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A NOTE ON QUADRATIC FORMS AND
THE #-INVARIANT

ROGER WARE

The u-invariant of a field F, u = u(F), is defined to be the maximum of the
dimensions of anisotropic quadratic forms over F. If F is a non-formally real
field with a finite number ¢ of square classes then it is known that # < ¢. The
purpose of this note is to give some necessary and sufficient conditions for
equality in terms of the structure of the Witt ring of F.

In what follows, F will be a field of characteristic different from two and F
denotes the multiplicative group of F. The subgroup of nonzero squares in F
is denoted F? and G denotes the square class group F/ F% If a € F we let [a]
denote the image of a in G. The order of G will be written ¢ = ¢(F). Note that
if ¢ < 0 then ¢ = 2" for some # = 0. If F is not formally real then the level
(or stufe) of F is the smallest positive integer s = s(F) such that —1 is a sum
of s squares in F. If ¢ is a quadratic form over F we write ¢ =< (a1, . . ., @,) to
mean ¢ is isometric to an orthogonal sum {a;) L ... L {(a,) where {(a;) denotes
the one dimensional space F with form (x, ¥) — axy. The Wiit ring of aniso-
tropic forms over F is denoted by W(F) (for a definition, see [5, pp. 14-15])
and I(F) denotes the ideal of W(F) consisting of all even dimensional forms.
For any n = 1, the ideal I*(F) = I(F) ... I(F), n times, is generated by the
2"-dimensional forms

® (L,a;),a; € F (Pfister forms).
i=1

The mapping [a] — (a) of G into W (F) is injective and induces a surjective
ring homomorphism {rom the integral group ring Z[G] onto W (F) which will
be denoted by ¥. Finally, if the level s of F is finite then by a theorem of
Pfister, W(F) is aZ/2sZ-algebra [5, 8.1, p. 45].

As mentioned, the u-invariant of F is defined to be the maximum of the
dimensions of anisotropic forms over F (for a more general definition, see [4]).
If no such maximum exists, #(F) is taken to be co; for example, when F is
formally real. Thus « (F) is the least positive integer (or o0 ) such every u + 1
dimensional quadatic form over F is isotropic. If # < 2" then 2"-dimensional
forms ®’1 (1, a;), a; € F, must be isotropic and hence, by a result of Witt,
equal to 0 in W(F) [5, pp. 22-23]. Thus I*(F) = 0, so whenever « is finite,
I(F) is a nilpotent ideal.

Kneser has shown that if F is a non-formally real field with ¢ = ¢(F) < ©
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then u = g (For a proof, see Math. Review 15-500, [5, 8.4, p. 47], or [4,
Proposition A1]). Thus if ¢ = 2" then I"*!(F) = 0.

THEOREM. Let F be a non-formally real field with ¢ = 2". Then the following
statements are equivalent:

1) u =q.

(2) Either s = 1 and W(F) 1s an Fa-vector space of dimension q or s = 2 and
W (F) is a free L/4 Z-module of rank q/2.

(3) Either s =1 and W(F) =2 FsG] or s =2 and W(F) = (Z/AZ)[H],
where H 1s any subgroup of index 2 in G with [—1] ¢ H.

(4) I"(F) # 0, 1.e. n + 1 1is the index of nilpotency of I (F).

Proof. The equivalence ot (1) and (2) follows from [7, Proposition 5.10,
Theorem 5.13, Proposition 5.15].

(2) = (3) Let ¥ : Z[G] — W(F) be the natural surjection.

If s =1 then ¥ induces a surjective mapping ¥* : F.[G] — W (F). Since
dimg,Fs[G] = ¢ = dimp, W(F), ¥* is an isomorphism.

If s = 2 then ¥ induces a surjection ¥* : Z/4 Z[G] — W(F). Let H be any
subgroup of index 2 in G with [—1] ¢ H. Then G = H X {[1], [—1]} so if
U** . Z/AZ[H] — W(F) is the restriction of ¥ to Z/4 Z[H] then ¥** is also
surjective. Since H has ¢/2 elements Z/4 Z[H] and W (F) are both finite sets
with the same number of elements. Hence ¥** is an isomorphism.

(3) = (4) is immediate.

(4) = (1). If u < ¢ = 2" then as remarked earlier, I"(F) = 0.

Remarks. (1) In [7, § 5], C. Cordes investigated fields satisfying the con-
ditions of the theorem and called them C-fields. In that paper he gave several
other equivalent conditions. In particular, he has shown that F is a C-field
if and only if for any anisotropic form ¢ over F, Card D(¢) = dim ¢, where
D(¢) = {[a] € Gla is represented by ¢}.

(2) Let 4 be a complete discrete valuation ring with field of fractions F and
residue field & of characteristic not 2. Then an easy application of Hensel’s
lemma shows that ¢(k) = 2" if and only if ¢(F) = 2"+1. Moreover, a theorem
of Springer [5, 7.1, p. 43] gives an isomorphism W (F) = W(k) & W (k) of
abelian groups. From this it is easy to see that % satisfies the conditions of the

theorem with (k) = ¢q(k) = 2" if and only if F does with u(F) = q(F) =
2nH1,

Examples. (0) If F is algebraically closed then «(F) = ¢(F) = 1.

(1) Any finite field (of char # 2) satisfies the conditions of the theorem with
u=gq=2

(2) If F is a local field with finite residue field of characteristic not 2 then
u(F) = q(F) = 4.

(3) If F = (Q,, the field of 2-adic numbers, then «(F) = 4, ¢q(F) = 8.

(4) If & is a field with u(k) = q(k) = 2" and F = k((t1)) ... ((¢;)), the
field of iterated power series over k then u(F) = ¢q(F) = 2"+7,
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The paper concludes with a related result regarding the values of quadratic
forms over F.

PROPOSITION. For a field F the following statements are equivalent:

(1) Fora ¢ — F?, D({1, a)) = {[1], [a]}.

2) If ¢ = {ay, ..., ay) is anisotropic then D (o) = {lai], ..., [a.]}.

(3) The kernel of the mapping ¥ : Z[G] — W(F) is generated by [1] + [—1].

(4) Either F is formally real, pythagorean, and W(F) =7Z[H|, where H is a
subgroup of index two in G with [—1] ¢ H or s(F) = 1 and W(F) = F,[G].

Proof. An easy induction gives the equivalence of (1) and (2). If —1 ¢ F?
then by [6, Theorem 1], (1), (3), and the formally real case of (4) are equiv-
alent. Thus it suffices to assume —1 € F?, i.e., s(F) = 1, and show the equiv-
alence of (1), (3), and the non-formally real case of (4).

(1) = (3). As is well-known, the kernel of ¥ is generated by [1] 4+ [—1]and
all elements of the form

ga, x,y) = ((1] + [a]) ((1] — [** + ay*])

with %, y € F and a, x2 + ay? € F (see, for example, [5, 6.1, p. 41]). If
a ¢ — F? then by (1), [ + ay?] = [a] or [1], so in either case g(a, x, ¥) = 0.
Hence any non zero generator is either [1] + [—1] or has the form ([1] + [—1])
([1] = [b]), with b € F, proving (3).

(3) = (4). Since —1¢ F, [1]+[—1] =2 in Z[G] so W(F) =
Z[G]/2Z[G] = F,[G].

(4) = (1). If [b] € D({1, a)) then (1, a) = (b, ab) so (1) + {a) = (b) +
{ab) in W(F). Since {{x)}c# is a basis for W(F) over F; and {a) # (—1) =
(1) it follows that () = (1) or (b) = {(a), i.e. [b] = [1] or [b] = [a], proving (1).

Remark. Formally real fields satisfying the conditions of the proposition
have been studied in [1; 2; 3; 6]. Elman and Lam have called such fields
superpythagorean.
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