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ABSTRACT. An approximation to the first-order momentum balance with consistent boundary
conditions is derived using variational methods. Longitudinal and lateral stresses are treated as depth-
independent, but vertical velocity gradients are accounted for both in the nonlinear viscosity and in
the treatment of basal stress, allowing for flow over a frozen bed. A numerical scheme is presented
that is significantly less computationally expensive than that of a fully three-dimensional (3-D) solver.
The numerical solver is subjected to the ISMIP-HOM experiments and experiments involving nonlinear
sliding laws, and results are compared with those of 3-D models. The agreement with first-order surface
velocities is favorable down to length scales of 10 km for flow over a flat bed with periodic basal traction,
and ∼40 km for flow over periodic basal topography.

INTRODUCTION
In recent years there has been general agreement among
glaciologists, and the wider climate-modeling community,
that in order to answer questions relating to sea-level rise and
the impact of the Antarctic and Greenland ice sheets on the
climate system, land ice models must be able to represent so-
called ‘higher-order’ stress terms (the longitudinal and lateral
shear stresses predominant in stream and shelf flow, hereafter
referred to as ‘horizontal stresses’) in addition to the vertical
shear stresses that are predominant in slow-moving, inland
ice (Little and others, 2007; Lipscomb and others, 2009).
Also, uncertainties relating to material properties and basal
conditions and the high cost of drilling through ice sheets
point to the need for diagnostic models that are capable
of constraining these uncertainties. Taking into account all
stress terms important to ice flow, which is considered
by land ice modelers to be a non-inertial, slow-moving,
power-law viscous fluid (Glen, 1955), is sometimes referred
to as the ‘full-Stokes’ momentum balance. Modeling this
balance involves solving a nonlinear elliptic system of four
partial differential equations (PDEs) in three dimensions.
This solution is very computationally intensive and possibly
intractable for a continental-scale model that is intended to
be time-integrated for centuries or millennia, or to be run as
part of an inversion scheme.
A compromise � is the first-order approximation to the

full-Stokes balance (Blatter, 1995; Pattyn, 2003; Greve and
Blatter, 2009), sometimes referred to as the Blatter, or Blatter–
Pattyn equations, in which lateral variations of vertical
shearing stresses are ignored in the vertical force balance.
This force balance has been applied both to Greenland
(Price and others, 2010) and to regions of West Antarctica
(Payne and others, 2004), and an intercomparison project has
been carried out regarding its robustness from a numerical
standpoint (Pattyn and others, 2008). It requires the solution
of a system of two PDEs to be solved in three dimensions.
Schoof and Hindmarsh (2010) have shown formally that
the solution to the first-order momentum equations agrees
with that of the full-Stokes equations to first order in aspect
ratio, i.e. the error in the first-order approximation is second-
order. (The terminology used for this model thus needs some
explanation. The name ‘first-order approximation’ comes

from expanding the full-Stokes equations in aspect ratio and
retaining first-order terms. However, Schoof and Hindmarsh
show this approximation is uniform in the slip ratio, or
relative importance of vertical shear.)
The two-dimensional (2-D), depth-integrated equations

of MacAyeal (1989), often referred to as the shallow-
shelf approximation (SSA), are a set of equations of lower
computational dimension that still capture horizontal stress
effects. They are used fairly often in studies of ice streams
and ice shelves in Antarctica (e.g. Hulbe, 1998; Schmeltz
and others, 2002; Goldberg and others, 2009). While easier
to solve than the first-order equations, the SSA does not take
into account either the softening effect of vertical shear on
the nonlinear viscosity or the difference between surface and
basal velocity in a basal sliding parameterization.
A number of glaciological models attempt to approximate

these effects in a depth-integrated balance. Van der Veen
(1987) made the assumption that longitudinal stresses
could be treated as depth-independent, in order to find
a one-dimensional (1-D) stress balance for a flowline
model. Hindmarsh (2004) proposed a model (L1L2) which
accounted for vertical shear but only required an elliptic
solution at a single vertical level. Bueler and Brown (2009)
heuristically combined the shallow-ice approximation (SIA;
Hutter, 1983) and the SSA balance, taking advantage of the
fact that one or the other generally dominates, depending on
whether the base is frozen or sliding. Pollard and DeConto
(2009) used a time-dependent model of West Antarctica that,
in its diagnostic solution for velocity, iteratively adjusts its
solution of the SSA equations to account for vertical shear
and basal velocity. Schoof and Hindmarsh (2010) derived
and analyzed a depth-integrated flowline model that can
account for vertical shear when sliding is present, and has an
associated variational principle. Bassis (2010) used the fact
that the ice dynamic equations arise from the optimization
of some functional, as demonstrated by Dukowicz and
others (2010), to develop a reduced set of equations for a
flowline model.
In this paper, a hybrid model that is computationally 2-D is

proposed as an alternative to solving the three-dimensional
(3-D) first-order momentum balance in certain situations.
It is developed in a manner similar to that discussed by
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Dukowicz and others (2010), i.e. by making approximations
to the functional that yields the Euler–Lagrange equations,
instead of to the equations themselves. While the equations
are developed independent of any numerical scheme, a
scheme is developed that is similar to those typically used
to solve the SSA equations. The results are compared with
those of several of the Ice-Sheet Model Intercomparison
Project–Higher-Order ice-sheet Model (ISMIP-HOM; Pattyn
and others, 2008) experiments, and reasonable agreement is
seen for all but the shortest wavelengths in basal topography
and friction parameters.
The proposed hybrid model has some similarities to

some of the models mentioned above. However, it has the
following advantages. It arises from a variational principle,
as do the first-order approximation and SSA. The latter two
have been shown to be minimizing principles with unique
solutions, barring exceptional cases (Reist, 2005; Schoof,
2006, 2010). Showing that solving the proposed equations
is equivalent to finding the unique minimum of a functional
in the appropriate function space is beyond the scope of this
paper. Nevertheless, if such a minimization principle exists
it will allow for the use of efficient nonlinear optimization
techniques, such as the method of nonlinear conjugate
gradients, which has been applied to PDEs similar to the
first-order momentum equations (Zhou and others, 2005).
The equations are shown to have the same asymptotic

accuracy as the depth-integrated model proposed by Schoof
and Hindmarsh (2010), but allow for part (or all) of the
domain to be frozen at its base. Regarding the numerical
scheme developed, it is shown to be trivially more expensive
than schemes typically used to solve the SSA equations. In
addition, a glacial flow model that reliably solves the SSA
equations with a given sliding law can be easily modified to
solve the hybrid momentum balance proposed here.

PRELIMINARIES
We begin by stating the first-order momentum balance
equations in Cartesian coordinates (Blatter, 1995; Pattyn,
2002, 2003).

∂x [ν(4ux + 2vy )] + ∂y [ν(vx + uy )] + ∂z (νuz ) = ρgsx , (1)

∂x [ν(vx + uy )] + ∂y [ν(4vy + 2ux )] + ∂z (νvz ) = ρgsy , (2)

ν =
B
2

[
u2x + v

2
y + uxvy +

1
4
(uy + vx )

2 +
1
4
u2z +

1
4
v2z

] 1−n
2n

.

(3)
Here u and v are velocities in the x- and y-directions,
respectively, ν is the effective viscosity, s is the elevation of
the upper ice surface, ρ is the density, g is the acceleration
due to gravity, n is set equal to 3 and B is the temperature-
dependent rate factor (Paterson, 1994), taken as constant
here. Boundary conditions must be given at the base, the
surface and the lateral boundaries. The surface (defined by
z = s(x, y )) is assumed to be stress-free; i.e. the boundary
conditions

nx (4ux + 2vy ) + ny (vx + uy ) + nzuz = 0, (4)

nx (vx + uy ) + ny (4vy + 2ux ) + nzvz = 0 (5)

hold, where �n is the unit normal to the surface. The base is
given by z = b(x, y ). Because ice does not penetrate the bed,

flow is taken to be parallel to the base. Either ice is frozen at
the bed, meaning

u, v = 0 at z = b, (6)

or a sliding law is assumed, in which case

ν
[
nx (4ux + 2vy ) + ny (vx + uy ) + nzuz

]
= − f (|�u|)|�u| u, (7)

ν
[
nx (vx + uy ) + ny (4vy + 2ux ) + nzvz

]
= − f (|�u|)|�u| v (8)

at z = b, where �u = (u, v ), and the functional form of f
depends on the sliding law being used. In this study, a linear
sliding law and a regularized Coulomb-friction sliding law
(Bueler and Brown, 2009; Schoof, 2010) are considered.
Equations (1–5), along with either Equation (6) or Equa-

tions (7) and (8) and the appropriate lateral boundary
conditions, comprise the first-order momentum balance. It
can be shown that this balance can be obtained by taking
the first variation of a functional involving the first derivatives
and boundary values of u and v with respect to those
variables and setting it to zero (Dukowicz and others, 2010).
(Importantly, this alone does not imply that a solution to
the equations exists, nor that it is the only such solution.
However, several authors have shown this to be the case (e.g.
Colinge and Rappaz, 1999; Schoof, 2010).) The functional
associated with the PDE system above is

L{�u}

=
∫
Ω

{
2n
n + 1

B
[
u2x+ v

2
y + uxvy+

1
4
(uy+ vx )2+

1
4
u2z+

1
4
v2z

]n+1
2n

+ ρg�u · ∇s
}
dΩ+

∫
Γb

F (ub) dΓ+ IL, (9)

where Ω is the domain over which the balance is being
solved, Γb is the surface representing the portion of the base
where there is sliding, ub ≡ |�u|, and

F (x) ≡
∫ x

0
f (s) ds. (10)

IL is an integral over the portion of the lateral boundary
where a stress boundary condition is defined. For example,
if part of the lateral boundary is a vertical calving front
submerged in ocean water, then its contribution to IL is given
by

∫
Γc

−niuiφdΓ, where Γc is the calving front portion of the
lateral boundary, �n is the outward normal at Γc, i = 1, 2 and

φ =

{
ρg (s − z) z > 0

ρg
[
s −

(
1 + ρw

ρ

)
z
]
z ≤ 0,

(11)

with ρw the water density and z = 0 the mean sea level.
Dirichlet conditions on u and v must be specified; they are
not explicit in Equation (9), but rather hold for the entire set
of velocity fields over which Equation (9) is minimized. For
example, at the locations along the base where ice is frozen,
all admissible u and v are zero.
The first-order momentum balance holds as an approxi-

mation to the full-Stokes balance in situations where the
vertical length scale (the thickness of the ice column) is small
compared to relevant horizontal length scales (Blatter, 1995;
Schoof and Hindmarsh, 2010), such as those of bed topog-
raphy or basal traction. When these length scales are very
long, one of two further approximations that follow from the
first-order balance will apply. For a very strong base, that is,
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one where ice is frozen to the base or small sliding velocities
yield high basal stresses, the SIA is dominant. This can be
derived from Equations (1–3) by ignoring all velocity deriva-
tives except for uz and vz , the vertical shear terms. As long
as B is known, velocities are then immediately diagnosed
from b(x, y ) and s(x, y ) without solution of a PDE (Paterson,
1994). If the base is very weak, motion occurs mainly through
sliding rather than vertical shearing, and uz and vz are
dropped from Equations (1–3), and velocities are considered
to be depth-independent. This then leads to the SSA, a PDE
system to be solved for u and v in two dimensions.
In the next section, a system of equations is developed that

still includes both vertical shear and horizontal stresses, yet
does not involve the solution of a system of PDEs in three
dimensions. Since it is an approximation to the first-order
balance, the best that can be hoped for is that its solution
closely approximates that of the first-order equations over a
large range of length scales and basal conditions, and that
any loss in accuracy is an acceptable trade-off for increased
computational efficiency.

APPROXIMATION TO FIRST ORDER
In deriving the approximation to the first-order balance, it
is observed that the necessity for the solution of a 3-D PDE
system is due to the fact that the horizontal stress terms
in Equation (9), i.e. ux , uy , vx and vy , vary with depth. If
depth dependence can be ignored in all but the vertical
shear terms and in the basal stress term, then a 2-D PDE
system can be solved instead. The approximation made
here is to replace u, v in the horizontal stress terms by
their vertical averages. It is noted that the error in doing so
is expected to be negligible in regions where the base is
very weak (where the SSA balance dominates) and where
it is very strong (where the SIA balance dominates and
horizontal stress gradients are negligible), as long as both
regions are characterized by relatively long length scales.
In the regions where vertical and lateral shear terms are
comparable, the depth dependence of horizontal stresses
may be of importance to the dynamics. Still, it is hoped that
in these regions the inclusion of both types of stresses is
better than one or the other alone. The degree of accuracy
of the approximation can really only be determined by
comparison of results with the first-order model over a range
of spatial scales. Such a comparison is carried out below.
The approximation is not made directly to the equations

but instead to the functional (Equation (9)), and the equations
are then derived by means of variational methods. In this
way it is ensured that approximations to the equations
and the boundary conditions are consistent, and also
that the resulting equation set is self-adjoint (i.e. ignoring
dependence of viscosity on strain rate). The new functional is

Lapprox{�u}

=
∫
Ω

{
2n
n + 1

B
[
u2x+ v

2
y+ uxvy+

1
4

(
uy+ vx

)2
+
1
4
u2z+

1
4
v2z

]n+1
2n

+ ρg�u · ∇s
}
dΩ +

∫
Γb

F (ub) dΓ + I
HY
L , (12)

where

u ≡ 1
H

∫ s

b
u dz, (13)

i.e. the vertical average of u, withH ≡ s−b. The variable uxi
is the xi -derivative of u, i = x, y , and likewise for v and its
derivatives. The integral IHYL is similar to that in Equation (9)
in that it is an integral over ΓN, the portion of the horizontal
boundary where a stress boundary condition is specified. It
has the form

∫
ΓN

�u · �ΦdΓ, (14)

where �Φ is a vector that must be depth-independent, as
shown below. For example, if ΓN is a calving front, then Φi =
− 1
2Hc

ρg (H2c− ρw
ρ R

2
c )ni , where Rc andHc are, respectively, the

depth of the base below sea level and the total thickness at
the front and �n is the normal vector to ΓN. Note that the stress
condition at a vertical calving front is no longer specified at
depth.
As with Equation (9), the set of velocity fields considered

must satisfy any Dirichlet boundary conditions, and so if we
perturb a velocity field, (u, v ), within this set by δ�u = (δu, δv ),
this perturbation must be zero at Dirichlet boundaries.
Adding such a perturbation to the velocity field, we find the
first variation:

Lapprox{�u+δ�u} − Lapprox{�u}

∼
∫
Ω

[
δuxν(hy)(4ux + 2vy ) + δuyν(hy)(uy + vx )

+ δvxν(hy)(uy + vx ) + δvyν(hy)(4vy + 2ux ) (15)

+ ν(hy)uzδuz + ν(hy)vzδvz + ρgδ�u · ∇s
]
dΩ

+
∫
Γb

f (ub)
ub

(uδu + vδv ) dΓ +
∫
ΓN

δ�u · �Φ dΓ,

where δu is the vertical average of δu and δux is its
x-derivative, and likewise for similar terms. The effective
viscosity, ν(hy), is slightly different than that of the first-order
equations, and has the form

ν(hy) =
B
2

[
u2x+ v

2
y+ uxvy+

1
4
(uy+ vx )2+

1
4
u2z+

1
4
v2z

]1−n
2n

.

(16)

Now define Ωp as the projection of Ω on to the x-y plane,
that is, Ωp ≡ {x, y : (x, y , z) ∈ Ω}. Additionally define Γh
as {x, y , z : (x, y ) ∈ ∂Ωp}; that is, the horizontal boundary,
which is simply a line if H goes to zero at the edge of the
domain. Vertical integration of the terms in Equation (15)
related to horizontal stresses gives

Lapprox{�u + δ�u} − Lapprox{�u}

∼
∫
Ωp

[
δuxHν (hy)(4ux + 2vy ) + δuyHν (hy)(uy + vx )

+ δvxHν (hy)(uy + vx ) + δvyHν (hy)(4vy + 2ux )

+ ρgHδ�u · ∇s
]
dΩp (17)

+
∫
Ω
ν(hy)uzδuz + ν(hy)vzδvz dΩ

+
∫
Γb

f (ub)
ub

(uδu + vδv ) dΓ +
∫
ΓN

δ�u · �Φ dΓ,
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where ν (hy) is the vertical average of ν(hy). Integrating by parts,
the right-hand side of Equation (17) becomes∫

Ωp

(
− δu

{
∂x
[
Hν (hy)(4ux+ 2vy )

]
+ ∂y

[
Hν (hy)(uy+ vx )

]}

− δv
{
∂x

[
Hν (hy)(uy+ vx )

]
+ ∂y

[
Hν (hy)(4vy+ 2ux )

]}
+ ρgHδ�u · ∇s

)
dΩp

+
∫
∂Ωp

δuHν (hy)
[
(4ux + 2vy )nx + (uy + vx )ny

]
+ δvHν (hy)

[
(uy + vx )nx + (4vy + 2ux )ny

]
dl (18)

+
∫
Ω
− δu(ν(hy)uz )z − δv (ν(hy)vz )z dΩ

+
∫
Γb

δu
(
ν(hy)uznz+

f (ub)
ub

u
)
+ δv

(
ν(hy)vznz+

f (ub)
ub

v
)
dΓ

+
∫
Γs

(
δuν(hy)uznz + δvν(hy)vznz

)
dΓ+

∫
ΓN
δ�u · �Φ dΓ.

Note that the normal vector, �n, in the integral over ∂Ωp is the
normal to ∂Ωp, not ∂Ω, and also that the depth-independent
normal to Γh has the same value. Since δu and δv are
multiplying depth-independent terms in Equation (18), the
expression can be written as∫

Ω

(
− δu
H

{
∂x
(
Hν (hy)(4ux+ 2vy )

)
+ ∂y

[
Hν (hy)(uy+ vx )

]}
− δv
H

{
∂x

[
ν (hy)(uy+ vx )

]
+ ∂y

[
Hν (hy)(4vy+ 2ux )

]}
+ ρgδ�u · ∇s − δu(ν(hy)uz )z − δv (ν(hy)vz )z

)
dΩ

+
∫
Γh

ν (hy)δu
[
(4ux + 2vy )nx + (uy + vx )ny

]
(19)

+ ν (hy)δv
[
(uy + vx )nx + (4vy + 2ux )ny

]
δv dΓ

+
∫
Γb

δu
(
ν(hy)uznz+

f (ub)
ub

u
)
+ δv

(
ν(hy)vznz+

f (ub)
ub

v
)
dΓ

+
∫
Γs
δuν(hy)uznz + δvν(hy)vznz dΓ +

∫
ΓN

δ�u · �Φ dΓ.

Since the variations in u and v are arbitrary, the set of
equations that follow from Equation (12) can be inferred:

1
H
∂x

[
Hν (hy )(4ux+ 2vy )

]
+
1
H
∂y

[
Hν (hy)(vx + uy )

]
+ ∂z (ν(hy)uz ) = ρgsx , (20)

1
H
∂x

[
Hν (hy)(vx + uy )

]
+
1
H
∂y

[
Hν (hy)(4vy + 2ux )

]
+ ∂z (ν(hy)vz ) = ρgsy , (21)

with boundary conditions

uz = 0, vz = 0 (22)

at z = s, and

ν(hy)uznz = − f (ub)
ub

u, ν(hy)vznz = − f (ub)
ub

v (23)

at z = b where there is sliding, and (u, v )|z=b = (0, 0)
where the base is frozen. With Φi depth-independent, the
horizontal stress boundary conditions can be inferred as well:

ν (hy)(4ux + 2vy )nx + ν (hy)(vx + uy )ny = −Φx , (24)

ν (hy)(vx + uy )nx + ν (hy)(4vy + 2ux )ny = −Φy . (25)

along ΓN. The left-hand side of Equation (25) is depth-
independent and so the right-hand side must be as
well. Equations (20–25), along with Dirichlet (or periodic)
boundary conditions, comprise the hybrid model. Note that
Dirichlet conditions specified on the horizontal boundary
are essentially depth-independent, in that only their vertical
average matters. Two velocity fields, �u1 and �u2, that are
identical in the interior of Ω, Γb and Γs and differ at depth
but have identical vertical averages on Γh give identical
values of the functional (Equation (12)). And so changing
the horizontal Dirichlet condition at depth but not in the
vertical mean does not affect the interior solution. Thus
all horizontal Dirichlet and stress boundary conditions are
depth-independent.
This model is similar to others that have appeared in the

literature. Equations (20) and (21) are very similar to the
momentum balances of Hindmarsh (2004) and Pollard and
DeConto (2009). However, the way they define effective
viscosity differs from Equation (16), and Hindmarsh (2004)
solves for surface velocity instead of depth-averaged velocity.
In addition, their equations are not shown to arise from a
variational principle. Schoof and Hindmarsh (2010) present
a depth-integrated model that does arise from a variational
principle, but one that differs from that in Equation (12).
An in-depth comparison between the models is given in the
Discussion section below.

NUMERICAL SOLUTION
The goal of a numerical scheme for the hybrid model is to
solve at each iterative step a 2-D PDE system of similar
form to that solved by a model for the SSA equations,
since methods for solving this type of PDE system are
well established. To that end, Equations (20) and (21) are
integrated in z, using the boundary conditions at b and s:

∂x
[
Hν (hy)(4ux+ 2vy )

]
+ ∂y (

[
Hν (hy)(vx+ uy )

]− τ x= ρgHsx ,
(26)

∂x
[
Hν (hy)(vx+ uy )

]
+ ∂y

[
Hν (hy)(4vy+ 2ux )

]− τ y= ρgHsy ,
(27)

where superscript indices are used for �τ to avoid confusion
with the deviatoric stress tensor. Where there is sliding at the
base,

τ x =
√(

1 + b2x + b2y
) f (ub)
ub

u|z=b , (28)

τ y =
√(

1 + b2x + b2y
) f (ub)
ub

v |z=b , (29)

using the fact that, at z = b, nz = −(1 + b2x + b2y )
− 1
2 .

Expressions are needed for u|z=b , v |z=b . First Equation (26)
is rearranged and divided by H:

τ x

H
=
1
H
∂x [Hν (hy)(4ux+2vy )]+

1
H
∂y [Hν (hy)(vx+uy )]−ρgsx ,

(30)
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and it is observed that the right-hand side is equal to
−(ν(hy)uz )z . Integrating in z gives

ν(hy)uz =
τ x

H
(s − z). (31)

Dividing by ν(hy) (which is assumed to be nonzero) and
integrating again gives

u − u|z=b = τ x

H

∫ z

b

s − z ′
ν(hy)(z ′)

dz ′ (32)

(where z in the integrand has been replaced by z ′ and the
dependence of ν(hy) on z

′ is shown explicitly). τ x andH have
been moved outside the integral because they are depth-
independent. Integrating a third time and dividing byH gives

u − u|z=b = τ x

H2

∫ s

b

∫ z

b

s − z ′
ν(hy)(z ′)

dz ′ dz. (33)

From here follows an expression for u|z=b (and similarly for
v |z=b ):

u|z=b = u − τ x

H
ω, v |z=b = v − τ y

H
ω, (34)

where

ω ≡
∫ s

b

∫ z

b

(s − z ′)
Hν(hy)

dz ′ dz. (35)

Now, inserting these expressions into Equations (28) and (29)
gives

τ x =
√(

1 + b2x + b2y
) f (ub)
ub

(
u − τ x

H
ω

)
, (36)

τ y =
√(

1 + b2x + b2y
) f (ub)
ub

(
v − τ y

H
ω

)
. (37)

Rearranging,

τ x =
mf (ub)

ub
(
1 + mf (ub)ω

ubH

)u, (38)

τ y =
mf (ub)

ub
(
1 + mf (ub)ω

ubH

)v , (39)

where m =
√
1 + b2x + b2y . Where ice is frozen at the base

and ub = 0, then Equation (34) can be inverted for τ
x , τ y :

τ x =
H
ω
u, τ y =

H
ω
v . (40)

Equations (38) and (39) are nonlinear equations for τ x , τ y

that can be solved at a location along the base independently
of other locations, given u, v . In general, though, it is
easier to incorporate this nonlinearity into an ‘iteration
on viscosity’ scheme, described below. Importantly, the
expression multiplying u and v is always nonnegative: �τ will
always be in the same direction as (u, v ).
Equations (26), (27) and (36–40) lend themselves to an

iterative scheme. It is a fixed-point iteration, where the
function for which a fixed point is to be found is given as

follows. The inputs are the iterates u(i) and v (i) . From these
ν (i)(hy), ω

(i) and β(i)eff can be diagnosed, where β
(i)
eff is given by

β(i)eff =
mf (u(i)b )

u(i)b

(
1 +

mf (u(i)b )ω
(i)

u(i)b H

) (41)

in places where there is sliding at the base, and

H
2ω(i)

(42)

where the bed is frozen. Note β(i)eff is strictly nonnegative.
Then the linear 2-D PDE system

∂x

[
Hν (i)(hy)

(
4u(i+1)x + 2v (i+1)y

)]
+ ∂y

[
Hν (i)(hy)

(
v (i+1)x + u(i+1)y

)]
− β(i)effu

(i+1) = ρgHsx , (43)

∂x

[
Hν (i)(hy)

(
v (i+1)x + u(i+1)y

)]
+ ∂y

[
Hν (i)(hy)

(
4v (i+1)y + 2u(i+1)x

)]
− β(i)effv

(i+1) = ρgHsy , (44)

is solved for u(i+1), v (i+1). Then τ x (i+1) is set to β(i)effv
(i+1), and

u(i+1)z is found from Equation (31) using ν (i)(hy) (and similarly for

τ y (i+1) and v (i+1)z ). u(i+1) and v (i+1) can then be calculated.
Iteration is continued until the difference in iterates is below
some specified tolerance.
The scheme is similar to the ‘iteration on viscosity’

method of solving the SSA balance (MacAyeal and Thomas,
1986). Here the main computational advantage of the hybrid
balance can be seen: the discretized elliptic equation,
when solving for 3-D flow, has O(Δx−2) unknowns, where
Δx is horizontal grid spacing, whereas for the first-order
balance there are O(Δx−2Δz−1) unknowns, where Δz is
vertical spacing. The corresponding matrix in the hybrid
solve is also far less dense with a regular gridpoint ordering.
(And when a flowline is considered, there are O(Δx−1)
instead of O(Δx−1Δz−1) unknowns.) While there is some
computation involved that is not part of an SSA scheme (e.g.
the calculation of βeff and ω), these computations can be
done column by column and are thus easily parallelized.
Timing comparisons are given in the next section. The
number of iterations needed to converge to a certain
tolerance is also important, and this is also addressed.
Also, note the similarity between Equations (26) and (27)

and the elliptic equations solved in the SSA balance (e.g.
MacAyeal, 1989). Depending on the method of solution, the
corresponding matrices can be very similar: for an ‘iteration
on viscosity’ scheme, the values of depth-averaged viscosity
differ, as do coefficients involving the basal terms, but the
sparsity pattern of the matrix is identical. This means that
a code that solves the SSA balance efficiently could be
modified to solve the hybrid balance without affecting the
potentially most expensive parts: the assembly and solution
of the matrix.
In this study, a finite-element method using bilinear basis

functions on a rectangular grid was used. A small regularizing
constant was used in the viscosity formulation so that
viscosity was not unbounded (as Goldberg and others, 2009).
However, the type of discretization or even the type of grid
is not limited by the scheme described above.
Note that ignoring the dependence of vertical shearing

in the effective viscosity and letting uz , vz = 0, as well as
setting β(i)eff = f (u(i)b )/u

(i)
b , reduces the above iteration to one
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Table 1. Physical parameters used in the experiments, from ISMIP-
HOM specifications. Note that in the ISMIP document A, not B, is
specified, and seconds rather than years are used as time units

Symbol Constant Value Unit

B Glen’s law coefficient 2.1544 ×105 Pa (ma−1)−
1
3

g Gravity 9.81 m s−2
ρ Density 910 kgm−3
n Glen’s law exponent 3 (none)

that solves the SSA balance, with velocities u, v . This simple
modification is made in the numerical experiments discussed
below in order to compare the hybrid model with the SSA
balance.

NUMERICAL EXPERIMENTS
The experiments carried out with the hybrid model are
Experiments A–D of the ISMIP-HOM set of experiments
(Pattyn and others, 2008). These experiments call for both
a flowline model and a 3-D model to diagnose the flow
of ice over periodic topography with no sliding and over
flat basal topography with periodic basal traction (with a
linear sliding law) at different spatial scales. In addition,
flowline experiments with a Coulomb-friction sliding law
are performed. In all experiments, there is a constant surface
slope in the x-direction only and lateral boundary conditions
are periodic. The relevant physical parameters are given in
Table 1. All simulations were written in MATLAB.

Flowline experiments
For the flowline experiments, a ‘full’ model that solves the
first-order equations (Equations (1–8)) in a flowline setting
was created in MATLAB for comparison with the hybrid
model. Below it is referred to as ‘BPFlow’. BPFlow uses
bilinear finite elements in quadrilateral cells, and a fixed-
point iteration to solve the first-order equations (Picasso
and others, 2004). Gridcells are regularly spaced along-flow,
and the vertical distance between nodes is proportional to
thickness. The equations are solved on the physical grid,
i.e. no coordinate transform is used. Results were compared
with those from the ISMIP-HOM intercomparison, where
applicable.
For the periodic basal topography experiment (ISMIP-

HOM Experiment B), the thickness is specified as

H = 1000 m− 500 m× sin
(
2πx
Lx

)
, (45)

where Lx is the length of the domain. The surface is at
an angle of 0.5◦ with the horizontal. Figure 1 shows the
hybrid and BPFlow solutions for Experiment B for Lx = 10,
20, 40, 80 and 160 km. The BPFlow and hybrid solutions
shown have meshes of 80 cells in the along-flow direction
and 20 cells in the vertical. Surface velocities are compared
with those of the ISMIP-HOM submissions that implement
the first-order momentum balance (termed ‘LMLa’ according
to Hindmarsh, 2004). The mean over these submissions is
plotted, as well as their range. In addition, the difference of
velocities at depth between the hybrid and BPFlow models
is shown (such information was not contained in the ISMIP-
HOM submissions).

Good agreement is seen between the BPFlow and the
LMLa average. While the difference between BPFlow and
the hybrid solution is substantial at short wavelengths
(the solutions disagree by >50% when Lx = 10km),
disagreement is within 11% when Lx = 40km, and <3%
when Lx = 160 km. Note that the hybrid model predicts
velocities too large over the topographic troughs, and the
effect decreases with Lx .
For reference, the SIA surface velocity with such a surface

slope and 1500m thickness is ∼120ma−1. This means that
at Lx = 160 km, the solutions can be well approximated
by SIA; i.e. longitudinal stresses are unimportant. At smaller
scales, the longitudinal stresses come into play and decrease
this surface velocity. Though the hybrid surface velocity is
clearly too large at Lx = 10km, horizontal stresses still
clearly regulate the solution. This is explored further in the
Discussion section below.
For the basal sliding experiment (ISMIP-HOM Experi-

ment D), the thickness is held constant at 1000m and the
surface is at an angle of 0.1◦ with the horizontal. The basal
sliding law is linear; in terms of Equation (7), this means
f (ub) = β2ub, where the coefficient, β

2, is a scalar. In this
experiment, β2 has the spatial dependence

β2(x) = 1000 Pa m−1a×
[
1 + sin

(
2πx
Lx

)]
, (46)

so that there is a ‘sticky spot’ near the left end of the
domain and a nearly stress-free base toward the right, and
gravitational driving stress in the latter region is mostly
balanced by the transfer of basal stress from the former
(through horizontal stress gradients). Figure 2 shows the
results of this experiment for Lx = 10, 20, 40, 80 and 160 km.
Fields plotted are the same as in Figure 1. Note from the
figures on the right that while the pattern of disagreement
changes with Lx , there is no strong trend in the magnitude of
relative difference between the hybrid and first-order models,
which is small for all length scales examined. This might be
because at longer length scales, there is spatial separation
between the regions where horizontal stresses dominate and
those where vertical shear stresses are dominant. Regardless,
at all length scales, the first-order velocity solution is very
near plug flow, meaning that the hybrid momentum balance
is still a good approximation. This point is explored further
in the Discussion section below.
An experiment with a different sliding law is also

performed. Figure 3 shows the results of an experiment
similar to that of Figure 2, except that the sliding law takes
the form

f (ub) = τc
ub(

u2b + 0.1m
2 a−2

) 1
2

, (47)

which can be seen as a regularized Coulomb-plastic sliding
law (Schoof, 2006; Bueler and Brown, 2009), with the yield
stress, τc, having the spatial dependence

τc = 30 kPa ×
[
1.05 + sin

(
2πx
Lx

)]
. (48)

(This profile was designed so that the yield stress does
not go to zero, but can be as small as 1.5 kPa.) This was
not an ISMIP-HOM experiment, so no results from the
intercomparison are shown, and only the BPFlow and hybrid
results are compared. These results are somewhat different
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Fig. 1. ISMIP-HOM Experiment B. Flowline simulation over periodic topography. (a–e) compare surface velocities from the hybrid model
with ISMIP-HOM results and with that of a first-order solver written for the purpose of this study (BPFlow). (f–j) are contour plots of velocity
difference with said model at depth, normalized by the maximum surface first-order velocity (and positive where the hybrid model velocity
is greater). Domain lengths are 10 km (a, f), 20 km (b, g), 40 km (c, h), 80 km (d, i) and 160 km (e, j). Note the differing scales in the
contour plots.

than in the case with a linear sliding law, especially at short
length scales. Figure 3a, which shows surface velocity when
Lx = 10km, shows a local minimum in the hybrid results
that is not seen in the ‘full’ model solution. It should be
noted that high along-flow resolution was necessary for these
experiments in order to see the same level of convergence
of the nonlinear iteration as in previous experiments, for
both the hybrid and first-order models. While the previous
experiments used 80 gridcells in the horizontal, these

experiments used 200. For these experiments, plots are only
shown for Lx =10, 40 and 160 km.
The main results of the experiments are summarized in

Table 2. Percent error, defined as the maximum difference
in surface velocity between the hybrid and the BPFlow
model normalized by the maximum surface BPFlow velocity,
is given for the above experiments at all length scales
examined. Two values are given for each run; the second
is the percent error when horizontal resolution is doubled
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Fig. 2. ISMIP-HOM Experiment D. Flowline simulation with basal sliding with varying bed strength. Output from hybrid model is again
compared with ISMIP-HOM results and BPFlow. Fields plotted are the same as in Figure 1. The pattern of velocity difference at depth seems
to change for longer wavelengths. Domain lengths are 10 km (a, f), 20 km (b, g), 40 km (c ,h), 80 km (d, i) and 160 km (e ,j). Note the differing
scales in the contour plots.

(or ‘same’ if the value does not change). Also shown are
the results when vertical shear effects are ‘switched off’
in the hybrid model and the balance solved is the SSA
balance. Doubling the horizontal resolution does not change
the percent error in the topographic experiments, nor in
the short-length-scale sliding experiments, indicating that
the error is a result of fundamental disagreement between
the balances, and not numerical error. However, at long
length scales higher resolution improves the agreement,
suggesting the balances may be equivalent at those scales.
Also note that SSA error in the sliding experiments, while

small, is an order of magnitude larger than that of the
hybrid model.

Three-dimensional experiments
For the 3-D experiments from ISMIP-HOM (Experiments A
and C) a 3-D first-order solver was not created. Rather,
hybrid model results are compared only with the results
from submissions to the ISMIP-HOM intercomparison. In all
experiments, 40×40 grids are used. The results of Experiment
A are presented, which again involves flow over periodic
topography. Again the surface slopes in the x-direction at an
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Fig. 3. Flowline experiment with basal sliding over Coulomb-plastic bed with varying yield stress. Output from hybrid model is again
compared with output of BPFlow (no ISMIP-HOM results are available). Fields plotted are the same as in Figure 1. Domain lengths are
10 km (a, d), 40 km (b, e) and 160 km (c, f).

angle of 0.5◦ with the horizontal. (There is no surface slope
in the y-direction.) The thickness has the form

H = 1000 m− 500 m× sin
(
2πx
Lx

)
sin

(
2πx
Ly

)
, (49)

where Lx is the length (and width) of the domain.
Lateral boundary conditions are doubly periodic. Rates of
convergence were similar to those seen in the corresponding
flowline experiments. The results are shown in Figure 4 for
Lx = 10, 20, 40, 80 and 160 km. Plotted in the figures are
surface x-velocities along an x-flowline at approximately
y = 0.25Lx . The ISMIP results are again averaged over all
LMLa submissions, and their range is given. (These ISMIP
submissions also included x-velocities along a y-transect;
those figures are not shown but the patterns of agreement
are similar.) It can be seen that, as in the flowline case, while
the hybrid is a poor approximation at short length scales, the
approximation improves at longer scales.
In the 3-D sliding experiment (ISMIP-HOM Experiment C),

the sliding law is again linear and the parameter, β2, has the
spatial dependence

β2(x, y ) = 1000 Pam−1a×
[
1+ sin

(
2πx
Lx

)][
1+ sin

(
2πy
Ly

)]
.

(50)

Figure 5 shows the results of this experiment. The plots are
analogous to those from Experiment A, and the same length
scales were examined. As with the flowline experiments, the
agreement with the first-order balance at short length scales
is better than in the topographic experiments. Note also that
the range of the ISMIP-HOM results at longer length scales
is greater than in the topographic experiments.

In all 3-D experiments, 20 cells were used in the vertical.
However, this should not be taken as indicative of the aspect
ratio of vertical to horizontal resolution in an elliptic solve.
Recall that the vertical mesh is for approximating the integrals
in Equation (35) and diagnosing velocities at depth.
The results of these experiments are summarized in

Table 3. Here percent error is assessed by comparison with
the ISMIP-HOM LMLa submissions. Results are not broken
down by model in the submissions, but rather the mean is
taken over all submissions, so again these values should
be regarded with caution. Nevertheless, it can be seen
that, in the topographic experiments, agreement improves
with length scale as in the flowline experiments. In the
sliding experiment, the agreement is good (below 10%, and

Table 2. Summary of 2-D experiments. Percent error is by
comparison with the corresponding run with the in-house first-order
solver (BPFlow). The second number given for each run is the value
when along-flow resolution is doubled (or ‘same’ if the value does
not change). SSA means the effects of vertical shear were ‘turned
off’ in the hybrid model. The lower along-flow resolution for the
Coulomb-plastic experiment was 200 cells, while for the others it
was 80 cells

Lx Expt B Expt D Expt D (SSA) Coulomb- Coulomb-
plastic plastic (SSA)

km % error % error % error % error % error

10 59/same 0.25/same 5.3/same 4.0/same 64/same
20 24/same 0.55/same 6.0/same 4.7/4.5 55/same
40 11/same 0.14/0.17 4.2/same 3.4/2.2 66/same
80 5.4/same 0.18/0.07 2.9/2.7 3.7/1.8 34/same
160 2.5/same 0.53/0.13 2.2/1.8 4.2/1.8 12/same
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Fig. 4. ISMIP-HOM Experiment A: 3-D simulation over periodic topography. Plotted are along-flow velocities at the surface along a line in
the along-flow direction at one-quarter of the transverse domain width. Results from the hybrid model are compared with the mean of the
ISMIP-HOM LMLa submissions. The range of these submissions (shaded region) is also shown. Domain lengths (and widths) are 10 km (a,
f), 20 km (b, g), 40 km (c, h), 80 km (d, i) and 160 km (e ,j).

sometimes much lower) at all length scales. Again, a set of
SSA experiments was also run for comparison.

Timing performance
As mentioned previously, we expect the scheme for the
hybrid model to be faster than a first-order solver, assuming
comparable horizontal resolution. The reason is that the
matrix that is inverted is smaller (by a factor of the number of
gridcells in the vertical) and less dense. In the hybrid scheme
this matrix has the same structure as that solved for the
SSA balance. It is assumed, particularly in three dimensions,
that the assembly and inversion of this matrix will be the
bottleneck of the nonlinear iteration.
A timing comparison and breakdown of the hybrid scheme

is shown in Table 4. The total solve times for the hybrid model
and for BPFlow are given for the flowline sliding experiments
(the value is averaged over all the experiments). For the 3-D

Table 3. Summary of 3-D experiments. Percent error is by
comparison with the ISMIP-HOM LMLa mean. 40 × 40 resolution
was used in all cases

Wavelength Expt A Expt C Expt C (SSA)

km % error % error % error

10 29 3.2 0.7
20 22 1.1 4.9
40 12 4.0 7.2
80 5.4 4.4 6.3
160 2.0 7.1 8.6

sliding experiments, average solve time is given only for
the hybrid model, as no first-order model was created. All
experiments use 40 cells in the horizontal direction(s) and
20 cells in the vertical, and take 50 nonlinear iterations.
Note the timing advantage of the flowline hybrid solver over
BPFlow (roughly tenfold). Also given for the hybrid model is
the percentage of the total iteration time spent assembling
and solving the matrix (dubbed the ‘SSA solve’ component
of the iteration), as opposed to column operations that are
not part of the SSA (e.g. vertically integrating the depth-
dependent viscosity). Note that for the flowline model this
component takes less time than the column operations. In
three dimensions, though, its relative cost is significantly
higher. Also, while not done in this study, it will be far simpler
to parallelize the column operations than the matrix solve.

Table 4. Timing comparison of first-order solver (BPFlow) with
hybrid solve, and breakdown of hybrid solve, for flowline and 3-D
experiments. Values are from averaging over all linear sliding
experiments. The final column refers to the percentage of time in a
single iteration spent performing the matrix assembly and solution,
as in an SSA solver. All simulations had 40 cells in the x- (and y-)
direction, 20 cells in the vertical and 50 nonlinear iterations

Type BPFlow Hybrid % ‘SSA solve’
solve time solve time

s s

Flowline (2-D) 1.6 0.12 33
3-D — 13.4 89
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Fig. 5. ISMIP-HOM Experiment C: 3-D simulation with basal sliding with periodic traction. Results from the hybrid model are again compared
with the results of the ISMIP-HOM LMLa submissions. Fields plotted are the same as in Figure 4. The range of the LMLa submissions is
shown in gray. Domain lengths (and widths) are 10 km (a, f), 20 km (b, g), 40 km (c, h), 80 km (d, i) and 160 km (e, j).

Making the individual nonlinear iterations faster, relative
to a first-order scheme, is only valuable if the number
of nonlinear iterations required remains roughly constant.
Figure 6 compares rates of convergence between the hybrid
and BPFlow models. The metric

‖u(i+1) − u(i)‖, (51)

where the norm is the sup-norm, is plotted against iteration
count for ISMIP-HOM Experiment D, Lx = 40km solves. The
initial guess for both models is zero velocity, which is why
the norm increases initially. It can be seen that the rates of
convergence are nearly identical. Thus, provided the results
of the models are similar, it can be seen that the hybrid
momentum balance is a very computationally inexpensive
alternative to the first-order momentum balance.

DISCUSSION
Before discussing the results of the previous section, it is
instructive to first examine the relationship between the
hybrid model presented here and the depth-integrated,
variationally derived model presented by Schoof and
Hindmarsh (2010; their section 4.1). Their study provides an
asymptotic analysis of their model, which also applies to the
hybrid model in this paper, as shown below. The behavior
observed in the experiments in the previous section is then
discussed in this context.

Comparison with another variationally derived model
A brief summary of the derivation of the depth-integrated
model of Schoof and Hindmarsh (2010) and their analysis
is presented here for the purpose of comparison. They begin

the derivation of their depth-integrated model by considering
the rheology of the first-order balance in a flowline setting:

ux =A
(
τ2xx + τ2xz

) n−1
2

τxx , (52)

uz =2A
(
τ2xx + τ2xz

) n−1
2

τxz , (53)

where the tensor, τ , is the deviatoric stress tensor. They then
modify Equation (52) by replacing u with u|z=b and τxz

Fig. 6. A comparison of convergence rates for the hybrid model
and the in-house first-order solver (BPFlow). Change in velocity
per iteration is plotted against iteration count. This plot is from the
sliding experiments with Lx = 40km.
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Fig. 7. Calculated viscosities (for Lx = 10km) from (a) the in-house first-order solver (BPFlow) and (b) the hybrid model, both for flow over
periodic topography. Units of viscosity are log(Pa s). (Values are plotted on a logarithmic scale so the variation can be viewed more clearly.)

with −ρgsx (s − z). This approximation has an associated
remainder term. The assumption that this term is uniformly
small allows a depth-integrated model (their equation (4.4)),
which has an associated variational principle, to be derived.
The asymptotic behavior of their remainder term, and thus
the accuracy of their depth-integrated model, are then
investigated.
Proceeding analogously, Equation (52) is modified by

replacing ux by ux (τxz is not replaced). This gives

ux = A
(
τ2xx + τ2xz

) n−1
2

τxx + r(hy), (54)

where

r(hy) = (u − u)x . (55)

If r(hy) is assumed negligible, Equations (53) and (54) can be
inverted to obtain stresses in terms of strain rates:

τxx =
1
2
A−

1
n

(
u2x +

1
4
u2z

) 1−n
2n

2ux , (56)

τxz =
1
2
A−

1
n

(
u2x +

1
4
u2z

) 1−n
2n

uz . (57)

The first-order balance and its boundary conditions can be
written in terms of τ :

2∂xτxx + ∂zτxz = ρgsx , (58)

2
∂s
∂x

τxx − τxz = 0 at z = s, (59)

2
∂b
∂x

τxx − τxz = −
√
1 + b2x

f (|u|)
|u| u at z = b. (60)

By analogy with Schoof and Hindmarsh (2010), and letting
B = A−

1
n , Equation (58) is integrated in z from b to s using

Equation (56), resulting in:

4∂x (Hν (hy)ux )−
√
1 + b2x

f (|u(b)|)
|u(b)| u(b) = ρgHsx . (61)

This is identical to Equations (26) and (28) in a flowline
setting. Thus the hybrid model derived earlier can be
obtained by assuming the remainder term, r(hy), is small.
Schoof and Hindmarsh (2010) show that the agreement

of their depth-integrated model with the first-order balance
depends on the asymptotic order of their remainder term,
and the same rationale can be used for the hybrid model. In

their study the term corresponding to r(hy) is a sum of two
terms, and the one of larger asymptotic order is (u(b)− u)x .
This is a measure of the degree of velocity variation with
depth, as is r(hy). And so r(hy) is of the same asymptotic order
as their remainder term, and the asymptotic agreement of
the hybrid model with first order (and with full Stokes) is
the same as their depth-integrated model. They consider a
parameter, λ, that is a scale ratio of τxz to τxx , as well as ε,
the aspect ratio. In the asymptotic regime ε � λ � 1, which
corresponds to fast sliding, their depth-integrated model is
shown to agree with the first-order model with an error of
O(ε2). In the ‘slow-sliding’ regime 1� λ ∼ ε−1/n , the error
is larger: O(ε2λn−2). Note that ‘slow-sliding’ also applies to
‘no sliding’, because λ is not infinite in this case.

Discussion of numerical results
In the flowline experiments with no-slip flow over periodic
topography, it was seen that, at smaller length scales, velocity
is overestimated by the hybrid model over topographic
troughs. It is likely that the main reason for this is the fact that
the expressions for horizontal stresses used for the viscosity
(Equation (16)) are depth-independent. In Figure 7, viscosity
at depth is shown for Lx = 10km, the shortest length scale
examined. (The logarithm of viscosity is what is actually
shown, in order to more clearly show variability.) In both
cases, there is a maximum at the surface above the trough,
but in the first-order case it is considerably larger and more
localized. Recall that as the second invariant of the strain rate
decreases, viscosity increases (up to a maximum, determined
by the regularizing coefficient used in the numerical solver).
This is true for both the first-order and hybrid balances, but
in the latter the longitudinal stress term in the viscosity must
be constant over the entire column. In the hybrid model, the
depth-averaged longitudinal stress cannot become as small
as is required for this viscosity maximum at the surface. And
so the viscosity maximum near the surface is less localized
in the vertical as well as smaller in magnitude, giving rise to
larger surface velocities.
The agreement of the hybrid and first-order models in the

periodic topography experiments can be compared with the
result of Schoof and Hindmarsh (2010). According to their
analysis, the error of approximation to the first-order balance
for slow (or no) sliding is O(ε2λn−2). The parameter λ is
calculated for these experiments and shown in Table 5, along
with ε and ε−1/n . Comparison of λwith ε−1/n shows that this
is indeed the ‘slow-sliding’ regime. But as shown in Figure 8,
the error is closer to O(ε).
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Fig. 8. Comparison of error in no-sliding experiments with that
predicted by Schoof and Hindmarsh (2010) (O(ε2λn−2)) and with
first-order (O(ε)) error. ε is the aspect ratio and λ is a parameter
related to the slip ratio.

In the flowline experiments with sliding flow over periodic
basal traction, the error of approximation with first order
was uniformly small. The asymptotic analysis of Schoof and
Hindmarsh (2010) discussed above predicts good agreement
in the fast-sliding regime, ε � λ � 1. This regime applies to
these experiments, as seen from Table 5. However, the results
of the analysis do not imply, a priori, that the agreement
will be equally good at both large and small length scales.
Rather, if the remainder term, r(hy), is examined, a posteriori,
from the results of the first-order solver, BPFlow, we can see
why the hybrid model is able to approximate first order so
closely at small length scales. Figure 9 shows the deviation
of velocity from its vertical mean along the flowline in the
10 and 160 km first-order solutions. It is not more than 7%.
Examination of the velocity at depth in the 10 km experiment
(not shown here) shows that the expression of variations in
basal traction at the surface is very small, with most of the
along-flow velocity variation very close to the base. Since
r(hy) is small when u−u is small, this suggests that the hybrid
model is a very good approximation to first order at short
length scales as well as long ones, where ε is small.

CONCLUSION
A set of momentum balance equations for large-scale motion
of ice sheets has been derived that approximates the first-
order momentum equations. The balance was derived not
by making approximations to the equations and boundary
conditions directly, but rather by making approximations to
a nonlinear functional from which the first-order momentum
balance arises, and then using variational methods to derive
the new set of equations. The balance treats horizontal
stresses as depth-integrated, but includes the effect of
nonzero vertical shearing strain rates on the nonlinear
viscosity and the sliding law, and is termed a ‘hybrid’
model in this study. A numerical scheme was developed and
implemented to solve the equations by means of ‘iteration-
on-viscosity’, which involves the solution of a 2-D (rather
than a 3-D) elliptic equation when solving for 3-D flow,
and a 1-D (rather than 2-D) equation when using a flowline
model. This yields a significant computational advantage
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Fig. 9. Deviation of u from plug flow in the sliding experiments
with the first-order solver (BPFlow). Values plotted are the maximum
within a column of |u−u| normalized by u. Distance is normalized
by Lx .

over the first-order balance in terms of the matrix inversion at
each nonlinear iteration. Further, experiments with flowline
models showed that the number of nonlinear iterations
required to obtain a certain level of accuracy does not
increase relative to a first-order solver.
Comparison of surface velocity output both with a flowline

first-order solver written specifically for this study and
with the results of the ISMIP-HOM intercomparison was
encouraging, showing good agreement of the hybrid model
output with the first-order solutions over a wide range of
spatial forcing scales. In the experiments involving ice frozen
to the bed and flowing over rough topography, agreement is
poor at very short scales (10–20km), but improves at longer
scales. Comparison of stress terms at depth with the flowline
first-order solver written for this study indicates that this is
because longitudinal strain rates can become highly depth-
dependent in such a setting, something not allowed for by the
hybrid set of equations. The error is approximately first-order
in the aspect ratio, which is slightly larger than that predicted
by the asymptotic analysis of Schoof and Hindmarsh (2010).

Table 5. Nondimensional parameters, ε (H/L) and λ, of the first-
order solution in the flowline experiments. λ is a scale ratio of τxz to
τxx . The scales of τxx and τxz were taken to be the largest values in
the numerical solutions. Experiment B is no-slip flow over periodic
topography and Experiment D is sliding flow with periodic basal
traction. Percent error of the hybrid approximation is shown again
for convenience

ISMIP Experiment Lx λ ε ε−
1
n Percent error

B 10 1.8 0.1 2.2 59
B 20 2 0.05 2.7 24
B 40 2.5 0.025 3.4 11
B 80 3.1 0.0125 4.3 5.4
B 160 3.7 0.0063 5.4 2.5

D 10 2.2 0.1 2.2 0.25
D 20 1.4 0.05 2.7 0.55
D 40 .75 0.025 3.4 0.14
D 80 .31 0.0125 4.3 0.18
D 160 .35 0.0063 5.4 0.53
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The hybrid balance is therefore a potentially powerful tool
for large-scale ice-sheet modeling, especially when looking
at domains that are expected to contain fast-flowing ice
streams and shelves, as well as slow-moving ice that is
frozen to its bed. The similarity of its depth-integrated form
to the SSA balance means that a model that solves the
SSA balance could be modified to solve the hybrid balance
without considerable effort.
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