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A NOTE ON QUADRATIC FORMS AND 
THE ^-INVARIANT 

ROGER WARE 

The ^-invariant of a field F, u = u(F), is defined to be the maximum of the 
dimensions of anisotropic quadratic forms over F. If F is a non-formally real 
field with a finite number q of square classes then it is known that u ^ q. The 
purpose of this note is to give some necessary and sufficient conditions for 
equality in terms of the structure of the Witt ring of F. 

In what follows, F will be a field of characteristic different from two and F 
denotes the multiplicative group of F. The subgroup of nonzero squares in F 
is denoted F2 and G denotes the square class group Fj F2. If a £ F we let [a] 
denote the image of a in G. The order of G will be written q = q(F). Note that 
if q < oo then q — 2n for some n ^ 0. If F is not formally real then the level 
(or stufe) of F is the smallest positive integer s = s (F) such that —1 is a sum 
of s squares in F. If <j> is a quadratic form over F we write <t> ~ (ai, . . . , an) to 
mean <j> is isometric to an orthogonal sum (ai) _L . . . J_ (an) where (at) denotes 
the one dimensional space F with form (x, y) *-» atxy. The Wï# ri»g of aniso­
tropic forms over F is denoted by W(F) (for a definition, see [5, pp. 14-15]) 
and 1(F) denotes the ideal of W(F) consisting of all even dimensional forms. 
For any w ^ l the ideal In(F) = 1(F) . . . 1(F), n times, is generated by the 
2n-dimensional forms 

n 

® (1, a*), at 6 F (Pfister forms). 

The mapping [a] s—» (a) of G into W(F) is injective and induces a surjective 
ring homomorphism from the integral group ring Z[G] onto W(.F) which will 
be denoted by SF. Finally, if the level 5 of F is finite then by a theorem of 
Pfister, W(F) is a Z/2sZ-algebra [5, 8.1, p. 45]. 

As mentioned, the ^-invariant of F is defined to be the maximum of the 
dimensions of anisotropic forms over F (for a more general definition, see [4]). 
If no such maximum exists, u(F) is taken to be oo ; for example, when F is 
formally real. Thus u(F) is the least positive integer (or oo ) such every u + 1 
dimensional quadatic form over F is isotropic. If u < 2n then 2n-dimensional 
forms ®n

i=s\ (1, at)j at G F, must be isotropic and hence, by a result of Witt, 
equal to 0 in W(F) [5, pp. 22-23]. Thus In(F) = 0, so whenever u is finite, 
1(F) is a nilpotent ideal. 

Kneser has shown that if F is a non-formally real field with q — q(F) < oo 
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then u ^ q (For a proof, see Math. Review 15-500, [5, 8.4, p. 47], or [4, 
Proposition Al]). Thus if q = 2n then In+1(F) = 0. 

THEOREM. Let F be a non-formally real field with q = 2n. Then the following 
statements are equivalent: 

(1) u = q. 
(2) Either s = 1 and W(F) is anY^-vector space of dimension q or s = 2 and 

W(F) is a free Z/4 Z-module of rank q/2. 
(3) Either s = 1 and W(F) 9Ë F2[G] or s = 2 and W(F) ^ (Z /4Z)[ i f ] , 

z^ere if is any subgroup of index 2 in G with [ — 1] € i ï . 
(4) /"(F) 9e 0, i.e. » + l w £&e index of nilpotency of 1(F). 

Proof. The equivalence of (1) and (2) follows from [7, Proposition 5.10, 
Theorem 5.13, Proposition 5.15]. 

(2) =» (3) Let ^ : Z[G] -> 17(F) be the natural surjection. 
If 5 = 1 then ty induces a surjective mapping \F* : F2[G] —» 17(F). Since 

dimF2F2[G] = q ~ dimF217(F), SF* is an isomorphism. 
If 5 = 2 then ^ induces a surjection ^* : Z/4Z[G] -> W(F). Let fl" be any 

subgroup of index 2 in G with [ -1] g iJ. Then G = if X {[1], [-1]} so if 
*** : Z/4Z[if] -> 17(F) is the restriction of * to Z/4Z[if] then *** is also 
surjective. Since if has q/2 elements Z/4 Z[if] and W(F) are both finite sets 
with the same number of elements. Hence ^** is an isomorphism. 

(3) => (4) is immediate. 
(4) => ( l ) . If u < q_ = 2n then as remarked earlier, In(F) = 0. 

Remarks. (1) In [7, § 5], C. Cordes investigated fields satisfying the con­
ditions of the theorem and called them C-fields. In that paper he gave several 
other equivalent conditions. In particular, he has shown that F is a C-field 
if and only if for any anisotropic form # over F, Card D(<j>) = dim <£, where 
D(<j>) = {[a] Ç G\a is represented by 0}. 

(2) Let A be a complete discrete valuation ring with field of fractions F and 
residue field k of characteristic not 2. Then an easy application of Hensel's 
lemma shows that q(k) = 2n if and only if q(F) = 2n+l. Moreover, a theorem 
of Springer [5, 7.1, p. 43] gives an isomorphism W(F) ^ W(k) 0 W(k) of 
abelian groups. From this it is easy to see that k satisfies the conditions of the 
theorem with u(k) = q(k) = 2n if and only if F does with u(F) = q(F) = 
2n+1. 

Examples. (0) If F is algebraically closed then u(F) = q(F) = 1. 
(1) Any finite field (of char F^ 2) satisfies the conditions of the theorem with 

u = q = 2. 
(2) If F is a local field with finite residue field of characteristic not 2 then 

u(F) = q(F) = 4. 
(3) If F = Q2y the field of 2-adic numbers, then u(F) = 4, q(F) = 8. 
(4) If k is a field with «(jfe) = q(k) = 2n and F = k((h)) . . . ((/,)), the 

field of iterated power series over k then u(F) = q(F) = 2n+r. 
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The paper concludes with a related result regarding the values of quadratic 
forms over F. 

PROPOSITION. For afield F the following statements are equivalent: 
(1) Forai -F2,D((l,a)) = {[1], [a]}. 
(2) If <j> ~ (au . . . , an) is anisotropic then D(d>) = {[ax], . . . , [an]\. 
(3) The kernel of the mapping SF : Z[G] —> W(F) is generated by [1] + [ —1]. 
(4) Either F is formally real, Pythagorean, and W(F) ~Z[H], where H is a 

subgroup of index two in G with [ —1] d H or s(F) = 1 and W(F) ~ F2[G], 

Proof. An easy induction gives the equivalence of (1) and (2). Ii — 1 g F2 

then by [6, Theorem 1], (1), (3), and the formally real case of (4) are equiv­
alent. Thus it suffices to assume — 1 £ F2, i.e., s(F) = 1, and show the equiv­
alence of (1), (3), and the non-formally real case of (4). 

(1) => (3). As is well-known, the kernel of ty is generated by [1] + [ — 1] and 
all elements of the form 

g(a,x,y) = ([l] + [a]) ([1] - [x2 + ay2]) 

with x, y £ F and a, x2 + ay2 Ç F (see, for example, [5, 6.1, p. 41]). If 
a d — F2 then by (1), [x2 + ay2] = [a] or [1], so in either case g (a, x, y) = 0. 
Hence any non zero generator is either [1] + [ — 1] or has the form ([1] + [ — 1] ) 
([1] - [b]), with b e F, proving (3). 

(3) =* (4). Since - 1 6 F2, [1] + [ -1 ] = 2 in Z[G] so W(F) ^ 
Z[G]/2Z[G] ^ F 2 [ G ] . 

(4) => (1). If [b] e D((l, a)) then (1, a) ^ (6, ab) so (1) + (a) = (b) + 
(ab) in W(F). Since {{X)}X^F is a basis for W(F) over F2 and (a) 9^ ( — 1) = 
(1) it follows that (b) = (1) or (b) = (a), i.e. [b] = [1] or [b] = [a], proving (1). 

Remark. Formally real fields satisfying the conditions of the proposition 
have been studied in [1; 2; 3; 6]. Elman and Lam have called such fields 
superpythagorean. 
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