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Stability Threshold for Scalar Linear
Periodic Delay Differential
Equations

Kyeongah Nah and Gergely Röst

Abstract. We prove that for the linear scalar delay diòerential equation

ẋ(t) = −a(t)x(t) + b(t)x(t − 1)
with non-negative periodic coeõcients of period P > 0, the stability threshold for the trivial solution
is r ∶= ∫ P

0 (b(t)−a(t))dt = 0, assuming that b(t+1)−a(t) does not change its sign. By constructing
a class of explicit examples, we show the counter-intuitive result that, in general, r = 0 is not a
stability threshold.

1 Introduction

We investigate the scalar periodic delay-diòerential equation
(1.1) ẋ(t) = −a(t)x(t) + b(t)x(t − 1),
where a, b are assumed to be P-periodic continuous real functions with a(t) ≥ 0 and
b(t) ≥ 0. Equation (1.1) has been studied as the linear variational equation of

x′(t) = g(t, x(t), x(t − 1)),
where g(t, 0, 0) = 0 and g(t, ξ, η) = g(t + P, ξ, η) for all t, ξ, η ∈ R. Similarly, for a
smooth nonlinearity f (x , y), the linearization of u′(t) = f (u(t), u(t − 1)) around a
periodic orbit p(t) is

u′(t) = fx(p(t), p(t − 1))u(t) + fy(p(t), p(t − 1))u(t − 1),
having the same form as (1.1). _is type of equation arises in several mathematical
models, such as neural networks [3], or transmission dynamics of vector-borne dis-
eases [2], and population growth models [6, 10] with seasonality. One can interpret
(1.1) as a population model of a single species with periodically varying recruitment
andmortality rates and ûxed length juvenile period. _en the non-negativity assump-
tions on the coeõcients a(t) and b(t) are biologically natural.

Let Ω ∶= C([−1, 0],R) be the Banach space of real valued continuous functions on
[−1, 0]with theusual supremumnorm. For any ϕ ∈ Ω, aunique solution x(t; ϕ) exists
for all t ≥ 0 with x(θ) = ϕ(θ), −1 ≤ θ ≤ 0. From the non-negativity of the coeõcients,
it follows that the non-negative cone Ω+ ∶= C([−1, 0],R+) is positively invariant as
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non-negative solutions remain non-negative. We use the notation xt = xϕ
t ∈ Ω for

the function xt(θ) = x(t + θ), θ ∈ [−1, 0]. Let U∶R+ × R × Ω → Ω be the solution
operator of (1.1). _at is, U(t, σ , ϕ) = xt+σ , where xt+σ is the segment of the solution
of the initial value problem

ẋ(t) = −a(t)xt(0) + b(t)xt(−1), t ≥ σ ,
xσ = ϕ,

at time t+σ . Wenow deûne themonodromy operator (also referred to in the literature
as the Poincaré-map, time-onemap, periodmap) M∶Ω → Ω byM(ψ) = U(P, 0,ψ).
_e stability of zero is determined by the spectral radius ofM [4].

In the special case when a(t) = a∗ and b(t) = b∗ are constants, the sharp stability
condition a∗ ≥ b∗ is very well known [8]. Equation (1.1)with general time dependent
bounded continuous coeõcients was addressed in [4], where it was shown that the
solution x = 0 of (1.1) is uniformly asymptotically stable if supt b(t) < k inf t a(t) for
some 0 ≤ k < 1. _is has been applied to the periodic case in [2], and further related
investigations can be found in [5]. In the periodic case, for P = 1, the characteristic
equation was derived in [7] using Floquet theory as

λ + ∫
1

0
a(s)ds = ∫

1

0
b(s)dse−λ ,

and it immediately follows (see [8]) that the stability threshold in this case is r = 0
where r ∶= ∫

1
0 (b(s)−a(s))ds. _is result also extends naturally to the case τ = 1 = kP,

k ∈ N. _e same conclusion was derived using a diòerent approach in [10] as well,
where the authors studied a competitive population model with stage structure in a
seasonal environment (see also [6]).

_e special case of a(t) being a constant function, but P is arbitrary, was con-
sidered recently by Chen andWu [3]. Using a discrete Lyapunov functional and the
variation of constants formula, they found that for any b(t) > 0 there is a critical
a+ > 0 that is the stability threshold. Some estimates were provided for a+, but the
exact value was not determined. In Section 2, we derive the explicit threshold for-
mula, determining the stability of zero for (1.1), which is valid even when the period
P is not related to the delay (generalizing the implications of [7, 10]), assuming P-
periodic a(t) ≥ 0, b(t) ≥ 0 such that b(t + 1) − a(t) does not change its sign. Our
theorem provides some new results compared to the one in [4], since, for example,
the following simple case does not ût there but will be covered here.

a(t) = t(P − t) + 1, 0 ≤ t ≤ P,
b(t + 1) = t(P − t) + 1 − є, 0 ≤ t + 1 ≤ P,

where a and b are extended to the real line periodically, so that they are P-periodic
functions with P > 1 and є < P − 1. Moreover, unlike in [3], our stability threshold is
given explicitly.

Knowing that r is the stability thresholdwhenever a(t) and b(t) are non-negative
continuous periodic functions with the same period 1/k, k ∈ N, and when they are
non-negative, the period is arbitrary and b(t + 1) − a(t) does not change its sign,
onemay conjecture that r being the stability threshold is the general property of (1.1).
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_is conjecture is also supported by the fact that r can be interpreted as a Malthu-
sian parameter of a population model, being the time averaged diòerence of birth
and death rates (the relation of r to the basic reproduction number deûned for peri-
odic systems is addressed in Section 3). However, in Section 4, we construct a family
of non-negative periodic coeõcients for which the sign of r does not determine the
stability of zero in (1.1). We compute the exact stability threshold for this family as
well.

2 Stability Theorem

Without loss of generality, we can assume P > 1. Deûne

(2.1) r ∶= ∫
P

0
(b(s) − a(s))ds.

_eorem 2.1 For (1.1), the following hold if the sign of b(t+1)−a(t) does not change.

(i) If r > 0, zero is unstable.
(ii) If r = 0, zero is stable, but not asymptotically stable.
(iii) If r < 0, zero is asymptotically stable.

Remark 2.2 Note that the conditions for (i)–(iii) can be written in amore explicit
way. For example, the condition in (i) is the same as assuming b(t + 1) ≥ a(t) ≥ 0
for all t ∈ R and b(s + 1) /= a(s) for some s ∈ R. We stated the theorem in a way that
stresses the threshold property of r.

Proof (i) It is suõcient to show that limt→∞ x(t; ϕ) =∞ for ϕ ∈ Ω+ with ϕ(θ) > 0
for all θ ∈ [−1, 0]. We ûrst prove that x∞ ∶= lim supt→∞ x(t; ϕ) > 0. For simplicity,
we write x(t) for x(t; ϕ). Suppose lim supt→∞ x(t) = 0. It implies

(2.2) lim
t→∞

x(t) = 0

by the non-negativity of x(t). We deûne the function V ∶R→ R by

(2.3) V(t) ∶= ∫
t

t−1
b(u + 1)x(u)du + x(t).

_e boundedness of b(t) and (2.2) imply

(2.4) lim
t→∞

V(t) = 0.

One can see from (2.3) that V̇(t) = (b(t + 1) − a(t))x(t) and

(2.5) V(t) = V(0) + ∫
t

0
(b(u + 1) − a(u))x(u)du.
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For any integer n ≥ 1, using the integral mean-value theorem, one has

V(nP) = V(0) +
n

∑
k=1
∫

kP

(k−1)P
(b(u + 1) − a(u))x(u)du

= V(0) +
n

∑
k=1

x(u∗k)∫
kP

(k−1)P
(b(u + 1) − a(u))du

= V(0) +
n

∑
k=1

x(u∗k)∫
P

0
(b(u + 1) − a(u))du

= V(0) + r
n

∑
k=1

x(u∗k)(2.6)

for some u∗k ∈ ((k−1)P, kP). Positivity of x(t) and r > 0 imply {V(nP)}n∈N is strictly
increasing with V(0) ≥ 0, which contradicts (2.4). Hence, x∞ > 0.

Now we will show that limt→∞ x(t) =∞. Non-negativity of x(t) on (1.1) implies
ẋ(t) ≥ −a(t)x(t)

for all t ≥ 0. By the comparison method described in [8,_eorem 3.6], for t2 ≥ t1,

x(t2) ≥ x(t1)e− ∫
t2
t1
a(u)du .

Since x(t) is continuous, it has aminimum mk and amaximum Mk on each interval
[(k − 1)P, kP], attained as points tmk , tMk ∈ [(k − 1)P, kP], k = 1, 2, . . . . Comparing
mk+1 and Mk to x(kP), from the previous inequality one can deduce

mk+1 ≥ x(kP)e− ∫
tmk+1
kP a(u)du ≥ x(kP)e− ∫

(k+1)P
kP a(u)du

and
x(kP) ≥ Mk e

− ∫ kP
tMk

a(u)du ≥ Mk e− ∫
kP
(k−1)P a(u)du .

Hence

(2.7) mk+1 ≥ Mk e
− ∫ (k+1)P
(k−1)P a(u)du = Mk e−2 ∫ P

0 a(u)du ,
and ûnally

(2.8) lim sup
k→∞

mk ≥ lim sup
k→∞

Mk e−2 ∫ P
0 a(u)du = x∞e−2 ∫ P

0 a(u)du > 0.

Since {V(nP)}n∈N is strictly increasing, either it converges or limn→∞ V(nP) = ∞.
If it converges, by (2.6), x(u∗k) → 0 as k → ∞, which contradicts (2.8). _erefore,
limn→∞ V(nP) =∞. Applying (2.3) to t = nP, we have

V(nP) = ∫
nP

nP−1
b(u + 1)x(u)du + x(nP)

= x(t∗n)∫
nP

nP−1
b(u + 1)du + x(nP)

≤ Mn( 1 + ∫
P

P−1
b(u + 1)du)

for some t∗n ∈ [nP − 1, nP] ⊂ [(n − 1)P, nP]. _e boundedness of b(t) and
lim
n→∞

V(nP) =∞
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imply limn→∞ Mn =∞. Now it follows from (2.7) that limn→∞ mn =∞. _us
lim
t→∞

x(t) =∞.

(ii) Assume that r = 0. By the following equality

0 = ∫
P

0
(b(u) − a(u))du = ∫

P

0
(b(u + 1) − a(u))du,

togetherwith the assumption that b(u+1)−a(u)doesnot change its sign,we conclude
b(u + 1) − a(u) = 0 for all u ∈ R.

By (2.5), we obtain
(2.9) V(t) = V(0) for all t.
If ϕ ≥ 0, by (2.3), 0 ≤ x(t) ≤ V(t) = V(0) ≤ (bmax + 1)∥ϕ∥, where bmax denotes the
maximum of b(t) and by ϕ ≥ 0 we mean that the inequality ϕ(θ) ≥ 0 holds for any
θ ∈ [−1, 0]. If ϕ ≤ 0, by (2.3),

0 ≥ x(t) ≥ V(t) = V(0) ≥ −(bmax + 1)∥ϕ∥.
Now for any ϕ ∈ Ω, let initial functions ξ ≥ 0 and ψ ≤ 0 such that ψ < ϕ < ξ. By the
comparison principle [8],

−(bmax + 1)∥ϕ∥ ≤ x(t;ψ) ≤ x(t; ϕ) ≤ x(t; ξ) ≤ (bmax + 1)∥ϕ∥.
_erefore, the zero is stable. One can easily see that zero is not asymptotically stable
by (2.9) and (2.3).

(iii) It is suõcient to prove that limt→∞ x(t; ϕ) = 0 for any ϕ ∈ Ω. We ûrst prove it
for ϕ ≥ 0, and we show that it also holds for ϕ ≤ 0. Finally we prove it for general ϕ.

If ϕ ≥ 0, since r < 0, one can see from (2.6) that {V(nP)}n∈N is decreasing, with
lower bound 0. _erefore, {V(np)} converges, implying x(u∗k) → 0 as k → ∞.
Meanwhile,

x(u∗k+1) ≥ mk+1 ≥ Mk e−2 ∫ P
0 a(u)du ,

which implies Mk → 0 as k →∞. Hence, x(t)→ 0 as t →∞.
Consider the case with non-positive ϕ. One can see from (1.1) that x(t;−ϕ) =

−x(t; ϕ) and limt→∞ x(t; ϕ) = − limt→∞(−x(t; ϕ)) = − limt→∞ x(t;−ϕ) = 0. Now
for any ϕ ∈ Ω, we can choose initial functions ξ ≥ 0 and ψ ≤ 0 such that ψ < ϕ < ξ. By
the comparison principle, x(t;ψ) ≤ x(t; ϕ) ≤ x(t; ξ). We know that limt→∞ x(t; ξ) =
0 = limt→∞ x(t;ψ). _erefore, limt→∞ x(t; ϕ) = 0.

3 Relation of r to the Basic Reproduction Number

In a biological context, r can be interpreted as an averagedMalthusian parameter, and

R = ∫
P
0 b(s)ds

∫
P
0 a(s)ds

can be interpreted as an averaged reproduction number, and then R > 1 is equivalent
to r > 0. However, this naive approach does not give us the adequate basic reproduc-
tion number for periodic systems or periodic equations with delays, and as we show

https://doi.org/10.4153/CMB-2016-043-0 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2016-043-0


854 K. Nah and G. Röst

in Section 4, there are examples when R = 1 is not a stability threshold as we might
expect. _e deûnition of the basic reproduction number R0 for periodic systems is
more involved (see [1,9]), and in the sequel of this Sectionwe follow the deûnition and
notation of Zhao [11]. In particular, [11, §3] deals with a periodic delay SEIR model,
and linearizing around the disease-free periodic solution, one obtains a scalar peri-
odic linear delay diòerential equation for the infectives, namely [11, (3.5)], which has
exactly the same form as our equation (1.1). Let CP be the Banach space of continuous
P-periodic functions from R → R, equipped with the supremum norm. Deûne the
linear operator L∶CP → CP by

[Lv](t) = ∫
∞

τ
e− ∫

t
t−s+τ a(u)dub(t − s + τ)v(t − s)ds,

where v ∈ CP . _en the basic reproduction number is deûned as the spectral radius
of the operator L, i.e., R0 ∶= ρ(L) (see [11]). Since (1.1) is in the class of [11, (2.1)], we
can apply [11,_eorem 2.1] combined with our _eorem 2.1 to obtain the following.

Corollary 3.1 Assume that the sign of b(t + 1) − a(t) does not change. _en r < 0 if
and only if R0 < 1, r = 0 if and only if R0 = 1, and r > 0 if and only if R0 > 1.

As stated in the ûnal comments of [11], in general it is not easy to numerically
compute R0 for time delayed periodic population models, therefore our results here
can be particularly useful in many situations.

4 The Case of r Not Being a Stability Threshold

In this section, we present a particular example showing that the assumption in _e-
orem 2.1 is critical.
Consider a special case a(t) = α ∈ R+ and b(t) a continuous function such that

(4.1)
⎧⎪⎪⎨⎪⎪⎩

b(t) = 0 if kP ≤ t ≤ kP + L, k = 0, 1, 2, . . . ,
b(t) > 0 elsewhere,

where 1 ≤ L < P < L + 1.

Lemma 4.1 Let

A ∶= {ψ ∈ Ω ∣ ψ(θ) =
⎧⎪⎪⎨⎪⎪⎩

ψ(−1)e−α(1+θ) if θ ∈ [−1, L − P]
ψ(−1)e−α(1+θ) (eα ∫

θ
L−P b(s)ds + 1) if θ ∈ (L − P, 0] } .

_en M(Ω) ⊂ A. Consequently,A is forward invariant under M.

Proof Let ψ ∈ Ω. _en M(ψ) = U(P, 0,ψ) = xP where xP is the solution of

ẋ(t) = −αxt(0) + b(t)xt(−1), t ≥ 0,
x0 = ψ.

For P − 1 ≤ t < L, x′(t) = −αx(t) and x(t) = x(P − 1)e−α(t−(P−1)). Hence, for
−1 ≤ θ < L − P, xP(θ) = xP(−1)e−α(θ+1). For L ≤ t < P, 0 ≤ t − 1 < L, and we have

x(t − 1) = x(P − 1)e−α(t−P) .
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_erefore, x′(t) = −αx(t) + b(t)x(P − 1)e−α(t−P), and the solution is

x(t) = x(P − 1)e−α(t+1−P)( eα ∫
t

L
b(s)ds + 1) .

_us, for L − P ≤ θ < 0,

(4.2) xP(θ) = xP(−1)e−α(1+θ)( eα ∫
θ

L−P
b(s)ds + 1) .

_eorem 4.2 Let γ ∶= −α+ 1
P ln( eα ∫

0
L−P b(s)ds+ 1) . _e solution x = 0 of equation

(1.1) with (4.1) is stable if and only if γ ≤ 0.

Proof From the calculations of the proof of Lemma (4.1),we ûnd that for any ϕ ∈M,

x(P; ϕ) = x(0; ϕ)eγ = ϕ(0)eγ .
Inductively, for any n, we have x(nP; ϕ) = ϕ(0)eγn . If there exists a K > 0 such that
for any solution, xnP(θ) ≤ Kx(n−1)P(0) for all θ ∈ [−1, 0], the stability result follows
and γ < 0 gives asymptotic stability. For (n − 1)P ≤ t < nP − 1 < (n − 1)P + L,
x′(t) = −αx(t) and x(nP − 1) = x((n − 1)P)e−α(P−1). By (4.2), for L − P ≤ θ < 0,

xnP(θ) = xnP(−1)e−α(1+θ)( eα ∫
θ

L−P
b(s)ds + 1)

= x(n−1)P(0)e−α(P−1)e−α(1+θ)( eα ∫
θ

L−P
b(s)ds + 1)

≤ x(n−1)P(0)e−α(P−1)e−α(1+L−P)( eα ∫
0

L−P
b(s)ds + 1)

= x(n−1)P(0)e−αL( eα ∫
0

L−P
b(s)ds + 1) ,

so we can choose K = e−αL(eα ∫
0
L−P b(s)ds + 1). _e instability is obvious for γ > 0.

Finally, we address an example where the sign of r does not always coincide with
the sign of γ. Consider the special case of (4.1),

(4.3) b(t) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0 if kP ≤ t ≤ kP + L
4β

P − L
(−∣ t − P + L

2
∣ + P − L

2
) if kP + L ≤ t ≤ (k + 1)P,

where k = 0, 1, 2, . . . . In this case,

γ = −α + 1
P

ln(eαβ(P − L) + 1) and r = β(P − L) − αP.

_e following four scenarios: (i) r > 0, γ > 0 (unstable), (ii) r < 0, γ > 0 (unstable),
(iii) r > 0, γ < 0 (stable), and (iv) r < 0, γ < 0 (stable) are all possible. Figure 1 shows
the parameter sets of each case. _e area with γ < 0 but r > 0, and the area with γ > 0
but r < 0 are the regionswhere r in (2.1) does notwork as a stability threshold. Figures
2 and 3 show situations when the stability is just the opposite that one would expect
from the sign of r. Overall, our results show that for a large class of scalar periodic
delay diòerential equations, time averaging of the coeõcients preserves the stability
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property of zero, however it is not always the case. _is suggests that in practical
problems, one needs to think about periodic variations in themodel parameters very
carefully.
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Figure 1: Special case of (4.1) with function b(t) as in (4.3) with P = 1.2 and L = 1.1. Distinctive
α − β parameter regions are determined by the signs of γ and r.
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Figure 2: Solution with parameters α = 17 and β = 250, which implies r > 0 but γ < 0. Zero
solution is stable. Initial function is given by ϕ(θ) = 1 for all θ ∈ [−1, 0].
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Figure 3: Solution with parameters α = 10 and β = 100, which implies r < 0 but γ > 0. Zero
solution is unstable. Initial function is given by ϕ(θ) = 1 for all θ ∈ [−1, 0].

https://doi.org/10.4153/CMB-2016-043-0 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2016-043-0


_reshold for Periodic Delay Equations 857

References

[1] N. Bacaër and S. Guernaoui,_e epidemic threshold of vector-borne diseases with seasonality: the
case of cutaneous leishmaniasis in Chichaoua,Morocco. J. Math. Biol. 53(2006), 421–436.
http://dx.doi.org/10.1007/s00285-006-0015-0

[2] S. Busenberg and K. L. Cooke, Periodic solutions of a periodic nonlinear delay diòerential
equation. SIAM J. Appl. Math. 35(1978), no. 4, 704–721. http://dx.doi.org/10.1137/0135059

[3] Y. Chen and J. Wu,_reshold dynamics of scalar linear periodic delay-diòerential equations. In:
Inûnite dimensional dynamical systems. Fields Inst. Commun. 64. Springer, New York, 2013,
pp. 269–278.

[4] J. K. Hale and S. Verduyn-Lunel, Introduction to functional diòerential equations. Applied
Mathematical Sciences 99. Springer-Verlag, New York, 1993.

[5] L. Hatvani and T. Krisztin, Asymptotic stability for a diòerential-diòerence equation containing
terms with and without a delay. Acta Sci. Math. (Szeged) 60(2009), 371–384.

[6] Y. Lou and X.-Q. Zhao,_reshold dynamics in a time-delayed periodic SIS epidemicmodel.
Discrete Contin. Dyn. Syst. Ser. B 12(2009), 169–186. http://dx.doi.org/10.3934/dcdsb.2009.12.169

[7] G. Röst, Neimark–Sacker bifurcation for periodic delay diòerential equations. Nonlinear Anal.
60(2005), no. 6, 1025–1044. http://dx.doi.org/10.1016/j.na.2004.08.043

[8] H. L. Smith, An introduction to delay diòerential equations with applications to the life sciences.
Texts in AppliedMathematics 57. Springer, New York, 2011.

[9] W. Wang and X.-Q. Zhao,_reshold dynamics for compartmental epidemicmodels in periodic
environments. J. Dynam. Diòerential Equations 20(2008), no. 3, 699–717.
http://dx.doi.org/10.1007/s10884-008-9111-8

[10] D. Xu and X.-Q. Zhao, Dynamics in a periodic competitivemodel with stage structure. J. Math.
Anal. Appl. 311(2005), no. 2, 417–438. http://dx.doi.org/10.1016/j.jmaa.2005.02.062

[11] X.-Q. Zhao. Basic reproduction ratios for periodic compartmental models with time delays. J.
Dynam. Diòerential Equations, to appear. doi:10.1007/s10884-015-9425-2, 2016

Bolyai Institute, University of Szeged, Szeged H-6720, Aradi vértanúk tere 1., Hungary
e-mail: knah@math.u-szeged.hu rost@math.u-szeged.hu

https://doi.org/10.4153/CMB-2016-043-0 Published online by Cambridge University Press

http://dx.doi.org/10.1007/s00285-006-0015-0
http://dx.doi.org/10.1137/0135059
http://dx.doi.org/10.3934/dcdsb.2009.12.169
http://dx.doi.org/10.1016/j.na.2004.08.043
http://dx.doi.org/10.1007/s10884-008-9111-8
http://dx.doi.org/10.1016/j.jmaa.2005.02.062
mailto:knah@math.u-szeged.hu
mailto:rost@math.u-szeged.hu
https://doi.org/10.4153/CMB-2016-043-0

