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Convolution Powers of Salem Measures
With Applications

Xianghong Chen and Andreas Seeger

Abstract. We study the regularity of convolution powers for measures supported on Salem sets, and
prove related results on Fourier restriction and Fourier multipliers. In particular we show that for
α of the form d/n, n = 2, 3, . . . there exist α-Salem measures for which the L2 Fourier restriction
theorem holds in the range p ≤

2d
2d−α . _e results rely on ideas of Körner. We extend some of his

constructions to obtain upper regular α-Salem measures, with sharp regularity results for n-fold
convolutions for all n ∈ N.

1 Introduction

Given a ûnite positive Borel measure µ on Rd satisfying the condition

∣µ̂(ξ)∣ = O(∣ξ∣−b)

for some b > 0, the Fourier transformmaps Lp(Rd) to L2(dµ) for some p > 1. _is is
the Fourier restriction phenomenon discovered by Stein in the 1960s. Much research
on Fourier analysis has been done regarding the case of µ being a surfacemeasure on
the sphere where sharp results are due to Tomas and Stein [34,35]. A general version
of Tomas’ theorem is due to Mockenhaupt [25] and also Mitsis [24]. _ese authors
showed that under the above assumption and the additional regularity condition

µ(B) = O(diam(B)a),

for all balls B, the Fourier transform maps Lp(Rd) to L2(dµ) for 1 ≤ p < pa ,b =
2(d−a+b)
2(d−a)+b . It was shown in [1] that the result is also valid for p = pa ,b . _e Fourier
decay assumption implies that the regularity condition holds for a = b. Moreover, if
the support of µ is contained in a set of Hausdorò dimension α, then b ≤ α/2 and
a ≤ α. See [37, Chapter 8], [24] for these facts. Of particular interest are measures
supported on sets E ofHausdorò dimension α for which the Fourier decay condition
holds for all b < α/2; such sets are commonly called Salem sets. _e existence of Salem
sets is due to Salem [28]; for other constructions we refer to [2,3, 11, 15, 16,22].

Here we are also interested in the special Salem sets E that carry probability mea-
sures for which the endpoint bound ∣µ̂(ξ)∣ = O(∣ξ∣− dim(E)/2) holds for large ξ, and
make the following deûnition.
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Deûnition (i) A Borel probability measure µ is called an α-Salem measure if it
is compactly supported, the support of µ is contained in a set ofHausdorò dimension
α, and if
(1.1) sup

ξ∈Rd
(1 + ∣ξ∣)α/2∣µ̂(ξ)∣ <∞.

(ii) An α-Salem measure is called upper regular (or α-upper regular) if

(1.2) sup
B

µ(B)
diam(B)α <∞,

where the sup is taken over all balls.

Körner constructed examples of upper regular α-Salem measures [17]; see also [8]
for various reûnements.
By the result in [1], if µ is an upper regular α-Salem measure, then the Fourier

transform maps Lp(Rd) to L2(µ) for 1 ≤ p ≤ 4d−2α
4d−3α . By analogy with results and

conjectures for surface measure on the sphere, Mockenhaupt conjectured that the
Fourier transform shouldmap Lp(Rd) to L1(µ) for the larger range 1 ≤ p < 2d

2d−α . By
[24, Proposition 3.1], such an Lp → L2 result cannot hold for p > 2d

2d−α . Furthermore,
Mockenhaupt remarked that for suitable examples there is a possibility that even the
stronger Stein–Tomas Lp → L2(µ) bound could hold in this range. For a dense set
of α’s (and d = 1), Hambrook and Łaba [12] recently gave examples of Salem sets of
dimension α showing that the p range for the Lp → L2(µ) bound in [1] cannot be
improved in general. _eir examples carry randomness and arithmetic structures at
diòerent scales. Chen [8] extended this idea to provide, among other things, for all
α ∈ [0, 1], examples of upper regular α-Salem measures on the real line for which
F does not map Lp to L2(µ) for any p > 4d−2α

4d−3α . Recently, Hambrook and Łaba [13]
obtained related sharpness results in higher dimensions which involve examples of
measures whose supports haveHausdorò dimension greater than d − 1.
All these examples still do not exclude the Mockenhaupt scenario of a larger

p-range for the L2 restriction estimate for other types of Salem measures. _e ques-
tion was explicitly posed in a recent survey paper by Łaba [21]. We show an optimal
result when α is of the form d/n with some integer n.

_eorem A Given α = d/n where n ∈ N, n ≥ 2, there exists an upper regular α-Salem
measure such that F∶ Lp(Rd)→ L2(µ) is bounded in the optimal range 1 ≤ p ≤ 2d

2d−α .

Remark Shmerkin and Suomala [30] have independently obtained a similar result
for d = 1, α > 1/2. _eir method also covers the cases d = 2, 3, d/2 < α ≤ 2. _eir
approach is quite diòerent from themethods used here.

It would be of great interest to ûnd Ahlfors–David regular α-Salem measures, i.e.,
besides (1.1) and (1.2), we would also have a lower bound µ(B) ≳ rad(B)α for all
balls B with radius ≤ 1 that are centered in the support of µ. _is question has been
raised byMitsis [24]; see also the list of problems in Mattila [23]. We remark that the
examples by Shmerkin and Suomala [30] for the non-endpoint L2 → L4 restriction
estimate (with α > 1/2) are Ahlfors–David regular. However the measures satisfying
_eorem A are necessarily not Ahlfors–David α-regular; see §4.
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A variant of_eoremA can be used to derive new results on a class of Fouriermul-
tipliers of Bochner–Riesz type as considered by Mockenhaupt [25]. In what follows
we let Mq

p to be the space of all m ∈ S′(Rd) for which f ↦ F−1[m f̂ ] extends to a
bounded operator from Lp(Rd) to Lq(Rd). _e norm on Mq

p is the operator norm,
i.e.,

∥m∥Mq
p
= sup
f ∈S(Rd)
∥ f ∥p≤1

∥F−1[m f̂ ]∥q .

Mockenhaupt [25] introduced a class of Fourier multipliers associated with general
measures that re�ect the properties of Bochner–Riesz multipliers in the case when µ
is the surfacemeasure on a smooth hypersurface.

Given a compactly supported α-upper regular Borel measure, λ > α − d, and χ ∈
C∞c (Rd), the function

(1.3) mλ(ξ) = ∫
Rd
χ(ξ − η)∣ξ − η∣λ−α dµ(η)

is well deûned as an L1 function. Mockenhaupt showed that in the range 1 ≤ p ≤
4d−2α
4d−3α (the Fourier restriction range in [1, 25]), the multiplier mλ belongs to Mq

p if
λ > d( 1

q −
1
2 ) −

d−α
2 (the case p = q was explicitly stated in [25]). _eorem A enables

us to prove a better range for certain α-regular Salemmeasures, and an endpoint result
in some cases. _is endpoint result relies on special properties of our Salemmeasures
and fails, for example, for the surface measure of the unit circle in R2, for any q < 2.
In §4 we prove the following theorem.

_eorem B Let α = d/n where n ∈ N, n ≥ 2, and λ > 0. _ere exists an upper regular
α-Salem measure on Rd so that for 1 ≤ p < 2d

2d−α and p ≤ q ≤ 2 we have mλ ∈ Mq
p if

and only if λ ≥ d( 1
q −

1
2 ) −

d−α
2 .

We now discuss estimates for self-convolutions of certain Salemmeasures and how
they are used in the proof of_eorem A. Let µ∗n be the convolution of n copies of µ;
moreprecisely,we set µ∗0 = δ0 (theDiracmeasure at 0), µ∗1 = µ, and µ∗n = µ∗µ∗(n−1)

for n ≥ 2. _e proof of the Fourier restriction result of _eorem A for α = d/n is
based on a regularity result for self-convolutions of suitable Salem measures as stated
in _eorem C below, and the inequality

(1.4) ∫ ∣ĝµ∣2n dξ ≲ ∥µ∗n∥∞(∫ ∣g(x)∣2 dµ) n ,

is a special case of an inequality in [6], closely related to a result by Rudin [26].
For n = 2, Körner [18] proved the existence of a compactly supported probabil-

ity measure on R, supported on a set of Hausdorò dimension 1/2 for which µ ∗ µ
is a continuous function. Moreover, given 1

2 ≤ α < 1, there exists a Borel probabil-
ity measure µ on R supported on a compact set of Hausdorò dimension α such that
µ ∗ µ ∈ Cα−1/2

c (R); here Cα−1/2 is the standard Hölder class and Cα−1/2
c is the sub-

space consisting of compactly supported Cα−1/2 functions; see the discussion of re-
lated classes in the next paragraph. Körner thus substantially improved and extended
previous results by Wiener–Wintner [36] and Saeki [27] on convolution squares for
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singular measures. Note that by taking adjoints, inequality (1.4) for n = 2 shows that
F∶ L4/3 → L2(µ); for α < 2/3 this yields a range larger than [1, 4−2α

4−3α ], the largest range
that could be proved from [1]. It is not stated in Körner’s paper that the measures
constructed there have the appropriate Fourier decay properties but as we shall see
this is not hard to accomplish.
For integers k ≥ 0, let Ck(Rd) be the space of functions whose derivatives up to

order k are continuous and bounded; the norm is given by ∥ f ∥C k = ∑∣α∣≤k ∥∂α f ∥∞.
Let ψ∶ [0,∞)→ [0,∞) be a nondecreasing bounded function satisfying

lim
t→0

t−εψ(t) =∞, ε > 0

and, for some Cψ > 0,

(1.5) ψ(t) ≤ Cψψ(t/2), t > 0.

For a function f on Rd , deûne

(1.6) ωρ ,ψ( f ) = sup
x ,y∈Rd
x /=y

∣ f (x) − f (y)∣
∣x − y∣ρψ(∣x − y∣)

and Cρ ,ψ(Rd) = { f ∈ C(Rd) ∶ ωρ ,ψ( f ) <∞}. If ρ ≥ 1, deûne

Cρ ,ψ(Rd) = { f ∈ C⌊ρ⌋(Rd) ∶ ∂β f ∈ Cρ−⌊ρ⌋,ψ(Rd), ∣β∣ = ⌊ρ⌋} .

For 0 < ρ < 1, the choice of ψ(t) = 1 yields the usual Hölder spaces Cρ(Rd). Only
the deûnition of ψ for small t is relevant. Other suitable choices for ψ are
(i) ψ(t) = exp(−

√
log t−1) for t ≤ e−1,

(ii) ψ(t) = 1/(log t−1) for t ≤ e−1, or
(iii) ψ(t) = 1/(log log t−1) for t ≤ e−e .

We extend Körner’s constructions to prove the following result for higher convo-
lution powers of upper regular α-Salem measures.

_eorem C Given d ≥ 1 and 0 < α < d, there exists a Borel probabilitymeasure µ on
Rd satisfying the following properties.
(i) µ is supported on a compact set of Hausdorò and lower Minkowski dimension α.
(ii) For all ξ ∈ Rd , ∣ξ∣ ≥ 1, ∣µ̂(ξ)∣ ≲ ψ(∣ξ∣−1)∣ξ∣−α/2.
(iii) For all x ∈ Rd , 0 < r < 1, 1 ≤ n < d/α, µ∗n(B(x , r)) ≲ ψ(r)rnα .
(iv) For n ≥ d/α, µ∗n ∈ C

nα−d
2 ,ψ

c (Rd).

Note that under the dimensional restriction, the Fourier decay exponent, the up-
per regularity exponents nα, and the Hölder exponent nα−d

2 for µ∗n are all optimal
(cf. §2.6 for the latter).

Notation Wewrite ◻1 ≲ ◻2 to indicate that ◻1 ≤ C◻2 for some constant 0 < C <∞
that is independent of the testing inputs, whichwill usually be clear from the context.
For ameasurable subset E of Rd or Td we let ∣E∣ denote the Lebesguemeasure of E.
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Structure of the paper _e proof of_eorem C is given in the next two sections.
_e restriction andmultiplier theorems are considered in §4.

2 Körner’s Baire Category Approach

_is section contains the extensions of Körner’s arguments adapted and extended to
yield _eorem C. _e results will be stated in the periodic setting and followed by a
relatively straightforward transference argument.

To ûx notations, we write T = R/Z and Td = T × ⋅ ⋅ ⋅ × T. We occasionally denote
by λ the uniform probability measure on Td . While λ is usually identiûed with the
function 1, we shall also identify a continuous function g with the measure gλ. A
subset J ⊂ T is called an interval if it is connected. A rectangle is of the form R =
J1 × ⋅ ⋅ ⋅ × Jd where J i are intervals; R is called a cube if these intervals have the same
length. If µ is a ûnite Borel measure on Td , the Fourier transform of µ is deûned as

µ̂(r) = ∫
Td
e−2πir⋅t dµ(t),

where r ∈ Zd . Here as usual we have identiûed Td with [0, 1)d . Note that µ̂(0) =
µ(Td) and λ̂(r) = δ0(r). Let µ and ν be two ûnite Borel measures on Td , µ ∗ ν is the
ûnite Borel measure on Td with Fourier transform µ̂(r)ν̂(r). Finally, we equip Td
with the usual group structure and the intrinsicmetric which will be denoted by

∣x − y∣ ∶= (
d
∑
i=1

∣x i − y i ∣2)
1/2 ,

where x = (x1 , . . . , xd), y = (y1 , . . . , yd), and ∣x i − y i ∣ denotes the intrinsicmetric on
T. We will also ûx an orientation of T so that derivatives are uniquely deûned. With
this distance the expression ωρ ,ψ( f ) in (1.6) and the spaces Cρ ,ψ can be deûned in the
same way on Td .
For each integer n ≥ d/α we ûx a ûnite smooth partition of unity on Td , indexed

by ı ∈ In

(2.1) O(n) = {χ(n)ı }ı∈In

so that each χ(n)ı is supported on a cube of side length smaller than (2n)−1.

2.1 A Metric Space

Let K be the collection of closed subsets of Td which form a complete metric space
with respect to theHausdorò distance

dK(K1 ,K2) = sup
x∈K1

dist(x ,K2) + sup
y∈K2

dist(y,K1) = sup
x∈K1

inf
y∈K2

∣x − y∣ + sup
y∈K2

inf
x∈K1

∣x − y∣;

see [31]. We now consider metric spaces of pairs (K , µ) where K is a compact subset
of Td and µ is a nonnegative Borel measure supported on E. _ese measures are
assumed to satisfy

(2.2) lim
∣r∣→∞

∣r∣α/2∣µ̂(r)∣
ψ( 1

∣r∣)
= 0.
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Moreover, for n ≥ d/α and for each n-tuple i = (ı1 , . . . , ın) ∈ In
n , the n-fold convolu-

tion (χ(n)ı1 µ) ∗ ⋅ ⋅ ⋅ ∗ (χ(n)ın µ) is absolutely continuous and we have

(2.3) (χ(n)ı1 µ) ∗ ⋅ ⋅ ⋅ ∗ (χ(n)ın µ) = g(n)µ , i λ, with g(n)µ , i ∈ C
nα−d

2 ,ψ .

We letW be the set of all (K , µ)where K ⊂ Td is closed, and µ is a nonnegative Borel
measure supported in K satisfying (2.2) and (2.3). Ametric on W is given by

dW((K1 , µ1), (K2 , µ2))

= dK(K1 ,K2) + ∣µ̂1(0) − µ̂2(0)∣ + sup
r∈Zd/{0}

∣r∣α/2∣µ̂1(r) − µ̂2(r)∣
ψ(∣r∣−1)

+ ∑
n≥d/α

2−n min{ 1, ∑
i∈In

n

∥g(n)µ1 , i − g(n)µ2 , i∥C nα−d
2 ,ψ} .

Lemma 2.1 (i) (W, dW) is a completemetric space.
(ii) For every nonnegative C∞ function f and every compact set K containing

supp( f ), the pair (K , f ) belongs to W.
(iii) Let V be the subspace ofW consisting of (K , µ) satisfying

(2.4) µ∗n(Q) ≤ ψ(∣Q∣)∣Q∣nα/d

for all cubes Q and 1 ≤ n < d/α. _en V (with themetric inherited from W) is a
closed subspace ofW.

(iv) LetV0 be the subset ofV consisting of pairs (K , g) ∈V with g ∈ C∞(Td) and let
V0 be the closure ofV0 inVwith respect to themetric dW. _enV0 is a complete
metric space and for every nonnegative g ∈ C∞(Td) there is a C > 0 so that for
all compact K ⊃ supp(g) the pair (K , g/C) belongs to V0.

Proof _e theorem of Banach–Alaoglu is used to identify a limit measure of a
Cauchy sequence. _e proof is a straightforward modiûcation of the arguments in
[18,20]; see also [5, 19,31].

In order to prove a version of _eorem C, we wish to show that there are pairs
(K , µ) ∈ V0 such that µ is supported in a set of lower Minkowski dimension and
Hausdorò dimension α. _is will be deduced from a Baire category argument, as
follows.

_eorem 2.2 Suppose α < γ < d and ε > 0. LetVγ ,ε be the subset ofV0 consisting of
pairs (K , µ) for which there are cubes Q1 , . . . ,QM with

(2.5) K ⊂
M
⋃
j=1

Q j and ∣Q1∣ = ⋅ ⋅ ⋅ = ∣QM ∣ < εM−d/γ .

_en Vγ ,ε is open and dense in V0.

_e Baire category theorem gives the following.

Corollary 2.3 ⋂∞N=1 Vα+1/N ,1/N is a dense Gδ set in V0.
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Let dimM(K), dimH(K) denote the lower Minkowski dimension and Hausdorò
dimension, respectively. _en dimH(K) ≤ dimM(K). If (K , µ) ∈ ⋂∞N=1 Vα+1/N ,1/N ,
then dimM(K) ≤ α and hence also dimH(K) ≤ α. On the other hand, (2.2) implies
dimH(K) ≥ α (see [37, Corollary 8.7]). _us we obtain the following corollary.

Corollary 2.4 _e set of (K , µ) ∈ V0 satisfying dimM(K) = dimH(K) = α is of
second category in V0.

Concerning the proof of _eorem 2.2, it is easy to see that the sets Vγ ,ε are open
subsets ofV0. _e remainder of this section is devoted to proving that they are dense.

2.2 Averages of Point Masses

For large N let ΓN be the ûnite subgroup of T of order N , consisting of {k/N ∶ k =
0, 1, . . . ,N − 1}. Let ΓdN be the d-fold product, a subgroup of Td .

_e following result yields measures on Td which are sums of point masses sup-
ported on points in ΓdN and satisfy properties analogous to (2.2), (2.3), and (2.5).

Proposition 2.5 Given 0 < β < d and an integer n ≥ 2, there exist N0(β, n) ≥ 1,
C1 = C1(d), C2 = C2(β, d), and C3 = C3(β, d , n) such that for all N ≥ N0(β, n) with
gcd(n!,N) = 1, P ∶= ⌊N β⌋ there is a choice of x1 , . . . , xP with x j ∈ ΓdN , such that the
following properties hold for themeasure µ = 1

P ∑
P
j=1 δx j .

(i) For all r ∈ ΓdN ∖ {0},

(2.6) ∣µ̂(Nr)∣ ≤ C1N−β/2(logN)1/2 .

(ii) For 1 ≤ ℓ ≤ d/β and for all cubes Q with ∣Q∣ ≤ N−ℓβ ,

(2.7) µ∗ℓ(Q) ≤ C2N−ℓβ logN .

(iii) For d/β ≤ ℓ ≤ n,

(2.8) max
u∈ΓdN

∣ µ∗ℓ({u}) − N−d ∣ ≤ C3
N−d(logN) ℓ+1

2

N(ℓβ−d)/2 .

While this result is not optimal (in particular with respect to the powers of the
logarithm), it is allwe need for the proof of_eorem 2.2. _e proof of Proposition 2.5
will be given in §3.

2.3 Transference

For N ≥ 1, we will write ⊓N = Nd1[−1/2,1/2)d (Nt)dt and

τN = 1
Nd ∑

j∈ΓdN

δ j/N .

Recall that λ is the uniform probability measure, i.e., normalized Lebesguemeasure,
on Td .

We start with some simple observations.
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Lemma 2.6 _e following holds true for N ≥ 1.
(i) ⊓∗ℓN ∗ τN = λ for ℓ = 1, 2, . . . .
(ii) τ̂N(r) = 1 for r ∈ (NZ)d , and τ̂N(r) = 0 otherwise.
(iii) ⊓̂N(r) = 0 for r ∈ (NZ)d , r /= 0.

Proof (i) follows by direct computation of the convolution (it is also a consequence
of (ii) and (iii)). For (ii) notice that if r ∉ (NZ)d ,

τ̂N(r) = 1
Nd ∑

j∈[N]d
e−2πir⋅ j/N =

d
∏
k=1

1
N

e−2πirk − 1
e−2πirk/N − 1

= 0.

Otherwise τ̂N(r) = 1. For (iii) just notice that ⊓̂N(r) =∏d
k=1

sin(πrk/N)
πrk/N .

In what follows we let υ be a nonnegative smooth function with support in
(−1/2, 1/2)d such that ∫ υ(t) dt = 1, and let υN = Ndυ(N ⋅). _us υN generate a
standard smooth approximation of the identity. We now convolve the point masses
obtained in Proposition 2.5 with ⊓N and themolliûer υN .

Lemma 2.7 Let µ be as in Proposition 2.5 and let f = υN ∗⊓N ∗µ. _en f is a smooth
function satisfying the following properties.
(i) For l = 0, 1, . . . , ∥∇l f ∥∞ ≤ C(l)Nd+l . _ere are cubes Q j , j = 1, . . . , ⌊N β⌋ with

side length 2/N such that supp( f ) ⊂ ⋃⌊N β⌋
j=1 Q j .

(ii) For r ∈ Zd/{0}, Λ ≥ 0

(2.9) ∣ f̂ (r)∣ ≤ C(logN)−1/2N−β/2 min ( C0(Λ)NΛ

∣r∣Λ , 1) .

(iii) For all cubes Q

(2.10) ∫
Q
f ∗n(t) dt ≤ 2d ∣Q∣nβ/d logN , 1 ≤ n ≤ d/β .

(iv) For l = 0, 1, 2, . . . ,

(2.11) ∥∇l( f ∗n − 1)∥∞ ≤ C(l)C(β, n)(logN) n+1
2

N(nβ−d)/2 N l , d/β ≤ n ≤ n.

Proof _e assertion about the support follows immediately from the deûnition. Let
g(t) = ⊓N ∗ µ(t) = ∫Td ⊓N(t − s) dµ(s). _emolliûers satisfy

υN(r) ≤ Nd max{1,C(Λ)(N/∣r∣)Λ}

for any Λ ≥ 0. We thus observe that the estimates for f are implied by the following
estimates for g.

(2.12) sup
r∈Zd/{0}

∣ĝ(r)∣ ≤ C(logN)1/2N−β/2 ,

(2.13) ∫
Q

g∗n(t) dt ≤ 2d ∣Q∣nβ/d logN , n ≤ d/β,
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for all cubes Q,

(2.14) sup
t∈Td

∣g∗n(t) − 1∣ ≤ C(β, n)(logN) n+1
2

N(nβ−d)/2 , d/β ≤ n ≤ n,

and

(2.15) sup
t∈Td

∣g(t)∣ ≤ Nd .

To show (2.12), notice that ĝ(r) = ⊓̂N(r)µ̂(r). If r ∈ (NZ)d , then ĝ(r) = 0, by
Lemma 2.6 (ii). Otherwise use the trivial bound ∣⊓̂N(r)∣ ≤ 1 and (2.6) together with
the observation that µ̂ is N-periodic.

To show (2.13), we consider separately the three cases ∣Q∣ ≤ N−d , N−d ≤ ∣Q∣ ≤
N−nβ , and ∣Q∣ ≥ N−nβ .
Case 1: ∣Q∣ ≤ N−d . Notice that, as in the proof of (2.15), we have

⊓N ∗ µ∗n(t) = Nd µ∗n({u}) ≤ NdM(β) logN
Nnβ .

_us

⊓N ∗µ∗n(Q) ≤ ∣Q∣NdM(β) logN
Nnβ

= ∣Q∣nβ/d(∣Q∣Nd)1−nβ/dM(β)logN ≤ M(β)∣Q∣nβ/d logN

by our assumption on ∣Q∣.
Case 2: N−d ≤ ∣Q∣ ≤ N−nβ . In this case, by (2.7)

∫
Q

g∗n(t) dt = ∫
Q
⊓n

N ∗ µ∗n(t) dt ≤ max
Q ∶∣Q ∣=N−nβ

µ∗n(Q)

≤ M(β)N−nβ logN ≤ M(β)∣Q∣nβ/d logN .

Case 3: ∣Q∣ ≥ N−nβ . In this case we can split Q into no more than 2dNnβ ∣Q∣ cubes
of size at most N−nβ . Applying (2.7) to each cube, wemay bound µ∗n(Q) by

(2dNnβ ∣Q∣)M(β) logN
Nnβ = 2dM(β)∣Q∣ logN ≤ 2dM(β)∣Q∣nβ logN .

Since g = ⊓n
N ∗ µ∗n , (2.13) follows also in Case 3.

To show (2.14), notice that by Lemma 2.6 (i) and (2.8),

g∗n = ⊓∗nN ∗ τN + ⊓∗nN ∗ (µ∗n − τN) = λ + ⊓∗nN ∗ (µ∗n − τN)
and

∣µ∗n − τN ∣ ≤ C(β, n)(logN) n+1
2

N(nβ−d)/2 τN .

Now g∗n is continuous and we get

∣g∗n − 1∣ ≤ C(β, n)(logN) n+1
2

N(nβ−d)/2

and thus (2.14).
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To show (2.15), notice that for any t ∈ T, g(t) = Nd µ({u}) where u is the unique
point in ΓdN contained in the cube (t − 1/(2N), t + 1/(2N)]d . Now (2.15) follows from
(2.7) with n = 1 and Q containing u.

Deûnition Let f be a smooth function onTd and let p ∈ N. We let the p-periodiza-
tion Perp f be the unique smooth function on Td which is 1/p-periodic in each of the
d variables and satisûes Perp f (t) = f (pt) for 0 ≤ t i < p−1, i = 1, . . . , d.

_e following lemma is analogous to a crucial observation about periodized func-
tions in [18].

Lemma 2.8 Let p ∈ N.
(i) Let f ∈ C∞(Td). _en

P̂erp f (r) =
⎧⎪⎪⎨⎪⎪⎩

f̂ (k) if r = kp, k ∈ Zd ,
0 otherwise.

(ii) LetR = [a1 , a1+p)×⋅ ⋅ ⋅×[ad , ad+p), for some a ∈ Rd , and for ν = 1, . . . n, let Pν be
a trigonometric polynomial with frequencies in R, i.e., Pν is a linear combination
of the functions x ↦ exp(2πi⟨k, x⟩) with k ∈ R ∩ Zd . Let f1 , . . . , fn be smooth
functions on Td and let Gν = Perp fν . _en

(G1P1) ∗ ⋅ ⋅ ⋅ ∗ (GnPn) = (G1 ∗ ⋅ ⋅ ⋅ ∗Gn)(P1 ∗ ⋅ ⋅ ⋅ ∗ Pn).

Proof _is follows easily by Fourier expansion using the fact that every k ∈ Zd can
be written in a unique way as k = pl + k′, where l ∈ Zd and k′ ∈ R.

Lemma 2.9 Let η > 0, β > α and let k be an integer with k > α+1
β−α . _en there exists

m0 = m0(α, β, n, η,ψ, k) ≥ N0(β, n) such that for all m ≥ m0 with gcd(n!,m) = 1, the
following hold with N = mk and f as in Lemma 2.7.
(i) _e (2m+1)-periodization of f , Fm = Per2m+1 f , is smoothwith ∫Td Fm(t) dt = 1,

and for l = 0, 1, . . . , L

(2.16) ∥∇l(Fm)∥∞ ≤ C(L)mkd+(k+1)l .

Moreover, there are cubes Q j j = 1, . . . , (2m + 1)d⌊mkβ⌋, of side length m−k−1,
such that

(2.17) supp(Fm) ⊂
(2m+1)d⌊mkβ⌋

⋃
j=1

Q j .

(ii) For r ∈ Zd/{0},

(2.18) ∣r∣α/2∣F̂m(r)∣
ψ(1/∣r∣) ≤ η.

(iii) For all cubes Q with side length at most 2/
√

m,

(2.19) ∫
Q
F∗nm (t) dt ≤ ηψ(∣Q∣)∣Q∣nα/d , 1 ≤ n < d/α.
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(iv) For n ≥ d/α, let ρn = nα−d
2 . _en

(2.20) ∥F∗nm − 1∥Cρn ,ψ ≤ η, d/α ≤ n ≤ n.

(v) For all rectangles R of side lengths at least 1/
√

m.

(2.21) ∫
R
F∗nm (t) dt ≤ (1 + η)∣R∣, n < d/α.

Proof Part (i) is straightforward given Lemma 2.7. We only need to give the proof
of (ii).

We ûrst recall fromLemma 2.8 that F̂m((2m+1)k) = f̂ (k) for k ∈ Zd , and F̂m(r) =
0 for r not of this form. _us for r /= 0, by (2.9)

∣F̂m(r)∣ ≤
√
8 log1/2(8mkd)

mkβ/2 min( C(Λ)mkΛ(2m + 1)Λ

∣r∣Λ , 1)

≤ CΛ ,k
log1/2 m
mkβ/2 min( m(k+1)Λ

∣r∣Λ , 1)

= CΛ ,k
log1/2 m

m(k(β−α)−α)/4
ψ(m−k−1)−1

m(k(β−α)−α)/4
ψ(m−k−1)
m(k+1)α/2 min( m(k+1)Λ

∣r∣Λ , 1)

≤ η ψ(m−k−1)−1

m(k(β−α)−α)/4
ψ(m−k−1)
m(k+1)α/2 min( m(k+1)Λ

∣r∣Λ , 1)(2.22)

provided that ≥ m ≥ m0 and m0 is chosen large enough. We separately consider the
cases 0 < ∣r∣ ≤ mk+1 and ∣r∣ ≥ mk+1. In the ûrst case we obtain (2.18) directly from
(2.22), provided that m0 is large enough. Now let 2l ≤ r/mk+1 < 2l+1 with l ≥ 0. _en
by themonotonicity of ψ and the doubling condition (1.5),

ψ(m−k−1) ≤ ψ(2l+1∣r∣−1) ≤ C l+1
ψ ψ(∣r∣−1),

and we see in this case that (2.22) is estimated by

η ψ(m−k−1)−1

m(k(β−α)−α)/4 2(l+1)αC l+1
ψ 2−lΛψ(∣r∣−1)∣r∣−α/2 .

_us if we choose Λ so large that 2α+2−ΛCψ ≤ 1, we can sum in l . _en by choosing
m0 large, we obtain (2.18) for all r /= 0.

Proof of (iv). Notice that by (2.11) and our assumption on k,

∥F∗nm − 1∥C⌊ρn⌋ ≤ N−(ρn−⌊ρn⌋)−є ,

for some є > 0 and suõciently large m. Setting G = ∇⌊ρn⌋(F∗nm − 1), it remains to
show ωρn−⌊ρn⌋,ψ(G) ≤ η/2 for m ≥ m0 and large enough m0.
Again by (2.11), we have ∥G∥∞ + N−1∥∇G∥∞ ≤ N−(ρn−⌊ρn⌋)−є for some є > 0 and

suõciently large m. Now if 0 < ∣h∣ ≤ 1/N , then by the mean value theorem, for any
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x ∈ Td ,
∣G(x + h) −G(x)∣
∣h∣ρn−⌊ρn⌋ψ(∣h∣) = ∣G(x + h) −G(x)∣

∣h∣
∣h∣1−(ρn−⌊ρn⌋)

ψ(∣h∣)
≤ N 1−(ρn−⌊ρn⌋)−єCψ ,є ∣h∣1−(ρn−⌊ρn⌋)−є/2

≤ Cψ ,єN−є/2 ≤ η/2,
provided that m0 is chosen large enough. If ∣h∣ ≥ 1/N , then

∣G(x + h) −G(x)∣
∣h∣ρn−⌊ρn⌋ψ(∣h∣) ≤ 2∥G∥∞

∣h∣ρn−⌊ρn⌋ψ(∣h∣) ≤ 2N−(ρn−⌊ρn⌋)−є N
ρn−⌊ρn⌋

ψ(1/N) ≤ η/2

provided that m0 is chosen large enough. _is proves (2.20).
Proofs of (iii) and (v). In what follows we say that a fundamental cube is a cube of

the form∏d
i=1[ ν i

2m+1 ,
ν i+1
2m+1 ) where ν i ∈ {0, . . . 2m} for each i = 1, . . . , d.

We ûrst consider the claim (v). Let R be a rectangle with side lengths l1 ≥ ⋅ ⋅ ⋅ ≥ ld ,
and assume that ld ≥ m−1/2. Notice that R is contained in a union of no more than

(2m + 1)d l1 ⋅ ⋅ ⋅ ld + Cd(2m + 1)d−1 l1 ⋅ ⋅ ⋅ ld−1

many fundamental cubes of size 1/(2m + 1)d . Since the integral of F∗nm over any fun-
damental cube is equal to (2m + 1)−d , we see that

∫
I
F∗nm (x) dx ≤ l1 ⋅ ⋅ ⋅ ld + Cd(2m + 1)−1 l1 ⋅ ⋅ ⋅ ld−1

= ∣R∣ + Cd
(2m + 1)ld

∣R∣ ≤ ∣R∣ + Cd
2
√

m
∣R∣.

_us (2.21) is satisûed if m0 is chosen large enough.
In order to show (iii), we separately consider the two cases where the side length

of Q is larger or smaller than (2m + 1)−1.
Case 1: (2m + 1)−1 ≤ ∣Q∣1/d ≤ 2m−1/2 . In this case the argument above shows

∫
Q
F∗nm (x) dx ≤ (1 + Cd)∣Q∣

and (2.19) will follow if (1 + Cd)∣Q∣ ≤ ηψ(∣Q∣)∣Q∣nα/d . But this is indeed the case if
∣Q∣ ≤ 2/

√
m ≤ 2/√m0 and m0 is large enough.

Case 2: ∣Q∣1/d < (2m+1)−1 .We ûrst assume thatQ is contained in a [0, (2m+1)−1)d .
_en by (2.10)

∫
Q
F∗nm (x) dx = 1

(2m + 1)d ∫(2m+1)Q
f ∗n(t) dt

≤ 1
(2m + 1)d 2d((2m + 1)d ∣Q∣)) nβ/d logN

= 2dk logm
(2m + 1)d−nβ ∣Q∣nβ/d ≤ ∣Q∣nβ/d

provided that m0 is chosen large enough. If ∣Q∣nβ/d ≤ ηψ(∣Q∣)∣Q∣nα/d , (2.19) will
follow. But this is the case if ∣Q∣1/d ≤ 1/(2m + 1) ≤ 1/m0 is small enough. By period-
icity the above argument holds true if Q is contained in any fundamental cube of size
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(2m + 1)−d . Moreover if Q is any cube of size ≤ (2m + 1)−d , then we can split Q into
2d rectangles supported in fundamental cubes and apply the same argument to each
such rectangle.

_is ûnishes the proof of (iii).

2.4 Approximation

We are now ready to prove_eorem 2.2. It remains to show that for every γ ∈ (α, d)
and every ε1 > 0, the setVγ ,ε1 is dense inV0. _is reduces to approximating (K , g) ∈
V0 where g is smooth. Wemay further assume that there exists a small constant c > 0
such that g satisûes

(2.23) ∫
Q

g∗n(x) dx ≤ (1 − c)ψ(∣Q∣)∣Q∣nα/d

for all cubes Q and 1 ≤ n < d/α. _is is because otherwisewe can approximate (K , g)
by (K , (1 − c)g) and let c → 0.

Lemma 2.10 Suppose α < γ < d, ε1 > 0, c ∈ (0, 1), (K , g) ∈ V0 where g is a smooth
function satisfying (2.23). Let є > 0. _en there exists a compact set F and a smooth
function f such that (F , f g) ∈Vγ ,ε1 and dW((K , g), (F , f g)) < є.

Proof We let є′ = є/100. Fix β with α < β < γ. Choose n ≡ n(є) = 1 + ⌈log2
1
є′ ⌉ so

that

(2.24) ∑
n>n

2−n < є′ .

Fix an integer k such that k > d−γ
γ−β .

With these parameterswe consider the functions Fm as constructed in Lemma 2.9.
We let Aє′ be a ûnite є′-net of K, i.e., a ûnite set of points in K such that K is contained
in the union of balls of radius є′ centered at points in Aє′ . We shall show that if η > 0
is chosen small enough and if m ≥ m0(α, β, η,ψ, k) is chosen large enough, then the
choice (H, Fm g) with H = supp(Fm g) ∪ Aє′ will give the desired approximation of
(K , g).

Notation In this proofwe shallwrite B1 ≲ B2 for two nonnegative quantities B1, B2
if B1 ≤ CB2 where C may only depend on α, β, γ, ε1, k, d, and є and on the function
g (so C will not depend on η or m). We shall call such a C an admissible constant.

To show that (H, Fm gλ) ∈ Vγ ,ε1 , we only need to verify (2.4) and (2.5). We post-
pone (2.4) to a later part of the proof and now verify (2.5). By (2.17)

supp(Fm g) ⊂ ⋃
j
Q j ,

where Q j , j = 1, . . . , (2m + 1)d⌊mkβ⌋, are cubes with side length m−k−1. _us H =
supp(Fm g) ∪ Aє′ can be covered by M = (2m + 1)d⌊mkβ⌋ + (#Aє′) cubes of side
length m−k−1. To verify (2.5), it now suõces to show m−k−1 < ε1M−1/γ , which follows
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from 3dmkβ+d + (#A) < ε1γmkγ+γ . Since k > d−γ
γ−β , the last inequality holds provided

that m is large enough.
We need to show that for suõciently large m dW((K , gλ), (H, Fm gλ)) < є. Since

supp(Fm g) ⊂ supp(g) ⊂ K, we have H = supp(Fm g) ∪ Aє′ ⊂ K. _us the Hausdorò
distance of H and K satisûes dK(H,K) ≤ є′.

To handle the other components of dW, we set L = 10nkd and we will use the fact
that, since g is smooth, there exists an admissible constant C > 0 such that

(2.25) ∑
∣r∣∞≥m

∣r∣L ∣ĝ(r)∣ ≤ Cm−(k+2)L

for all m ≥ 1. By the periodicity of Fm , we have

∣ĝ(0) − F̂m g(0)∣ = ∣∑
u/=0
F̂m(−u)ĝ(u)∣ ≤ ∑

∣u∣∞≥m
∣ĝ(u)∣ ≤ Cm−1

and hence ∣ĝ(0) − F̂m g(0)∣ ≤ є′ provided that m is large enough.
For the nonzero Fourier coeõcients we have

∣ĝ(r) − F̂m g(r)∣ = ∣∑
u/=r
F̂m(r − u)ĝ(u)∣

≤ ∑
∣u∣≤∣r∣/2

∣F̂m(r − u)ĝ(u)∣ + ∑
∣u∣>∣r∣/2

u/=r

∣F̂m(r − u)ĝ(u)∣.

By (2.18), this is estimated by

ηCψψ(∣r∣−1)2α/2∣r∣−α/2 ∑
∣u∣≤∣r∣/2

∣ĝ(u)∣ + ηψ(1) ∑
∣u∣>∣r∣/2

∣ĝ(u)∣

≲ (ηψ(∣r∣−1)∣r∣−α/2 + η∣r∣−d) ≲ ηψ(∣r∣−1)∣r∣−α/2 ,

and this is < ψ(∣r∣−1)∣r∣−α/2є′ provided that η > 0 is chosen small enough. With this
choice of η we have proved

sup
r∈Zd/{0}

∣r∣α/2
ψ(∣r∣−1) ∣ĝ(r) − F̂m g(r)∣ < є′ ,

if η is suõciently small and m is suõciently large.
It remains to show that (2.4) holds for µ = Fm gλ, i.e.,

(2.26) ∫
Q
(Fm g)∗n(x) dx ≤ ψ(∣Q∣)∣Q∣nα/d , 1 ≤ n < d/α

and that for d/α ≤ n ≤ n,

(2.27) ∑
i1 , . . . , in

∥(χ(n)i1 g) ∗ ⋅ ⋅ ⋅ ∗ (χ(n)in g) − (χ(n)i1 Fm g) ∗ ⋅ ⋅ ⋅ ∗ (χ(n)in Fm g)∥ Cρn ,ψ
< є′ ,

provided that η is small enough and m is large enough. Notice that by the deûnition
of themetric dW and by (2.24), the corresponding terms for n > n can be ignored.

Proof of (2.26). Following [18], we write Pm(x) = ∑∣r∣∞≤m ĝ(r)e2πi⟨r ,x⟩. By (2.25)
we have, for suõciently large m,

(2.28) ∥g − Pm∥CL ≤ Cm−(k+2)L ≤ 1.

https://doi.org/10.4153/CJM-2016-019-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2016-019-6


298 X. Chen and A. Seeger

We ûrst verify that for every n = 1, . . . , n,

∥g∗n − (Pm)∗n∥CL ≤ m−1 ,(2.29)

∥(Fm g)∗n − (FmPm)∗n∥∞ ≤ m−1 ,(2.30)

provided that m is chosen large enough. To see this we write

g∗n − (Pm)∗n = ((g − Pm) + Pm)∗n − (Pm)∗n

= (g − Pm)∗n +
n−1

∑
ν=1

(n
ν
)(g − Pm)∗(n−ν) ∗ (Pm)∗ν .

_erefore, using (n
ν) =

n
n−ν (

n−1
ν ) for 1 ≤ ν ≤ n − 1 and (2.28),

∥g∗n − (Pm)∗n∥CL ≤ ∥g − Pm∥CL

n−1

∑
ν=0

(n
ν
)∥Pm∥ν

∞

≤ ∥g − Pm∥CL( 1 + ∥Pm∥∞) n−1n ≲ m−2n(2 + ∥g∥∞) n−1 ,

and this gives (2.29) provided that m is large enough.
By (2.16) and the ûrst estimate in (2.28) we have

∥Fm(Pm − g)∥CL ≲ ∥Fm∥CL∥Pm − g∥CL

≲ mkd+(k+1)Lm−(k+2)L ≤ Cmkd−L ≤ 1

for suõciently large m _e same argument as above then gives

∥(FmPm)∗n − (Fm g)∗n∥CL ≤ ∥Fm(Pm − g)∥CLn( 1 + ∥Fm g∥∞) n−1n

≲ mkd−L(1 +mkd∥g∥∞)n−1n ≲ mnkd−L(1 + ∥g∥∞)n−1n,

and this gives (2.30) provided that m is large enough.
As a consequence of Lemma 2.8 (ii) we have

(2.31) (FmPm)∗n = (Fm)∗n(Pm)∗n .

Now for ûxed n < d/α and a cube Q, we have by (2.31) and (2.30)

∫
Q
(Fm g)∗n(x) dx ≤ ∣∫

Q
(FmPm)∗n(x) dx∣

+ ∣∫
Q
((Fm g)∗n(x) − (FmPm)∗n(x)) dx∣

≤ ∣∫
Q
(Fm)∗n(x)(Pm)∗n(x) dx∣ +m−1∣Q∣

≤ ∣∫
Q
(Fm)∗n(x)(Pm)∗n(x) dx∣ + Cm−1ψ(∣Q∣)∣Q∣nα/d

≤ ∣∫
Q
(Fm)∗n(x)(Pm)∗n(x) dx∣ + c

2
ψ(∣Q∣)∣Q∣nα/d

for suõciently largem. _us, in order to ûnish the proof of (2.26), wemust show that

(2.32) ∫
Q
(Fm)∗n(x)(Pm)∗n(x) dx ≤ ( 1 − c

2
)ψ(∣Q∣)∣Q∣nα/d .
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If the side length of Q is ≤ 2/
√

m, then

∣∫
Q
(Fm)∗n(x)(Pm)∗n(x) dx∣ ≤ ∥(Pm)∗n∥∞ ∫

Q
(Fm)∗n(x) dx

≤ (1 + ∥g∗n∥∞)ηψ(∣Q∣)∣Q∣nα/d

≤ (1 − c
2
)ψ(∣Q∣)∣Q∣nα/d ,

where in the last inequality η is chosen suõciently large (the second inequality follows
from (2.19)).

If the side length of Q is > 2/
√

m, then Q can be split into rectangles R of side
lengths between 1/

√
m and 2/

√
m. Writing

aR = ⨏
R
g∗n(x) dx and bR = ⨏

R
(Pm)∗n(x) dx ,

we then have

∥(Pm)∗n − bR∥L∞(R) ≲ m−1/2∥(Pm)∗n∥C 1 ≲ m−1/2

and
∣bR − aR ∣ ≤ ∥g∗n − (Pm)∗n∥∞ ≤ m−1 ,

by (2.29). Now

∣∫
Q
(Fm)∗n(x)(Pm)∗n(x) dx∣

≤ ∣∑
R
∫

R
(Fm)∗n(x)aR dx∣

+ ∣∑
R
∫

R
(Fm)∗n(x)(bR − aR) dx∣

+ ∣∑
R
∫

R
(Fm)∗n(x)(bR − (Pm)∗n(x)) dx∣

≤∑
R
aR(1 + η)∣R∣ + ( 1

m
+ C√

m
)∑

R
∫

R
(Fm)∗n(x) dx

≤ (1 + η)∫
Q

g∗n(x) dx + C′√
m ∫

Q
(Fm)∗n(x) dx ,

where C′ is admissible. By (2.21) and (2.23) the last expression is less than or equal to

(1 + η)(1 − c)ψ(∣Q∣)∣Q∣nα/d + C′√
m

(1 + η)∣Q∣

≤ ((1 − 3
4
c) + C′′√

m
)ψ(∣Q∣)∣Q∣nα/d ≤ (1 − c

2
)ψ(∣Q∣)∣Q∣nα/d

provided that η is small enough and m is large enough.
In either case we have veriûed (2.32), and this concludes the proof of (2.26).

Proof of (2.27). Fix n with d/α ≤ n ≤ n and i = (ı1 , . . . , ın) ∈ (In)n . Write

g j = χ(n)ı j g ,
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for j = 1, . . . , n, and Pj,m(x) = ∑∣r∣∞≤m ĝ j(r)e2πi⟨r ,x⟩. Equation (2.27) reduces to
estimating

∥g1 ∗ ⋅ ⋅ ⋅ ∗ gn − (Fm g1) ∗ ⋅ ⋅ ⋅ ∗ (Fm gn)∥Cρn ,ψ

≤ ∥g1 ∗ ⋅ ⋅ ⋅ ∗ gn − P1,m ∗ ⋅ ⋅ ⋅ ∗ Pn ,m∥Cρn ,ψ

+ ∥P1,m ∗ ⋅ ⋅ ⋅ ∗ Pn ,m − (FmP1,m) ∗ ⋅ ⋅ ⋅ ∗ (FmPn ,m)∥Cρn ,ψ

+ ∥(FmP1,m) ∗ ⋅ ⋅ ⋅ ∗ (FmPn ,m) − (Fm g1) ∗ ⋅ ⋅ ⋅ ∗ (Fm gn)∥Cρn ,ψ .

Arguing as before (cf. (2.25)), we have, for suõciently large m,

∥Pj,m − g j∥CL ≤ Cm−(k+2)L ≤ 1 and ∥Fm(Pm , j − g j)∥CL ≤ Cmkd−L ≤ 1.

Using the continuous embedding CL ↝ Cρn ,ψ , we get, for suõciently large m,

∥g1 ∗ ⋅ ⋅ ⋅ ∗ gn − P1,m ∗ ⋅ ⋅ ⋅ ∗ Pn ,m∥Cρn ,ψ ≤ Cm−(k+2)Ln
n
∏
j=1

(1 + ∥g j∥∞) ≤ m−1

and

∣(FmP1,m) ∗ ⋅ ⋅ ⋅ ∗ (FmPn ,m) − (Fm g1) ∗ ⋅ ⋅ ⋅ ∗ (Fm gn)∥Cρn ,ψ

≤ Cmnkd−Ln
n
∏
j=1

(1 + ∥g j∥∞) ≤ m−1 .

On the other hand, using Lemma 2.8 (ii), again we have

(FmP1,m) ∗ ⋅ ⋅ ⋅ ∗ (FmPn ,m) = (Fm)∗n(P1,m ∗ ⋅ ⋅ ⋅ ∗ Pn ,m).
_us, by (2.20)

∥P1,m ∗ ⋅ ⋅ ⋅ ∗Pn ,m − (FmP1,m) ∗ ⋅ ⋅ ⋅ ∗ (FmPn ,m)∥Cρn ,ψ

= C∥(1 − F∗nm )(P1,m ∗ ⋅ ⋅ ⋅ ∗ Pn ,m)∥Cρn ,ψ

≲ ∥1 − F∗nm ∥Cρn ,ψ∥P1,m ∗ ⋅ ⋅ ⋅ ∗ Pn ,m∥Cρn ,ψ

≲ η∥P1,m ∗ ⋅ ⋅ ⋅ ∗ Pn ,m∥CL ≲ η(1 + ∥g1 ∗ ⋅ ⋅ ⋅ ∗ gn∥CL) ≲ η,
provided that m is suõciently large.
Combining the above estimates, we get

∥g1 ∗ ⋅ ⋅ ⋅ ∗ gn − (Fm g1) ∗ ⋅ ⋅ ⋅ ∗ (Fm gn)∥Cρn ,ψ ≲ m−1 + η.
_is guarantees (2.27) if η is chosen suõciently small and m is chosen suõciently
large. _is completes the proof of Lemma 2.10.

2.5 Conclusion of the Proof of Theorem C

_e result is about measures onRd rather than Td . We use that everymeasure on Td
that is supported on a cube of sidelength < 1 can be identiûed with ameasure that is
supported on a cube of diameter < 1 in Rd . We take ameasure µ as in Corollary 2.4.
A�er multiplying it with a suitable C∞c function, wemay assume that it is supported
on a cube of diameter < 1. For each n we may decompose µ using the partition of
unity (2.1). _e regularity properties (iii) and (iv) in _eorem C follow immediately
from (2.3) and (2.4). _e compact support of µ and the decay property (2.2) on Zd
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imply the decay property in (ii). _is is a standard argument (see [15, p. 252] with
slightly diòerent notation).

2.6 Optimality of the Hölder Continuity

Following the argument in [18], we show that theHölder continuity obtained in _e-
orem C is the best possible.

Proposition 2.11 Let µ be a Borel probabilitymeasure onRd supported on a compact
set ofHausdorò dimension 0 < α < d. Suppose µ∗n ∈ Cλ(Rd), where n ∈ N, n ≥ 2, and
0 ≤ λ <∞. _en λ ≤ nα−d

2 .

Proof Deûne by Eγ(µ) = ∬ ∣x − y∣−γ dµ(x)dµ(y) = c ∫ ∣µ̂(ξ)∣2∣ξ∣γ−ddξ, the γ-di-
mensional energy of µ. Recall from [37, p. 62] that the Hausdorò dimension of E is
equal to the supremumover all γ forwhich there is a probabilitymeasure ν supported
on E with Eγ(ν) <∞. _us it suõces to show that Eγ(µ) is ûnite for γ < (d + 2λ)/n.

Since µ∗n is compactly supported it also belongs to the Besov space B2
λ ,∞ and thus,

by Plancherel, we have, for R > 1, ∫∣ξ∣≈R ∣µ̂(ξ)∣2n dξ ≲ R−2λ . Now let 0 < γ < d. By
Hölder’s inequality,

∫∣ξ∣≈R

∣µ̂(ξ)∣2
∣ξ∣d−γ dξ ≲ Rγ−d(∫

AR

∣µ̂(ξ)∣2ndξ) 1/nRd(1−1/n) ≲ Rγ−d/n−2λ/n .

Letting R = 2 j , j = 0, 1, . . . , we see that Eγ(µ) is ûnite if γ < (d +2λ)/n, and the proof
is complete.

3 Random Sparse Subsets

_e purpose of this section is to prove Proposition 2.5 and, in fact, to establish a better
quantitative version of this proposition.

3.1 Assumptions and Notations

In this section x1 , x2 , . . . will be independent random variables uniformly distributed
on ΓdN . _at is, for any m ∈ N and subsets A1 , . . . ,Am of ΓdN , the probability of the
event that xν ∈ Aν for ν = 1, . . . ,m is equal to N−dm∏m

ν=1 card(Aν ∩ ΓdN). We denote
by F0 the trivial σ-algebra and by F j the σ-algebra generated by the (inverse images)
of the random variables x1 , . . . , x j .

Given randomDiracmasses δxν , ν = 1, . . . ,m, we deûne the random measures µm
and σm by σ0 = µ0 = 0, σm = ∑m

ν=1 δxν , µm = m−1σm , m = 1, 2, . . . .

3.2 A Fourier Decay Estimate

_e Fourier transform µ̂ is deûned on ZdN or, a�er scaling, on ΓdN , and we have

µ̂m(Nu) = 1
m

m
∑
j=1
e−2πiN⟨u ,x j⟩ , u ∈ ΓdN .
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Lemma 3.1 Let h ≥ 1. _e event

(3.1) { max
u∈ΓdN/{0}

∣µ̂m(Nu)∣ ≤ 4 log1/2(8Nd+h)
m1/2 }

has probability at least 1 − N−h .

Proof _e proof is essentially the same as in the classical paper by Erdős and
Rényi [9]. Fix u ∈ ΓdN/{0}, and consider the random variables Xν = e−2πiN⟨u ,xν⟩.
_en Xν , ν = 1, . . . ,m are independent with ∣Xν ∣ ≤ 1 and EX j = 0. _us by Bern-
stein’s inequality (see Corollary A.4) for all t > 0, P(∣µ̂(Nu)∣ ≥ t) ≤ 4e−mt2/4. Setting
t = 2m−1/2 log1/2(4Nd+h), we get P{∣µ̂(Nu)∣ ≥ t} ≤ N−d−h . Allowing u ∈ ΓdN to vary,
we see that P{(3.1) fails} ≤ N−h .

3.3 Regularity of Self-convolutions

We begin with a few elementary observations. Let ∆ j,ℓ = σ∗ℓj − σ∗ℓj−1, so that

(3.2) σ∗ℓm =
m
∑
j=1
∆ j,ℓ .

Lemma 3.2 (i) For j ≥ 1, ∆ j,ℓ is a positivemeasure, and we have for ℓ ≥ 2,

∆ j,ℓ = δℓx j +
ℓ−1

∑
k=1

(ℓ
k
)δ(ℓ−k)x j ∗ σ∗k

j−1(3.3)

= δℓx j +
ℓ−1

∑
k=1

(ℓ
k
) ∑

1≤ν1 , . . . ,νk≤ j−1
δ(ℓ−k)x j+xν1+⋅⋅⋅+xνk

.(3.4)

(ii) Assume that gcd(ℓ!,N) = 1. Let m ≥ 2 and let Q be a cube of sidelength ≥ N−1.
_en for j1 < ⋅ ⋅ ⋅ < jK ,

P{∆ j1 ,ℓ(Q) /= 0, . . . , ∆ jK ,ℓ(Q) /= 0} ≤ (2d+1∣Q∣mℓ−1)K .

In particular, for each u ∈ ΓdN ,

P{∆ j1 ,ℓ({u}) /= 0, . . . , ∆ jK ,ℓ({u}) /= 0} ≤ (2N−dmℓ−1)K .

(iii) Assume that gcd(ℓ!,N) = 1. For j = 0, . . . ,m− 1 let E j be a given event in F j . Let

Yj =
⎧⎪⎪⎨⎪⎪⎩

σ∗ℓj − σ∗ℓj−1 − N−d( jℓ − ( j − 1)ℓ) on E j−1 ,
0 on E∁j−1 .

_en E[Yj ∣F j−1] = 0. Let W0 = 0 and Wj = ∑ j
ν=1 Yν , for j = 1, . . . ,m. _en

{Wj}m
j=0 is amartingale adapted to the ûltration {F j}m

j=0.

Proof Part (i) follows immediately from the binomial formula. For part (ii), note
that by the assumption gcd(ℓ!,N) = 1, the random variables (ℓ − k)x j , 1 ≤ k ≤ ℓ,
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are uniformly distributed. Observe that for any ûxed a, the probability of the event
{(ℓ − k)xd − a ∈ Q} is at most 2d ∣Q∣. _us the probability of the event that

(ℓ − k)xd − a ∈ Q

for some choice of a = xν1 + ⋅ ⋅ ⋅ + xνk , 1 ≤ ν1 , . . . , νk ≤ j − 1, does not exceed

2d ∣Q∣( j − 1)k−1 .

Hence P{∆ j,ℓ(Q) /= 0} ≤ 2d ∣Q∣∑ℓ−1
κ=0 mκ ≤ 2d+1∣Q∣mℓ−1. Now the assertion in part

(ii) follows. _e second assertion in (ii) is proved similarly.
For (iii), clearly {Wj}m

j=0 is adapted to the ûltration {F j}m
j=0. By assumption, the

random variable qx j is uniformly distributed on ΓdN , for 1 ≤ q ≤ ℓ. Given ûxed
x1 , . . . , x j−1, by (3.4),

E[σ∗ℓj ({u}) − σ∗ℓj−1({u})∣x1 , . . . , x j−1]

= N−d
ℓ−1

∑
q=0

(ℓ
q
)( j − 1)q = N−d( jℓ − ( j − 1)ℓ).

Since E j−1 ∈ F j−1, we get E[Yj1E j−1 ∣F j−1] = 0 in this case. On E∁j−1 we have Yj =
0, which also implies E[Yj1E∁j−1

∣F j−1] = 0. Hence E[Yj ∣F j−1] = 0 and this shows
{Wj}m

j=0 is amartingale.

We shall use (a small variant of) an elementary inequality from Körner’s paper
[18, Lemma 11] which is useful for the estimation of sums of independent Bernoulli
variables.

Lemma 3.3 ([18]) Let 0 < p < 1, m ≥ 2 and 2mp ≤ M ≤ m. _en
m
∑
k=M

(m
k
)pk ≤ 2(mp)M

M!
.

In particular, if mp ≤ 1 and if Y1 , . . . ,Ym are independent random variables with

P{Yj = 1} = p and P{Yj = 0} = 1 − p,

then P{∑m
j=1 Yj ≥ M} ≤ 2(mp)M

M! .

Proof Set uk = (m
k )p

k . _en uk+1/uk = m−k
k+1 p ≤ mp

k+1 ≤
1
2 for k ≥ M and thus the

sum is estimated by

∑
k≥M

uk ≤ 2uM ≤ 2(mp)M

M!
.

_e second assertion follows since P{∑m
j=1 Yj ≥ M} = ∑m

k=M P{∑m
j=1 Yj = k} ≤

∑m
k=M uk .

For ℓ = 0, 1, 2, . . . , 0 < ε < d and h ∈ N, deûne recursively positive numbers
M(ℓ, ε, h) by
(3.5) M(0, ε, h) = 1 and M(ℓ, ε, h) = U(ε, h)κ(ℓ, h), ℓ ≥ 1,
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where

U(ε, h) ∶= max{⌊ed+2⌋, ⌈ε−1(2d + h + 1)⌉},(3.6)

κ(ℓ, h) ∶=
ℓ−1

∑
q=0

(ℓ
q
)M(q, d(1 − q/ℓ), h + 1) .(3.7)

_e growth of these constants as functions of ℓ and h is irrelevant for our purposes.
For the sake of completeness we give an upper bound.

Lemma 3.4 Let ℓ ∈ N∪{0}, 0 < ε < d, and h ∈ N. _e numbers deûned in (3.5)–(3.7)
satisfy M(ℓ, ε, h) ≤ ε−1(ed+3ℓ2(h + ℓ))ℓ .

Proof We argue by induction with the case ℓ = 0 being trivial. For the induction
step we use (ℓq) =

ℓ
ℓ−q (

ℓ−1
q ) and estimate

(3.8) κ(ℓ, h) ≤ 1 +
ℓ−1

∑
q=1

ℓ
ℓ − q

(ℓ − 1
q

)(ed+3q2(h + 1 + q))q

d(1 − q
ℓ )

≤ ℓ2
ℓ−1

∑
q=0

(ℓ − 1
q

)(ed+3(ℓ − 1)2(h + ℓ))q

≤ ℓ2( ed+3(ℓ − 1)2(h + ℓ) + 1) ℓ−1 ,

where in the last line we have used (1 + x)1/x ≤ ex for 0 < x < 1. _us

(3.9) κ(ℓ, h) ≤ e1/2ℓ2(ed+3ℓ2(h + ℓ))ℓ−1 .

Now one checks that U(ε, h) ≤ ed+2hε−1 and (3.9) yields for ℓ ≥ 1

M(ℓ, ε, h) ≤ ed+2hε−1κ(ℓ, h) ≤ ε−1(ed+3ℓ2(h + ℓ))ℓ .

Lemma 3.5 Let ℓ ∈ N ∪ {0}, 0 < ε < d, and h ∈ N. Let M(ℓ, ε, h) be as in (3.5). Let
N be an integer such that N > 2ℓ and gcd(N , ℓ!) = 1. Let Em(ℓ, ε, h) be the event that
σ∗ℓm (Q) ≤ M(ℓ, ε, h) holds for all cubes ofmeasure at most m−ℓN−ε , and let E(ℓ, ε, h)
be the intersection of the Em(ℓ, ε, h) where m ≤ N d−ε

ℓ . _en E(ℓ, ε, h) has probability
at least 1 − N−h .

Proof We argue again by induction on ℓ. If ℓ = 0, then σ∗0 = δ0, and the statement
clearly holds with M(0, ε, h) = 1, for ε ≥ 0 and h ∈ N. Assume that the statements
hold for 0, 1, . . . , ℓ − 1; we prove that it also holds for ℓ. Let

F ≡ F(ℓ − 1, h) =
ℓ−1
⋂
q=1
E(q, εq ,ℓ , h + 1), with εq ,ℓ = d( 1 −

q
ℓ
) .

By the induction hypothesis, the event F∁ has probability at most ℓN−h−1 ≤ 1
2N

−h

sincewe assumeN > 2ℓ. Wenowproceed to estimate theprobability of E(ℓ, ε, h)∁∩F.
Fix m ≤ N d−ε

ℓ , and ûx a cube Q, with N−d ≤ ∣Q∣ ≤ N−εm−ℓ . Notice that
d
ℓ
=
d − εq ,ℓ

q
.
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_erefore, if κ(ℓ, h) is as in (3.12), we see, using (3.3), that ∆ j,ℓ(Q) ≤ κ(ℓ, h) holds
on F, for j = 1, . . . ,m. Now let U ≥ 2d+2 be an integer and let AQ

U ,m be the event that

(3.10)
m
∑
j=1
∆ j,ℓ(Q) ≥ Uκ(ℓ, h).

Now by (3.2) and (3.5) the event Em(ℓ, ε, h)∁ is contained in the union over the
AQ

U(ε ,h),m when Q ranges over the cubes with measure at most N−εm−ℓ . Let Q be
the collection of all cubes ofmeasure N−εm−ℓ , that have corners in ΓdN . _en #(Q) ≤
(2N)d . Notice that every cube of measure less than N−εm−ℓ is contained in at most
3d cubes in Q. Hence

(3.11) P(Em(ℓ, ε, h)∁ ∩ F) ≤ (6N)d max
Q∈Q

P(AQ
U(ε ,h),m ∩ F).

Now in order to estimateP(AQ
U ,m∩F),we observe that if (3.10) holds on F, then there

are at least U indices j with ∆ j,ℓ(Q) /= 0. _us we may assume m ≥ U . Now we see
from Lemma 3.2 (ii), that for U ≤ k ≤ m and for any choice of indices 1 ≤ j1 < ⋅ ⋅ ⋅ <
jk ≤ m, P{∆ jν ,ℓ(Q) /= 0, ν = 1, . . . , k} ≤ (2d+1∣Q∣mℓ−1)k . _us

P(AQ
U ,m ∩ F) ≤

m
∑
k=U

(m
k
)(2d+1∣Q∣mℓ−1)k .

Now let p ∶= 2d+1∣Q∣mℓ−1. Since ∣Q∣ < m−ℓ , we have mp ≤ 2d+1. Since we assume
U ≥ 2d+2, we get from Lemma 3.3,

m
∑
k=U

(m
k
)(2d+1∣Q∣mℓ−1) k ≤ 2(mp)U

U !
≤ 2(2d+1N−ε)U

U !
.

_us we get from (3.11)

P(Em(ℓ, ε, h)∁ ∩ F) ≤ (6N)d 2(2d+1N−ε)U(ε ,h)

U(ε, h)! .

It is not diõcult to check that 6d ⋅2(2d+1)U

U ! ≤ 1 for U > ed+2 − 1; this can be veriûed by
taking logarithms and replacing logU with the smaller constant ∫

U−1
1 ln(t) dt. Since

in addition U = U(ε, h) ≥ ⌈ 2d+h+1
ε ⌉, we then get Nd−εU ≤ 1

2N
−d−h and thus

P(Em(ℓ, ε, h)∁ ∩ F) ≤ 1
2
N−h−d .

We have already remarked that P(F∁) < 1
2N

−h . _us,

P(E(ℓ, ε, h)∁) ≤ P(F∁) + ∑
m≤N(d−ε)/ℓ

P(Em(ℓ, ε, h)∁ ∩ F) ≤ N−h .

_is completes the proof.

Lemma 3.6 Let ℓ ∈ N, 0 < β ≤ d/ℓ, and h ∈ N. Let N be an integer such that
N > max{2ℓ, ee e} and gcd(N , ℓ!) = 1. Let Em(ℓ, β, h) denote the event that

σ∗ℓm (Q) ≤ (βℓ)−1( 10d+1ℓ2(ℓ + h)) ℓ logN
log logN
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holds for all cubes of measure at most N−βℓ , and let E(ℓ, β, h) = ⋂m≤N β Em(ℓ, β, h).
_en E(ℓ, β, h) has probability at least 1 − N−h .

Proof Let

(3.12) κ̃(ℓ, β, h) ∶=
ℓ−1

∑
q=0

(ℓ
q
)M(q, β(ℓ − q), h + 1)

and let V ≥ e2d+8h be a positive integer. Let Ẽm(ℓ, h,V) denote the event that

σ∗ℓm (Q) ≤ κ̃(ℓ, β, h)V logN
log logN

holds true for all cubeswithmeasure atmost N−ℓβ . We shall show that for suõciently
large V , the complement of this event has small probability.

We condition on the event

F̃ =
ℓ−1
⋂
q=1

E(q, β(ℓ − q), h + 1)

= {σ∗qm (Q) ≤ M(q, β(ℓ − q), h + 1)

∀Q with ∣Q∣ ≤ m−qN−β(ℓ−q) , 1 ≤ m ≤ N
d−β(ℓ−q)

q } .

By Lemma 3.5, P(F̃∁) ≤ ℓN−h−1 ≤ 1
2N

−h .
We shall now estimate P(Ẽm(ℓ, h,V)∁ ∩ F̃). _e assumptions m ≤ N β , ∣Q∣ ≤

N−ℓβ with β ≤ d/ℓ imply for q ≤ ℓ − 1 that m ≤ N
d−β(ℓ−q)

q (since d − βℓ ≥ 0) and
∣Q∣ ≤ m−qN−(ℓ−q)β . _us we can use (3.3) to see that ∆ j,ℓ(Q) ≤ κ̃(ℓ, β, h) on F̃, for
j = 1, . . . ,m.

Let ÃQ
V ,m be the event that

(3.13)
m
∑
j=1
∆ j,ℓ(Q) ≥ VN κ̃(ℓ, β, h), where VN = ⌊V logN

log logN
⌋ .

Let ÃV ,m be the event that (3.13) holds for some cube with measure at most N−ℓβ .
Arguing as in the proof of Lemma 3.5 we ûnd that

P(ÃV ,m ∩ F̃) ≤ 2 ⋅ (6N)d 2(d+1)VN

VN !
.

We need to verify that

(3.14) 2 ⋅ (6N)d 2(d+1)VN

VN !
≤ N−d−1−h

for V ≥ e2d+8h and N > ee e . We take logarithms and replace logVN ! with the lower
bound ∫

VN−1
1 log t dt = (VN − 1) log(VN − 1) − VN + 2. _en (3.14) follows from

(3.15) log 2 + d log6 + VN(1 + (d + 1) log 2) − 2 − (VN − 1) log(VN − 1)
< −(h + 1 + d) logN .
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Since, by assumption, V ≥ e2d+10 and N > ee e , crude estimates show that (3.15) is
implied by

(3.16) VN

2
log(VN − 1) ≥ (d + h + 1) logN .

For N ≥ ee
e
we have log log logN ≤ 1

2 log logN and therefore log(VN − 1) ≥
1
2 log logN . _us (3.16) is implied by V ≥ 4(h + 2 + d), which holds since we as-
sume V ≥ e2d+8h and N ≥ ee e . _us (3.14) holds. We thus get P(Ẽm(ℓ, h,V)∁ ∩ F̃) ≲
N−d−h−1 and hence

P( ⋃
m≤N β

Ẽm(ℓ, h,V)∁) ≲ P(F̃∁) + ∑
m≤N β

P(Ẽm(ℓ, h,V)∁ ∩ F̃)

≲ 1
2N

−h + N β−d−h−1 ≤ N−h .
It remains to show that

(3.17) V κ̃(ℓ, β, h) ≤ 1
βℓ

( 10d+1ℓ2(ℓ + h)) ℓ

for V = e2d+10. For κ̃(ℓ, β, h) we have, by Lemma 3.4,

κ̃(ℓ, β, h) ≤ 1 +
ℓ−1

∑
q=1

ℓ
ℓ − q

(ℓ − 1
q

)(ed+3q2(h + 1 + q))q

β(ℓ − q)

and the right-hand side is estimated by (βℓ)−1κ∗(ℓ, h), where κ∗(ℓ, h) is the expres-
sion in line (3.8). _e estimation that follows in the proof of Lemma 3.4 yields

κ̃(ℓ, β, h) ≤ e1/2 ℓ
β
(ed+3ℓ2(h + ℓ))ℓ−1

and thus clearly (3.17) follows.

Lemma 3.7 Let ℓ ∈ N, h ∈ N, and B ≥ 1. _ere exist positive constants N0(B, ℓ) and
M0(B, ℓ, h, d) so that for N ≥ N0(ℓ, B), the event

max
m≤(BNd log N)1/ℓ

max
u∈ΓdN

σ∗ℓm ({u}) ≤ M0(ℓ, B, h, d) logN

has probability at least 1 − N−h .

Proof If ℓ ≥ 2, wemay assume that

(3.18) B logN ≤ N
d

2(ℓ−1) for N ≥ N0(ℓ, B).
Let

κ̂(ℓ, h) ∶=
ℓ−1

∑
q=0

(ℓ
q
)M(q, d

2
( 1 − q

ℓ
) , h + 1) .

and let
(3.19) V ≥ 2d + h + 1 + 20B.

Let Êm(ℓ, h,V) denote the event that σ∗ℓm ({u}) ≤ κ̂(ℓ, h)V logN holds true for all
u ∈ ΓdN . We condition on the event F̂ = ⋂ℓ−1

q=1 E(q, d2 (1 −
q
ℓ ), h + 1), again with the sets
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on the right-hand side deûned as in the statement of Lemma 3.5. _en the event F̂∁
has probability at most ℓN−h−1 ≤ 1

2N
−h .

It remains to estimate∑m≤(BNd log N)1/ℓ P(Êm(ℓ, h,V)∁ ∩ F̂). If we apply the con-
dition E(q, d2 (1 −

q
ℓ ), h + 1) only for cubes ofmeasure N−d , then we see that

σ∗qm ({u}) ≤ M(q, d
2
( 1 − q

ℓ
) , h + 1) , m ≤ N

d
2q +

d
2ℓ , 1 ≤ q ≤ ℓ − 1.

In order to apply it for all m ≤ (BNd logN)1/ℓ , we must have (BNd logN)1/ℓ ≤
N

d
2q +

d
2ℓ which is implied by (3.18).

By (3.3) we have ∆ j,ℓ({u}) ≤ κ̂(ℓ, h) on F̂, for j = 1, . . . ,m. Let Âu
V,m be the event

that

(3.20) σ∗ℓm ({u}) ≡
m
∑
j=1
∆ j,ℓ({u}) ≥ VN κ̂(ℓ, h), where VN = ⌊V logN⌋,

and let ÂV,m be the event that (3.20) holds for all u ∈ ΓdN .
Now we estimate Âu

V,m on F̂. Notice that if (3.20) holds on F̂, there are at least VN
indices j so that ∆ j,ℓ({u}) /= 0 (and we may assume m ≥ VN ). We argue as in the
proof of Lemma 3.5 using Lemma 3.2 (ii) to see that

P(Âu
V,m ∩ F̂) ≤

m
∑
k=V

(m
k
)(2N−dmℓ−1)k .

In order to apply Lemma 3.3 we must have VN ≥ 2mp with p = 2N−dmℓ−1, and this
is certainly satisûed if V ≥ 8B. Under this condition we thus get

P(Âu
V,m ∩ F̂) ≤ 2(2N−dmℓ)VN

VN !
≤ 2(2B logN)VN

VN !
.

We use the inequality

(3.21) Tn

n!
≤ e−n , for T ≥ 1 and n ≥ e2T .

To verify this, one takes logarithms and uses log(n!) ≥ n log n − n + 1. _us the
inequality follows from n(logT − log n) ≤ −2n which is true for n ≥ e2T .

We apply (3.21) with T = 2B logN and n = VN . Note that by the assumption (3.19)
we get VN ≥ e2T . _erefore

2(2B logN)VN

VN !
≤ 2e−VN ≤ 2e1−V log N ≤ N−(2d+h+1+10B) .

_us

P( ⋃
m≤(BNd log N)1/ℓ

Êm(ℓ, h,V)∁) ≤ P(F̂∁) + ∑
m≤(BNd log N)1/ℓ

∑
u∈ΓdN

P(Âu
V,m ∩ F̂)

≤ 1
2
N−h + (BNd logN)1/ℓNdN−10BN−2d−h−1

≤ N−h

and we get the assertion of the lemma.
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Remark It is also possible to give a proof of Lemma 3.7 based on the second version
ofHoeòding’s inequality (A.2) in the appendix (cf. [7]).

_e following proposition can be seen as a discrete analog to _eorem C (iv).

Proposition 3.8 Given integers κ ≥ 1, ℓ ≥ κ + 1 and h ≥ 1, there exists Nκ(ℓ, h) ≥ 1
andMκ(ℓ, h, d) > 0 such that for all N ≥ Nκ(ℓ, h) with gcd(ℓ!,N) = 1, the event

(3.22) max
m≤(Nd log N)

1
ℓ−κ

max
u∈ΓdN

∣σ∗ℓm ({u}) −mℓN−d ∣
(mℓN−d)1/2 ≤ Mκ(ℓ, h, d)(logN)1+ κ

2

has probability at least 1 − N−h .

Proof We prove this by induction on κ.
_e case κ = 1. Let B0 ≥ d + h + 1, suõciently large. We ûrst remark that for mℓ ≤
B0Nd logN , inequality (3.22) is implied by Lemma 3.7, provided that N is suõciently
large. We thus may assume that

(3.23) m ≥ (B0Nd logN)1/ℓ .

Following [18], we will treat the telescopic sums

σ ℓ
m({u}) −mℓN−d =

m
∑
j=1

σ∗ℓj − σ∗ℓj−1 − N−d( jℓ − ( j − 1)ℓ)

as a sum ofmartingale diòerences with respect to the ûltration of σ-algebras F j , with
F j generated by the random variables x1 , . . . , x j ; see Lemma 3.2 (iii).
By Lemma 3.7, there is a constant M0 = M0(ℓ, B0 , h, d) so that

P( max
1≤q≤ℓ−1

max
1≤ j≤(B0Nd log N)1/q

max
u∈ΓdN

σ∗qj ({u}) ≤ M0 logN) ≥ 1 − N−2(d+h+1) ,

provided that N is large enough. Note that

(B0Nd logN)1/ℓ ≤ min
1≤q≤ℓ−1

(B0Nd logN)1/q ,

provided that N is large enough. Let E j−1 denote the event

(3.24) E j−1 = {σ∗qj−1({u}) ≤ M0 logN for 1 ≤ q ≤ ℓ − 1 and all u ∈ ΓdN} .

_en P(⋃1≤ j≤(Nd log N)
1

ℓ−1
E∁j ) ≤ N−2(d+h+1). Deûne for ûxed u ∈ ΓdN

Yj ≡ Yj,u ∶=
⎧⎪⎪⎨⎪⎪⎩

σ∗ℓj − σ∗ℓj−1 − N−d( jℓ − ( j − 1)ℓ) on E j−1 ,
0 on E∁j−1 .

We shall apply Lemma 3.2 (iii) to the martingale {Wj}m
j=0 with W0 = 0 andWj =

∑ j
ν=1 Yν for j ≥ 1. We prepare for an application of Hoeòding’s inequality (Lemma

A.1) and estimate the conditional expectation of eλYj given ûxed x1 , . . . , x j−1.

Claim: For ∣λ∣ ≤ (2ℓM0 logN)−1,

(3.25) E[eλYj ∣ x1 , . . . , x j−1] ≤ exp (3mℓ−1N−d(2ℓM0)2(logN)2λ2) .
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Proof of (3.25). Given (x1 , . . . , x j−1), if inequality (3.24) does not hold, then we have
Yj = 0 and thus E[eλYj ∣x1 , . . . , x j−1] = 1. _us in this case (3.25) holds trivially. We
thus need to bound (3.25) on E j−1. First observe

N−d( jℓ − ( j − 1)ℓ) ≤ ℓ jℓ−1N−d ≤ ℓmℓ−1N−d ≤ ℓ logN

by assumption. By (3.3) and (3.24),

σ∗ℓj ({u}) − σ∗ℓj−1({u}) ≤
ℓ−1

∑
k=0

(ℓ
k
)M0 logN ≤ 2ℓM0 logN .

Hence we get ∣Yj ∣ ≤ 2ℓM0 logN . On the other hand, writing Z j = ∆ j,ℓ({u}) =
σ∗ℓj ({u}) − σ∗ℓj−1({u}), we have, by (3.4),

P(Z j /= 0∣x1 , . . . , x j−1) ≤ N−d
ℓ−1

∑
k=0

( j − 1)k ≤ 2mℓ−1N−d .

We use these observations to estimate, for 0 < ∣λ∣ ≤ (2ℓM0 logN)−1, the termE[eλYj],
which in the following calculation is an abbreviation for the expectation conditional
on x1 , . . . , x j−1. Since the expectation of Yj with respect to x j is zero, we obtain

E[eλYj] =
∞
∑
k=0

λkE[Y k
j ]

k!
= 1 +

∞
∑
k=2

λkE[Y k
j ]

k!

= 1 + P(Z j = 0)
∞
∑
k=2

∣λ∣kE[ ∣Yj ∣k ∣ Z j = 0]
k!

+ P(Z j /= 0)
∞
∑
k=2

∣λ∣kE[ ∣Yj ∣k ∣ Z j /= 0]
k!

.

We have mℓ−1N−d ≤ logN and thus
∞
∑
k=2

∣λ∣kE[ ∣Yj ∣k ∣ Z j = 0]
k!

≤
∞
∑
k=2

(∣λ∣ℓmℓ−1N−d)k

k!

≤ (λℓmℓ−1N−d)2
∞
∑
k=2

∣λℓ logN ∣k
k!

≤ (λℓmℓ−1N−d)2 .

Also

P(Z j /= 0)
∞
∑
k=2

∣λ∣kE[ ∣Yj ∣k ∣ Z j /= 0]
k!

≤ P(Z j /= 0)
∞
∑
k=2

∣λ2ℓM0 logN ∣k
k!

≤ 2mℓ−1N−d(λ2ℓM0 logN)2 .

Combining the two estimates we get

E[eλYj ∣ x1 , . . . , x j−1] ≤ 1 + 3mℓ−1N−d(2ℓM0 logN)2

≤ exp(3mℓ−1N−d(2ℓM0 logN)2),

thus proving (3.25).
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We now apply Hoeòding’s inequality (cf. (A.1)) with the parameters

a2
j = 6mℓ−1N−d(2ℓM0 logN)2 ,

A =
m
∑
j=1
a2

j = 6mℓN−d(2ℓM0 logN)2 ,

δ = (2ℓM0 logN)−1 ,

t = 2
√
A(d + h + 1) logN = M1(mℓN−d)1/2(logN)3/2 ,

where M1 = M02ℓ
√

24(d + h + 1). For (A.1) to hold, wemust have t ≤ Aδ which one
checks to be equivalent with (d + h + 1) logN ≤ 3

2m
ℓN−d , and thus valid by (3.23).

_us, by (A.1),

P( ∣
m
∑
j=1

Yj,u ∣ ≥ M1(mℓN−d)1/2(logN)3/2) ≤ 2 exp(−t2/2A)

= 2 exp(−2(d + h + 1) logN)
= 2N−2(d+h+1) .

Allowing u ∈ ΓdN and m ≤ (Nd logN) 1
ℓ−1 to vary, we see that

P(max
u∈ΓdN

max
m≤(Nd log N)

1
ℓ−1

∣∑m
j=1 Yj,u ∣

(mℓN−d)1/2 ≥ M1(logN)3/2)

≤ 2N−d−2h−2Nd(Nd logN) 1
ℓ−1 ≤ N−2h−1

if N is large enough. Now σ∗ℓm ({u})−mℓN−d −∑m
j−1 Yj,u = 0 on⋂1≤ j≤m E j−1 and thus

P(max
u∈ΓdN

max
m≤(Nd log N)

1
ℓ−1

∣σ∗ℓm ({u} −mℓN−d −
m
∑
j=1

Yj,u ∣ /= 0)

≤ ∑
1≤ j−1≤(Nd log N)

1
ℓ−1

P(E∁j−1) ≤ (Nd logN) 1
ℓ−1 N−2(d+h+1) ≤ N−2h−1

if N is large enough. _is establishes the assertion for κ = 1.

_e induction step. We now assume κ ≥ 2, ℓ ≥ κ + 1, and that the assertion holds for
1 ≤ κ′ < κ. Let h ≥ 1 and ûx j with 1 ≤ j ≤ (Nd logN) 1

ℓ−κ .
Deûne the event E j−1 = E j−1(ℓ, κ − 1,N) by the following three conditions:
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max
u∈ΓdN

σ∗qj−1({u}) ≤ C logN for 1 ≤ q ≤ ℓ − κ.(3.26)

max
u∈ΓdN

σ∗qj−1({u}) ≤ C logN(3.27)

for those q with ℓ − κ + 1 ≤ q ≤ ℓ − 1, and j − 1 ≤ (Nd logN)1/q .

max
u∈ΓdN

∣σ∗qj−1({u}) −
( j − 1)q

Nd ∣ ≤ C( ( j − 1)q

Nd )
1/2

(logN)1+ κ′
2(3.28)

for those q, κ′ with κ′ < κ, q ≤ ℓ,

(Nd logN)
1

q−κ′+1 ≤ j − 1 ≤ (Nd logN)
1

q−κ′ .

_en by Lemma 3.7 and by the induction hypothesis, there exist Nκ−1 = Nκ−1(ℓ) and
C = Cκ−1(ℓ, h, d) ≥ 1 so that for all N ≥ Nκ−1, the event E j−1 has probability at least
1 − N−2(h+d+1). We deûne

Υj ≡ Υj,u ∶=
⎧⎪⎪⎨⎪⎪⎩

σ∗ℓj ({u}) − σ∗ℓj−1({u}) − N−d( jℓ − ( j − 1)ℓ) on E j−1 ,
0 on E∁j−1

and claim that

(3.29) ∣Υj,u ∣ ≤ C2ℓ+2( mℓ−1

Nd )
1/2

(logN) κ+1
2 .

To see (3.29) we decompose using (3.3)

σ∗ℓj − σ∗ℓj−1 −
jℓ − ( j − 1)ℓ

Nd =
ℓ−κ
∑
q=0

(ℓ
q
)δ(ℓ−q)x j ∗ σ∗qj−1 −

ℓ−κ
∑
q=0

(ℓ
q
)( j − 1)q

Nd

+
ℓ−1

∑
q=ℓ−κ+1

(ℓ
q
)δ(ℓ−q)x j ∗ (σ∗qj−1 −

( j − 1)q

Nd ) .

Now we have m ≤ (Nd logN) 1
ℓ−κ and thus ∑ℓ−κ

q=0 (ℓq)
( j−1)q

Nd ≤ 2ℓmℓN−d ≤ 2ℓ logN .
On E∁j−1 we have by (3.26) ∑ℓ−κ

q=0 (ℓq)δ(ℓ−q)x j ∗ σ∗qj−1({u}) ≤ 2ℓC logN . If ℓ − κ + 1 ≤
q ≤ ℓ − 1, each j with j − 1 ≤ (Nd logN) 1

ℓ−κ satisûes either ( j − 1) ≤ (Nd logN)1/q or
(Nd logN)

1
q−κ′+1 < j − 1 ≤ (Nd logN)

1
q−κ′ for some κ′ with 1 ≤ κ′ < κ. If

( j − 1) ≤ (Nd logN)1/q ,

we use (3.27) to bound ∣σ∗qj−1{u} −
( j−1)q

Nd ∣ by (C + 1) logN . If

(Nd logN)
1

q−κ′+1 < j − 1 ≤ (Nd logN)
1

q−κ′ ,

we use (3.28) to bound ∣σ∗qj−1{u}−
( j−1)q

Nd ∣ by C(( j−1)qN−d)1/2(logN)1+κ′/2 and hence
by C(mℓ−1Nd)1/2(logN) κ+1

2 . Now sum and combine everything to get (3.29).
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Now given (3.29) we can apply the Azuma–Hoeòding inequality (Corollary A.3)
with

a j = 2ℓ+2C( mℓ−1

Nd )
1/2

(logN) κ+1
2 ,

A =
m
∑
j=1
a2

j = (2ℓ+2C)2mℓN−d(logN)κ+1 ,

t =
√

2A(2d + 2h + 2) logN = Mκ(mℓN−d)1/2(logN)1+ κ
2

with Mκ(ℓ, h, d) = (2d + 2h + 2)1/22ℓ+2Cκ−1(ℓ, h, d). We get

P( ∣
m
∑
j=1

Υj,u ∣ ≥ Mκ(mℓN−d)1/2(logN)1+ κ
2 )

≤ 2 exp(−t2/2A) = 2 exp(−2(d + h + 1) logN) = 2N−2(d+h+1) .

To conclude we argue as in the beginning of the induction. Allowing u ∈ ΓdN and
m ≤ (Nd logN) 1

ℓ−κ to vary, we see that

P(max
u∈ΓdN

max
m≤(Nd log N)

1
ℓ−κ

∣ ∑m
j=1 Yj,u ∣

(mℓN−d)1/2 ≥ Mκ(logN)1+ κ
2 )

≤ 2N−2d−2h−2Nd(Nd logN) 1
ℓ−κ ≤ N−2h−1

if N is large enough. Moreover

P(max
u∈ΓdN

max
m≤(Nd log N)

1
ℓ−κ

∣σ∗ℓ({u}) − mℓ

Nd ∣ ≥ Mκ(logN)1+ κ
2 )

≤ ℓN−2h−1 + ∑
1≤ j≤(Nd log N)

1
ℓ−κ

P(E∁j−1) ≤ N−h

if N ≥ Nκ(ℓ) is large enough.

Proof of Proposition 2.5 Let P = m = ⌊N β⌋, with N large. _en the inequalities for
σP and P−1σP in Lemma 3.1, Lemma 3.6, and Proposition 3.8 hold with positive (and
high) probability. Proposition 2.5 is an immediate consequence.

4 Fourier Restriction and Multiplier Estimates

Proof of_eorem A _e restriction estimate is equivalent with the bound

(4.1) ∥ĝµ∥Lp′(Rd) ≲ ∥g∥L2(µ) .

If µ∗n ∈ L∞(Rd), then (4.1) for p = 2n
2n−1 follows from a special case of an inequality

in [6], namely ∥ĝµ∥2n
2n ≲ ∥µ∗n∥∞∥g∥2n

L2(µ). In conjunctionwith_eoremC this proves
_eorem A.
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4.1 Multipliers of Bochner–Riesz Type

For p ≤ q ≤ 2 we formulate Lp → Lq versions of the multiplier _eorem B stated in
the introduction. _emain result is the following.

_eorem 4.1 Let 1 ≤ p ≤ q ≤ 2, and let N > d(1/q − 1/2) be an integer. Let µ be a
Borel probabilitymeasure onRd , and assume that the Fourier restriction theoremholds:

(4.2) sup
∥ f ∥p≤1

(∫ ∣ f̂ ∣2 dµ)
1/2

≤ Ap <∞.

For r ≤ 1, let

(4.3) ϖ(r) = sup
x∈Rd

µ(B(x , r)),

and let ηr ∈ C∞ be supported in {ξ ∶ r/4 ≤ ∣ξ∣ ≤ r} and satisfy the diòerential inequal-
ities r∣β∣∥∂βηr∥∞ ≤ 1 for all multiindices β with ∣β∣ ≤ N. Let h = ηr ∗ µ. _en for
all f ∈ Lp(Rd), ∥F−1[h f̂ ]∥q ≲ rd−

d
q Ap(ϖ(r))1/2∥ f ∥p , where the implicit constant is

independent of r and η.

Proof _e proof is an adaptation of the argument by Feòerman and Stein [10]. Let
Φ ∈ C∞(Rd) supported in {x , ∣x∣ ≤ 1} so that Φ(x) = 1 for ∣x∣ ≤ 1/2. Let

Φ0,r(x) = Φ(rx) and Φn ,r(x) = Φ(2−nrx) −Φ(2−n+1rx), n ≥ 1.

_en we decompose h = ∑n≥0 hn , where F−1[hn](x) = F−1[h](x)Φn ,r(x).
We ûrst examine the L∞ norm of hn = h ∗ Φ̂n ,r . Observe by the support property

of ηr and ∥ηr∥∞ ≤ 1 that ∣h(ξ)∣ ≤ µ(B(ξ, r)) ≤ ϖ(r). Moreover,

∣hn(ξ)∣ ≤ ϖ(r)∫ ∣Φ̂n ,r(y)∣ dy ≲ ϖ(r)

since the L1 normof Φ̂n ,r is uniformly bounded in n and r. For n ≥ 1, the last estimate
can be improved, since then Φn ,r vanishes near 0 and therefore all moments of Φ̂n ,r
vanish. _is allows us to write

hn(ξ) = ∫ Φ̂n ,r(y)∫ [ηr(ξ −w − y) −
N−1

∑
j=0

1
j!
(⟨y,∇⟩) jη(ξ −w)] dµ(w) dy

= ∫
1

0

(1 − s)N−1

(N − 1)! ∫ Φ̂n ,r(y)∫ (⟨y,∇⟩)Nηr(ξ − sy −w) dµ(w) dy ds.

Assuming N1 > N + d, this gives

∣hn(ξ)∣ ≤ C(N1)ϖ(r)∫ ( ∣y∣
r
) N (2n/r)d

(1 + 2n ∣y∣/r)N1
dy

and then

(4.4) ∥hn∥∞ ≤ CN2−nNϖ(r).
Since F−1[hn] is supported on a ball of radius 2nr−1, we get the estimate

(4.5) ∥F−1[hn] ∗ f ∥q ≲ (2nr−1)d(
1
q −

1
2 )∥F−1[hn] ∗ f ∥2 .
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To see this, one decomposes f = ∑Q fQ ,n , where the cubes Q form a grid of cubes
of sidelength 2n/r with fQ supported in Q, and F−1[hn] ∗ f supported in the cor-
responding double cube. In view of this support property, ∥∑Q F−1[hn] ∗ f ∥q ≤
Cd(∑Q ∥F−1[hn] ∗ f ∥q

q)1/q and (4.5) follows by Hölder’s inequality.
Next, by Plancherel’s theorem,

∥F−1[hn] ∗ f ∥2
2 = ∥hn f̂ ∥2

2 ≤ ∥hn∥∞ ∫ ∣ f̂ (ξ)∣2∣hn(ξ)∣dξ

and

∫ ∣ f̂ (ξ)∣2∣hn(ξ)∣ dξ ≤ ∫ ∣ f̂ (ξ)∣2 ∫ ∣ηr ∗ Φ̂n ,r(ξ −w)∣ dµ(w)dξ

= ∫ ∣ηr ∗ Φ̂n ,r(ξ)∣∫ ∣ f̂ (ξ +w)∣2dµ(w) dξ

≤ A2
p∥ηr ∗ Φ̂n ,r∥1∥ f ∥2

p ,

where for the last inequality we have applied the assumed Fourier restriction inequal-
ity to the function f e−i⟨w , ⋅ ⟩.

Now ∥ηr ∗ Φ̂n ,r∥1 ≲ ∥ηr∥1 ≲ rd and for n ≥ 1, we also get (using Taylor’s theorem
as above) ∥ηr ∗ Φ̂n ,r∥1 ≤ ∫ ∥⟨y,∇⟩Nη∥1∣Φ̂n ,r(y)∣dy ≲ 2−Nnrd . _e above estimates
yield

∥F−1[hn] ∗ f ∥2 ≲ ∥mn∥1/2
∞ 2−nN/2rd/2Ap∥ f ∥p ≲ 2−nN rd/2

√
ϖ(r)Ap∥ f ∥p ,

by (4.4). We combine this with (4.5) to get

∥F−1[hn] ∗ f ∥q ≲ 2−n(N−d( 1
q −

1
2 ))rd−d/q

√
ϖ(r)Ap∥ f ∥p ,

and ûnish by summing in n.

As a corollarywe get one direction of the statement in_eoremB for themultiplier
mλ as in (1.3)

Corollary 4.2 Let µ be a Borel probabilitymeasure onRd , ϖ as in (4.3), and assume
that ϖ(r) ≤ Cεrα−ε for all ε > 0. Let χ ∈ C∞c (Rd) and deûne, for λ > 0,

mλ(ξ) = ∫
Rd
χ(ξ − η)∣ξ − η∣λ−αdµ(η).

Assume that 1 ≤ p ≤ q ≤ 2 and that (4.2) holds. _en the inequality

(4.6) ∥F−1[mλ f̂ ]∥q ≲ ∥ f ∥p

holds for λ > d( 1
q −

1
2 ) −

d−α
2 . If, in addition, ∫

1
0 [t−αϖ(t)]1/2 d tt <∞, then (4.6) holds

for λ ≥ d( 1
q −

1
2 ) −

d−α
2 .

Proof Decompose χ(ξ)∣ξ∣λ−α = ∑∞
j=0 2− j(λ−α)η j(ξ) where (for a suitable constant

CN ) the function C−1
N η j satisûes the assumption of_eorem 4.1 with r = 2− j . _us

∥2− j(λ−α)η j ∗ µ∥Mq
p
≲ 2− j(λ−d( 1

q −
1
2 )+

d−α
2 )√2− jαϖ(2− j).

_e corollary follows.
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We now discuss the necessity of the condition on λ. Onemay test the convolution
operator on a Schwartz function whose Fourier transform equals 1 on the (compact)
support of mλ . _erefore, the condition mλ ∈ Mq

p implies F−1[mλ] ∈ Lq .

Lemma 4.3 Let µ be a Borel measure supported on a set of Hausdorò dimension α
and assume that ∣µ̂(x)∣ ≤ Cγ(1 + ∣x∣)−γ/2 for every γ < α. Let λ > α − d, mλ be as in
(1.3), and χ ∈ C∞c with χ̂ nonnegative and χ̂(0) > 0. Let Kλ = F−1[mλ], 1 ≤ q ≤ 2, and
assume Kλ ∈ Lq . _en λ ≥ d( 1

q −
1
2 ) −

d−α
2 .

Proof We argue as in Mockenhaupt [25]. _e positivity conditions on χ and for-
mulas for fractional integrals imply that for γ < α there exist c > 0, cγ > 0, such
that for ∣x∣ ≥ 1, ∣Kλ(x)∣ ≥ c∣x∣α−λ−d ∣µ̂(x)∣ ≥ cγ ∣µ̂(x)∣1+

2(λ+d−α)
γ . _e second inequal-

ity follows by the assumption on µ̂ and λ > α − d. _e displayed inequality and
the condition Kλ ∈ Lq implies µ̂ ∈ Lr , for r > q(1 + 2(λ + d − α)α−1). It was
shown in [28] that µ̂ ∈ Lr implies r ≥ 2d/α; indeed this follows from the fact that
dimH(supp µ) = α implies that the energy integral Iβ(µ) is inûnite for β > α, and
Hölder’s inequality. We now have the condition 2d

α ≤ (1+ 2(λ+d−α)
γ )q,which is equiv-

alent with λ ≥ d( 1
q −

1
2 ) −

d−α
2 − (α − γ)( d

αq −
1
2 ). _is holds for all γ < α and the

assertion follows.

4.2 Failure of Ahlfors–David Regularity

Before closing this section,we note that themeasures forwhich the endpoint L 2d
2d−α →

L2(µ) restriction estimate hold cannot be Ahlfors–David regular. _is can be seen as
a consequence of a result of Strichartz [32]. For the convenience of the readerwe give
a short direct proof. We remark that some related results also appear in the recent
thesis by Senthil Raani [29].

Proposition 4.4 Let µ be a Borel probability measure supported on a compact set
E ⊂ Rd and for ρ ≥ 1, let

Bρ(µ) = (∫
ρ≤∣ξ∣≤2ρ

∣µ̂(ξ)∣ 2dα dξ)
α
2d .

Suppose that there exist 0 < α < d and a constant c > 0 such that µ(B(x , r)) ≥ crα for
all x ∈ E and 0 < r < 1. _en
(i) lim supρ→∞Bρ(µ) > 0.
(ii) F does not extend to a bounded operator from L 2d

2d−α (Rd) to L2(µ).

Proof Let χ be a nonnegative C∞ function so that χ(x) = 1 for ∣x∣ ≤ 1 and χ(x) = 0
for ∣x∣ ≥ 2. Let R ≫ 1 and observe that, by assumption,

cR−α ≤ ∫ µ(B(x , R−1)) dµ(x) ≤∬ χ(R(x − y)) dµ(y)dµ(x)

= ⟨µ̃ ∗ µ, χ(R⋅)⟩ = ∫ ∣µ̂(ξ)∣2R−d χ̂(R−1ξ) dξ.
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And therefore, Rd−α ≤ CN ∫ ∣µ̂(ξ)∣2(1 + R−1∣ξ∣)−N dξ. Let A0 = B(0, 1) and A j =
B(0, 2 j) ∖ B(0, 2 j−1) for j ≥ 1. _en

Rd−α ≤ CN(∫
A0

∣µ̂(ξ)∣2 dξ +∑
j≥1

min{1, (2 j−1R−1)−N}∫
A j

∣µ̂(ξ)∣2 dξ)

≤ C′N( 1 +∑
j≥1

min{1, (2 jR−1)−N}2 j(d−α)B2 j(µ)2) ,(4.7)

by Hölder’s inequality.
Now in order to prove (i), we argue by contradiction and assume that (i) does not

hold, i.e., limρ→∞Bρ(µ) = 0. Since µ is compactly supported, the expressionsBρ(µ)
are all ûnite, and by our assumption it follows that supρ Bρ(µ) ≤ B <∞. We use (4.7)
for some N > d − α and obtain for R ≥ 1

Rd−α ≤ Cd ,α( 1 + B2R
d−α
2 + Rd−α sup

ρ≥
√

R
Bρ(µ)2) ,

and letting R →∞, this yields a contradiction.
To prove (ii) we observe that by duality (4.1) holds with p′ = 2d/α. We take g ∈

C∞c so that g = 1 on supp(µ), and it follows that µ̂ ∈ L2d/α . _is in turn implies
limρ→∞Bρ(µ) = 0 in contradiction to the result in (i).

A Some Standard Probabilistic Inequalities

For the convenience of the reader we include the proof of some standard probabilis-
tic inequalities used in this paper. We will need the following version of Hoeòding’s
inequality, a slight variant of the one in [18].

Lemma A.1 Let {Wj}m
j=0 be a bounded real-valuedmartingale adapted to the ûltra-

tion {F j}m
j=0. Suppose that a j > 0 for 1 ≤ j ≤ m and that

E[eλ(Wj−Wj−1)∣F j−1] ≤ ea
2
j λ

2/2 for all ∣λ∣ < δ.

Let A = ∑m
j=1 a2

j . _en

P( ∣Wm −W0∣ ≥ t) ≤ 2e−
t2
2A , 0 < t < Aδ,(A.1)

P( ∣Wm −W0∣ ≥ t) ≤ 2eAδ
2/2e−δ t , t ≥ Aδ.(A.2)

Proof Observe that if 0 < λ < δ,

Eeλ(Wm−W0) = E[ eλ(Wm−1−W0)E[eλ(Wm−Wm−1) ∣ Fm−1]]

≤ ea
2
m λ2/2E[eλ(Wm−1−W0)].

By iterating this step, we get Eeλ(Wm−W0) ≤ eAλ2/2.
Now P{Wm −W0 ≥ t} = P{eλ(Wm−W0) ≥ eλt} and Tshebyshev’s inequality gives

P{Wm −W0 ≥ t} ≤ e−λtEeλ(Wm−W0) ≤ e−λt+Aλ2/2 .
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If 0 < t < Aδ, we set λ = t/A, and if t > Aδ, we set λ = δ. For these choices the
displayed inequality gives

(A.3) P{Wm −W0 ≥ t} ≤
⎧⎪⎪⎨⎪⎪⎩

e− t2
2A for 0 < t < Aδ,

eAδ
2/2e−δ t for t ≥ Aδ.

Similarly, still for 0 < λ < δ, P{Wm −W0 ≤ −t} = P{e−λ(Wm−W0) ≥ eλt} and argue as
above to see that P{Wm −W0 ≤ −t} is also bounded by the right-hand side of (A.3).
_is implies the asserted inequality.

To verify the assumption in Lemma A.1, the following calculus inequality is useful
[14, Lemma 1].

Lemma A.2 Let X be a real-valued random variablewith ∣X∣ ≤ a <∞ andE[X∣F] =
0. _en for any t ∈ R, E[e tX ∣ F] ≤ ea2 t2/2.

Proof Replacing t by at and X by X/a, it suõces to consider the case a = 1. By the
convexity of the function x ↦ e tx , for x ∈ [−1, 1] we have

e tx ≤ 1 − x
2
e−t + x + 1

2
e t = cosh t + x sinh(t),

and thus E[e tX ∣F] ≤ cosh t + sinh tE[X∣F]. _e last summand drops by assumption.
Finally use that cosh t ≤ e t2/2 for all t ∈ R, which follows by considering the power
series and the inequality (2k)! ≥ 2kk!.

A combination of Lemma A.1 and Lemma A.2 yields the following corollary.

Corollary A.3 (Azuma–Hoeòding inequality) Let {Wj}m
j=0 be a bounded real-val-

uedmartingale adapted to ûltration {F j}m
j=0. For 1 ≤ j ≤ m let a j > 0 and suppose that

∣Wj −Wj−1∣ ≤ a j . Writing A = ∑m
j=1 a2

j , we have P(∣Wm −W0∣ ≥ t) ≤ 2e−t2/2A, for all
t > 0.

As a consequence, we obtain a version of Bernstein’s inequality.

Corollary A.4 (Bernstein’s inequality) Let X1 , . . . , Xm be complex valued indepen-
dent random variables with EX j = 0 and ∣X j ∣ ≤ M ∈ (0,∞) for all j = 1, . . . ,m. _en,
for all t > 0

P( ∣ 1
m

m
∑
j=1

X j ∣ ≥ Mt) ≤ 4e−mt2/4 .
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