ON THE INVERSION OF GENERAL TRANSFORMATIONS**

P. G. Rooney

(received August 2, 1958)

Let k be the kernel of a "general transformation"; that is, $k(x) / x \in L_{2}(0, \infty)$, and if x and y are positive

$$
\begin{equation*}
\int_{0}^{\infty} k(x u) k(y u) u^{-2} d u=\min (x, y) . \tag{1}
\end{equation*}
$$

Then it is well known (see for example [8; Theorems 129 and 131]) that if the transform of $f \in L_{2}(0, \infty)$ is g, that is, if

$$
\begin{equation*}
g(x)=(d / d x) \int_{0}^{\infty} k(x y) f(y) d y / y, \tag{2}
\end{equation*}
$$

then the inverse transform is given by

$$
\begin{equation*}
f(x)=(d / d x) \int_{0}^{\infty} k(x y) g(y) d y / y \tag{3}
\end{equation*}
$$

In practice, the inversion formula (3) is often hard to use. For example, the integral may be too difficult to evaluate; moreover, since (2) requires a differentiation, it is not well suited for numerical calculation. Hence it seems worthwhile to find other methods for inverting the transformation.

Here we shall give a technique for finding a large number of inversion formulae, and will illustrate the technique by a number of examples. It should be noted that, since the relation between f and g is reciprocal, we can calculate the transform of f by applying the inversion methods developed here to f rather than to g.

The essence of the inversion technique to be developed here is the conversion, by a suitable operation, of the general transformation into some other transformation. For this second transformation we chose the Laplace transformation since it has a particularly rich inversion theory.

[^0]Can. Math. Bull., Vol. 2, No. 1, Jan. 1959

To this end, suppose the Laplace transform of f is F, that is,

$$
\begin{equation*}
F(s)=\int_{0}^{\infty} e^{-s x_{f}(x) d x}, \quad s>0 \tag{4}
\end{equation*}
$$

and let

$$
\begin{equation*}
K(s)=s \int_{0}^{\infty} e^{-s x_{k}(x) d x}, \quad s>0 \tag{5}
\end{equation*}
$$

Then since (by [2; Chapter 3, § 2, Theorem 1]) we may differentiate a Laplace transform as often as we like under the integral sign, we have, if s and x are positive,

$$
\begin{gathered}
x^{-1} K(s / x)=s x^{-2} \int_{0}^{\infty} e^{-s y / x} k(y) d y \\
=(d / d x) \int_{0}^{\infty} e^{-s y / x_{k}(y) d y / y=(d / d x)} \int_{0}^{\infty} e^{-s y_{k}(x y) d y / y}
\end{gathered}
$$

that is, $x^{-1} K(s / x)$ is the $k-t r a n s f o r m$ of $e^{-s x}$. Hence, by the Parseval formula for general transformations [8; theorem 129],

$$
\begin{equation*}
\int_{0}^{\infty} K(s / x) g(x) d x / x=\int_{0}^{\infty} e^{-s x_{f}(x) d x=F(s)}, \tag{6}
\end{equation*}
$$

that is, $\quad \int_{0}^{\infty} K(s / x) g(x) d x / x$ is the Laplace transform of f. Hence any inversion technique for the Laplace transformation, when applied to $\quad \int_{0}^{\infty} K(s / x) g(x) d x / x$ will serve to invert the general transformation as well.

As a first example, let $I_{n, x}$ denote the Widder Post inversion operator for the Laplace transformation, that is

$$
L_{n, x}[F]=\left[(-1)^{n} / n!\right](n / x)^{n+1} F^{(n)}(n / x)
$$

Then from (6), $L_{n, x}[F]$ formally is equal to
(7) $K_{n, x}[g]=\left[(-1)^{n} / n!\right](n / x)^{n+1} \int_{0}^{\infty} K^{(n)}(n / x y) g(y) d y / y^{n+1}$.

Thus we would suspect that $\mathcal{K}_{n, x}$ [g]should yield f in the limit as $n \rightarrow \infty$. We prove this in the following theorem.

THEOREM 1. If $f \in L_{2}(0, \infty)$ and g is the k-transform of f then

$$
\lim _{n \rightarrow \infty} K_{n, x}[g]=f(x)
$$

at every point $x>0$ in the Lebesgue set of f.
Proof. As already remarked, we can differentiate $K(s)=s \int_{0}^{\infty} e^{-s u_{k}(u) d u}$, as often as we like under the integral
sign. Using the Leibnitz rule, we obtain
$K^{(n)}(s)=(-1)^{n_{s}} \int_{0}^{\infty} e^{-s u_{u} n_{k}(u) d u+n(-1)^{n-1}} \int_{0}^{\infty} e^{-s u_{u} n-1} k(u) d u$, so that if $x>0$, $\left[(-1)^{n} / y^{n+1}\right] K^{(n)}(n / x y)=\left(n / y^{n+2}\right) \int_{0}^{\infty} e^{-n u / x y}\left[x^{-1} u-y\right] u^{n-1} l_{k}(u) d u$ $=(d / d y) y^{-n} \int_{0}^{\infty} e^{-n u / x y_{u^{n-1}}}{ }_{k}(u) d u=(d / d y) \int_{0}^{\infty} e^{-n u / x_{u} n-1} k(y u) d u$. Hence if $x>0$, as a function of $y,\left[(-1)^{n} / y^{n+1}\right] K^{(n)}(n / x y)$ is the k-transform of $e^{-n y / x_{y} n}$. By the Parseval theorem for general transformations [8; theorem 129],

$$
\begin{aligned}
\mathcal{Z}_{n, x}[g] & =\left[(-1)^{n} / n!\right](n / x)^{n+1} \int_{0}^{\infty} K^{(n)}(n / x y) g(y) d y / y^{n+1} \\
& =(1 / n!)(n / x)^{n+1} \int_{0}^{\infty} e^{-n y / x_{y} n_{f}(y) d y} \\
& =\left[(-1)^{n} / n!\right](n / x)^{n+1} F^{(n)}(n / x)=L_{n, x}[F] .
\end{aligned}
$$

By [9; chapter 7, theorem 6a], $\lim _{n \rightarrow \infty} L_{n, x}[F]=f(x)$ at every point $x>0$ in the Lebesgue set of f, and hence $\lim _{n \rightarrow \infty} \mathcal{K}_{n, x}[g]=f(x)$ at every such point.

Let us see what $\mathcal{K}_{n, x}$ looks like for certain particular general transformations. If, for example, $k(x)=(2 / \pi)^{\frac{1}{2}} \sin x$, then the equation of the transformation is

$$
g(x)=(d / d x)(2 / \pi)^{\frac{1}{2}} \int_{0}^{\infty} y^{-1} \sin x y f(y) d y
$$

that is, we obtain the Fourier cosine transformation in this case. Then from $[3 ; \S 4.7(1)], K(s)=(2 / \pi)^{\frac{1}{2}}\left(s / s^{2}+1\right)=(2 \pi)^{-\frac{1}{2}} \operatorname{Re}\{1 / s-i\}$, and

$$
K_{n, x}[g]=n^{n+1}(2 \pi)^{-\frac{1}{2}} \int_{0}^{\infty} \operatorname{Re}\left\{1 /(n-i x y)^{n+1}\right\} g(y) d y
$$

Similarly for the Fourier sine transformation; that is if $k(x)=$ $(2 / \pi)^{\frac{1}{2}}(1-\cos x)$, we obtain

$$
\mathcal{K}_{n, x}[g]=n^{n+1}(2 \pi)^{-\frac{1}{2}} \int_{0}^{\infty} \operatorname{Im}\left\{1 /(n-i x y)^{n+1}\right\} g(y) d y
$$

From these two formulae it is easy to find an inversion formula for the complex Fourier transformation, defined for $f \in L_{2}(-\infty, \infty)$ by

$$
g(x)=(d / d x)(2 \pi)^{-\frac{1}{2}} \int_{0}^{\infty}\left[\left(e^{i x y}-1\right) / i y\right] f(y) d y
$$

The even part of g is the cosine transform of the even part of f, and the odd part of g is i - times the sine transform of the odd part of f. Putting things together in this manner we see that, if

$$
\mathcal{F}_{n, x}[g]=(-i n / x)^{n+1}(2 \pi)^{-\frac{1}{2}} \int_{0}^{\infty}(y-i n / x)^{-(n+1)} g(x) d x
$$

and if $f \in L_{2}(-\infty, \infty)$ and g is the complex Fourier transform of f, then $\lim _{n \rightarrow \infty} \mathcal{F}_{n, x}[g]=f(x)$ at every point $x \neq 0$ of the Lebesgue set of f. (For other uses of this inversion operator for the Fourier transform see [7].)

To obtain other inversion formulae for a general transformation we select other inversion operators for the Laplace transformation. For example let $M_{n, x}$ denote Phragmén's inversion operator, that is

$$
M_{n, x}[F]=\sum_{r=1}^{\infty}(-1)^{r+1}(r!)^{-1} e^{r n x^{\prime}} F(r n)
$$

Applying this to (6) and using (2; chapter 8, §1, theorem 1] we see that if $x>0$,
$\int_{0}^{x} f(y) d y=\lim _{n \rightarrow \infty} \sum_{r=1}^{\infty}(-1)^{r+1}(r!)^{-1} e^{r n x} \int_{0}^{\infty} K(n r / y) g(y) d y / y$.
We can put this in a somewhat simpler form:
THEOREM 2. If $f \in L_{2}(0, \infty)$ and g is the k-transform of f then for $\mathrm{x}>0$,

$$
\int_{0}^{x} f(y) d y=\lim _{n \rightarrow \infty} \int_{0}^{\infty} H(n, x, y) g(y) d y
$$

where

$$
H(n, x, y)=(d / d y) \int_{0}^{\infty}\left(1-e^{-e^{n(x-u)}}\right) k(y u) d u / u .
$$

Proof. From the Parseval formula for general transforms [8; theorem 129] we have

$$
\int_{0}^{\infty} H(n, x, y) g(y) d y=\int_{0}^{\infty}\left(1-e^{-e^{n(x-y)}}\right) f(y) d y,
$$

and expanding the exponential we obtain

$$
\begin{aligned}
& \int_{0}^{\infty} H(n, x, y) g(y) d y=\sum_{r=1}^{n}(-1)^{r+1}(r!)^{-1} e^{r n x} \int_{0}^{\infty} e^{-r n y_{f}(y) d y} \\
& \quad=\sum_{r=0}^{\infty}(-1)^{r+1}(r!)^{-1} e^{r n x} F(r n)=M_{n, x}[F]
\end{aligned}
$$

provided we justify the interchange of integration and summation. For this it suffices to show that

$$
\sum_{r=0}^{\infty}\left(e^{r n x} / r!\right) \int_{0}^{\infty} e^{-r n y}|f(y)| d y<\infty
$$

and this is easy since by $[2$; Chapter 3, §6, Theorem 1],

$$
\int_{0}^{\infty} e^{-r n y}|f(y)| d y \rightarrow 0 \text { as } r \rightarrow \infty
$$

By using other inversion operators for the Laplace transformation, such as the Widder-Boas operator [1], or Hirschmann's operator [4], or the Erdélyi-Rooney operators [5,6] a variety of other inversion formulae all of much the same type, can be found. A rather different inversion method comes about by making use of a technique using Laguerre polynomials. We state this as a theorem.

THEOREM 3. If $f \in L_{2}(0, \infty)$ and g is the k-transform of f, then

$$
f(x)=1 . \text { i. } m_{n_{n \rightarrow \infty}} e^{-\frac{1}{2} x} \sum_{r=0}^{n} q_{r} L_{r}(x)
$$

where

$$
q_{n}=\sum_{r=0}^{n}\binom{n}{r}(r!)^{-1} \int_{0}^{\infty} K^{(r)}(1 / 2 x) g(x) d x / x^{r+1} .
$$

Proof. The theorem follows from [2; Chapter 8, §3, Theorem 1] once we have show that

$$
F(r)(s)=\int_{0}^{\infty} K^{(r)}(s / x) g(x) d x / x^{r+1}
$$

As in the proof of Theorem 1,
$K^{(r)}(s)=(-1)^{r} s \int_{0}^{\infty} e^{-s y_{y}} r_{k}(y) d y+r(-1)^{r-1} \int_{0}^{\infty} e^{-s y_{y} r-1} k(y) d y$, so that

$$
\begin{aligned}
& x^{-(r+1)_{K}(r)}(s / x)=(-1)^{r} s x-(r+2) \\
& \int_{0}^{\infty} e^{-s y / x}(y-r x) y^{r-1} k(y) d y \\
&=(-1)^{r}(d / d x) x^{-r} \int_{0}^{\infty} e^{-s y / x^{r-1}} \mathrm{l}(y) d y \\
&=(-1)^{r}(d / d x) \int_{0}^{\infty} e^{-s y_{y}} y^{r-1_{k}(x y) d y}
\end{aligned}
$$

that is $x^{-(r+1)} K^{(r)}(s / x)$ is the k-transform of $(-y)^{r} e^{-s y}$. Hence by the Parseval theorem for general transformations

$$
\int_{0}^{\infty} K^{(r)}(s / x) g(x) d x / x^{r+1}=\int_{0}^{\infty} e^{-s y}(-y)^{r} f(y) d y=F^{(r)}(s),
$$

on using [2; Chapter 3, § 2, Theorem 1], and our theorem is proved.

REFERENCES

1. R.P. Boas and D.V. Widder, An inversion formula for the Laplace integral, Duke Math. J. 6(1940), 1-26.
2. G. Doetsch, Handbuch der Laplace Transformation, (Basel, 1950).
3. A. Erdélyi et al., Tables of Integral Transforms, v.l, (New York, 1954).
4. I.I. Hirschman, A new representation and inversion theory for the Laplace integral, Duke Math. J. 15(1948), 473-494.
5. P.G. Rooney, A new inversion and representation theory for the Laplace transformation, Can. J. Math. 4(1952), 436-444.
6. P.G. Rooney, On an inversion formula for the Laplace transformation, Can. J. Math. 7(1955), 101-115.
7. P.G. Rooney, On the representation of functions as Fourier transforms, Can. J. Math. - to appear.
8. E.C. Titchmarsh, Introduction to the Theory of Fourier Integrals, 2nd ed., (Oxford, 1948).
9. D.V. Widder, The Laplace Transform, (Princeton, 1941).

[^0]: * This paper was written while the author was a fellow at the 1958 Summer Research Institute of the Canadian Mathematical Congress, Kingston, Ontario.

