coordinate system such that the x∗1-axis points in the
direction of wave propagation and the x∗2-axis is vertical and points in the upward
direction. The pressure gradient described by (2.1) drives the fluid motion as well
as the motion of spherical particles of density %∗s and diameter d∗, which mimic
actual sediment grains. The initial position of the spheres is obtained by simulating
the settling of a large number Np of particles in the still fluid until the particles
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Run Lx1 Lx2 Lx3 x(init)
2 bottom Nx1 Nx2 Nx3 Np

Run 1 25.73 30.01 12.86 6.6 768 896 384 50 503
Run 2 24.50 30.63 12.25 7.6 1024 1280 512 50 557
Run 3 24.50 36.75 12.25 6.8 1024 1536 512 61 552

TABLE 2. Size of the computational domain, initial bed elevation, number of grid points
and number of sediment particles.

accumulate on the plane x∗2 = 0. Then, the particles in contact with the plane x∗2 = 0
are kept fixed while the others are free to move. The thickness x(init)

2 bottom of the particle
layer, at the beginning of each run, is indicated in table 2. However, the reader should
be aware that the fluid action is able to move only a few surficial layers of particles
and many layers of particles practically do not move during the simulations.

2.1. The fluid motion
The hydrodynamic problem is written in dimensionless form, introducing the following
variables:

t= t∗ω∗, (x1, x2, x3)= (x
∗
1, x∗2, x∗3)
δ∗

, (2.2a,b)

(u1, u2, u3)= (u
∗
1, u∗2, u∗3)

U∗0
, p= p∗

%∗U∗20
. (2.3a,b)

In (2.3), t∗ is time and u∗1, u∗2, u∗3 are the fluid velocity components along the x∗1-, x∗2-
and x∗3-directions, respectively.

Using (2.3), the continuity and momentum equations read

∂uj

∂xj
= 0, (2.4)

∂ui

∂t
+ Rδ

2
uj
∂ui

∂xj
=−Rδ

2
∂p
∂xi
+ δi1 sin(t)+ 1

2
∂2ui

∂xk∂xk
+ fi, (2.5)

where the pressure gradient is written as the sum of two terms. One term (−sin(t))
is the imposed streamwise pressure gradient, which is uniform and drives the fluid
oscillations. The other term ((Rδ/2) ∂p/∂xi) is associated with the vortex structures
shed by the sediment grains or with the turbulent eddies and is an output of the
numerical simulations.

At the lower boundary of the fluid domain (x2 = 0), where a rigid wall is located,
the no-slip condition is enforced,

(u1, u2, u3)= (0, 0, 0), (2.6)

while at the upper boundary (x2=Lx2) the free-stream (free-slip) condition is enforced,(
∂u1

∂x2
,
∂u3

∂x2

)
= (0, 0), u2 = 0. (2.7a,b)

Moreover, periodic boundary conditions are enforced in the homogeneous directions
(x1, x3), because the computational box is chosen large enough to include the largest
vortex structures of the flow.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

10
12

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.1012


Sediment transport in an oscillatory boundary layer 885 A28-7

The hydrodynamic problem is solved numerically by means of a finite difference
approach in a computational domain of dimensions Lx1, Lx2 and Lx3 in the streamwise,
wall-normal and spanwise directions, respectively. A uniform grid is introduced, with
Nx1,Nx2,Nx3 grid points along the three directions.

The numerical scheme is the same as that used by Kidanemariam & Uhlmann
(2014a, 2017) and Mazzuoli et al. (2016, 2019). Standard centred second-order
finite difference approximations are used to approximate the spatial derivatives,
written using a uniform, staggered Cartesian grid, while the time advancement of
the Navier–Stokes equations is made using a fractional-step method based upon
the combination of explicit (three-step Runge–Kutta) and implicit (Crank–Nicolson)
discretisations of the nonlinear and viscous terms, respectively.

The continuity and momentum equations are solved throughout the whole
computational domain, including the space occupied by the solid particles, which
are immersed in the fluid and move close to the bottom. The no-slip condition at
the sediment–fluid interface is enforced, using the immersed-boundary technique
(Uhlmann 2005), by means of the terms fi, added to the right-hand side of (2.5). The
numerical code has been widely tested (see e.g. Mazzuoli et al. (2016)).

2.2. The sediment motion
The sediment grains, which are modelled as spherical particles of uniform diameter d∗,
are moved according to the Newton–Euler equations:

m∗p
du(p)∗

i

dt∗
=
∫

S∗
σ
( f )∗
ij nj dS∗ +W∗i + F(p)∗

i , (2.8)

I∗p
dω(p)∗

i

dt∗
=
∫

S∗
εijkr∗j σ

( f )∗
km nm dS∗ + T (p)∗

i , (2.9)

where m∗p is the mass of a single spherical particle, I∗p is its moment of inertia and
εijk denotes the Levi-Civita symbol. Moreover, u(p)∗

i and ω(p)∗
i are the ith components

of the particle linear and angular velocity, respectively (i = 1, 2, 3). Finally, σ ( f )∗
ij is

the fluid stress tensor, r∗j ( j = 1, 2, 3) is the vector from the centre of the particle
to the generic point on its surface, nm (m= 1, 2, 3) is a normal unit vector pointing
outwards from the surface of the particle, W∗i is the weight of the particle and F(p)∗

i

and T (p)∗
i indicate the force and torque due to inter-particle collisions. It follows that

the phenomena associated with the grain size distribution and the irregular shape of
the sand grains are not considered.

The motion of the sediment grains turns out to be controlled by their specific gravity
s=%∗s /%∗ and their dimensionless size d= d∗/δ∗ even though it is common to use also
the particle Reynolds number Rp=

√
(s− 1)g∗d∗3/ν∗ (often known also as the Galileo

number). The values of the parameters for the simulations presently considered are
indicated in table 1, while the size of the computational domain and the number of
grid points employed in each run are listed in table 2. In particular, one DNS was
carried out, for the same values of the parameters as those of run 2, by fixing the
spheres at their resting positions. This run is indicated by ‘run 2 (fix)’ in table 1.

The force and torque due to the grain–grain contacts are evaluated by means of
a discrete-element model (DEM), which is based upon a linear mass–spring–damper
model of particle interaction. More details on the evaluation of particle dynamics can
be found in Kidanemariam & Uhlmann (2014b).
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Run kn µcf ε
( part)
d δ∗c /1x∗ d∗/1x∗

Run 1 711.2 0.4 0.9 1.0 10
Run 2 1439.2 0.4 0.9 1.0 14
Run 3 3384.0 0.4 0.9 1.0 14

TABLE 3. Values of the DEM parameters: dimensionless normal stiffness kn = (6/π)
× k∗n1x∗/(d∗3g∗%∗s ), Coulomb friction coefficient µcf , restitution coefficient ε( part)

d and the
‘force range’ δ∗c/1x∗.

Since the temporal scale of the grain collisions is O(100) times smaller than the
temporal scale of the oscillating flow, the position of colliding particles is evaluated
by splitting each time step of the fluid solver into O(100) substeps, during which
the hydrodynamic force is assumed to be constant. The DEM model asks for the
specification of the values of the following parameters: the ‘force range’, the normal
stiffness, the Coulomb friction coefficient and the value of the restitution coefficient.
These parameters are given values essentially equal to those of Mazzuoli et al. (2016)
(see table 3).

2.3. Average operators
Since the bed surface preserves essentially a horizontal profile during each phase
of the oscillation period for all the simulations presently considered, both the flow
and the particle motion are assumed statistically homogeneous over horizontal planes.
Thus plane averages are performed of quantities associated with either fluid or
particle phases using the definitions provided by Kidanemariam & Uhlmann (2014b).
In particular, with reference to the sample box V(x) of size Lx1 ×1x2 × Lx3, centred
in x, the plane average, 〈ψ ( f )〉, of the generic fluid property ψ ( f ) is computed as

〈ψ ( f )〉(x, t)=

∫
V
ψ ( f )(x, t)

Np∑
`=1

ϕ( f )(x− x`(t)) dV

∫
V

Np∑
`=1

ϕ( f )(x− x`(t)) dV

, (2.10)

while the plane average of a particle property, say ψ (p), is defined as

〈ψ (p)〉(x, t)=

∫
V
ψ (p)(x, t)

Np∑
`=1

ϕ(p)(x− x`(t)) dV

∫
V

Np∑
`=1

ϕ(p)(x− x`(t)) dV

, (2.11)

where x`(t) is the position of the centre of the generic `-particle. Moreover, the
particle indicator function ϕ(p)(x − x`(t)) is equal to 1 if |x − x`(t)| < d/2 or to 0
otherwise, while ϕ( f )(x − x`(t)) = 1 − ϕ(p). In the following, where not explicitly
indicated, plane-average quantities are shown omitting the angular brackets for the
sake of clarity.
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3. Discussion of the results
When the bottom is made up of moving sediment grains, the DNS of the Navier–

Stokes and continuity equations within the bottom boundary layer generated by an
oscillatory pressure gradient requires huge computational resources and ‘wall clock’
time. Hence, only a few cases are considered in the following and attention is focused
on values of the parameters such that sediment particles are set into motion and the
Reynolds number is large enough to trigger the appearance of turbulence. The values
of the relevant dimensionless parameters of the present simulations are indicated in
table 1. At this stage it is worth pointing out that neither ripples nor transverse bands
of sediments, like those detected by Blondeaux, Vittori & Mazzuoli (2016), appear
during the simulations. This is an effect of the size of the domains, which is too small
for ripples to appear, and of the duration of the simulations, which is too short for
ripples to develop. Indeed, we wanted to consider the plane bottom configuration.

For illustration, consider run 2 and run 3, which are characterised by the dimension-
less diameter d equal to 0.335 and the Reynolds number Rδ equal to 750 and 1000,
respectively. In order to relate these values of Rδ and d to a field case, it can be easily
verified that Rδ = 750 is the Reynolds number of the bottom boundary layer generated
by a surface wave characterised by a period T∗ equal to 7 s and a height H∗ equal
to approximately 1.4 m propagating in a coastal region where the water depth h∗ is
equal to 10 m. It turns out that δ∗= 1.49 mm and that d= 0.335 implies d∗= 0.5 mm,
i.e. a grain size that is coincident with the limit between medium and coarse sand.

3.1. Appearance of turbulence and turbulent kinetic energy
As discussed in Sleath (1988), on the basis of Kajiura’s (1968) criterion, the
appearance of turbulence is certainly triggered during the oscillatory cycle for such
values of the parameters (d = 0.335, Rδ = 750). Indeed, the condition suggested
by Kajiura (1968) for the initiation of the turbulent regime, i.e. U∗0d∗/ν∗ > 104, is
widely satisfied. It is worth pointing out that, using the present notation, Kajiura’s
criterion can be written in the form Rδ > 104/d. However, laboratory measurements
(e.g. Sleath 1988) suggest that the random fluctuations of the velocity are not large
and appear only during a part of the oscillatory cycle.

The flow and sediment dynamics were simulated within a computational box
24.50δ∗ long, 12.25δ∗ wide and 30.63δ∗ high (see table 2 summarising the main
parameters of the numerical box and grid). The size of the box is similar to that
used by Verzicco & Vittori (1996) and Vittori & Verzicco (1998) for their simulations
of turbulence dynamics in an oscillatory boundary layer and turns out to be large
enough for turbulence generation (minimal flow unit). Only the height of the box is
significantly larger because, in the present simulation, a large number of spherical
particles are deposited on the bottom. Before starting each simulation, particles were
located randomly over the computational domain and allowed to settle in the resting
fluid. Then, they were ‘shaken’ until a closely packed configuration was attained.
Finally, the layer of particles in contact with the wall was fixed, while those whose
centre was located above the elevation x∗(init)

2 bottom, indicated in table 2, were removed
to guarantee the plane bottom configuration (cf. figure 2a). The number of particles
that remain is indicated in table 2. The grid size is equispaced and uniform along
the three coordinates and such that 10 grid points are present per grain diameter.

To give a qualitative idea of the flow field that is generated close to the bottom
for these values of the parameters and to show how turbulence appearance and
the moving grains affect the velocity field, figure 3 shows the streamwise velocity
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FIGURE 2. Bed configuration (a) at the initial state and (b) at the early deceleration phase
ϕ = 0.02 (run 3). The broken red horizontal lines indicate the bottom surface elevation
and the maximum elevation reached by particles. Light grey particles are resting while
the other particles are moving and the black ones lay above x2,bottom.
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FIGURE 3. Streamwise velocity component plotted versus the phase ϕ during the second
cycle for x1 = Lx1/2 and x3 = Lx3/2 and different values of x2: (a) x∗2 = x∗2,bottom + 3δ∗,
(b) x∗2 = x∗2,bottom + δ∗, (c) x∗2 = x∗2,bottom + 0.5δ∗, and (d) x∗2 = x∗2,bottom. Continuous line,
numerical results; broken line, Stokes solution. Here Rδ = 750 and d = d∗/δ∗ = 0.335
(run 2).

component plotted versus the phase ϕ during the second flow cycle, for different
values of the distance x2− x2,bottom from the bottom and for x1= Lx1/2 and x3= Lx3/2.
The Stokes solution is also plotted in figure 3 to allow an easy comparison of the
numerical results with the laminar solution. The distance of the numerical velocity
probes from the time-average bottom elevation x2,bottom is evaluated assuming that
the instantaneous bottom surface elevation coincides with the plane where the
plane-averaged volume fraction of the solid particles 〈φs〉 reaches the value 0.1
(see Mazzuoli et al. (2019) for further details on the computation of the bed surface).
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It turns out that x∗2,bottom= 6.60δ∗, with fluctuations of the bottom elevation, during the
flow cycle, ranging between 6.51δ∗ and 6.80δ∗ (i.e. of the order of d∗). This heuristic
assumption might be modified taking into account that significant local instantaneous
fluid velocities can be found even for x2 smaller than x2,bottom when the Reynolds
number is large enough to induce sediment motion and the spherical particles start to
slide, roll and saltate on the resting particles. For example, the bottom position might
be determined either by choosing a different threshold value of φs or by evaluating
the value of x2 at which either the average streamwise velocity component or the
turbulent kinetic energy vanish. Figure 2(b) shows that saltating and floating particles
can be present above x2,bottom up to the level x2,free, which delimits the particle-free
region.

Figure 3 clearly shows that the velocity provided by the numerical simulation is
characterised by large random fluctuations which appear when the velocity attains
its largest values and at the beginning of the decelerating phases. However, these
random velocity fluctuations are present only close to the bottom and they decrease
moving far from it, till they assume negligible values when x2 − x2,bottom is larger
than approximately 15 (not shown herein) where the velocity practically equals the
free-stream velocity. In particular, figures 3(a) and 4, where the instantaneous velocity
profile at x1= Lx1/2 is plotted versus x2 at different phases ϕ during the second cycle
and for three different values of x3, show that the momentum transfer induced by
turbulent fluctuations moves the overshooting of the velocity farther from the bottom
and modifies its phase (cf. figure 4b). Consequently, the displacement thickness of the
boundary layer, defined as

δ∗dis =max
t

∫ L∗x2

x∗2 bottom

(
1− U∗

U∗e

)
dx∗2, (3.1)

is 4.85 times larger than the displacement thickness computed for the Stokes boundary
layer, which is constant and equal to δ∗ (in (3.1) U∗e indicates the free-stream
velocity). Such large increase of δ∗dis is due to the presence of the particles saltating
up to ∼8d∗ (i.e. 2.7δ∗) above the bed surface during the phases characterised by
the maximum velocity (see the horizontal broken lines in figure 4d), which, in turn,
enhance turbulent fluctuations far from the bottom. In fact, for run 2 (fix) (Rδ = 750,
d= 0.335 and the spheres fixed at their resting positions), δ∗dis is equal to 2.81δ∗ (see
also the values in table 1).

The intermittent appearance of turbulence and its vanishing value far from the
bottom clearly appear in figure 5, where the dimensionless turbulent kinetic energy
is plotted versus x2 and time during the second cycle of run 2 and run 3. The large
computational costs do not allow a large number of oscillation cycles to be simulated
and the turbulent kinetic energy is evaluated with respect to an average flow field
that is not the phase-averaged value but the plane average of the velocity. This
procedure makes the value of the turbulent kinetic energy at time t slightly different
from that at time t + π and it makes the contour lines appearing in figure 5 not
smooth because of the finite size of the computational domain. As already pointed
out, turbulence is generated when the external velocity is maximum and turbulence
generation takes place mainly close to the bottom. Then, turbulence spreads towards
the irrotational region but meanwhile it decays and there are phases of the cycle
such that a laminar-like flow is almost recovered. Even though the intensity of the
dimensionless turbulent kinetic energy does not noticeably increase in run 3 with
respect to that observed for run 2 (cf. figure 5), the larger value of the Reynolds
number causes significant turbulent fluctuations to appear farther above the bed
surface.
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FIGURE 4. Streamwise velocity component at x1 = Lx1/2 and x3 = 2, 6 and 8, plotted
versus the vertical coordinate x2 − x2,bottom in the near-bottom region: (a) ϕ = 1.25π,
(b) ϕ=1.50π, (c) ϕ=1.75π and (d) ϕ=2.00π, ϕ being the phase during the second cycle.
Continuous line, local streamwise velocity; black broken line, plane-averaged streamwise
velocity; red broken line, Stokes solution. The horizontal dash-dotted line indicates the
elevation x2,free (cf. figure 2b) above which the flow is free of particles. Here Rδ = 750
and d= 0.335 (run 2).

3.2. Evaluation of the bed shear stress
Since the velocity increases rapidly above the bed surface and the presence of
particles above the bed surface is limited to a thin layer (cf. figure 4), it is
reasonable to suppose that the sediment flow rate is closely related to the bed shear
stress. Figures 6 and 7 show the time development of the dimensionless streamwise
component σ12 = σ ∗12/(

1
2ρ
∗U∗0δ

∗ω∗) of the averaged force per unit area exerted by
the flow on the instantaneous bottom surface for run 2 and run 2 (fix). The reader
should note that σ ∗12(x

∗
2, t∗) evaluated at the bed surface (x∗2 = x∗2 bottom) coincides

with what is commonly defined as the bottom shear stress τ ∗b . Notwithstanding the
fact that the force per unit area is averaged over the bottom surface, the value of
τb = τ ∗b /( 1

2ρ
∗U∗0δ

∗ω∗) is characterised by the presence of small random oscillations.
To remove them, it would be necessary either to consider a much longer and wider
computational box or to simulate a large number of cycles and to compute the
phase-averaged value. The oscillations of the force per unit area are defined as
‘small’ when compared with the oscillations that are observed when the value of τb
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FIGURE 5. Turbulent kinetic energy per unit volume, normalised with %∗U∗20 , plotted
versus the phase ϕ during the second cycle for d = 0.335: (a) Rδ = 750 (run 2) and
(b) Rδ = 1000 (run 3). The red broken line indicates the instantaneous bottom surface
elevation.
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FIGURE 6. The dimensionless value of τb plotted versus the phase ϕ during the second
cycle for Rδ = 750 and d = 0.335 (run 2). The viscous contribution, the turbulent
contribution and the contribution due to flow–particle interaction are also plotted along
with the qualitative behaviour of the external velocity (broken line).

is averaged over a much smaller horizontal surface. The value τ̂b of σ12 averaged
over a portion of the instantaneous bottom surface that is 4δ∗ long, 2δ∗ wide and
centred around the point (x∗1, x∗3)= (Lx1/2, Lx3/2)δ∗ was computed to verify this point
(the time development of τ̂b is shown in the figure in the supplementary material,
available at https://doi.org/10.1017/jfm.2019.1012).

Three contributions to the value of τb appearing in figures 6 and 7 can be identified
(Uhlmann 2008; Mazzuoli et al. 2018): (i) the contribution due to the viscous stress
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FIGURE 7. The dimensionless value of τb and its contributions plotted versus the phase
ϕ during the second cycle for Rδ = 750 and d= 0.335 (run 2 (fix)).

(τvisc), (ii) the contribution due to the turbulent stress (τturb), and (iii) the contribution
due to the flow–particle interactions (τpart). The procedure used to compute the
different contributions is described in more detail by Mazzuoli et al. (2018, 2019).
The time development of τb for the run 2 (fix) qualitatively agrees with that measured
by Jensen et al. (1989) (see figure 1) even though the Reynolds number of the
laboratory experiment is somewhat different from that of the numerical simulation
but, more importantly, the bottom of the experimental apparatus was smooth. Of
course, the sediment motion and, in particular, the saltating grains greatly affect
turbulence dynamics. Indeed, in run 2, the largest contributions to the bottom shear
stress are those due to the turbulent stresses and the flow–particle interaction.

To gain an idea of the role of the resting/moving sediment grains on turbulence
dynamics, figure 8 shows the value of τb computed for run 2 and run 2 (fix), and
that computed by Mazzuoli, Vittori & Blondeaux (2011a) and Mazzuoli et al. (2011b),
who made a DNS of the OBL over a smooth wall for Rδ = 775. Even though the
results of Mazzuoli et al. (2011a,b) were obtained for a value of the Reynolds number
slightly larger than that of the present simulations, figure 8 shows that the bottom
shear stress of the smooth-bottom case is significantly smaller than that of run 2 (fix),
where the particles were fixed and arranged in a plane-bed configuration. However, the
phase when the inception of turbulence occurs and, in general, the time development
of τb are fairly comparable in these two cases. In particular, both in the simulation of
Mazzuoli et al. (2011a,b) and in run 2 (fix), turbulence appears when the free-stream
velocity is decelerating.

On the other hand, the presence of mobile sediments enhances the effect of the
sediment on the transition process. This fact is clearly shown by figure 9, where
the total dimensionless shear stress σ12, the Reynolds shear stress and the solid
volume fraction for run 2 and run 2 (fix) are plotted as functions of the wall-normal
coordinate at flow reversal (figure 9a) and at the phases when τb is maximum in
run 2 (figure 9b) and in run 2 (fix) (figure 9c). The remarkable contribution of the
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FIGURE 8. The dimensionless value of τb plotted versus the phase ϕ during the second
cycle of run 2 (mobile particle, solid line) and run 2 (fix) (fixed particles, red dash-dotted
line), i.e. for the values of the parameters Rδ = 750 and d = 0.335. Moreover, the black
broken line indicates the values obtained in a run at Rδ = 775 over a smooth wall (results
from Mazzuoli, Vittori & Blondeaux 2011b).

Reynolds shear stress to τb, which is associated with the presence of moving particles,
can be observed in figure 9(b). Indeed, in semidilute and dense sheared suspensions
(i.e. for φs > 0.05), the number of particles per unit volume that are exposed to the
core flow is large enough to experience frequent contacts and generate significant
overall drag. In order to understand the increase of the apparent roughness due to
the particle motion, it is worth noting that, in a suspension of mono-sized spheres
at φs = 0.1, the distance between particles is approximately equal to their diameter
and the flow resistance in steady conditions is a few times larger than that attained
with the tightest arrangement of the spheres, i.e. in the ‘cannonball’ configuration.
For instance, Schlichting (1936), who carried out experiments on channel flow over a
plane layer of spheres of diameter d∗ arranged at the vertices of hexagons of side `∗,
found that the equivalent roughness obtained for `∗ equal to 2d∗ was approximately
five times larger than that for closely packed spheres.

Because of turbulence growth, which takes place when the external flow is close to
its largest values, and its subsequent damping, the values of τb attained during flow
acceleration differ from those observed during flow deceleration, even though the
free-stream velocity is equal. Hence, if τb is plotted versus the free-stream velocity
Ue, a hysteresis orbit can be observed (see figure 10a). A similar orbit is observed
even considering the curve τb versus the dimensionless quantity (Ue+ dUe/dt), which
in the laminar case should be a straight line passing through the origin of the
axes, and the dimensionless quantity Ue|Ue|. These results show that, even though
empirical relationships do exist which allow a reliable estimate of the friction factor
fw = τ ∗b,max/(

1
2%
∗U∗20 ) and it is relatively easy to predict the maximum value τ ∗b,max of

the bottom shear stress, the time development of bottom shear stress during the flow
cycle is much more difficult to predict. In order to fulfil the objectives (I) and (II)
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FIGURE 9. The dimensionless value of τb (solid thick lines), of the Reynolds shear stress
(solid thin lines) and the value of the solid volume fraction, φs (broken lines), plotted
versus the wall-normal coordinate at the phases (a) ϕ = 0.5π, (b) ϕ = 0.9π and (c) ϕ =
1.035π of run 2 (mobile particles, black lines) and run 2 (fix) (fixed particles, red lines),
i.e. for the values of the parameters Rδ = 750 and d= 0.335. Dash-dotted horizontal lines
indicate the bed surface elevation, x2 bottom, where φs = 0.1.
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FIGURE 10. The dimensionless value of τb plotted versus (a) the free-stream velocity
Ue, (b) the quantity dUe/dt+Ue and (c) the quantity Ue|Ue| for Rδ = 750 and d= 0.335
(run 2). In the laminar regime, the curve τb versus dUe/dt+Ue is the straight line crossing
the origin of the axes and plotted in panel (b).

stated in § 1, let us see in the following section how the bed shear stress is related
to the sediment flow rate.

3.3. Evolution of the sediment flow rate and dependence on the flow properties
Figure 11 shows the dimensionless sediment transport rate per unit width qs =
q∗s/
√
(s− 1)g∗d∗3 (i.e. the volume of sediment grains that cross a plane x1 = const.

per unit time and unit width), averaged over the ‘homogeneous’ directions x1 and x3,
as a function of the phase ϕ during the second cycle. Since it is common practice to
correlate the sediment flow rate to the power 3/2 of the bottom shear stress, in figure
11 the signed value of |τb|3/2 is also plotted. This clearly shows that a fair correlation
exists between qs and |τb|3/2 for both run 2 (figure 11a) and run 3 (figure 11b), even
though analogous differences can be observed in the two runs. Taking into account
that (i) turbulence intensity during the decelerating phases of the cycle is different
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√
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∗δ∗)]3/2 (thin black line) plotted versus the phase ϕ during the second cycle
for d= 0.335: (a) Rδ = 750 (run 2) and (b) Rδ = 1000 (run 3).

from that observed during the accelerating phases and (ii) the sediment particles are
set into motion and transported more easily when turbulence intensity is high, it is
reasonable to expect values of qs during the late accelerating phases to be larger than
those observed during the decelerating phases, even for the same value of the bottom
shear stress.

In figure 12, the value of qs is plotted versus the Shields parameter θ =
τ ∗b /((%

∗
s − %∗)g∗d∗), describing two nearly coincident orbits during one oscillation

period. In fact, for values of the Shields parameter slightly larger than its critical
value (10−2 . θ . 10−1), the sediment transport rate depends not only on θ but also
on the value of dθ/dt. A similar finding was obtained by Vittori (2003), who showed
that, in an oscillatory flow, the amount of sediment grains picked up from the bed
and carried into suspension correlates better with the production of turbulent kinetic
energy than with the Shields parameter. The results plotted in figure 12 show that
the sediment transport rate tends to vanish for a finite value of θ while it assumes a
small but finite value for θ tending to zero. To understand this behaviour of qs, the
reader should take into account that even for vanishing values of θ the sediments
keep moving mainly because moving particles take some time to find a stable position
on the bed surface (Clark et al. 2017) and also because of the effects of the imposed
pressure gradient (Mazzuoli et al. 2019). Hence, the sediment transport tends to
vanish for small values of θ when the effects of the pressure gradient and the viscous
forces on the particles balance inertial effects. On the other hand, the results plotted
in figure 12 show that fair predictions of the sediment transport rate can be obtained
by assuming that qs depends only on θ when the Shields parameter assumes relatively
large values.

Some further insight into the effects of turbulence dynamics on sediment motion
can be obtained looking at the time development of the vortex structures and at the
associated dynamics of sediment grains. Figure 13 shows the streamwise velocity
fluctuations in the horizontal plane x2 − x2 bottom = 0.9, along with sediment particles
(white dots) that are picked up from the bottom and, during their motion, cross this
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FIGURE 12. Dimensionless sediment flow rate qs as a function of the Shields parameter
θ for Rδ = 750 and d= 0.335 (run 2). Arrows indicate the orbital direction.

plane. Figure 13(a) shows that low- and high-speed streaks characterise the flow
field during the flow acceleration. Later, as also found by Costamagna et al. (2003),
Mazzuoli et al. (2011b) and Mazzuoli & Vittori (2016, 2019), who simulated an
oscillatory boundary layer over a smooth bottom, the streaks oscillate, twist and
interact (see figure 13b,c) and then they break, generating small vortex structures
and a fully turbulent flow (see figure 13d–g). Eventually, the turbulent eddies decay
because of viscous effects and the flow recovers a laminar-like behaviour (see
figure 13h). When the external velocity is maximum, the turbulence level is also
high and a large amount of sediment particles are picked up from the bottom and
transported by the flow. Then, at the late stages of flow deceleration, the turbulent
eddies damp out, the bottom shear stress tends to vanish and the sediment particles
settle down. The interested reader can look at movies 1 and 2 that are available in
the supplementary material.

We have discussed the flow field and sediment dynamics during the second cycle
since, for Rδ = 750, the average results obtained during this cycle are similar to those
obtained during the first cycle, thus suggesting that the flow has attained its periodic
status. The results of the numerical simulation carried out for Rδ = 450 and d =
0.335 (run 1) allow one to appreciate more easily the dynamics of both the vortex
structures and the sediment particles because the process that leads to the appearance
of turbulence is slower and similar to that observed experimentally over a smooth wall
by Carstensen et al. (2010), who made flow visualisations for values of the Reynolds
number close to its critical value. Indeed, Kajiura’s (1968) criterion suggests that,
for d = 0.335, the critical value of the Reynolds number falls around 310. Hence,
for Rδ = 450, turbulence is expected to be weak and large fluctuations of turbulence
intensity from cycle to cycle are expected to be present.

Figure 14 shows the spanwise vorticity component at three streamwise–vertical
planes defined by x3 = 2, x3 = 6 and x3 = 8 and at t= 5.7π, once the plane-averaged
value is removed. The plots show that, close to the bottom, positive and negative
regions alternate in the streamwise direction with a wavelength of approximately
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FIGURE 13. Streamwise velocity fluctuations at plane x2 = 7.5 (x2 − x2,bottom = 0.9) at
different phases of the cycle: (a) ω∗t∗= 1.73π (u∗τd

∗/ν∗= 15, θ = 0.12); (b) ω∗t∗= 1.75π
(u∗τd

∗/ν∗ = 16, θ = 0.13); (c) ω∗t∗ = 1.78π (u∗τd
∗/ν∗ = 18, θ = 0.16); (d) ω∗t∗ = 1.80π

(u∗τd
∗/ν∗ = 19, θ = 0.18); (e) ω∗t∗ = 1.85π (u∗τd

∗/ν∗ = 22, θ = 0.24); ( f ) ω∗t∗ = 1.91π
(u∗τd

∗/ν∗= 20, θ = 0.20); (g) ω∗t∗= 2.05π (u∗τd
∗/ν∗= 19, θ = 0.17); and (h) ω∗t∗= 2.40π

(u∗τd
∗/ν∗ = 6, θ = 0.02). Here Rδ = 750 and d = 0.335 (run 2). The full sequences of

visualisations of streamwise velocity and spanwise vorticity fluctuations at plane x2 = 7.5
can be found in movie 1 and movie 2 of the supplementary material, respectively.

12.5δ∗. These coherent spanwise vortex structures appear when the free-stream
velocity is almost maximum and then they are convected in the streamwise
direction, generating almost regular oscillations of the velocity field as it appears
in figure 15(a,b), where the streamwise velocity component is plotted versus ω∗t∗
at two of the locations considered in figure 3. Later on, these vortex structures
attain their maximum intensity and eventually decay because of viscous effects and
disappear.

As already pointed out, similar spanwise vortices were visualised by Carstensen
et al. (2010) during laboratory experiments and by Mazzuoli et al. (2011a,b), who
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FIGURE 14. Dimensionless fluctuating spanwise component of vorticity Ω ′∗3 δ
∗/U∗0 =Ω ′3=

Ω3 − 〈Ω3〉Lx3,Lx1 at ω∗t∗ = 5.7π and (a) x3 = 2, (b) x3 = 6 and (c) x3 = 8 for Rδ = 450 and
d= 0.335 (run 1).

reproduced the experiments by Carstensen et al. (2010) by means of DNS and
confirmed that the first vortex structures that appear during the transition process
are two-dimensional spanwise vortices. In fact, during the first oscillation cycles,
notwithstanding the presence of the sediment particles which make the bottom
rough and certainly affect the transition process (see e.g. Blondeaux & Vittori
1991), the present numerical findings show vortex structures that are qualitatively in
agreement with both the predictions of the linear stability analysis of Blondeaux
& Seminara (1979) and the results of the DNS of Vittori & Verzicco (1998),
Costamagna et al. (2003) and Bettencourt & Dias (2018), who considered a smooth
bottom. Blondeaux & Seminara (1979), by using a momentary criterion of instability,
showed that the laminar Stokes boundary layer is linearly and momentarily unstable
when the Reynolds number Rδ is larger than 86 and the fastest-growing mode is
two-dimensional and characterised by a streamwise wavelength of approximately
12.5δ∗. For values of Rδ close to its critical value, the instability predicted by the
linear analysis is restricted to a small part of the cycle, and during the remaining
parts of the cycle, the amplification rate becomes negative and the flow recovers a
laminar-like behaviour. Larger values of Rδ widen the unstable parts of the cycle
and lead to larger perturbations. However, the flow is stable ‘on average’. Indeed
the results of Blennerhassett & Bassom (2002) show that small perturbations of the
Stokes solution are characterised by an average growth only when the Reynolds
number is larger than 1416.

Transition to turbulence is triggered by nonlinear effects, which can no longer be
neglected when the perturbations attain large values during the momentarily unstable
phases, and it is also affected by wall imperfections (Blondeaux & Vittori 1994) and
three-dimensional effects. Moreover, in the present simulations, the resting/moving
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FIGURE 15. Streamwise velocity component plotted versus time for x1=Lx1/2, x3=Lx3/2
and (a,c) x2 = x2,bottom + 1 and (b,d) x2 = x2,bottom + 0.5. Continuous line, numerical results;
broken line, Stokes solution. Here Rδ = 450 and d= 0.335 (run 1).

sediment grains certainly affect the transition process. Figure 15(c,d), where the
streamwise velocity component is plotted versus ω∗t∗ for Rδ = 450 and d = 0.335,
shows that turbulent velocity fluctuations appear during the fourth cycle, being
triggered by the vortex structures generated during the previous cycles, which decayed
but were still strong enough to trigger the growth of large perturbations of the laminar
flow. This peculiar behaviour of turbulence dynamics clearly appears in figure 16,
where the value of K∗, i.e. the plane-averaged turbulent kinetic energy per unit area
of the bottom integrated over the whole computational domain, is plotted versus
time. Indeed, large variations of K∗ from half-cycle to half-cycle can be observed
in figure 16. During the phases characterised by the growth of

∫
L∗x2

K∗ dx∗2/%
∗U∗20 δ

∗,
the sediment flow rate tends to increase but then it decreases even if the integral
of K∗ still keeps growing. This result can be understood by observing that large
values of K∗ far from the bottom are encountered later than close to the bottom,
where turbulence is produced, as an effect of the diffusion of turbulent fluctuations
(see e.g run 2 in figure 5). Therefore, the maxima of the integral of K∗ lag behind
the maxima of K∗ close to the bed, which are associated with large values of the
bed shear stress and of the sediment flow rate. The fact that the sporadic inception
to turbulence in run 1 is due to the presence of particles appears reasonable, since
Carstensen et al. (2010) could not observe the transition to turbulence for Rδ = 450
in the absence of particles. However, it is evident from the present results that the
values of the parameters characterising run 1 lay on the edge of the intermittently
turbulent region of the parameter space.

The value of the plane-averaged sediment flow rate qs per unit width is plotted in
figure 17 along with the value of the Shields parameter as functions of time. First

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

10
12

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.1012


885 A28-22 M. Mazzuoli and others

15 20 25 30 35

ø*t*

0.035

0.030

0.025

0.020

0.015

0.010

0.005

0

q* s/
�(

s -
 1

)g
* d*3

0.08

0.07

0.06

0.05

0.04

0.03

0.02

0.01

x 2
K

* d
x* 2/

‰* U
* 02 ∂*

∫ L*

FIGURE 16. Time development of the dimensionless sediment flow rate qs (red line) and
the turbulent kinetic energy K (black line), integrated along the x2-direction from the bed
surface to the top of the computational domain. Here Rδ = 450 and d= 0.335 (run 1).
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FIGURE 17. Time development of the dimensionless sediment flow rate qs (red line) and
the Shields parameter θ (black line). Here Rδ = 450 and d= 0.335 (run 1).

of all, it is worth pointing out that large fluctuations of the Shields parameter θ from
cycle to cycle are present, because of the large fluctuations of turbulence intensity: the
appearance of strong turbulent eddies close to the bottom gives rise to large velocity
gradients at the bottom and large values of τb. Moreover, as already pointed out, the
values of qs during flow acceleration differ from the values during flow deceleration,
even though the Shields parameter assumes the same value. Hence, the results show
that, for Rδ close to its critical value, a sediment transport rate predictor based on the
assumption that qs depends only on θ cannot provide good predictions. If turbulence is
strong, a large amount of sediment is picked up from the bed and easily transported by
the flow in the saltating mode. If turbulence is weak, the moving grains roll and slide
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FIGURE 18. Top view of the computational domain. Green surfaces visualise the
isocontour of λ∗2δ

∗2/U∗20 = −0.5 at (a) t = 3.70π, (b) t = 3.75π, (c) t = 3.80π and
(d) t = 4.00π. Spheres are coloured from blue to red on the basis of the magnitude of
their instantaneous velocity ranging between 0 and 0.1U∗0 . White spheres are essentially
at rest. Here Rδ = 750 and d= 0.335 (run 2). (e) The phase of the wave cycle to which
panels (a–d) refer in terms of the velocity far from the bottom. A full sequence of similar
top-view visualisations can be found in movie 3 in the supplementary material, which
shows isosurfaces of spanwise-vorticity fluctuations.

along the bottom, interacting with the resting particles, and the sediment transport rate
is much smaller.

To relate the sediment motion to the dynamics of the coherent vortex structures
and the turbulent eddies generated by the transition from the laminar to the turbulent
regime, let us consider again the numerical simulation carried out for Rδ = 750
and d = 0.335. Figure 18 shows a top view of the bed, where the sediment
grains are coloured according to their velocity. Simultaneously, figure 18 shows
the coherent vortex structures that characterise the turbulent flow and are visualised
by the λ2-criterion (Jeong & Hussain 1995). The surfaces that appear in figure 18
are characterised by a small negative value of the second eigenvalue λ2 of the
matrix D2 + Ω2, D and Ω being the symmetric and antisymmetric parts of the
gradient of the velocity field. The coherent vortex structures generated by turbulence
appearance cause local high values of the bottom shear stress when they interact with
the bottom and the sediment grains move with large velocities in the areas below
the coherent vortices. In particular, it appears that patches of sediments randomly
distributed over the bed are convected in the flow direction when coherent vortex
structures are generated by turbulence appearance and move close to the bottom
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FIGURE 19. Dimensionless fluctuating spanwise component of vorticity Ω ′∗3 δ
∗/U∗0 =Ω ′3=

Ω3 − 〈Ω3〉Lx3,Lx1 , in the plane x3 = 6δ∗ for Rδ = 750 and d = 0.335 (run 2) at (a) ω∗t∗ =
3.6π, (b) ω∗t∗ = 3.7π and (c) ω∗t∗ = 3.8π.

(see figure 18a). Then, at ω∗t∗ = 3.75π, the turbulent eddies give rise to a band
aligned with the x1-direction and almost in the centre of the computational domain.
Below the band of vortex structures, the sediment grains move with the largest
velocities. Later, turbulence spreads over the whole domain and an intense sediment
transport is observed over the entire bed. Eventually, the turbulence decays, thus the
vortex structures that characterised the flow field weaken and the sediment transport
decreases till it becomes negligible at approximately ω∗t∗ = 4.3π.

These findings are further supported by figure 19, which shows that the sediment
transport rate is largely affected not only by the external flow, but also by the
interaction of the turbulent eddies with the sediment grains. At ω∗t∗=3.6π, turbulence
is weak and only the grains in unstable positions slowly roll and move to attain more
stable positions being dragged by the external flow. Then, turbulent fluctuations
become intense, in particular close to the bottom, and more sediments start to move
because the fluctuating velocity components cause peaks of the hydrodynamic force
acting on the sediment particles (see figure 19b). Later, the external velocity becomes
larger and the turbulent eddies become more intense as well, and the sediment grains
not only move but also start to saltate, being picked up from the bed.

The time development of K∗ is shown in figure 20(a), where it appears that
turbulence grows around ϕ = 0.67π and 1.67π, attains its maximum value and
then slowly decreases later on, assuming relatively small values after flow inversion,
thus being loosely related to sediment transport, which is also plotted in the same
figure. Even though the growth of the turbulent kinetic energy and the growth of the
sediment transport rate take place almost simultaneously, K=K∗/(ρ∗U∗20 δ

∗) attains its
maximum value later than qs and it keeps large values even when qs vanishes. This
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FIGURE 20. Turbulent kinetic energy per unit bottom area (black continuous line),
integrated along the x2-direction (a) from the bed surface to the top of the computational
domain and (b) within a layer 1δ thick above the bed surface, plotted as a function of
the phase ϕ during the second cycle for Rδ = 750 and d= 0.335 (run 2). The red broken
lines indicate the dimensionless sediment flow rate.
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FIGURE 21. Turbulent kinetic energy per unit bottom area (black continuous line)
integrated along the x2-direction within a layer 1δ thick above the bed surface, plotted
as a function of time for Rδ = 1000 and d= 0.335 (run 3). The broken line indicates the
dimensionless sediment flow rate.

finding can be easily understood by taking into account that the sediment pick-up
rate is mainly related to the upward velocity component generated by the turbulent
eddies which are present close to the bottom. Figure 5 shows that strong turbulent
vortex structures are generated close to the bed when transition to turbulence takes
place. However, later on, turbulence diffuses far from the bottom and it no longer
interacts with the moving sediments, which slow down and come to rest. Hence, the
curve qs(t) follows more closely that obtained by considering the turbulent kinetic
energy K per unit area integrated from x∗2 = 0 up to the horizontal plane located at
distance δ∗ from the instantaneous bottom surface (see figure 20b).

If the Reynolds number Rδ is increased, turbulence strength increases as shown
by figure 21, where K is plotted versus the phase within the cycle for Rδ = 1000
(run 3). Because of the high turbulence intensity, a great number of particles is
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FIGURE 22. (a,c) The p.d.f., in linear and semi-logarithmic scales, of the length of the
jumps experienced by particles that cross the plane x∗2 = x̂∗2 = 8.80δ∗. (b,d) Similarly,
the p.d.f. of the maximum height above the plane x∗2 = x̂∗2 reached by particles. Broken
red lines, which approximate the p.d.f.s, correspond to the functions (c) p.d.f. · δ =
0.1 exp(−0.07x∗(tr)range/δ

∗) and (d) p.d.f. · δ = 2.72 exp(−1.8 maxt(x
∗(tr)
2 /δ∗) + 15.84). Here

Rδ = 1000 and d= 0.335 (run 3).

picked up from the bed during the phases characterised by large values of the
bottom shear stress. Once picked up, some of the particles cover large distances
without interacting with the bottom, before coming to rest again. This result is
clearly shown by figure 22(a,c), where the probability density function (p.d.f.) of the
length of particle jumps is plotted for the particles that are moving above the plane
x∗2 − x∗2,bottom = 0.67δ∗ = 2.01d∗, suitably chosen to distinguish the saltating particles
from the particles that roll and slide on the resting particles. For run 3, during the
oscillation period, the bottom elevation fluctuates by an amount approximately equal
to 1d∗ above and 1d∗ below the time-average bottom elevation x∗2,bottom = 8.13δ∗.
Despite the fact that the average jump length is rather large, being approximately
36.2d∗, the median value is equal to 19.6d∗, since most of the suspended particles
rapidly redeposit, as shown by figure 22(b,d), where the p.d.f. of the height of the
particle jumps is plotted for the same particles considered in figure 22(a,c). Taking
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FIGURE 23. Dimensionless sediment flow rate qs as a function of the absolute value
of the Shields parameter for runs at Rδ = 450 (turbulent cycles), 750 and 1000 (run 1,
black line; run 2, red line; and run 3, green line). The blue dash-dotted line represents
the formula by Wong & Parker (2006). Arrows indicate the orbital direction.

into account that the ratio d∗/δ∗ is equal to 0.335, the average height of the particle
jumps turns out to be much smaller than the thickness of the region above the
bottom where turbulence is intense (see e.g. figure 5) and it can be assumed that
no significant suspended load is present. Indeed, the displacement boundary layer
thickness for run 2, defined by (3.1), is δ∗dis = 7.15δ∗. This numerical finding is
consistent with the empirical criteria usually employed to determine the presence of
sediment in suspension (e.g. Bagnold 1966; Sumer & Fredsøe 2002). The ratio u∗τ/v

∗
s

between the shear velocity and the fall velocity of the particles (v∗s =
√
(s− 1)g∗d∗)

is smaller than one and the Reynolds number, u∗τ ,maxd
∗/ν∗, is larger than 20 when the

maximum value of the bottom shear stress is considered (see table 1). Indeed, the
maximum value of u∗τ/v

∗
s for run 3 turns out to be approximately 0.6.

Notwithstanding the fact that the value of K never vanishes and the random
velocity fluctuations remain large during the whole flow cycle and tend to pick up
the sediments from the bottom, there are phases such that qs vanishes as shown by
figure 21. The vanishing of the sediment transport rate is related to the vanishing of
the average bottom shear stress, which takes place twice during the cycle.

The results of the numerical simulations are summarised in figure 23, which shows
the value of qs as a function of the Shields parameter θ for the three values of
the Reynolds number presently considered. If small values of the Shields parameter
are not considered, the present results suggest that fair predictions of the sediment
transport rate can be obtained by looking for a correlation of qs with θ similar to
that which describes qs versus θ in a steady flow. For example, figure 23 shows that
the relationship q= a(θ − θcr)

b, proposed by Wong & Parker (2006) to evaluate qs in
steady flows, with a= 4.93, θcr = 0.047 and b= 1.6, provides results that agree fairly
well with those of the present simulations. When θ is close to θcr and qs is relatively
small, it is necessary to take into account that the amount of sediment dragged by
the fluid depends also on the time derivative of θ . In fact, for the same value of θ ,
qs is larger if dθ/dt is negative. However, this hysteresis is present for such small
values of θ that it can be neglected for practical applications. The fact that there is
a rather small but finite sediment transport rate when θ tends to zero is due to the
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particle inertia and to the small effects of the imposed pressure gradient. For the
same reason, the sediment transport rate tends to vanish for finite values of θ when
particle inertia and the imposed pressure gradient effects balance the viscous force
acting on sediment particles.

4. Conclusions

New and interesting information of the sediment transport generated by sea waves
is obtained by means of DNS, which allow one to evaluate the hydrodynamics within
the oscillatory boundary layer generated by surface waves close to the bottom and to
determine the dynamics of idealised sediment particles dragged by the flowing fluid.

The values of the flow Reynolds number fall in the intermittently turbulent regime,
such that turbulence is significant only during part of the flow cycle. The other
parameters are typical of medium sand. Hence, the results are useful to quantify the
bedload sediment transport outside the breaking and surf regions where higher values
of the Reynolds number are usually found such that the DNS of the turbulent flow
field within the bottom boundary layer are presently unaffordable.

The main result of the investigation is the description of sediment dynamics under
the action of the turbulent eddies that are generated within the boundary layer. The
pressure fluctuations induced by the turbulent eddies penetrate within the porous bed
and generate lift forces that are superimposed onto those due to the pressure difference
between the bottom and the top of the sediment particles, which, in turn, is associated
with the shear flow close to the bed surface. On average, the lift force due to the
turbulent pressure fluctuations is directed upwards and the sediment grains tend to be
picked up from the bed and then transported by the external flow in the saltation
mode. On the other hand, when the flow relaminarises but the bed shear stress is
large enough to induce sediment transport, the sediment grains tend to roll and slide
one over the top of the others. This particle dynamics is typical of a laminar flow
and it gives rise to sediment transport rates quite different from those observed when
turbulence is present.

The differences between the values of qs generated by a laminar and a turbulent
oscillatory boundary layer can be easily appreciated if the results of figure 23
are compared with those obtained by Mazzuoli et al. (2019), which, for the reader’s
convenience, are plotted in figure 24. Mazzuoli et al. (2019) investigated the formation
of sea ripples by means of DNS and computed the sediment transport rate for the
same values of the parameters as those of some of the laboratory experiments of
Blondeaux, Sleath & Vittori (1988). In particular, the experiments characterised by
Rδ = 72 and Rδ = 128 and by d ' 0.25 were considered by Mazzuoli et al. (2019).
For such values of the Reynolds number, the flow regime is laminar. In figure 24, the
results obtained for Rδ=450 and d=0.335 (run 1) during the half-cycles characterised
by weak turbulence are also plotted. As already pointed out, in these cases, the values
of qs during the accelerating phases are different from those computed during the
decelerating phases, even if the Shields parameter θ is the same, because particle
dynamics is affected not only by the bottom shear stress but also by the streamwise
pressure gradient.

In the turbulent regime, the bedload sediment transport rate observed for large
values of θ during the accelerating phases is practically equal to that observed
during the decelerating phases because the pressure gradient plays a negligible role
in particle dynamics. In fact, the magnitude of the sediment transport rate during the
accelerating phases differs from that during the decelerating phases only when the
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FIGURE 24. Dimensionless sediment flow rate qs as a function of the absolute value of
the Shields parameter for simulations at Rδ = 72, 128 and d ' 0.25 (solid blue and red
lines) (non-turbulent, Mazzuoli et al. 2019) and for the non-turbulent cycles of run 1 at
Rδ = 450 and d= 0.335 (black line). The blue dash-dotted line represents the formula by
Wong & Parker (2006). Arrows indicate the orbital direction.

Shields parameter is quite small, the differences being mainly due to the different
values of the turbulence intensity observed during the accelerating and decelerating
phases, even for the same value of the bottom shear stress. The reader should note
that, when the flow regime is laminar, the sediment flow rate decreases if the Reynolds
number is increased, while, if turbulence is present, the values of qs increase if the
Reynolds number is increased.

Finally, it is worth pointing out that, in the turbulent regime, fair predictions of the
bedload sediment flux can be obtained by means of empirical formulae obtained on
the basis of experimental measurements carried out in steady flow, at least for the
typical periods of sea waves. Indeed, for high values of the Reynolds number, the
amplitude of the fluid displacement oscillations turns out to be much larger than the
grain size. Hence, the Keulegan–Carpenter number Kc of the flow around sediment
grains is large and the sediment particles feel a succession of quasi-steady flows.
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