Winds in Venus' Lower Mesosphere Thomas Widemann, Emmanuel Lellouch LESIA, Observatoire de Paris-Meudon, 92195 Meudon, France Dynamics of Venus' mesosphere (70-110 km) is characterized by the coexistence of two different wind regimes : (1) between 70 and 85 km the vertical amplitude decrease of Venus' zonal retrograde super-rotation ; (2) between 85 and 110 km, a stable, sub-solar to anti-solar (SSAS) flow, driven by solar EUV heating. On July 7-14, 2001 and July 31 - August 4, 2002 we observed Venus with the Aurélie spectrometer on the 1.5-m telescope at Observatoire de Haute-Provence, France. The spectra cover the visible 8660-8730 Å range, in the $5\nu_3$ band of $^{12}C^{16}O_2$, at a resolving power of about 120,000. Seven regions were observed on Venus' illuminated side at $\sim 75^{\circ}$ phase angle. About 28 lines from the P and R branches of the $5\nu_3$ band were detected and used for wind velocity measurements with an accuracy of 15 to 25 ms⁻¹. Figure 1. Field mapping of wind velocity field on Venus in the CO_2 $5\nu_3$ visible band near 8700 Å near maximum elongation in 2001 (a) and 2002 (b). The 120,000-resolution Haute-Provence spectrograph has a 3" entrance aperture, projected on a disk size of 18-20 arcsec. Using zero-wind reference at disk center and drift, CO_2 and solar lines velocity is de-projected from line-of-sight into one purely zonal, or a combination of zonal and SSAS circulations. Those measurements probe visible absorption lines of CO_2 in an altitude range at two scale heights above cloud top. Results show circulation is mainly zonal. This analysis was applied to most reliable observations at both planetary elongations. De-projection shows a mainly zonal velocity but highly variable with an important relative error (70 \pm 60 ms⁻¹ in 2001, 170 \pm 130 ms⁻¹ in 2002). The expected return branch of upper mesospheric circulation, anti-solar to solar, is detected in our observations at an amplitude of -45 \pm 30 ms⁻¹.