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FIVE MUTUALLY TANGENT SPHERES AND VARIOUS 
ASSOCIATED CONFIGURATIONS 

BY 

J. F. R I G B Y 

ABSTRACT. If five spheres cr0, <rl9..., <r4 touch each other exter­
nally and have radii in geometrical progression, there is a dilative 
rotation mapping cr0, crv cr2, <x3 to alt a2, (r3, cr4; the dilatation fac­
tor is shown to be negative. The ten points of contact of the spheres 
lie by fours on 15 circles, forming a (154106) configuration in 
inversive space. In the corresponding configuration in the inversive 
plane, the 15 circles meet again in 60 points, which lie by fours on 
45 circles touching by threes at each of the 60 points, and forming a 
configuration isomorphic to that of 60 Pascal lines (associated with 
six points on a conic) meeting by fours at 45 points. The 45 circles 
arise from ten Money-Coutts configurations of nine anti-tangent 
cycles. Conjectures are made about other circles through the 60 
points. 

1. Introduction. If five spheres a0, cru . . . , <J4 all touch each other externally 
and have radii 1, r, r2, r3, r4 in geometric progression, then [2, p. 119] r satisfies 
the equation 

(1) r 2 - ( l + V2)r+l = 0, 

and there is a similarity mapping a0, al9 a2> °"3 to crl5 or2, cr3, a4. This similarity, 
since it is not an isometry, is a dilative rotation (i.e. a rotation about a line / 
followed by a dilatation with centre O on {) [3, p. 102]. Coxeter tacitly assumes 
in [2] that the dilatation factor is positive, so that "the points of contact of 
consecutive spheres lie on a concho-spiral" [2, p. 119], but one of his research 
students, Mrs Asia Weiss, has recently shown that it is negative [6]. We give 
here a simple alternative proof of this fact. 

Associated with five tangent spheres are a (106) configuration of spheres and 
points and also a (156109) configuration. We show that the two configurations 
exist also in a more general form. 

Both these configurations give rise to a (154106) configuration of circles and 
points in three dimensions. Such a configuration exists also in two dimensions 
and it contains ten (94) configurations. The author has shown [5] that a (94) 
configuration gives rise to a Money-Coutts configuration of nine anti-tangent 
cycles, and we deduce from this that the (154106) configuration gives rise to a 
(454603) configuration of 45 circles touching by threes at 60 points. 
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This last configuration is isomorphic to the configuration of 45 points of 
intersection of the 60 Pascal lines of six points on a conic. Other geometrical 
properties of the Pascal configuration suggest further fruitful investigations into 
the geometry of the circles and points. I am grateful to Professor Coxeter for 
reminding me about the Pascal configuration. 

2. The dilative rotation. In the notation of section 1, take O as origin, / as 
the z-axis. The dilative rotation obtained by rotation about Z through an angle 
0 + 77 followed by a negative dilatation with factor —À is equivalent to a 
rotation through an angle 0 followed by a positive dilatation with factor À 
followed by a reflection in the xy-plane. Suppose if possible that this dilative 
rotation maps a0, au a2, cr3 to ax, <x2, <x3, a4; then A = r. Let us express the 
point (x, y, z) by (x + iy, z) and write eie = K. Denote the centre of cr0 by (a, b), 
where we may suppose that a is real; then the centre of at is (arlKl, b(-r)1) 
(i = 1 , . . . , 4) and its radius is r\ The conditions for <J0 to touch <rl9 cr2, cr3, a4 

externally are 
a2(m - l)(r/c - 1 ) + b\r +1)2 = (r +1)2 , 

a 2 ( r 2 K 2 - l ) ( r 2 K 2 - l ) + b 2 ( r 2 - l ) 2 = ( r 2 +l ) 2 , 

a2(r3K3 - l)(r3i<3 - 1) + b2(r3 + l)2 = (r3 + l)2 , 

a2(r4K4- l ) ( r 4K 4- 1) + b2(r4- l ) 2 - (r4+ l)2 . 

If these conditions are satisfied, we see by applying the dilative rotation that all 
the spheres are mutually tangent. Let us write b/a = c, 1/a = d; then the above 
conditions become 

(2) (r2 +1) - r(ic + K) + c\r +1)2 - d2(r +1)2 , 

(3) (r4 +1) - T\K2 + K2) + c2(r2 - 1 ) 2 = d2(r2 + l)2 , 

(4) (r6 +1) - T3(K3 + K3) + c2(r3 +1)2 - d2(r3 +1)2 , 

(5) (r8 + 1) - r4(K4 + K4) + c2(r4 - l )2 = d2(r4 + l)2 . 

If we eliminate c2 and d2 from equations (2) and (4), by taking (4) — 
( r 2 - r + l ) 2x(2) , we obtain 

(r6 + 1) - (r2 - r + l)2(r2 + 1) - T3{K3 + i<3) + (r2-r + 1)MK + ic) = 0. 

Dividing by r, and writing K + K = fc, we have 

(6) 2 ( r 4 - 2 r 3 + 2 r 2 - 2 r + l ) - r 2 ( f c 3 - 3 f c ) + ( r 2 - r + l)2fc = 0. 

From (1), r 2 - r + l = V2r, and r 4 - 2 r 3 + 2 r 2 - 2 r + l = ( r 2 - r + l ) 2 - r 2 = 
2r2-r2 = r2, so (6) becomes 

k 3 - 5 k - 2 ^ ( k + 2 ) ( k 2 - 2 k - l ) = 0 

on dividing through by - r 2 . 
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Now k = 2 cos 0; hence the solution k = 1 + V2 is impossible. Hence fc = - 2 
or fc = l -> /2 . 

If fc = —2 then K = —1, and (2) and (3) give 

(l + V2) + 2 + (3 + V2)c2 = (3 + V2)d2, 

( l + 2V2)-2 + ( - l + 2V2)c2 = (3 + 2V2)d2, 

whence c2 = - l and d2 = 0, which is impossible. 
Hence fc = l — V 2 = K + K, and we easily check that the unique solution of 

equations ( 2 ) , . . . , (5) is given by c2 = 3(3V2-2)/14, d2 = (3V2-2)/2. Hence 
a2 = (3V2 + 2)/7, b2 = 3ll. Also 2 cos 6 = K + K = 1-V2, so 0 = 101°57\ (If 
we return to the original point of view and take the dilatation factor to be —r, 
the angle of rotation will be 78°03' in the opposite direction.) 

Is it possible to have a different arrangement of spheres with radii 1, r , . . . , r4 

giving a positive dilatation factor? No: since all five radii are known, once we 
have placed a0,..., a 3 all touching each other externally, there is only one 
possible position for cr4 (since the second sphere touching cr 0 , . . . , a3 has radius 
r1). 

3. The points of contact of the spheres. If we denote the dilative rotation by 
a, and denote the sphere a0a

r by ar (r = . . . , - 2 , - 1 , 0 ,1 , 2 , . . . ) we obtain an 
infinite sequence of spheres, as described in [2], such that any five consecutive 
spheres are mutually externally tangent. Denote the centre of at by Q, and the 
z-coordinate of Q by zt = b(-r)1. When / = 1 or 3, we see that 

Hi and ai+i touch externally, 

ai and ari+j have radii rl and rl+J, 

zi+i = -r]z{. 

Hence the point of contact PM+i of c7( and cri+J has z -coordinate 0. Thus all the 
points of contac t . . . , P01, P12, P23, P34, . . . and . . . , P03, P14, P 2 5 , . . . are copla-
nar. Also it is easy to see t h a t . . . , P01, P12, P 2 3 , . . . lie on an equiangular spiral, 
and . . . , P03, P14, . . . on a congruent spiral. 

Since any infinite sequence of spheres (rr) (r = . . . , —2, —1, 0 , 1 , 2 , . . . ) , such 
that any five consecutive spheres are mutually tangent, is inversively equivalent 
to the sequence (crr), it follows that the points of contac t . . . , 
Q01, Oi2, Q23, Q34, • • • a n d • • • > O03, Q14, Q25, . . . all lie on a sphere (or plane), 
where Qtj denotes the point of contact of rt and T,. Coxeter has given two 
simpler proofs of this result [4], but it is a nice consequence of the fact that the 
dilatation factor in the above discussion is negative. 

4. A (106) configuration. Let us now consider again just five mutually 
tangent spheres r0, r l 5 . . . , T4. We have seen that Q01, Q12, Q23, Q34, Q03, Q14 

lie on a sphere; these six points are the points of contact of TX and T3 with the 
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remaining spheres, so we can name the sphere on which they lie T13 (or r31). 
The five mutually tangent spheres can be arranged in a sequence in 5! ways, 
but these sequences give us a total of only ten sets of six points of contact lying 
on ten spheres r01, r0 2 , . . . , r34. 

If we invert Q04 to infinity, then r0 and r4 become parallel planes, and 
T"I, T2, T3 become tangent spheres of equal radius sandwiched between the 
planes as in Fig. 1. The existence of the ten spheres, each containing six points 
of contact, is now obvious. A list of the spheres is given below. In Fig. 1 we 
have written Q01 = A, Q02 = B, etc., and Q04 = K is at infinity. 

BCDJHK = Toi ACDFJG = r13 

CAEGJK = r02 BCEFJH = r23 

(7) ABFHGK = T03 AEFJHK = r14 

ABCDEF = T04 BFDGJK = r24 

ABDEHG = T12 CDEHGK = r34 

(Since K is at infinity in Fig. 1, six of the spheres appear as planes.) Each of the 
ten points lies on six spheres; thus we have a (106) configuration of spheres and 
points. By permuting the suffixes 0 , 1 , . . . , 4 we obtain 5! symmetries of the 
configuration, and it is easily seen that there are no others: the symmetry group 
is S5. Since we can permute the spheres T0, T1? . . . , T4 in any manner using 
products of inversions, we can realize all the symmetries of the configuration 
within the inversive group. 

5. A (156109) configuration. We see from Fig. 1 that there are five more 
spheres each containing six points of contact. One of them is ABCGHJ, 
containing the points of contact of T0, T19 T2, T3; we shall denote this sphere by 
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r45. The complete list of five spheres is 

DEFGHJ = T05 ABDEJK = r35 

(8) BCEFGK = T15 ABCGHJ = r45 

CAFDHK = T25 

If ijklm is any permutation of 01234, we shall give Qy the alternative name 
Qij5,kim» where the suffix is an unordered pair of unordered triplets. Then we 
find that r01 contains the points Q023,i45> Qo24,i35> Qo25,i34, Q034,i25, Qo35,i24, 
Qo45,i23? with similar results for the remaining fourteen spheres. Also Q012345 
lies on the nine spheres r03, T04, T05, T13, T14, T15, T23, T24, T25; etc.. Thus we have 
a (156109) configuration of spheres and points. By permuting the suffixes 
0 , 1 , . . . , 5 we obtain 6! symmetries of the configuration, and it is easily seen 
that there are no others: the symmetry group is S6. 

Each of these two configurations contains fifteen circles with four points on 
each, each circle belonging to two spheres of the (106) configuration and to 
three spheres of the (156109) configuration. Using Fig. 1 we calculate that the 
three circles lying in one of the ten original spheres intersect at an angle of 
2 sin_1(l/2v/2), whilst the three circles on the five other spheres intersect at right 
angles. Since inversions preserve angles, we can therefore realize only 5! of the 
symmetries of (156109) within the inversive group. 

6. The general (156109) configuration. We have proved the existence of a 
special form of the (156109) configuration, derived from five mutually tangent 
spheres. We shall now investigate the most general manner of constructing the 
configuration. The general configuration is shown in Fig. 2, with K still at 
infinity. Let us analyse the figure to see how it can be constructed. The planes 
BCEF, CAFD, ABDE meet at O, say; hence the lines AD, BE, CF meet at O. 
Denote the sphere ABCDEF by o\ The points G, H, / lie in the polar plane IT 
of O with respect to or. 

We begin therefore with a sphere a, a point O not on <J, and two lines 
through O meeting a at A, D and B, E; then / is determined. Now we require 
BCJH to be concyclic; hence DH.DC = DJ.DB = kx say. Hence C lies on the 
inverse of IT with respect to the sphere (real or imaginary) with centre D and 
radius Jkx. Similarly EG.EC = EJ.EA = k2 say. Hence C lies on the inverse of 
7T with respect to the sphere with centre E and radius Vfc2. Thus C lies on two 
spheres as well as on a. With suitable initial choices for cr, OAD and OBE, 
these three spheres will meet in two points, giving two possible positions for C; 
we choose either one of them. Now define G = 7rDEC, H = TrnDC, F = 
a fl OC. To show that B, G, F are collinear, we observe that BF D EC lies in 
TT; but G is the point of EC in TT, SO BFDEC = G. Similarly H lies on AF. 

Now BCJH and ACJG are concyclic; these circles have two points in 
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1 * 

Figure 2 

common, so ABCGHJ lie on a sphere. Hence ABHG, being coplanar also, are 
concyclic. 

Now BCEF are concyclic (being coplanar and lying on or) and BCJH are 
concyclic. Hence BCEFJH lie on a sphere. Similarly CAFDGJ and ABDEHG 
lie on spheres. From these spheres, cut by planes, we see that FDGJ and 
DEHG are concyclic. Hence DEFGHJ lie on a sphere. 

We now have all the fifteen spheres, including the nine planes in the figure. 
Since any configuration of five mutually tangent spheres can be mapped to 

any other by a product of inversions, we can say that such a configuration has 
no degrees of freedom with respect to the inversive group. It is easily seen that 
the general (156109) configuration has four degrees of freedom. 

7. The (154106) configuration in the plane. If we consider only the circles 
and points in the (156109) configuration of spheres and points, we obtain a 
(154106) configuration of circles and points with symmetry group S6. The 
three-dimensional nature of the configuration was an essential factor in its 
construction in section 6; we shall now consider whether this (154106) config­
uration exists in a plane. The circles are 

ABDE BCHJ AFHK 

ACDF DEGH BDJK 

(9) BCEF DFGJ BFGK 

ABGH EFHJ CDHK 

ACGJ AEJK CEGK. 

https://doi.org/10.4153/CMB-1982-021-7 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1982-021-7


1982] FIVE MUTUALLY TANGENT SPHERES 155 

If we omit the point K and the six circles through K, we obtain a (94) 
configuration that can be expressed symbolically by the square array 

A B C 

(10) D E F 

G H J 

Any four points forming the vertices of a horizontal-vertical rectangle in the 
array lie on a circle of the (94) configuration. 

THEOREM 1 [5, Theorems 3,4]. Given such a (94) configuration, the circles 
ABC, DEF, GHJ are coaxal, and the circles ADG, BEH, CFJ belong to the 
orthogonal coaxal system ; conversely, given three circles of a coaxal system and 
three circles of the orthogonal system, if we choose nine of their eighteen points of 
intersection in a suitable manner (e.g. as in Fig. 3 where a limiting point of one 
system has been taken to be at infinity) they will lie by fours on nine circles to 
form a (94) configuration. 

THEOREM 2 [5, §4]. If nine points lie by fours on eight circles in the manner of 
a (94) configuration, then the ninth circle of the configuration exists also. 

The author has shown [5, Theorem 5] that, in the (94) configuration given by 
(10), the six circles AEJ, AFH, BDJ, BFG, CDH, CEG (each circle containing 
one point from each row and column of the array) have a common radical 
centre, P say. This means that P has the same power with respect to the six 
circles; if this power is zero, then P lies on all the circles, so we can take P = K 
to obtain the (154106) configuration. This shows that if a (94) configuration 
satisfies a single extra condition we can obtain a (154106) configuration, but it 
does not tell us how to construct such a (94) configuration, so we use a different 
approach. 

Figure 3 

https://doi.org/10.4153/CMB-1982-021-7 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1982-021-7


156 J. F. RIGBY [June 

Supposing that the (154106) configuration exists, let us omit A and the six 
circles through A ; we then obtain a (94) configuration 

B K C 

(11) F G E 

J D H 

whence FGE is orthogonal to FBJ by Theorem 1. We shall show that (94) 
configurations (10) exist with this extra orthogonality property, and that this 
property is sufficient to ensure the existence of K. 

In Fig. 4 the lines DG, EH, FJ meet at O, and DEF, GHJ are circles with 
centre O. The unique circle through F and J orthogonal to FGE meets HE 
twice, at B and B' say. (If F and J lie on the same side of HE, this orthogonal 
circle may not meet HE.) The circle through B with centre O meets DG, FJ at 
A, C, say. We now have three circles in each of two orthogonal coaxal systems 
(the limiting points of one system being O and the point at infinity), so we have 
a (94) configuration of type (10) with FGE orthogonal to FBJ. 

Now OB.OB' = OF.OJ = OE.OH = OD.OG = k say. Hence inversion in the 
circle with centre O and radius jk (an imaginary circle in Fig. 4) maps the circle 
FBJB' to itself and FGE to JDH. But inversion preserves orthogonality, so 
JDH is orthogonal to FBJ. 

The reflection in the internal bisector of angle EOF maps FGE and JDH to 
themselves and FBJ to ECH. Hence FBJ, ECH are both orthogonal to FGE, 
JDH, so we have two circles from each of two orthogonal coaxal systems. 

Figure 4 
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Figure 5 

Assume without loss of generality that FBJ, ECH meet twice, at P and Q, and 
invert Q to infinity; we then have Fig. 5, in which FGE, JDH are circles with 
centre P. Since BCEF are concyclic, B and C lie on a circle with centre P; 
since FGJD are concyclic, the line GD passes through P. Let this circle and 
line meet at K as shown; then we have a (94) configuration of type (11), giving 
four circles through K, namely BFGK, CEGK, BDJK, CDHK. 

To show that the (94) configuration 

A H C 

F K D 

G B J 

exists, we observe that eight circles of this configuration already are known to 
exist, so by Theorem 2 the ninth circle exists; i.e. AFHK are concyclic. 
Similarly by considering 

A 
J 

D 

E C 
K G 

B F 

we see that AEJK are concyclic. We now have all fifteen circles of a (154106) 
configuration. 

The (94) configuration has four degrees of freedom with respect to the 
inversive group; the (154106) configuration has three, and its symmetry group is 

s6. 
8. Ten Money-Coutts configurations. The author's original interest in (94) 

configurations arose from the following result. 

THEOREM 3 [5, Theorem 4]. The nine circles of a (94) configuration meet in 
pairs in eighteen points other than the points of the configuration. These eighteen 
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Figure 6 

points lie by fours on nine circles, two of which touch at each of the eighteen 
points. These circles can be oriented to form a configuration of nine anti-tangent 
cycles, each anti-touching four others (a Money-Coutts configuration). 

The situation is illustrated in Fig. 6. Now a (154106) configuration contains 
ten (94) configurations, obtained by omitting any one of the ten points and the 
six circles through it. Each (94) configuration gives a Money-Coutts configura­
tion. 

THEOREM 4. The 90 circles in the ten Money-Coutts configurations derived 
from a (154106) configuration coincide in pairs to give a configuration of 45 
circles touching by threes at 60 points. 

Proof. Some of the statements in this proof can be visualized by labelling the 
points in Fig. 6; they are proved in [5]. Consider the (94) configuration (10). 
We shall use the notation BCEF fï DEGH to denote the point of intersection, 
other than E, of the circles BCEF and DEGH, etc.. The four points BCEF H 
DEGH, DEGH H BCHJ, BCHJ n DFGJ, DFGJ n BCEF lie on a circle, which 
we shall denote by a. We define similarly a total of nine circles a, b, c,..., / 
forming a Money-Coutts configuration, with one circle associated with each of 
the nine points. Two circles touch if the corresponding points lie in distinct 
rows and distinct columns of the array (10); for instance, a and e touch at 
BCHJ fl DFGJ. 
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Since this Money-Coutts configuration is obtained by omitting K from the 
(154106) configuration, we shall denote it by K and shall rename its nine circles 
ka, kb,..., kj. The (94) configuration given by the array (11) gives the nine 
circles ab, ac,..., ak of the Money-Coutts configuration A; etc.. We easily 
check that ka = ak, etc., so there are 45 circles rather than 90. 

We have seen that the circles ka and ke touch at BCHJ H DFGJ. The circles 
ek and ea touch at this same point, and so do ae and ak. Hence ka, ek, ae all 
touch at this point. We thus have a configuration of 45 circles touching by 
threes at 60 points, four of the points lying on each circle. 

The converse of Theorem 3 is true: any Money-Coutts configuration has an 
associated (94) configuration from which it is derived. It is therefore easily seen 
that any configuration of 45 circles as described in Theorem 4 has an associated 
(154106) configuration from which it is derived. Such configurations therefore 
have three degrees of freedom and symmetry group S6. We shall call them 
T-configurations. The particular T-configuration shown in Fig. 8 has six extra 
accidental points of triple contact, shown by black dots. 

The cycles of a Money-Coutts configuration are anti-tangent; we cannot 
re-orient some of them to make them all tangent. However, if three circles all 
touch at the same point as in Theorem 4 we cannot orient them so that each 
anti-touches the other two. I conjecture that we can orient the cycles in each of 
the ten Money-Coutts configurations in such a way that the common circle of 
two Money-Coutts configurations is oriented in opposite directions in the two 

Figure 7 
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Figure 8 
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configurations (e.g. ka and ak are opposite cycles). We should then have a 
configuration of 45 bicycles. 

Write BCHJ n DFGJ = X, DEGH n BCEF = Y, BFGK n CDHK = W, 
ACDF fl ABGH = Z. The cycles ka and ke anti-touch at X, ka and kj at Y, fee 
and fcj at Z (Fig. 7). Hence the circle XYZ is orthogonal to ka, ke, kj. Similarly 
WXY is orthogonal to ae, aj, ak and WXZ is orthogonal to ea, ej, ek. Hence 
WXYZ are concyclic and this circle is orthogonal to ae, aj, ak, ej, ek, jk (Fig. 
7). The 60 points lie by fours on fifteen such orthocircles. 

The eighteen points of any one of the Money-Coutts configurations lie on six 
of these orthocircles, and these six have a common orthogonal circle [5, 
Theorem 1], the base circle of the configuration, which may be imaginary. A 
T-configuration contains fifteen orthocircles and ten base circles, each ortho-
circle orthogonal to four base circles and each base circle orthogonal to six 
orthocircles: a type of (154106) configuration in which the incidence relation is 
orthogonality. 

9. The connection with the Pascal configurations. The circle ABDE in the 
three-dimensional (156109) configuration is the intersection of the three 
spheres T04, T12, T35, SO we can denote ABDE by the syntheme (04,12, 35) 
using Sylvester's terminology [1, p. 220], a syntheme being an unordered 
triplet of unordered pairs or duads. A point, such as A = Q0i5,234> lies on a 
circle if and only if the numbers in each triplet of the suffix belong one to each 
duad in the corresponding syntheme. 

A typical Money-Coutts circle in section 8 is ka or ak. Now K and A are 
Qo45,i23 and Qoi5,234> so we may denote ka by (05, 23). Similarly each of the 
45 circles is denoted by an unordered pair of duads. The three circles ka, ke, ae 
touch at a common point. These circles are (05, 23), (13, 45), (01, 24); we shall 
denote their common point by 013245, where only the cyclic order of the six 
numbers is important, and the opposite cyclic order 542310 represents the 
same point. The notation is explained by the fact that 05 and 23 are "opposite 
adjacent pairs" in the cyclic sequence 013245, and so are the pairs 13, 45 and 
01, 24. This point is also the point of intersection (other than Q52i,43o) of the 
circles (54, 23, 10) and (42, 31, 05). The 60 possible cyclic orders give the 60 
points of tangency of the 45 circles. 

Now, if three circles touch at a common point, their centres lie on a line. 
Hence the centres of the 45 Money-Coutts circles lie by threes on 60 lines, 
forming a (603454) configuration of lines and points. From the notation just 
developed we immediately obtain an isomorphism between this configuration 
and the configuration of 60 Pascal lines associated with six points on a conic, 
meeting by fours at 45 points: if we denote six points of a conic by 
0 , 1 , 2 , 3 , 4 , 5 , then for instance the pairs of opposite sides of the hexagon 
013245 meet at the three points (01, 24), (13, 45), (05, 23), which are collinear 
on the Pascal line of the hexagon. 
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The configuration obtained from six points on a conic is a special case of a 
more general configuration which we shall call a Cremona configuration [1, p. 
220 et seq.]. This is derived from fifteen lines (obtained by projecting a certain 
configuration of fifteen lines and planes from 3-space onto a plane) denoted by 
duads formed from the numbers 0 , 1 , . . . , 5. Lines whose duads have no 
number in common meet at 45 points denoted by (01, 23) etc., and these points 
lie by threes on 60 Pascal lines as described above, giving a (603454) configura­
tion. 

In a Cremona configuration the six points (01,23), (01,24), (01,25), 
(01,34), (01,35), (01,45) are collinear, on the line (01), but in a T-
configuration the centres of the six circles (01,23), (01,24) etc. are not 
collinear. (This last statement is not proved; it has merely been observed from 
a figure.) Hence not all (603454) configurations of points and lines are derived 
from Cremona configurations. 

Also in a Cremona configuration the 60 Pascal lines are concurrent by threes 
in 20 Steiner points; for instance, 012345, 032541, 052143 are concurrent. I 
conjecture from observation that in a T-configuration the Steiner circle through 
the points 012345, 032541, 052143 is orthogonal to the nine Money-Coutts 
circles that pass, three by three, through these points. A tedious proof of this 
would be possible using the Argand diagram as in [5, §3], but I have not found 
a synthetic proof. 

The 60 Pascal lines are also concurrent by threes in 60 Kirkman points; for 
instance, 012345, 120534, 201453 are concurrent. Let us call the circle 
through the three corresponding points of a T-configuration a Kirkman circle. 
We shall say that the point acebfd is conjugate to abcdef. By writing the symbol 
for a given point in all possible ways (either retaining or reversing the cyclic 
order) we find that there are just three points conjugate to it; also, if B is 
conjugate to A then A is conjugate to B. For instance, the three points 
conjugate to 031524 are 012345, 120534, 201453. These points lie on a 
Kirkman circle, and my final conjecture is that this circle passes through 
031524 also. 

If this conjecture is correct, there is a natural one-one correspondence 
between the 60 points of a T-configuration and the 60 Kirkman circles: to each 
point corresponds the Kirkman circle through the point and its three conjugate 
points. Since certain of the points lie on orthocircles, Steiner circles etc., we 
might expect to discover properties of the corresponding Kirkman circles. I 
have as yet obtained nothing significant from this train of thought, but an 
interesting property of the conjectured Kirkman circles is given in the next 
section. 

10. A property of the conjectured Kirkman circles. We shall assume in this 
final section that each Kirkman circle does pass through a fourth point, as 
described above; the 60 Kirkman circles and the 60 points of the T-
configuration then form a (604) configuration. 
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Now the Pascal lines and Kirkman points in a Cremona configuration form a 
(603) configuration, but this splits up into six (103) configurations [1, p. 232], as 
is easily verified. Similarly our (604) configuration splits up into six (104) 
configurations. One of these consists of the ten points 012345, 013254, 
014532, 015423, 021435, 024153, 025314, 031524, 034215, 043215, and the 
corresponding Kirkman circles. Let us denote this (104) configuration by Kl9 

and the other five by K2,..., K6. 
The symmetry groups of all the configurations in this paper are transitive on 

points and circles, or points and spheres, and the (104) configurations are 
self-dual, as are (106) and (94). However, those symmetries of Kx that fix one 
circle do not permute the points of that circle transitively: they all fix the 
corresponding point also. In this respect the (104) differs from the previous 
configurations; it is less symmetrical. 

The (154 106) configuration from which a T-configuration is derived can be 
called the auxiliary configuration, consisting of the auxiliary circles and aux­
iliary points of the T-configuration. (This is preferable to the term "base 
points" used in [5].) Each of the 60 points of the T-configuration is the meet of 
two auxiliary circles; alternatively, two auxiliary circles pass through each of 
the 60 points. 

If we consider those auxiliary circles that pass through the ten points of Kl9 

we find that there are just five of them, namely (02,14, 35), (03,15, 24), 
(04,13, 25), (05,12, 34), (01, 23, 45), and if we now adjoin these circles to Kx 

we obtain a (154 106) configuration, Ax say, easily seen to be isomorphic to the 
auxiliary configuration. Similarly from K 2 , . . . , K6 we obtain (154 106) config­
urations A 2 , . . . , A6 . Thus our original auxiliary configuration, A say, gives 
rise to six configurations A 1 ? . . . , A6. These in turn can be regarded as 
auxiliary configurations, each giving rise to six (154 106) configurations, one of 
which is found to be A in each case. 

The final question is this: does this process "close up" in some manner, or 
does it lead to an infinite number of (154 106) configurations? 

Note: Since the acceptance of this paper, the author has verified the conjec­
tures made in the paper. The proofs and further results about T-configurations 
will be presented in a subsequent paper. 

R E F E R E N C E S 

1. H. F. Baker, Principles of Geometry, vol 2, Cambridge 1922. 
2. H. S. M. Coxeter, Loxodromic sequences of tangent spheres, Aeq. Math. 1 (1968), 104-121. 
3. Introduction to geometry, 2nd éd., New York 1969. 
4. Problem 500, Crux Mathematicorum 5 (1979) 293. 
5. J. F. Rigby, On the Money-Coutts configuration of nine anti-tangent cycles, Proc. London 

Math. Soc. (3) 43 (1981) 110-132. 
6. Asia Weiss, On Coxetefs loxodromic sequences, in The geometric vein, Springer, N.Y. (to 

appear). 

UNIVERSITY COLLEGE 

CARDIFF CF1 1XL, WALES 

https://doi.org/10.4153/CMB-1982-021-7 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1982-021-7

