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Abstract

Let X; c P™*! be a quartic hypersurface of dimension n > 4 over an infinite field k. We show that if either X4
contains a linear subspace A of dimension 2 > max{2, dim(A N Sing(Xy)) + 2} or has double points along a linear
subspace of dimension 4 > 3, a smooth k-rational point and is otherwise general, then X, is unirational over k.
This improves previous results by A. Predonzan and J. Harris, B. Mazur and R. Pandharipande for quartics. We
also provide a density result for the k-rational points of quartic 3-folds with a double plane over a number field, and
several unirationality results for quintic hypersurfaces over a C;- field.
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1. Introduction

An n-dimensional variety X over a field k is rational if it is birational to P?, while X is unirational if
there is a dominant rational map P;(‘ --> X. If k is infinite and X is unirational, then the set X (k) of the
k-rational points of X is Zariski dense in X.

Since the first half of the twentieth century, the problem of establishing whether a degree d hyper-
surface X; c P™*! is rational or unirational has been central in birational projective geometry [Mor42],
[Pre49], [Mor52], [IM71], [CG72], [Cil80], [Kol95], [Shi95], [HMP98], [HTO00], [dF13], [BRS19],
[RS19].

Quadric hypersurfaces with a smooth point are rational and as proven by J. Kolldr, building on
techniques of B. Segre [Seg43] and Y. I. Manin [Man86, Chapter 2, Section 12], cubic hypersurfaces
with a smooth point are unirational [Kol02]. U. Morin proved that a general complex hypersurface
X, ¢ P"! is unirational provided that n is large enough with respect to d [Mor42]. This result has then
been reproved, in a different way, by C. Ciliberto [Cil80] and extended to complete intersections by A.
Predonzan [Pre49], K. Paranjape, V. Srinivas [PS92] and L. Ramero [Ram90].
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Furthermore, J. Harris, B. Mazur and R. Pandharipande proved that X; c P™*! is unirational if the
codimension of its singular locus is sufficiently big with respect to n and d [HMP98].

Before stating our main results on the unirationality of quartics we briefly survey the state of the
art. By the work of U. Morin, a general complex quartic X; ¢ P"*! with n > 5 is unirational [Mor36],
[Mor52]. V. A. Iskovskikh and Y. I. Manin proved that the group of the birational automorphisms of a
smooth quartic X4 C P* is finite so that Xy is not rational [IM71].

Moreover, J. Harris and Y. Tschinkel showed that if n» > 3 and k is a number field, then for some
finite extension k” of k the set of k’-rational points of a smooth quartic X, ¢ P"*! is dense in the Zariski
topology; in other terms, the k-rational points of X4 are potentially dense [HTOO]. Despite this great
amount of effort, the unirationality of the general quartic X4 C P" for n = 4,5 is still an open problem
and only special families of quartic 3-folds, called quartics with separable asymptotics, are known to be
unirational [Seg60]. For a nice survey on rationality and unirationality problems with a focus on their
relation with the notion of rational connection, we refer to A. Verra’s paper [Ver08]. We recall that a
projective variety is rationally connected if any two of its points can be joined by a rational curve and
refer to C. Araujo’s paper [Ara05] for a survey on the subject.

In this paper, we address the unirationality of quartics X; ¢ P"*! containing a linear subspace whose
dimension is larger than that of the singular locus of X4 or containing a linear subspace with multiplicity
two. Our main results in Theorems 3.15 and 3.22 can be summarized as follows:

Theorem 1.1. Let X4 C P! be a quartic hypersurface and A ¢ P"™*' an h-plane. Assume that either

(i) n = 3,h > 2, dim(A N Sing(X4)) < h — 2, X4 contains A and is not a cone over a smaller-
dimensional quartic, or
(ii) n >4, h > 3, X4 has double points along A, a point p € X4 \ A and is otherwise general,

then Xy is unirational.

All along the paper with the word ‘general’” we mean ‘for a nonempty Zariski open subset of the
parameter space of the objects we are considering’. We would like to stress that since all the proofs
presented in the paper are constructive it is possible, given the equation cutting out the hypersurface, to
establish whether or not it is general in the required sense.

Furthermore, for quartic 3-folds over a number field we prove, in Proposition 3.14, the following
density result.

Theorem 1.2. Let X4 C P* be a quartic hypersurface, over a number field k, having double points along
a codimension two linear subspace A C P*, with a point p € X4 \ A and otherwise general. The set
X4 (k) of the k-rational points of Xy is Zariski dense in Xj.

As Remark 3.17 shows, the assumption on the existence of a point p € X4 \ A in the case of quartics
singular along a linear subspace cannot be dropped. Under extra assumptions on the base field or on
the existence of rational points in special subloci of X4, Theorem 1.1 can be extended to smaller-
dimensional quartics. For instance, by Proposition 3.19 a quartic surface X; c P3 with double points
along a line A ¢ P?, a point p € X4 \ A, a double point ¢ € X4 \ A with ¢ # p and otherwise general
is unirational. Furthermore, by the second part of Theorem 3.15 a quartic X4  P* over a C, field, for
which definition we refer to Remark 2.10, with r = 0, 1, having double points along a linear subspace A
with dim(A) = 1,2, and otherwise general is unirational. Therefore, in order to complete Theorem 1.1
for all #n and h we are left with the following open question.

Question 1.3. Let X4 c P"*! be a quartic hypersurface over a field k such that either

(i) n =3, X4 contains a line, or
(ii) n =3, X4 has double points along a linear subspace A with dim(A) = 1,2, a point p € X4 \ A, or
(iii) n =2, X4 has double points along a line A, a point p € X4 \ A,

and X4 is otherwise general. Is then X4 unirational?
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Note that a smooth quartic surface Xy C P3 is K3, and hence, it cannot be unirational. As we said,
(ii) has a positive answer when the base field is C, with » = 0, 1, while (i) is open even over the complex
numbers. Since any complex quartic 3-fold contains a line, (i) actually asks about the unirationality of a
general quartic 3-fold and is probably one of the most interesting unirationality open problems. Since a
quartic surface X4 C P with a double line is birational to a conic bundle, (iii) is interesting only when
the base field is not algebraically closed.

Note that by considering the generic fiber of the resolution of the linear projection from A as in the
proof of Theorem 3.15 a positive answer to Question 1.3 would extend the first part of Theorem 1.1 to
quartic hypersurfaces X; ¢ P"*! with n > 3 containing a line and the second part of Theorem 1.1 to
quartic hypersurfaces X4 ¢ P"*! with n > 3 having double points along either a line or a plane and an
additional smooth point.

Remark 1.4. The main available results in the spirit of Theorem 1.1 can be found in [Pre49] and
[HMP98]. By [Pre49, Theorem 1] a quartic X4 c P™*! containing an h-plane A is unirational provided
that Sing(X4) NA = 0 and & > 4. The same result has been proved in [HMP98, Corollary 3.7] for 4 > 97.

We would like to stress that both [Pre49] and [HMP9S8] as well as [Ram90] provide unirationality
results for hypersurfaces of arbitrary degree and general unirationality bounds when the base field is
algebraically closed.

In the case of quartics, Theorem 1.1 (i) improves [Pre49, Theorem 1] and [HMP98, Corollary 3.7] in
two directions: on one side, it is enough to have that 4 > 2, on the other side, A is allowed to intersect
the singular locus of X4 as long as such intersection has codimension at least two in A.

In the last section, we investigate the unirationality of quintic hypersurfaces and divisors of bidegree
(3,2) in products of projective spaces. As a by-product, we get new examples of unirational but not
stably rational varieties.

A variety X is stably rational if X x P is rational for some m > 0. Hence, a rational variety is stably
rational, and a stably rational variety is unirational. The first examples of stably rational nonrational
varieties had been given in [BCTSSDS85], where the authors, using Chatelet surfaces, constructed a
complex nonrational conic bundle 7 such that 7 x P3 is rational.

In the last decade, important advances on stable rationality have been made, especially for hypersur-
faces in projective spaces [Voil5], [CTP16], [Totl16], [HKT16], [AO18], [Sch18], [BvB18], [HPT18],
[Sch19a], [Sch19b], [HPT19]. In [CTP16, Theorem 1.17], J. L. Colliot-Théléne and A. Pirutka proved
that a very general smooth complex quartic 3-fold is not stably rational. In [Sch19b, Corollary 1.4], S.
Schreieder gave the first examples of unirational nonstably rational smooth hypersurfaces. A. Auel, C.
Bohning and A. Pirutka proved that a very general divisor of bidegree (3, 2) in P3 x P2, over the complex
numbers, is not stably rational. By Theorem 4.7, we get that such a very general divisor is unirational
but not stably rational.

Furthermore, thanks to our unirationality results for divisors of bidegree (3,2) we get new results
on the unirationality of quintic hypersurfaces over C, fields and number fields. The literature on
the unirationality of quintics is much less rich than that on quartics. A general quintic hypersurface
X5 c P!, over an algebraically closed field, is unirational if n > 17 [Mor38]. Furthermore, a quintic
X5 c P"! containing a 3-plane and otherwise general is unirational if n > 6 [CMMO8]. To the best of
our knowledge, these are the only results on the unirationality of quintics.

Conventions on the base field, terminology and organization of the paper

All along the paper, the base field k£ will be of characteristic zero. Let X be a variety over k. When we
say that X is rational or unirational, without specifying over which field, we will always mean that X is
rational or unirational over k. Similarly, we will say that X has a point or contains a variety with certain
properties meaning that X has a k-rational point or contains a variety defined over k with the required
properties.

In Section 2, we will introduce the notation, prove some preliminary results about the relation between
hypersurfaces in projective spaces and certain divisors in projective bundles and give an immediate
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generalization of a unirationality criterion due to F. Enriques. In Section 3, we will investigate the
unirationality of quartic hypersurfaces and cubic complexes that are complete intersections of a quadric
and a cubic. Finally, in Section 4 we will address the unirationality of quintics and divisors in products
of projective spaces.

2. Hypersurfaces and divisors in projective bundles

Let ao, ...,ans1 € Zxo be nonnegative integers, and consider the simplicial toric variety 7a,,... a).,
with Cox ring

COX(%(),...,CI]H]) = k[xO, e 7xn7h7 yO, LR }’h+1]

72-grading given, with respect to a fixed basis (H,, H,) of Pic(7Ta,....an,, ), by the following matrix

X0 ---Xn-h YO --- Yh+l
1 ... 1 —ag ... —aps1
O... 0 1 ... 1

and irrelevant ideal (xg, ..., x,-1) N (Yo,...,Ya+1). Then

7:1(] Ap+l = P(ga(] ----- alH—l)

.....

with g, ape = Opn-n(ag) @ - -+ ® Opn-n (ap+1). The secondary fan of Ty, .. 4., is as follows

Vo Vi Vh+1 H

Hi,

where Hy = (1,0) corresponds to the sections xq, . . ., X, H2 = (0, 1), and v; = (—a;, 1) corresponds
to the section y; for i = ,h+1.

Definition 2.1. A divisor D C T, ... 4,,, of multidegree (64,0,...0---,00,...,0,4;d) is a hypersurface

.....

given by an equation of the following form

. 1 )
D T Z O-io,...,ih+] (.XO, o ’xn—h)yoo y}f_:i O - 7:10,...,&;”] ’ (22)
0<ip<---<ipy41 | i+ +ipt1=d
where o .ij,., € k[X0, ... Xn-nls, ., and
04,0,....,0 — dag = 64-1,1,0,...0 = (d = Dag—ay =---=6p,..0,a — daps1. (2.3)

Without loss of generality, we may assume that agp > a; > - -+ > ap41 so that (2.3) yields d4,0,...0 =
60,d,0,...,0 = =+ = 00,....0,d-

Lemma 2.4. Let X; € P! be a hypersurface of degree d ' having multiplicity m along an h-plane A,
and X the blowup of X4 along A with exceptional divisor E C X4. Then X4 is isomorphic to a divisor
of multidegree

dd-1,...,d-1,....d—j,....,d—j,....m,...,m;d —m)

1,0,...,00 where d — j is repeated (h;fj) times for j = 0,...,d — m. The exceptional divisor Eisa
divisor of bidegree (m,d — m) in P x P".

https://doi.org/10.1017/fms.2023.55 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2023.55

Forum of Mathematics, Sigma 5

Proof. We may assume that A = {zg = --- = z,-, = 0} and

my My, — 1
Xd = { Z ZO 0 ... anhhAm() ,,,,, My—n (Z()? cee Zn+]) = 0} - Pn+

mo+--+my_p=m

with Ay, om,_ € k[20s- -, Zn+1)a—m. The blowup of P™*! along A is the simplicial toric variety 7~
with Cox ring

Cox(T) = k[X0, .-+ sXn-h>Y0r--+»>Yntll

72-grading given, with respect to a fixed basis (H,, H,) of Pic(7), by the following matrix:

X0 -+« Xn—h YO Y1 -+ Yhel
1 ... 1 01... 1
-1... -1 1 0... 0

and irrelevant ideal (xo, .. .,X,—) N (Yo, ..., Yr+1). Substituting in the above matrix the first row with

the sum of the rows and then swapping the rows an multiplying the top row by —1 we get to the following
grading matrix

X0 --- Xn-h YO Y1 --- Yh+l
1... 1 -10... 0 2.5)
O... 0 1 1... 1

and hence 7 = T10,... 0. The blow-down morphism is given by

.....

é: T1.0,....0 — pr+l
(X05 -+ s Xn—p> Y05 - - > Ya1) H> [X0Y0 1 I XpopY0o I Y15 5 Yhet]

and the exceptional divisor is E = {yo = 0}. Hence, the strict transform of X, is defined by
Xa= { Z X0 X A (X0Y0s < - s Xn kY05 Vs - - s Vie1) = 0} C Ti0,...0. (2.6)
mo+--+myuy_p=m

and the claim on the multidegree follows. Note that (2.5) yields that E = P*_" x Ph and

(X0,-++3Xn—h) (V1seeesYhe1)
hence E =Xy NE C P?;Oh_._ ) % P?yl yel) is a divisor of bidegree (m,d —m). )

The following is a straightforward generalization of a unirationality criterion for conic bundles due
to F. Enriques [IP99, Proposition 10.1.1].

Proposition 2.7. Let f : X — Y be a fibration over a unirational variety Y with X an irreducible variety.
Assume that there exists a unirational subvariety Z C X such that fz : Z — Y is dominant, consider
the fiber product

XZ:XXYZ%X
7| |
fiz

Y

7 ————

and denote by X7 ,, the generic fiber of f: Xz — Z. Assume that Xz ,, is integral. Finally, assume that
Xz, is unirational over k(Z) if and only if it has a k(Z)-rational point. Then X is unirational.
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Proof. Since X7z ;, is integral after replacing Z by an open subset, we may assume that Xz is irreducible.

Now, note that the dominant morphism fz : Z — Y yields a rational section of f~: Xz — Z.So
X7, has a k(Z)-rational point, and hence, it is unirational over k(Z). Therefore, X is unirational, and
hence, X is unirational as well. O

We will apply Proposition 2.7 to fibrations in irreducible m-dimensional quadric or cubic hypersur-
faces. In these cases, Xz ; C PZ’(’Zl) is an irreducible quadric or cubic hypersurface over k(Z). So after
replacing Z by an open subset, we may assume that X is irreducible.

Remark 2.8. A quadric hypersurface over a field k with a smooth point is rational. Furthermore, by
[Kol02, Theorem 1.2] a cubic hypersurface of dimension at least two with a point and which is not a
cone is unirational.

Definition 2.9. Fix a real number r € Rx. A field k is C, if and only if every homogeneous polynomial
f € klxo,...,n,]q of degree d > 0 in n + 1 variables with n + 1 > d" has a nontrivial zero in S

Remark 2.10. (Lang’s theorem) If k is a C, field, fi,...,fs € k[xo,...,n,]q are homogeneous
polynomials of the same degree and n+ 1 > sd”, then fi, ..., f; have a nontrivial common zero in k"**!
[Poo17, Proposition 1.2.6]. Furthermore, if k is C,, then k(¢) is C,4+ [Pool7, Theorem 1.2.7].

In the last section, we will need the following.

Proposition 2.11. Let D C T, ...
Then D is birational to a hypersurface X(’S‘2 .

ann — P" " pe a divisor of multidegree (62,0....05---500,...0.2,2).
c P! of degree 6,.....0 + 2 having multiplicity
62.0.....0 along an h-plane A and multiplicity two along an (n — h — 1)-plane A’ such that AN A’ = 0.

Proof. Write D C T,
affine hypersurface

.....

,,,,, an. as in (2.2) and dehomogenize with respect to x,—, and yp41 to get an

X = {f(xo, e s Xn—h—-1,Y0, - .,,yh) = 0} c An+l

(X05+++>Xn-h=1Y05+++>Yh) *

Now, we introduce a new variable that we will keep denoting by x,,_;, and homogenize f in order to get

a polynomial ?(xo, e vsXn—h=1,Y0, - - - » Yh»Xn—p) Which is homogeneous of degree 520, o + 2. Note
that f has the following form
F= D A A i (50 Vi Xnon) (2.12)
lg+++ip-p=02,0,...,0
with A; i € k[yo,.. . Yn, Xp-plo forall 0 <ip < --- < i,_p < 2,,....0- The hypersurface
X3, w2 = A 0s s Xnn15 Y05+ s Vs Xno) = 0 € P

is birational to X, and hence, it is birational to D as well. To conclude, set
A={xo="=x-n=0}, N={yo="+=yp=x4-p =0}

and note that (2.12) yields multy ng . = 02,0,...,0 and multy/ ng . =2 O

‘_,0+2

3. Cubic complexes and Quartics

In this section, we investigate the unirationality of quartic hypersurfaces containing linear subspaces
and quadrics, and of complete intersections of quadric and cubic hypersurfaces. The following is an
immediate consequence of [CMMO07, Theorem 2.1].

Lemma 3.1. Let Y23 = Y N Y3 € P"™2 with n > 3 be a smooth complete intersection, of a smooth

quadric Yy and a cubic Y3, defined over a field k with char(k) # 2,3. If Y5 contains a 2-plane 11, then
Y, 3 is unirational.
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Proof. Forn = 3, the statement has been proven in [CMMO07, Theorem 2.1]. Now, consider the incidence
varieties

Wy ={(y.H)|ye HNY2} cY2xG(n—-4,n-1);
Wi ={(0.H)|ye HNY3} CY3xG(n—-4,n-1);
Woz ={(y.H)|ye HNY3} =W, NW3 CYo3xG(n-4,n-1),

where G(n — 4, n — 1) is the Grassmannian of 5-planes in pr+2 containing I1. Let W ,,, W3 ;,, W2 3 ;, be
the generic fibers of the second projection onto G(n — 4, n — 1) from W, W3, W, 3, respectively.

The 2-plane I1 C Y yields a 2-plane I1’ C W, ,, defined over k(t1,...,#3(,—3)), and since Y, is
smooth, we have that W, ,, is smooth.
Hence, W53, C ]P’i (traeemtsn) is a smooth complete intersection over k(f1, . . ., 13(,—3)) of a quadric
and a cubic satisfying the hypofheses of [CMMO7, Theorem 2.1], and so W5 3 ; is unirational over the
function field k(#1,...,3(,-3)). As in the proof of Proposition 2.7, after replacing G(n — 4,n — 1) by
an open subset we may assume that W5 3 is irreducible.

Therefore, W5 3 is unirational over the base field &, and to conclude it is enough to observe that the
first projection W, 3 — Y» 3 is dominant. m]

Lemma 3.2. Let Qg € P"™! be a smooth (n — 1)-dimensional quadric and X, C P"™' an irreducible
hypersurface of degree d containing Qo with multiplicity one and otherwise general. Then there exists
a complete intersection

Yau-1 =Y2 N Y4y C P™

of a quadric Y, and a hypersurface Yy_1 of degree d — 1 such that:

(i) Y2,4-1 has a point v € Y> 4_1 of multiplicity d — 2, and
(ii) the linear projection from v yields a birational map m,, : Y2 q4-1 --> Xg.

Furthermore, Y, is smooth and mult,, Y1 =d — 2.

Proof. We may write Qg = {z1 = Q =0} with Q € k[zp, ..., Zn+1]2. Then Xy is of the form
Xa ={z1A+BQ =0}

with A € k[z0,...,Zn+1]a-1 and B € k[zo, ..., Zn+1]a—2. Consider the quadric ¥, = {zju — Q = 0}

with zo, ..., 2Zn+1, 4 homogeneous coordinates on P"*2, Since Qp is smooth, we may assume that
0= z% +-00 4 zfm. Hence, Y5 is a smooth as well.

Denote by CX,4, CQy the cones, respectively, over X; and Qg with vertex v =[0:---: 0 : 1]. Then
CQpCcl) and

Y,NCX;=CQoVU{zju—Q =A+uB =0}

SetYy-1 ={A+uB=0}and Y2 41 = {ziu — O = A + uB = 0}. Note that the tangent space of > at v
is the hyperplane {z; = 0}, the tangent cone of Y;_; at v is given by {B = 0} and the tangent cone of
Y2,4-1 at vis cut out by {z; = B = 0}. Hence,

mult, Yy =mult, Y5 41 =d - 2.
Therefore, if p € Y5 4-1 is a general point the line (v, p) intersects Y> 4_1 just in v with multiplicity
d — 2 and in p with multiplicity one. So the projection 7y, : Y2 4-1 --» P! is birational onto 7, Y2,4-1)

which must then be a hypersurface of degree 2(d — 1) — (d — 2) = d. To conclude, it is enough to note
that since Y 4_1 is not a cone of vertex v and Y2 4_1 € CXy4 we have m, (Y2,4-1) = Xa. |
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Lemma 3.3. Consider the complete intersection
Yaa-1=YaNY¥q g C P2,

where Y, = {zju — A; =0} C Pn+2 o Zn—1,1t) and

n+2

d-2 d-3 d-4 d-3
Ygo1={zy u+zy "As+zy "z1Az+---+z{ "Ag1 =0} C P oznt )

with A; general homogeneous polynomial of degree two. Assume that the (n — 2)-dimensional quadric
0 ={z0 = z1 = A1 = 0} has a point.

Then there exists a variety W, with a surjective morphism onto a rational surface S, such that if W is
unirational, then there is a dominant rational map W --> Y» 4_1 and hence Y, 41 is unirational as well.
Furthermore, the general fiber of W — S is a complete intersection of a quadric and a hypersurface of
degree d — 3.

Proof. Setv=1[0:---:0:1]and H = {z9 = z; = 0} c P"*2. Then
mult, Yy 1 =d—-2, multy Y51 =d - 3.

Take a general point p € H. The lines through p that intersect Y;_; at p with multiplicity at least d — 2
are parametrized by a hypersurface W,;_3 cut out in the (n + 1)-dimensional projective space P(TPIP””Z)
of lines through p by a polynomial in k[zo, z1]a-3-

Now, consider the cone CQ over the (n —2)-dimensional quadric Q {z0 = z1 = A1 =0}, and take a
general point p € C 0. Note that CQ C Y,. The lines through p that are contained in ¥, are parametrized
by a quadric hypersurface W, c P(T),Y>).

Let F = 7}2 tere) be the restriction of the tangent sheaf of ¥, to CQ. Summing up, there is a subvariety

Wa.4-3 € P(F) with a surjective morphism p : W 43 — Ca whose fiber over a general point of
p € CQ is a complete intersection of a quadric and a hypersurface of degree d — 3 in P". Hence,
dim(Wg,d,3) =2n-3.

By hypothesis, Q has a point. Let C be a conic in Q through this point and S the cone over C with
vertex v. Then S ¢ CQ is a rational surface. Set W = p~!(S) and Wy = p~!(s) for s € S. A general
point w € W represents a pair (s, [5), where s € S and [ is a line through s which is contained in Y
and intersects Y;_; with multiplicity d — 2 at s. Since deg(Y4-1) = d — 1 the line [ intersects Y;_; just
at one more point x5 ;) € Y> N Y41 =Y 4_1 and we get a rational map

{,bl w --> Y2,d—1
(sals) — x(.s‘,ls)'

If W is unirational, in order to prove that ¢ is dominant it is enough to prove that the induced map
J CW - ?Z,d— 1 between the algebraic closures is dominant. Take a general point p € Yz,d_ 1, and
assume that x( ;) = p. Then [ lies in the tangent space of ¥, at p which is given by {L = 0}. Such
tangent space intersects S in a conic, and further intersecting with W,_3 we see that there are finitely
may points s € S such that X(s,1;) = p for some I; € W,. Furthermore, if x( 1) = x(s,1,), then [ = 7.
Hence, ¢ is generically finite and since dim(W) = dim(Y>,4-1) we conclude that ¥ is dominant. O

Proposition 3.4. Let X; € P! be a hypersurface of degree d having multiplicity d—2 along an (n—1)-
plane A c P"™*'. Assume that there is a quadric Q p in the quadric fibration induced by the projection
Sfrom A such that the quadric Q , N A is smooth and has a point and that Xg is otherwise general.
Then there exist a rational surface S and a variety W with a morphism onto S such that if W is
unirational, then there is a dominant rational map W --> X4 and hence X, is unirational as well.
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Proof. We may write A = {zo = z; =0} and
Xa={z§ A1 +z{ 0 Ay + -+ 2{ P A4 = 0}

with A; € k[zo0, ..., zn+1]2. Note that Xz contains the smooth (n — 1)-dimensional quadric @, = {z; =
Ay = 0}. Hence, by Lemma 3.2 there is an irreducible complete intersection ¥» 4_; C P"*? which is
birational to X.

Consider the quadric Y, = {zju — A} = 0} C P2 with homogeneous coordinates zo, . . ., Zn+1, U,
and let CX, be the cone over Xy as in the proof of Lemma 3.2. The intersection ¥, N CX, has two
components: the cone CQ, over O, and the degree d — 1 hypersurface

Yio1 = {Zg_zu + Zg_3A2 + zg_411A3 +--- 4 ZEI_SAd_l =0}.

Let W — S be the fibration constructed in Lemma 3.3 starting from the complete intersection
Y2.4-1 =Y> N Y4 1. If W is unirational, Lemma 3.3 yields a dominant rational map y : W --> Y5 4.

Finally, let 7, : Y2.4-1 --> X4 be the dominant rational map in Lemma 3.2. By considering the
composition
W
W------ *> Y2,4-1
T~l_ 8 I
S | 7Ty,
S A ~-
Xa,
we get a dominant rational map g : W --» X4, and hence X is unirational. O

Proposition 3.5. Let Y>3 = Y, N Y3 C P"™2 be a complete intersection of a quadric and a cubic of the
Jollowing form

o3={uz1 - A =Z(2)u+Z0B+Zlc=O}

with A,B,C € k[z0,...,2Zn+1]2 general. If the quadric 0= {z0 = z1 = A = 0} is smooth and has a
point, then Y; 3 is unirational.

Proof. By Lemma 3.3 with d = 4, there exists a variety W with a morphism onto a rational surface S
whose general fiber is a complete intersection of a quadric and a hyperplane. Hence, W has a structure
of quadric bundle W — § over S with (n — 2)-dimensional quadrics as fibers.

By the proof of Lemma 3.3, S is a cone over a conic and it is contained in ¥, = {uz; — A = 0}. In
particular, any line in S through its vertex is contained in Y>. Moreover, S is contained in the intersection
of Y3 with its tangent cone at v. Hence, the lines in S through its vertex yield a section of the quadric
bundle W — S and so W is rational. Finally, to conclude it is enough to apply Lemma 3.3. O

Corollary 3.6. Let X, ¢ P"! be a quartic hypersurface having multiplicity two along an (n — 1)-
plane A c P! with n > 3. Assume that there is a quadric Q p in the quadric fibration induced by the
projection from A such that the quadric Q = Q , N A is smooth and has a point and that X4 is otherwise
general. Then X4 is unirational.

Proof. Up to a change of coordinates, we may assume that A = {z9 = z; = 0}, X4 is given by
Xy = {22A + 2021B + 23C = 0} c P"*!

and Qp = {z; = A = 0}. The intersection {zju — A = z%A +z021B + z%C =0} C PZ’;OZM et ) has two
components: {z; = A = 0} and

Vos={ziu—-A= uz% +z0B + z%C =0} c PZ’;OZ’_._’Z"H,M).
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By Lemma 3.2 and its proof, there exists a birational map Y> 3 --» X4. To conclude, it is enough to note
that Y5 3 is a complete intersection of the form covered by Proposition 3.5. O

Corollary 3.7. Let X, ¢ P"' withn > 5, be a quartic hypersurface containing an (n— 1)-dimensional
smooth quadric Q¢ which contains a 2-plane and otherwise general. Then X4 is unirational.

Proof. By Lemma 3.2, X4 is birational to a complete intersection Y 3 = Y> N Y3, where Y, is a smooth
quadric. By the proof of Lemma 3.2, we have that since Q( contains a 2-plane Y, contains a 2-plane as
well. Hence, Y> is a smooth quadric containing a 2-plane and we conclude by Lemma 3.1. O

Corollary 3.8. Let X4 C P™!, with n > 2, be a quartic hypersurface having multiplicity two along an
(n = 1)-dimensional smooth quadric Q, with a point and otherwise general. Then Xy is unirational.

Proof. Slightly modifying the proof of Lemma 3.2, we see that in this case X4 is birational to a complete
intersection Y> N Yz’ c P2 of two quadrics, and hence, the claim follows from [CTSSD87, Proposition
2.3]. m]

In the following, we will investigate the unirationality of quartic hypersurfaces by constructing explicit
birational maps to divisors in products of projective spaces. In particular, we will get an improvement
of Corollary 3.6 when n > 4.

Lemma 3.9. Consider the hypersurface

d-2 d-3 d-3 d-2 1
Xa={zy (2oL + Q) + 25 z1A1 + - +202) "Agq-3+2y Aa2=0}CP{

where A; = A? + 20A] + Z2AY, and L, A} € k[z1,...,zan1]1, Q, A7 € k[z1, ... 2nr1]2, AV € Kk for
i=1,...,d—2. Then Xy is birational to the divisor

d-1

_ d—1-i i _ 1

Yia-12) = {ZXO lxllBi - 0} < P(Xﬂ’xl) X P?Wl ----- Wnit)
i=0

of bidegree (d — 1,2), where By = wiL +A?w%, B =0 +w1A% +W%Ag, B; = A5_1 + wlA} + w%A?H
forj=2,...,d=3,Bgo=A% . +w A By =A>

d-3 d-2 d-2
Proof. Note that X; passes through the point p = [1: 0 : --- : 0], and the rational map
. pn+l . n+1
¢ P(Zo,---,znn) i P(Wo ----- Wntl)
(20t zne1] P [20L 127 121220+ 1 212nsi ]

is birational with birational inverse

-1 . Pn+1 N Pn+1
L R (205-++2Zn+1)
[wo:---:wpet]l = [wowy i wiL:waLl i+ wyL],

where L = L(wy,...,wps1). Note that ¢!

transform of X, via ¢! is given by

contracts the divisor {L = 0} to the point p. The strict

Xy = {wg_z(wowlL +LQ)+ wg_3(w(2)w%A? + wowlLA{ + LzA%) +...

+ Ld_S(w%w%Ag_z + wowlLAil_2 + LZAZ_Z) =0},
which we rewrite as

Xy = {wg_l(wlL + W%A(l)) + w(‘)l_zL(Q + wlAi + W%Ag) +...

+woL9 (A2 5 + wiAl_,) + LT AL, = 0},
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Finally, substituting wog = j‘c—‘l’L we get the equation cutting out the divisor Y(4-12) C IP’%XO ) X
o in the statement. 0
(Wi Wna)

Proposition 3.10. Let Y3 ») be a general divisor of the form

3

_ 3—i i _ 1

Y(3’2) - {ZXO lxllBi - 0} < P(X(),X]) X ]P}ZWI ----- Wial),
i=0

where BO = W1L +A(])W%, 31 = Q + WlAi + W%Ag, Bz = A% + WlAé, B3 = A%, and L,Al! [S
kwi,...,wnetlts Q,A% € k[wi,...,wuttlo, A? € k fori = 1,2 are general. If n > 4, then Y3 5) is
unirational.

Proof. Consider the rational map

. pl n - 2
- P(Xo,xl) X P(Wl ----- W) i P(ul,uz,u3) (3.11)
([xo s xa], [wi s s wpar]) = [1 2 03],

where n; = Bixg+Bi+1x0x1 +- - -+B3x6_1x?_i fori =1,2,3.By[Ott]l5, Theorem 1.1 (ii)] the rational map

P! x P - P? x P*
(x0,x1) (W15eeesWht1) (uy,uz,u3) (WiseeesWna)
([xo : x1], [wr oo+t wpa]) = (m([xo :x1], [wr oo s waa D), [wr oo+ 2 wpga])

: : + . + + 2
yields a small transformation 7 : ¥(3.2) > Y5 5, where Y7 ) P, o XF(

the minors of order three of the following matrix:

is cut out by

0 u; By
—uy uz B
M) =\ _ s By | (3.12)
—Uu3 0 B3
Consider the point p = ([1:0],[0:---:0:1]) € Y(32), its image

g = ([Bi(0,...,0,1),B»(0,...,0,1)], B3(0,...,0,1)])
= ([0(0,...,0,1), A}(0,...,0,1), A5(0,...,0,1)])

vian and setir; = Q(0,...,0,1),u2 = A2(0,...,0,1),u3 = A2(0,...,0, 1). Let F5 be the fiber of the

I . p2 n 2 N
first projection 7 : P(ul,uz,us) X P(wl """" war) P(uu,uz,u_z) over u = [u; : up : uz]. Then

Fi= {rank(M(ﬁl ,EZ;ES)) < 3} C P?W[ ..... Wist)
is a complete intersection of two quadrics. Note that ¢ € F3; and since the u; are general, Fi; is smooth.
Therefore, if n > 4 [CTSSD87, Proposition 2.3] yields the unirationality of Fj;. The strict transform of
Fy; via it is given by

Fr= {rank( “ 12 13 ) < 2; cPp!

X P
le(z) + Boxox) + B3x% Bzx(z) + B3xox| B3x§ (x0,x1)

(Wiseess Wnt1)

1
(x0,x1

is a fibration in quadric hypersurfaces and to apply Proposition 2.7 and Remark 2.8. O

So Fy is unirational and maps dominantly onto P ) Finally, to conclude it is enough to note that

1
Y2 = P(Xo

,X1)
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Proposition 3.13. Let X4 C P"*! be a quartic hypersurface having double points along a codimension
two linear subspace A c P!, with a point p € X4 \ A and otherwise general. If n > 4, then X, is
unirational.

Proof. The equation of X4 C P"*! can be written as in Lemma 3.9 for d = 4. Hence, the claim follows
from Lemma 3.9 and Proposition 3.10. O

For quartic 3-folds, we have the following density result.

Proposition 3.14. Let X4 C P* be a quartic hypersurface, over a number field k, having double points
along a codimension two linear subspace A C P*, with a point p € X4 \ A and otherwise general. The
set X4(k) of the k-rational points of X4 is Zariski dense in Xy.

Proof. By Lemma 3.9, it is enough to prove that a general divisor Y3 , ¢ P! x P3 as in Proposition 3.10
has dense k-points. Consider the 2-plane H = {x; = w; = 0} C Y3, and the rational map

. 2
n Y2 (u1,uz,u3)
([xo = x1 ] [wi s+ 2 wal) = (1 ;2 2 3]
induced by (3.11). Note that ” maps H dominantly onto P(u o) Take a general point p € H, its image

q =n’(p) and a general line L = {aju; + apup + azuz = 0} C qul o) through ¢. Set S; , = n’~(L).

Since Y(3,2) is general n’ restricts to a morphism ni Sy Sp.p — P'. A straightforward computation
P
shows that S, is smooth, and by the argument in the second part of the proof of Proposition 3.10, the
general fiber of n" Sy Sep— P! is a smooth curve of genus one.
P

Furthermore, C = HN Sy , = {a1Bi + @By +a3B3 =x1 =w;| = 0}. Hence, since Y3 is general, C

is a smooth conic with a point p € C. Note that a general fiber of nl’ 5" Sr.p — P! intersects a general
-P
fiber of the quadric bundle ¥3 , — P! in a zero-dimensional scheme of degree eight. So, C C S, pisa
rational 4-section of nl’ Sy
P

Consider the fiber product T = C Xy St . Since p, L and Y3 ; are general, the ramification divisor of

r]" - C— P! is disjoint from the singular fibers of nf S, Hence, T is smooth and the proof of [HTO00,
P

Theorem 8.1] goes through. So the set Sy, (k) of the k-rational points of Sy ,, is Zariski dense in S _p,.
Finally, letting the point p vary in H and the line L vary among the lines passing through ¢ = ’(p) we
get the claim. O

The following is our main result on the unirationality of quadric hypersurfaces having double points
along a linear subspace.

Theorem 3.15. Let X4 C P! be a quartic hypersurface having double points along an h-plane
A c P! with a point p € X4 \ A and otherwise general. If n > 4 and h > 3, then Xy is unirational.

Furthermore, if k is a C, field, n > 3, and s + 1 > 2", where s = max{n — h, h} a general quartic
hypersurface X4 € P"™! having double points along an h-plane is unirational.

Proof. The case h = n — 1 comes from Proposition 3.13. Let my : X4 --» P! be the projection
from H = (p,A), g : X, — P71 and F, =P" h=1 the fiber over p of the blowup Xs — X4 along
H N X4. Note that since Xy is 1rredu01ble the blowup X4 is also irreducible.

The generic fiber X4 n Of Tg ¢ X, —» Prhliga quartic hypersurface X4 n C PZ?}I tat) with
double points along an h-plane and with a k(t1, ..., t,_,_1)-rational point induced by F,.
Therefore, Proposition 3.13 yields that X4 ,, is unirational over k(t1,...,#,—5-1) and since X is

irreducible )?4 is unirational.

Now, assume k to be C,. The exceptional divisor E in Lemma 2.4 is a divisor of bidegree (2,2) in
P x P", and since X is general E maps dominantly onto P"~". Furthermore, since both the fibrations
on E have quadric hypersurfaces as fibers and s + 1 > 2" by Remark 2.10 the divisor E has a point. To
conclude, it is enough to apply [Mas22, Theorem 1.8] and Proposition 2.7. O
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Remark 3.16. In the second part of Theorem 3.15, the assumption on the base field is needed in order
to ensure the existence of a point in the exceptional divisor E ¢ P x P". Indeed, over non C, fields
there are divisors of bidegree (2, 2) in P x P without points [Mas22, Remark 4.15].

Remark 3.17. In Theorem 3.15, the assumption on the existence of a point in X4 \ A is necessary as the
following argument shows. Take, for instance, n = 3, h = 1 and k = R. By Lemma 2.4, X4 is birational to
aconicbundle D c Tj oo of multidegree (4, 3, 3, 2,2, 2). We may write D as the zero set of a polynomial

f = aoxg + alxgxl + azx%x% + a3xoxf + a4x‘1‘,

where a; € R[xy,x2, y0, V1, y2]. Let V be the R-vector space parametrizing these conic bundles and
consider the map

ev: V xR — R3

with a real root form a semialgebraic subset R, C R’ of maximal dimension; see, for instance, [BPRO6,
Section 4.2.3]. Hence, ev~! (Ryr) CV X R’ is also a semialgebraic subset of maximal dimension and
then the Tarski—Seidenberg principle [BCR98, Section 2.2] yields that Z,, = mi(ev ' (R)) C V,
where 71 : V x R> — V is the projection, is a semialgebraic subset of maximal dimension. Note that

Z,p ={D C Ti,0,0 of mutidegree (4,3, 3,2,2,2) having a rational point}.
The complementary set Z,,,, = Z;,, is nonempty, take, for instance,
D= {(x(z) +x% +x§)2y(2) + (xé +x% + 2x§)y% + (x(z) +x% + 3x§)y§ =0} c Ti00-

Hence, Z,,,, C V is also a semialgebraic subset of maximal dimension. By Lemma 2.4, the quartics
X4 c P* corresponding to the conic bundles in Z,,, p do not have a point in X4 \ A, and hence, they
cannot be unirational.

Lemma 3.18. Consider the hypersurface

_ (.d-2 d-3 d-3 d-2 _ n+l
Xg = {ZO (0] + 2 1A + + 2033 Ag-3 T2 Ag2=0} C IPD(zo ,,,,, Zn+1)s

where A; = A? + ZOA} + z%A?, and At! € klzt,...,zns1l1 Q,A? € klz1y.--s2ns1l2 A? € k for
i=1,...,d-2. Then X, is birational to the divisor

d-2
_ d-2 d-2-i i _ 1
Yia-22) = {xo Q+ ) xg 7 ixiAi = 0} C Pl X Plazn)
i=1

of bidegree (d —2,2).

Proof. It is enough to substitute zg = i—?zl in the equation of X; and to clear the denominators of the
resulting polynomial. m}

For quartic hypersurfaces with a double point, we get a version of Theorem 3.15 with a slightly less
restrictive condition on n.

Proposition 3.19. Ler X; c P™! be a hypersurface of degree d having multiplicity d — 2 along a
codimension two linear subspace A C P"', with a point p € X4 \ A, a double point g € X4 \ A and
otherwise general. If either d =4 andn > 2 or d =5 and n > 4, then X4 is unirational.
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Proof. We may assume that A = {zo = z; = 0}andg = [1: 0 : - -- : 0] so that the equation of X; ¢ P"**!
can be written as in Lemma 3.18. First, consider the case d = 4. By Lemma 3.18 X4 is birational to a
divisor Y(2,2) C P! xXP? N of bidegree (2, 2). The point p € X4\ A yields a point p” € Y5 5).

(x0,x1) (215eees2n
Let H be a general 2-plane in ]PZ’ZI znnt) through the projection of p’ and set I" = P%XO ) X H. Then

W =Y, NI'is adivisor of bidegree (2, 2) in P! xP? which by [KM 17, Corollary 8] is unirational.

(x0,x1)

Since W maps dominantly onto ]P’%x to conclude it is enough to apply Proposition 2.7.

0,X1)°

Now, let d = 5. Then by Lemma 3.18 X5 is birational to a divisor Y(32) C P}xo ) X ’(’Zl znl) of
bidegree (3, 2). This divisor is not of the same form of those considered in Proposition 3.10. However,
the argument in the proof of Proposition 3.10 goes through smoothly and shows Y3 ) is unirational. O

Remark 3.20. The argument in the proof of Proposition 3.10 works indeed for a general divisor of
bidegree (3,2) as shown in [Mas22, Proposition 3.2] which works for a divisor of bidegree (3,2) in
P! x P" with a point and otherwise general. So [Mas22, Proposition 3.2] cannot be applied directly to
the divisors Y(3 2y in Proposition 3.10 which are special. In the proof of Proposition 3.10, it is shown
that the argument in the proof of [Mas22, Proposition 3.2] works for a general Y3 »), in other words that
a general divisor of the form Y3 5 is general enough, among the divisor of bidegree (3,2) in P! x P",
for [Mas22, Proposition 3.2] to apply.

Lemma 3.21. Let D ¢ P"™" x P" be an irreducible divisor of bidegree (1,a). Then D is rational.

Proof. If n — h = 1, then the projection 7y p : D — P" is birational. Assume n — h > 2. The generic
fiber of myp : D — P" is an (n — h — 1)-dimensional projective space over the function field of P". So
we can find an open subset U c P” such that ”2_|1D(U ) is birational to U x P"~"*~!. Finally, since D is
irreducible we conclude that D is rational. O

The following is our main result on the unirationality of quartic hypersurface containing a linear
subspace.

Theorem 3.22. Let X; C P"™*! be an irreducible quartic hypersurface containing an h-plane A C P"*1.
Assume that A N Sing(Xy4) has dimension at most h — 2 and that Xy is not a cone over a quartic of
smaller dimension. If n > 3 and h > 2, then X4 is unirational.

Proof. Consider the blowup X, along A in Lemma 2.4. Under our hypotheses, X4 cannot be singular
at the general point of A. So the exceptional divisor E c P"" x P has bidegree (1, 3), and Lemma
3.21 yields that E is unirational. The projection 7 : X4 — P"" is a fibration in h-dimensional cubic
hypersurfaces. Therefore, thanks to Proposition 2.7 and Remark 2.8 to conclude it is enough to show
that 7 : E — P" " is dominant.

Since X4 is not a cone over a quartic of smaller dimension by the expression of X, in (2.6), we see
that g E — P" " is not dominant if and only if the equation of Xj is of the following form

n-h
Xq = {Z zi(Ci(20, - . ., Zn—n) + ¢iP) = 0} cprl,
i=0

where C; € k[zo, ..., 2Zn-nla-1,¢i € kand P € k[zo, ..., Zn+1]a—1- In particular,
Z={z20="-+=2p-1n = P =0} c AN Sing(Xy)
and since dim(Z) > h — 1 we get a contradiction. O

Corollary 3.23. Assume that h > 2, n > 2h — 1, and let X4 C P"*! be a general quartic hypersurface
containing an h-plane. Then X4 is unirational.

Proof. Note that n > 2h — 1 yields that a general quartic containing a fixed h-plane is smooth. The
claim follows from Theorem 3.22. m]
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4. Divisors in products of projective spaces and Quintics

We now study the unirationality of quintic hypersurfaces that are singular along linear subspaces and
of divisors of bidegree (3,2) in products of projective spaces. We begin with a series of preliminary
results that we will need later on.

Lemma 4.1. Let C — W be a fibration in m-dimensional cubic hypersurfaces withm > 2, C irreducible
and W a rational variety over a C, field k. If the general fiber of C — W is an irreducible cubic with no
triple point and

m > 3r+dim(W) _ 2

then C is unirational.

Proof. Let C’ be the generic fiber of C — W. Then C’ is a cubic hypersurface over the function field
F = k(t1, ... taim(w))- Since m +2 > 3+4m(W) ‘Remark 2.10 yields that C’ has a point. Hence, by
[Kol02, Theorem 1] C’ is unirational over F and so since C is irreducible C is unirational. m]

Lemma 4.2. Let QV ' ¢ PN be a smooth (N — 1)-dimensional quadric hypersurface over a C, field. If

N-2s+1>2"

for some 0 < s < L%J, then through any point of Q™= there is an s-plane contained in Q™ ',

Proof. Since N—1 > 2" —2 by Remark 2.10 Q" ! has a point. Hence, Q" ! is rational and in particular
the set of its rational points is dense. Take a point xo € QN L.

The tangent space Ty, @™ ~! cuts out on QV~! a cone with vertex xo over an (N — 3)-dimensional
quadric QN 3. Since N — 3 > 2" — 2 Remark 2.10 yields the existence of a point x; € Q™ ~3. The line
(x0,x1) is therefore contained in Q™V 1.

Now, T, OV =3 n @V =3 is a cone with vertex x| over an (N — 5)-dimensional quadric Q™ ~=> which
again by Remark 2.10 has a point x, € Q2. The 2-plane (x¢, x1,x,) is contained in QV 1.

Proceeding recursively, we have that T, _, Q¥ 2(s=D=1 0 9N=2(s=D=1 j5 3 cone with vertex x,_; over
an (N — 2s — 1)-dimensional quadric OV 27! Since N — 25 + 1 > 2", the quadric Q" ~>*~! has a point
xs and the s-plane (xo, .. .,x,) is then contained in Q™V~!. ]

Lemmad4.3. Let X = Q1 N---N Q¢ C PN be a smooth complete intersection of quadrics. Assume that
X contains a (¢ — 1)-plane A. Then X is rational.

Proof. Note that since X is smooth Q; must be smooth along X. Let H be a general c-plane containing
A. Then H intersects Q; along A U H; where H; is a (¢ — 1)-plane. Hence, we get c linear subspaces of
dimension ¢ — 1 of H = P°.

Since H is general, these (¢ — 1)-planes intersect in a point xgy = H; N --- N H. € X. To conclude,
it is enough to parametrize X with the PV~ of c-planes containing A. O

Proposition4.4. Let X = Q1N ---N Q. C PN be a smooth complete intersection of quadrics over a C,

field. If
N-s(c+1)+1>2"c,

then through any point of X there is an s-plane contained in X.

Proof. For s =0, the claim follows from Remark 2.10. We proceed by induction on s. Since
N-(s-1D(c+1)+1>N-s(c+1)+1>2"¢

through any point of X, there is an (s — 1)-plane. Fix one of these (s — 1)-planes, and denote it by
AS~! ¢ X. The s-planes in PV containing A*~! are parametrized by PN 5.
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Arguing as in the proof of Lemma 4.2, we see that requiring such an s-plane to be contained in Q;
yields s linear equations given by the tangent spaces of Q; at s general points of AS~! plus a quadratic
equation induced by Q; itself.

Hence, the points of PV~ corresponding to s-planes contained in X are parametrized by a subvariety
cut out by sc linear equations and ¢ quadratic equations that is an intersection Y of ¢ quadrics in PV ~575¢,
Sincedim(Y) =N —-s(c+1)—c>2"¢c—1—-c>—-land N —s(c+1)+1 > 2"¢, Remark 2.10 yields
that ¥ has a point and so there is an s-plane through A*~! contained in X. O

Corollary 4.5. Let X = Q1 N --- N Q. € PN be a smooth complete intersection of quadrics over a C,

field. If
N-c2+2> 2,
then X is rational.

Proof. By Proposition 4.4 with s = ¢ — 1, the complete intersection X contains a (¢ — 1)-plane, and
hence, the claim follows from Lemma 4.3. O

We are now ready to prove our first result on unirationality of quintic hypersurfaces.
Proposition 4.6. Ler X' = {f = 0} c P! be a quintic hypersurface of the form
f= Z X - X Ay i (V05 -5 Yy Xneh)
io+ - +ip-np=3

with A,,... i, quadratic polynomials. If either

.....

(i) h > 4 and the complete intersection

W' ={A3_0=A210.0=% ==X =0} CP{,
contains a line, or
(ii) h > 5 and the quadric
O={xo="=xpn=A3.0=0yCP

contains a 2-plane,
and X3 is otherwise general, then X{ is unirational.

Proof. Note that X¢' is a hypersurface of the form (2.12) in Proposition 2.11. Hence, X¢' has multiplicity
three along A = {xo = - - - = x,,—, = 0}, and multiplicity two along A’ = {yg =--- =y = x,,—p, = 0}.

First, consider (i). Fix a point p € A’, say p = [1 : 0 : --- : 0]. The lines through p intersecting Xi
at p with multiplicity at least four are parametrized by the variety

n

Y ={A3 0=x14210,.,0 % +Xn-pA20..01 =0} CP(,

Assume Y to be unirational. Associating to a general point y € Y, representing a line /,, the fifth
intersection point of /, and X' we get a rational map

WY - X

SetYy, =y (Y) c X!',andletn : Xg - P"" be the restriction to X7 of the projection from A. We want
to prove that Ty, ° Yy - P"" is dominant. Indeed, if so Y, would be a unirational variety transverse

to the quadric fibration induced by the projection from A and dominating P*~", and Proposition 2.7
would imply that X' is unirational.
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Since Y, is unirational it is enough to prove that the induced map 7y, : 7¢ > P"" between the
algebraic closures is dominant. Consider the complete intersection

— n _ — L — n+1
Z=YNX{={A3. 0=x142,1,0..0+  +Xn-nAz0,.00 = =0y P

A general point of z € Z C X represents a line /, intersecting X with multiplicity four at p and
multiplicity one at z. Hence, Z C Y.
Fix a general point ¢ € P"~"*, and consider

Zy =7y, (@) NZ.

Note that since ¢ € P"" is defined by n — h equations, Z C IP’?;)‘ ..... don oy 1S CUL OUL by three
equations and by hypothesis n+1—(n—h) =3 = h—2 > 0. So Z, is nonempty. Then 7y, is dominant
when restricted to Z, and hence, it is dominant.

Now, we prove that Y is unirational. In P” fix the point p’ = [1:0: ---:0]. The

) (X150 Xn=h>Y05--sY0)
quadric

h
fri=-=xpp=A210.0 <P, )

parametrizes lines that are contained in

Y3 ={x1A21,0,..,0+ - +Xp-nA20,..01}

Indeed, the tangent cone of Y3 at p’ is defined by {A2 10,0 =0} and {x; =--- =x,_4 =0} C V3. So
these lines intersect Y3 with multiplicity three at p’” and at another point in the linear space {x; = --- =
Xn—-h = 0}.
SetY, = {A3
we have that

o = 0}, and let W be the cone over W’ with vertex p’. Since p’ is in the vertex of Y3,

.....

WcY=Y,NYs.

Furthermore, since W’ contains a line by Lemma 4.3 it is rational, ang hence, W is rational as well.

As in the proof of Proposition 3.4, we construct a quadric bundle @ — W with (n — 4)-dimensional
fibers whose general point (w, [,,,) represents a point w € W and a line /,, which is contained in ¥, and
intersects Y3 with multiplicity two at w.

Associating to (w, ) the third point of intersection of /,, and Y3, we get a rational map W --> Y and
arguing as in the proof of Proposition 3.4 we see that such rational map is dominant.

Now, we consider (ii). Note that

Q' ={x; = =x,p=As, =0} c X! cP"™!

is an h-dimensional quadric cone over é with vertex [1 : 0 : --- : 0]. Since é contains a 2-plane
Q’ contains a 3-plane H C XJ'. If x € H is a general point the lines through x intersecting XZ' with
multiplicity four at x are parametrized by a complete intersection of a quadric and a cubic in P"~!.
Hence, we get a fibration ), 3 — H whose fiber over a general x € H is a complete intersection Y3 3
of a quadric Y>, ¢ P"~! and a cubic Y3, ¢ P"~!. Note that since XZ is general among the quintics
satisfying (ii) forx € H both ¥ , and Y, 3 , are smooth. )

The generic fiber of J»>3 — H is then a complete intersection Vs 3 x(H) = Vo,k(H) N V3,k(H)
satisfying the hypotheses of Lemma 3.1. Indeed, by considering the 2-plane parametrizing lines in H
through a general x € H we get a 2-plane over k(H) contained in ) x(g).

Therefore, by Lemma 3.1 ) 3 i (g is unirational over k(H). As usual after replacing H by an open
subset, we may assume that )% 3 is irreducible and so we get that ) 3 is unirational. Now, a general point
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of V, 3 represents a pair (x, /) with x € H general and /, a line intersecting X7 with multiplicity four at
x. As usual, associating to (x, /) € V%3 the fifth point of intersection of / with X7 we get a rational map

¢: D3 > Xi.

Note that dim(}» 3) = 3 + (n — 3) = n. Arguing as in the last part of the proof of Proposition 3.4, we
see that ¢ is generically finite and therefore it is dominant. O

Theorem 4.7. Let D c P x P"*! with n — h > 2, be a general divisor of bidegree (3,2) over a C,
field. If either

) n=42h>n+3andh>2""1+2 or
i) n>=6h>5and h >2"+3, or
(iii) n—h—-1>3"*1 -2

then D is unirational.

Proof. By Proposition 2.11, D is birational to a quintic hypersurface Xg' C P™*! of the form considered
in Proposition 4.6.

Consider (i). Since, 2 > 2"*! + 2 by Proposition 4.4 the complete intersection W’ in Proposition 4.6
contains a line, and hence, Proposition 4.6 yields that XS" is unirational.

For (ii), note that since 7 > 2" + 3 Lemma 4.2 implies that the quadric é in Proposition 4.6 contains
a 2-plane.

Now, consider (iii). The projection 7 : D — P! endows D with a structure of fibration in
(n — h — 1)-dimensional cubic hypersurfaces. Take a general line L ¢ P"*!, and set C; = 75 '(L). Then
Cy is a fibration in (n — h — 1)-dimensional cubic hypersurfaces over P! and since n —h — 1 > 3"+ -2
Lemma 4.1 yields that Cy, is unirational. Finally, to conclude it is enough to note that ¢, : Cp — prh
is dominant and to apply Proposition 2.7. O

Remark 4.8. Take for instance r = 0 that is k is algebraically closed. Remark 2.10 gives the rationality
of a D c P x P"*! as in Theorem 4.7 for i > 2"~ — 2 while Theorem 4.7 gives the unirationality
of D for h > 4 aslongasn > 4 and h > n — h + 3. For example, take 4 = 10. Then Remark 2.10 yields
that D is rational for n < 13 while Theorem 4.7 gives the unirationality of D forn < 17.

Furthermore, there are cases covered by (iii) but not by (i). For instance, by (iii) we get that a general
D c P"! x P? of bidegree (3,2) and dimension at least four is unirational.

For r > 1, (i) generally performs better that (ii). For instance, the case & = 7,n = 11 is covered by (i)
but not by (ii).

Remark 4.9. In particular, Theorem 4.7 (ii) together with [ABP18, Theorem A] yields that a very
general, meaning outside of a countable union of closed subsets of the corresponding parameter space,
divisor of bidegree (3, 2) in P3 xP?, over an algebraically closed field of characteristic zero, is unirational
but not stably rational.

We end this section with our main results on the unirationality of quintic hypersurfaces which are
singular along a linear subspace.

Theorem 4.10. Let X5 C P"*! be a quintic hypersurface over a C, field having multiplicity three along
an h-plane and otherwise general. Assume that n — h > 2. If either

D) n=52h>n+dandh>2"""+3, or
i) n>7, h>6and h >2" +4, or
(i) n—h—-1>3"* -2
then X5 is unirational.

Similarly, if Xs € P"! has multiplicity two along an h-plane with h > 2 and is otherwise general,
and either
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) n=52h<n—-4andn—-h>2"*"+3 or
@)yn=>7T,n—-h-1>5andn—h—-1>2"+3, or
(i) A>3 -1

then X5 is unirational.

Proof. By Lemma 2.4, the exceptional divisor E C Xs is a divisor of bidegree (3,2) in P~ x P".

Since X; is general, E maps dominantly onto P"~”, and hence, to conclude we apply Proposition 2.7
and Theorem 4.7. For the second statement, it is enough to argue as in the previous case on a divisor of
bidegree (2,3) in P"™" x P". O

Proposition 4.11. Let X5 C P™*! be a quintic hypersurface over a field k having multiplicity three along
an (n — 1)-plane and otherwise general. If either

(i) n > 5 and k is either a number field or a real closed field, or
(ii) kisCr,n>4andn > 27,

then X5 is unirational.

Proof. The exceptional divisor E C Xs is a general divisor of bidegree (3,2) in P! x P*~!. By [Mas22,

Corollary 4.13, Lemma 4.18] and Remark 2.10, under our hypotheses E has a point and hence [Mas22,
Theorem 1.8] yields that E is unirational. To conclude, it is enough to argue as in the proof of Theorem
4.10 applying Propositions 2.7. O

Remark 4.12. When & is a real closed field, the unirationality of a quintic hypersurface X5 c P™*! as
in Proposition 4.1 1 follows from [Ko0199, Corollary 1.8].

Proposition 4.13. Let X; C P! be a hypersurface of degree d over a field k having multiplicity d — 2
along an h-plane and otherwise general. Assume that (h + 1)(d — 2) is odd. If either

. 5h+3
(i) d < 3%, or

(i) d < ¥ h <4, kisCrand h+ 1 > 271,

then X5 is unirational.

Proof. Inthis case, the exceptional divisor EcC i}i is a general divisor of bidegree (d—2,2) in P" " xP".
Note that the discriminant of the quadric bundle E — P"~" has degree (/1 + 1)(d — 2). Hence, the claim
follows from [Mas22, Theorem 1.7] and Propositions 2.7. ]
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