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Stability Threshold for Scalar Linear
Periodic Delay Differential
Equations

Kyeongah Nah and Gergely Röst

Abstract. We prove that for the linear scalar delay diòerential equation

ẋ(t) = −a(t)x(t) + b(t)x(t − 1)
with non-negative periodic coeõcients of period P > 0, the stability threshold for the trivial solution
is r ∶= ∫ P

0 (b(t)−a(t))dt = 0, assuming that b(t+1)−a(t) does not change its sign. By constructing
a class of explicit examples, we show the counter-intuitive result that, in general, r = 0 is not a
stability threshold.

1 Introduction

We investigate the scalar periodic delay-diòerential equation
(1.1) ẋ(t) = −a(t)x(t) + b(t)x(t − 1),
where a, b are assumed to be P-periodic continuous real functions with a(t) ≥ 0 and
b(t) ≥ 0. Equation (1.1) has been studied as the linear variational equation of

x′(t) = g(t, x(t), x(t − 1)),
where g(t, 0, 0) = 0 and g(t, ξ, η) = g(t + P, ξ, η) for all t, ξ, η ∈ R. Similarly, for a
smooth nonlinearity f (x , y), the linearization of u′(t) = f (u(t), u(t − 1)) around a
periodic orbit p(t) is

u′(t) = fx(p(t), p(t − 1))u(t) + fy(p(t), p(t − 1))u(t − 1),
having the same form as (1.1). _is type of equation arises in several mathematical
models, such as neural networks [3], or transmission dynamics of vector-borne dis-
eases [2], and population growth models [6, 10] with seasonality. One can interpret
(1.1) as a population model of a single species with periodically varying recruitment
andmortality rates and ûxed length juvenile period. _en the non-negativity assump-
tions on the coeõcients a(t) and b(t) are biologically natural.

Let Ω ∶= C([−1, 0],R) be the Banach space of real valued continuous functions on
[−1, 0]with the usual supremumnorm. For any ϕ ∈ Ω, a unique solution x(t; ϕ) exists
for all t ≥ 0 with x(θ) = ϕ(θ), −1 ≤ θ ≤ 0. From the non-negativity of the coeõcients,
it follows that the non-negative cone Ω+ ∶= C([−1, 0],R+) is positively invariant as
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non-negative solutions remain non-negative. We use the notation xt = xϕ
t ∈ Ω for

the function xt(θ) = x(t + θ), θ ∈ [−1, 0]. Let U∶R+ × R × Ω → Ω be the solution
operator of (1.1). _at is, U(t, σ , ϕ) = xt+σ , where xt+σ is the segment of the solution
of the initial value problem

ẋ(t) = −a(t)xt(0) + b(t)xt(−1), t ≥ σ ,
xσ = ϕ,

at time t+σ . We nowdeûne themonodromy operator (also referred to in the literature
as the Poincaré-map, time-one map, period map) M∶Ω → Ω byM(ψ) = U(P, 0,ψ).
_e stability of zero is determined by the spectral radius ofM [4].

In the special case when a(t) = a∗ and b(t) = b∗ are constants, the sharp stability
condition a∗ ≥ b∗ is very well known [8]. Equation (1.1) with general time dependent
bounded continuous coeõcients was addressed in [4], where it was shown that the
solution x = 0 of (1.1) is uniformly asymptotically stable if supt b(t) < k inf t a(t) for
some 0 ≤ k < 1. _is has been applied to the periodic case in [2], and further related
investigations can be found in [5]. In the periodic case, for P = 1, the characteristic
equation was derived in [7] using Floquet theory as

λ + ∫
1

0
a(s)ds = ∫

1

0
b(s)dse−λ ,

and it immediately follows (see [8]) that the stability threshold in this case is r = 0
where r ∶= ∫

1
0 (b(s)−a(s))ds. _is result also extends naturally to the case τ = 1 = kP,

k ∈ N. _e same conclusion was derived using a diòerent approach in [10] as well,
where the authors studied a competitive population model with stage structure in a
seasonal environment (see also [6]).

_e special case of a(t) being a constant function, but P is arbitrary, was con-
sidered recently by Chen and Wu [3]. Using a discrete Lyapunov functional and the
variation of constants formula, they found that for any b(t) > 0 there is a critical
a+ > 0 that is the stability threshold. Some estimates were provided for a+, but the
exact value was not determined. In Section 2, we derive the explicit threshold for-
mula, determining the stability of zero for (1.1), which is valid even when the period
P is not related to the delay (generalizing the implications of [7, 10]), assuming P-
periodic a(t) ≥ 0, b(t) ≥ 0 such that b(t + 1) − a(t) does not change its sign. Our
theorem provides some new results compared to the one in [4], since, for example,
the following simple case does not ût there but will be covered here.

a(t) = t(P − t) + 1, 0 ≤ t ≤ P,
b(t + 1) = t(P − t) + 1 − є, 0 ≤ t + 1 ≤ P,

where a and b are extended to the real line periodically, so that they are P-periodic
functions with P > 1 and є < P − 1. Moreover, unlike in [3], our stability threshold is
given explicitly.

Knowing that r is the stability threshold whenever a(t) and b(t) are non-negative
continuous periodic functions with the same period 1/k, k ∈ N, and when they are
non-negative, the period is arbitrary and b(t + 1) − a(t) does not change its sign,
one may conjecture that r being the stability threshold is the general property of (1.1).
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_is conjecture is also supported by the fact that r can be interpreted as a Malthu-
sian parameter of a population model, being the time averaged diòerence of birth
and death rates (the relation of r to the basic reproduction number deûned for peri-
odic systems is addressed in Section 3). However, in Section 4, we construct a family
of non-negative periodic coeõcients for which the sign of r does not determine the
stability of zero in (1.1). We compute the exact stability threshold for this family as
well.

2 Stability Theorem

Without loss of generality, we can assume P > 1. Deûne

(2.1) r ∶= ∫
P

0
(b(s) − a(s))ds.

_eorem 2.1 For (1.1), the following hold if the sign of b(t+1)−a(t) does not change.

(i) If r > 0, zero is unstable.
(ii) If r = 0, zero is stable, but not asymptotically stable.
(iii) If r < 0, zero is asymptotically stable.

Remark 2.2 Note that the conditions for (i)–(iii) can be written in a more explicit
way. For example, the condition in (i) is the same as assuming b(t + 1) ≥ a(t) ≥ 0
for all t ∈ R and b(s + 1) /= a(s) for some s ∈ R. We stated the theorem in a way that
stresses the threshold property of r.

Proof (i) It is suõcient to show that limt→∞ x(t; ϕ) = ∞ for ϕ ∈ Ω+ with ϕ(θ) > 0
for all θ ∈ [−1, 0]. We ûrst prove that x∞ ∶= lim supt→∞ x(t; ϕ) > 0. For simplicity,
we write x(t) for x(t; ϕ). Suppose lim supt→∞ x(t) = 0. It implies

(2.2) lim
t→∞

x(t) = 0

by the non-negativity of x(t). We deûne the function V ∶R→ R by

(2.3) V(t) ∶= ∫
t

t−1
b(u + 1)x(u)du + x(t).

_e boundedness of b(t) and (2.2) imply

(2.4) lim
t→∞

V(t) = 0.

One can see from (2.3) that V̇(t) = (b(t + 1) − a(t))x(t) and

(2.5) V(t) = V(0) + ∫
t

0
(b(u + 1) − a(u))x(u)du.
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For any integer n ≥ 1, using the integral mean-value theorem, one has

V(nP) = V(0) +
n

∑
k=1
∫

kP

(k−1)P
(b(u + 1) − a(u))x(u)du

= V(0) +
n

∑
k=1

x(u∗k)∫
kP

(k−1)P
(b(u + 1) − a(u))du

= V(0) +
n

∑
k=1

x(u∗k)∫
P

0
(b(u + 1) − a(u))du

= V(0) + r
n

∑
k=1

x(u∗k)(2.6)

for some u∗k ∈ ((k−1)P, kP). Positivity of x(t) and r > 0 imply {V(nP)}n∈N is strictly
increasing with V(0) ≥ 0, which contradicts (2.4). Hence, x∞ > 0.

Now we will show that limt→∞ x(t) = ∞. Non-negativity of x(t) on (1.1) implies
ẋ(t) ≥ −a(t)x(t)

for all t ≥ 0. By the comparison method described in [8, _eorem 3.6], for t2 ≥ t1,

x(t2) ≥ x(t1)e−∫
t2
t1
a(u)du .

Since x(t) is continuous, it has a minimum mk and a maximum Mk on each interval
[(k − 1)P, kP], attained as points tmk , tMk ∈ [(k − 1)P, kP], k = 1, 2, . . . . Comparing
mk+1 and Mk to x(kP), from the previous inequality one can deduce

mk+1 ≥ x(kP)e−∫
tmk+1
kP a(u)du ≥ x(kP)e−∫

(k+1)P
kP a(u)du

and
x(kP) ≥ Mk e

−∫ kP
tMk

a(u)du ≥ Mk e−∫
kP
(k−1)P a(u)du .

Hence

(2.7) mk+1 ≥ Mk e
−∫ (k+1)P
(k−1)P a(u)du = Mk e−2 ∫ P

0 a(u)du ,
and ûnally

(2.8) lim sup
k→∞

mk ≥ lim sup
k→∞

Mk e−2 ∫ P
0 a(u)du = x∞e−2 ∫ P

0 a(u)du > 0.

Since {V(nP)}n∈N is strictly increasing, either it converges or limn→∞ V(nP) = ∞.
If it converges, by (2.6), x(u∗k) → 0 as k → ∞, which contradicts (2.8). _erefore,
limn→∞ V(nP) = ∞. Applying (2.3) to t = nP, we have

V(nP) = ∫
nP

nP−1
b(u + 1)x(u)du + x(nP)

= x(t∗n)∫
nP

nP−1
b(u + 1)du + x(nP)

≤ Mn( 1 + ∫
P

P−1
b(u + 1)du)

for some t∗n ∈ [nP − 1, nP] ⊂ [(n − 1)P, nP]. _e boundedness of b(t) and
lim
n→∞

V(nP) = ∞
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imply limn→∞ Mn = ∞. Now it follows from (2.7) that limn→∞ mn = ∞. _us
lim
t→∞

x(t) = ∞.

(ii) Assume that r = 0. By the following equality

0 = ∫
P

0
(b(u) − a(u))du = ∫

P

0
(b(u + 1) − a(u))du,

togetherwith the assumption that b(u+1)−a(u)does not change its sign, we conclude
b(u + 1) − a(u) = 0 for all u ∈ R.

By (2.5), we obtain
(2.9) V(t) = V(0) for all t.
If ϕ ≥ 0, by (2.3), 0 ≤ x(t) ≤ V(t) = V(0) ≤ (bmax + 1)∥ϕ∥, where bmax denotes the
maximum of b(t) and by ϕ ≥ 0 we mean that the inequality ϕ(θ) ≥ 0 holds for any
θ ∈ [−1, 0]. If ϕ ≤ 0, by (2.3),

0 ≥ x(t) ≥ V(t) = V(0) ≥ −(bmax + 1)∥ϕ∥.
Now for any ϕ ∈ Ω, let initial functions ξ ≥ 0 and ψ ≤ 0 such that ψ < ϕ < ξ. By the
comparison principle [8],

−(bmax + 1)∥ϕ∥ ≤ x(t;ψ) ≤ x(t; ϕ) ≤ x(t; ξ) ≤ (bmax + 1)∥ϕ∥.
_erefore, the zero is stable. One can easily see that zero is not asymptotically stable
by (2.9) and (2.3).

(iii) It is suõcient to prove that limt→∞ x(t; ϕ) = 0 for any ϕ ∈ Ω. We ûrst prove it
for ϕ ≥ 0, and we show that it also holds for ϕ ≤ 0. Finally we prove it for general ϕ.

If ϕ ≥ 0, since r < 0, one can see from (2.6) that {V(nP)}n∈N is decreasing, with
lower bound 0. _erefore, {V(np)} converges, implying x(u∗k) → 0 as k → ∞.
Meanwhile,

x(u∗k+1) ≥ mk+1 ≥ Mk e−2 ∫ P
0 a(u)du ,

which implies Mk → 0 as k →∞. Hence, x(t) → 0 as t →∞.
Consider the case with non-positive ϕ. One can see from (1.1) that x(t;−ϕ) =

−x(t; ϕ) and limt→∞ x(t; ϕ) = − limt→∞(−x(t; ϕ)) = − limt→∞ x(t;−ϕ) = 0. Now
for any ϕ ∈ Ω, we can choose initial functions ξ ≥ 0 and ψ ≤ 0 such that ψ < ϕ < ξ. By
the comparison principle, x(t;ψ) ≤ x(t; ϕ) ≤ x(t; ξ). We know that limt→∞ x(t; ξ) =
0 = limt→∞ x(t;ψ). _erefore, limt→∞ x(t; ϕ) = 0.

3 Relation of r to the Basic Reproduction Number

In a biological context, r can be interpreted as an averagedMalthusian parameter, and

R = ∫
P
0 b(s)ds

∫
P
0 a(s)ds

can be interpreted as an averaged reproduction number, and then R > 1 is equivalent
to r > 0. However, this naive approach does not give us the adequate basic reproduc-
tion number for periodic systems or periodic equations with delays, and as we show
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in Section 4, there are examples when R = 1 is not a stability threshold as we might
expect. _e deûnition of the basic reproduction number R0 for periodic systems is
more involved (see [1,9]), and in the sequel of this Sectionwe follow the deûnition and
notation of Zhao [11]. In particular, [11, §3] deals with a periodic delay SEIR model,
and linearizing around the disease-free periodic solution, one obtains a scalar peri-
odic linear delay diòerential equation for the infectives, namely [11, (3.5)], which has
exactly the same form as our equation (1.1). Let CP be the Banach space of continuous
P-periodic functions from R → R, equipped with the supremum norm. Deûne the
linear operator L∶CP → CP by

[Lv](t) = ∫
∞

τ
e−∫

t
t−s+τ a(u)dub(t − s + τ)v(t − s)ds,

where v ∈ CP . _en the basic reproduction number is deûned as the spectral radius
of the operator L, i.e., R0 ∶= ρ(L) (see [11]). Since (1.1) is in the class of [11, (2.1)], we
can apply [11, _eorem 2.1] combined with our _eorem 2.1 to obtain the following.

Corollary 3.1 Assume that the sign of b(t + 1) − a(t) does not change. _en r < 0 if
and only if R0 < 1, r = 0 if and only if R0 = 1, and r > 0 if and only if R0 > 1.

As stated in the ûnal comments of [11], in general it is not easy to numerically
compute R0 for time delayed periodic population models, therefore our results here
can be particularly useful in many situations.

4 The Case of r Not Being a Stability Threshold

In this section, we present a particular example showing that the assumption in _e-
orem 2.1 is critical.
Consider a special case a(t) = α ∈ R+ and b(t) a continuous function such that

(4.1)
⎧⎪⎪⎨⎪⎪⎩

b(t) = 0 if kP ≤ t ≤ kP + L, k = 0, 1, 2, . . . ,
b(t) > 0 elsewhere,

where 1 ≤ L < P < L + 1.

Lemma 4.1 Let

A ∶= {ψ ∈ Ω ∣ ψ(θ) =
⎧⎪⎪⎨⎪⎪⎩

ψ(−1)e−α(1+θ) if θ ∈ [−1, L − P]
ψ(−1)e−α(1+θ) (eα ∫

θ
L−P b(s)ds + 1) if θ ∈ (L − P, 0] } .

_en M(Ω) ⊂ A. Consequently,A is forward invariant under M.

Proof Let ψ ∈ Ω. _en M(ψ) = U(P, 0,ψ) = xP where xP is the solution of

ẋ(t) = −αxt(0) + b(t)xt(−1), t ≥ 0,
x0 = ψ.

For P − 1 ≤ t < L, x′(t) = −αx(t) and x(t) = x(P − 1)e−α(t−(P−1)). Hence, for
−1 ≤ θ < L − P, xP(θ) = xP(−1)e−α(θ+1). For L ≤ t < P, 0 ≤ t − 1 < L, and we have

x(t − 1) = x(P − 1)e−α(t−P) .
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_erefore, x′(t) = −αx(t) + b(t)x(P − 1)e−α(t−P), and the solution is

x(t) = x(P − 1)e−α(t+1−P)( eα ∫
t

L
b(s)ds + 1) .

_us, for L − P ≤ θ < 0,

(4.2) xP(θ) = xP(−1)e−α(1+θ)( eα ∫
θ

L−P
b(s)ds + 1) .

_eorem 4.2 Let γ ∶= −α+ 1
P ln( eα ∫

0
L−P b(s)ds+ 1) . _e solution x = 0 of equation

(1.1) with (4.1) is stable if and only if γ ≤ 0.

Proof From the calculations of the proof of Lemma (4.1), we ûnd that for any ϕ ∈M,

x(P; ϕ) = x(0; ϕ)eγ = ϕ(0)eγ .
Inductively, for any n, we have x(nP; ϕ) = ϕ(0)eγn . If there exists a K > 0 such that
for any solution, xnP(θ) ≤ Kx(n−1)P(0) for all θ ∈ [−1, 0], the stability result follows
and γ < 0 gives asymptotic stability. For (n − 1)P ≤ t < nP − 1 < (n − 1)P + L,
x′(t) = −αx(t) and x(nP − 1) = x((n − 1)P)e−α(P−1). By (4.2), for L − P ≤ θ < 0,

xnP(θ) = xnP(−1)e−α(1+θ)( eα ∫
θ

L−P
b(s)ds + 1)

= x(n−1)P(0)e−α(P−1)e−α(1+θ)( eα ∫
θ

L−P
b(s)ds + 1)

≤ x(n−1)P(0)e−α(P−1)e−α(1+L−P)( eα ∫
0

L−P
b(s)ds + 1)

= x(n−1)P(0)e−αL( eα ∫
0

L−P
b(s)ds + 1) ,

so we can choose K = e−αL(eα ∫
0
L−P b(s)ds + 1). _e instability is obvious for γ > 0.

Finally, we address an example where the sign of r does not always coincide with
the sign of γ. Consider the special case of (4.1),

(4.3) b(t) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0 if kP ≤ t ≤ kP + L
4β

P − L
(−∣ t − P + L

2
∣ + P − L

2
) if kP + L ≤ t ≤ (k + 1)P,

where k = 0, 1, 2, . . . . In this case,

γ = −α + 1
P

ln(eαβ(P − L) + 1) and r = β(P − L) − αP.

_e following four scenarios: (i) r > 0, γ > 0 (unstable), (ii) r < 0, γ > 0 (unstable),
(iii) r > 0, γ < 0 (stable), and (iv) r < 0, γ < 0 (stable) are all possible. Figure 1 shows
the parameter sets of each case. _e area with γ < 0 but r > 0, and the area with γ > 0
but r < 0 are the regions where r in (2.1) does not work as a stability threshold. Figures
2 and 3 show situations when the stability is just the opposite that one would expect
from the sign of r. Overall, our results show that for a large class of scalar periodic
delay diòerential equations, time averaging of the coeõcients preserves the stability
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property of zero, however it is not always the case. _is suggests that in practical
problems, one needs to think about periodic variations in the model parameters very
carefully.
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Figure 1: Special case of (4.1) with function b(t) as in (4.3) with P = 1.2 and L = 1.1. Distinctive
α − β parameter regions are determined by the signs of γ and r.
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Figure 2: Solution with parameters α = 17 and β = 250, which implies r > 0 but γ < 0. Zero
solution is stable. Initial function is given by ϕ(θ) = 1 for all θ ∈ [−1, 0].
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Figure 3: Solution with parameters α = 10 and β = 100, which implies r < 0 but γ > 0. Zero
solution is unstable. Initial function is given by ϕ(θ) = 1 for all θ ∈ [−1, 0].
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