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Abstract
Let 𝑋4 ⊂ P𝑛+1 be a quartic hypersurface of dimension 𝑛 ≥ 4 over an infinite field k. We show that if either 𝑋4
contains a linear subspace Λ of dimension ℎ ≥ max{2, dim(Λ∩ Sing(𝑋4)) + 2} or has double points along a linear
subspace of dimension ℎ ≥ 3, a smooth k-rational point and is otherwise general, then 𝑋4 is unirational over k.
This improves previous results by A. Predonzan and J. Harris, B. Mazur and R. Pandharipande for quartics. We
also provide a density result for the k-rational points of quartic 3-folds with a double plane over a number field, and
several unirationality results for quintic hypersurfaces over a 𝐶𝑟 field.
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1. Introduction

An n-dimensional variety X over a field k is rational if it is birational to P𝑛𝑘 , while X is unirational if
there is a dominant rational map P𝑛𝑘 � 𝑋 . If k is infinite and X is unirational, then the set 𝑋 (𝑘) of the
k-rational points of X is Zariski dense in X.

Since the first half of the twentieth century, the problem of establishing whether a degree d hyper-
surface 𝑋𝑑 ⊂ P𝑛+1 is rational or unirational has been central in birational projective geometry [Mor42],
[Pre49], [Mor52], [IM71], [CG72], [Cil80], [Kol95], [Shi95], [HMP98], [HT00], [dF13], [BRS19],
[RS19].

Quadric hypersurfaces with a smooth point are rational and as proven by J. Kollár, building on
techniques of B. Segre [Seg43] and Y. I. Manin [Man86, Chapter 2, Section 12], cubic hypersurfaces
with a smooth point are unirational [Kol02]. U. Morin proved that a general complex hypersurface
𝑋𝑑 ⊂ P𝑛+1 is unirational provided that n is large enough with respect to d [Mor42]. This result has then
been reproved, in a different way, by C. Ciliberto [Cil80] and extended to complete intersections by A.
Predonzan [Pre49], K. Paranjape, V. Srinivas [PS92] and L. Ramero [Ram90].
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2 Alex Massarenti

Furthermore, J. Harris, B. Mazur and R. Pandharipande proved that 𝑋𝑑 ⊂ P𝑛+1 is unirational if the
codimension of its singular locus is sufficiently big with respect to n and d [HMP98].

Before stating our main results on the unirationality of quartics we briefly survey the state of the
art. By the work of U. Morin, a general complex quartic 𝑋4 ⊂ P𝑛+1 with 𝑛 ≥ 5 is unirational [Mor36],
[Mor52]. V. A. Iskovskikh and Y. I. Manin proved that the group of the birational automorphisms of a
smooth quartic 𝑋4 ⊂ P4 is finite so that 𝑋4 is not rational [IM71].

Moreover, J. Harris and Y. Tschinkel showed that if 𝑛 ≥ 3 and k is a number field, then for some
finite extension 𝑘 ′ of k the set of 𝑘 ′-rational points of a smooth quartic 𝑋4 ⊂ P𝑛+1 is dense in the Zariski
topology; in other terms, the k-rational points of 𝑋4 are potentially dense [HT00]. Despite this great
amount of effort, the unirationality of the general quartic 𝑋4 ⊂ P𝑛 for 𝑛 = 4, 5 is still an open problem
and only special families of quartic 3-folds, called quartics with separable asymptotics, are known to be
unirational [Seg60]. For a nice survey on rationality and unirationality problems with a focus on their
relation with the notion of rational connection, we refer to A. Verra’s paper [Ver08]. We recall that a
projective variety is rationally connected if any two of its points can be joined by a rational curve and
refer to C. Araujo’s paper [Ara05] for a survey on the subject.

In this paper, we address the unirationality of quartics 𝑋4 ⊂ P𝑛+1 containing a linear subspace whose
dimension is larger than that of the singular locus of 𝑋4 or containing a linear subspace with multiplicity
two. Our main results in Theorems 3.15 and 3.22 can be summarized as follows:

Theorem 1.1. Let 𝑋4 ⊂ P𝑛+1 be a quartic hypersurface and Λ ⊂ P𝑛+1 an h-plane. Assume that either

(i) 𝑛 ≥ 3, ℎ ≥ 2, dim(Λ ∩ Sing(𝑋4)) ≤ ℎ − 2, 𝑋4 contains Λ and is not a cone over a smaller-
dimensional quartic, or

(ii) 𝑛 ≥ 4, ℎ ≥ 3, 𝑋4 has double points along Λ, a point 𝑝 ∈ 𝑋4 \ Λ and is otherwise general,

then 𝑋4 is unirational.

All along the paper with the word ‘general’ we mean ‘for a nonempty Zariski open subset of the
parameter space of the objects we are considering’. We would like to stress that since all the proofs
presented in the paper are constructive it is possible, given the equation cutting out the hypersurface, to
establish whether or not it is general in the required sense.

Furthermore, for quartic 3-folds over a number field we prove, in Proposition 3.14, the following
density result.

Theorem 1.2. Let 𝑋4 ⊂ P4 be a quartic hypersurface, over a number field k, having double points along
a codimension two linear subspace Λ ⊂ P4, with a point 𝑝 ∈ 𝑋4 \ Λ and otherwise general. The set
𝑋4 (𝑘) of the k-rational points of 𝑋4 is Zariski dense in 𝑋4.

As Remark 3.17 shows, the assumption on the existence of a point 𝑝 ∈ 𝑋4 \Λ in the case of quartics
singular along a linear subspace cannot be dropped. Under extra assumptions on the base field or on
the existence of rational points in special subloci of 𝑋4, Theorem 1.1 can be extended to smaller-
dimensional quartics. For instance, by Proposition 3.19 a quartic surface 𝑋4 ⊂ P3 with double points
along a line Λ ⊂ P3, a point 𝑝 ∈ 𝑋4 \ Λ, a double point 𝑞 ∈ 𝑋4 \ Λ with 𝑞 ≠ 𝑝 and otherwise general
is unirational. Furthermore, by the second part of Theorem 3.15 a quartic 𝑋4 ⊂ P4 over a 𝐶𝑟 field, for
which definition we refer to Remark 2.10, with 𝑟 = 0, 1, having double points along a linear subspace Λ
with dim(Λ) = 1, 2, and otherwise general is unirational. Therefore, in order to complete Theorem 1.1
for all n and h we are left with the following open question.

Question 1.3. Let 𝑋4 ⊂ P𝑛+1 be a quartic hypersurface over a field k such that either

(i) 𝑛 = 3, 𝑋4 contains a line, or
(ii) 𝑛 = 3, 𝑋4 has double points along a linear subspace Λ with dim(Λ) = 1, 2, a point 𝑝 ∈ 𝑋4 \ Λ, or

(iii) 𝑛 = 2, 𝑋4 has double points along a line Λ, a point 𝑝 ∈ 𝑋4 \ Λ,

and 𝑋4 is otherwise general. Is then 𝑋4 unirational?
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Note that a smooth quartic surface 𝑋4 ⊂ P3 is 𝐾3, and hence, it cannot be unirational. As we said,
(ii) has a positive answer when the base field is 𝐶𝑟 with 𝑟 = 0, 1, while (i) is open even over the complex
numbers. Since any complex quartic 3-fold contains a line, (i) actually asks about the unirationality of a
general quartic 3-fold and is probably one of the most interesting unirationality open problems. Since a
quartic surface 𝑋4 ⊂ P3 with a double line is birational to a conic bundle, (iii) is interesting only when
the base field is not algebraically closed.

Note that by considering the generic fiber of the resolution of the linear projection from Λ as in the
proof of Theorem 3.15 a positive answer to Question 1.3 would extend the first part of Theorem 1.1 to
quartic hypersurfaces 𝑋4 ⊂ P𝑛+1 with 𝑛 ≥ 3 containing a line and the second part of Theorem 1.1 to
quartic hypersurfaces 𝑋4 ⊂ P𝑛+1 with 𝑛 ≥ 3 having double points along either a line or a plane and an
additional smooth point.

Remark 1.4. The main available results in the spirit of Theorem 1.1 can be found in [Pre49] and
[HMP98]. By [Pre49, Theorem 1] a quartic 𝑋4 ⊂ P𝑛+1 containing an h-plane Λ is unirational provided
that Sing(𝑋4)∩Λ = ∅ and ℎ ≥ 4. The same result has been proved in [HMP98, Corollary 3.7] for ℎ ≥ 97.

We would like to stress that both [Pre49] and [HMP98] as well as [Ram90] provide unirationality
results for hypersurfaces of arbitrary degree and general unirationality bounds when the base field is
algebraically closed.

In the case of quartics, Theorem 1.1 (i) improves [Pre49, Theorem 1] and [HMP98, Corollary 3.7] in
two directions: on one side, it is enough to have that ℎ ≥ 2, on the other side, Λ is allowed to intersect
the singular locus of 𝑋4 as long as such intersection has codimension at least two in Λ.

In the last section, we investigate the unirationality of quintic hypersurfaces and divisors of bidegree
(3, 2) in products of projective spaces. As a by-product, we get new examples of unirational but not
stably rational varieties.

A variety X is stably rational if 𝑋 × P𝑚 is rational for some 𝑚 ≥ 0. Hence, a rational variety is stably
rational, and a stably rational variety is unirational. The first examples of stably rational nonrational
varieties had been given in [BCTSSD85], where the authors, using Châtelet surfaces, constructed a
complex nonrational conic bundle T such that 𝑇 × P3 is rational.

In the last decade, important advances on stable rationality have been made, especially for hypersur-
faces in projective spaces [Voi15], [CTP16], [Tot16], [HKT16], [AO18], [Sch18], [BvB18], [HPT18],
[Sch19a], [Sch19b], [HPT19]. In [CTP16, Theorem 1.17], J. L. Colliot-Thélène and A. Pirutka proved
that a very general smooth complex quartic 3-fold is not stably rational. In [Sch19b, Corollary 1.4], S.
Schreieder gave the first examples of unirational nonstably rational smooth hypersurfaces. A. Auel, C.
Böhning and A. Pirutka proved that a very general divisor of bidegree (3, 2) in P3×P2, over the complex
numbers, is not stably rational. By Theorem 4.7, we get that such a very general divisor is unirational
but not stably rational.

Furthermore, thanks to our unirationality results for divisors of bidegree (3, 2) we get new results
on the unirationality of quintic hypersurfaces over 𝐶𝑟 fields and number fields. The literature on
the unirationality of quintics is much less rich than that on quartics. A general quintic hypersurface
𝑋5 ⊂ P𝑛+1, over an algebraically closed field, is unirational if 𝑛 ≥ 17 [Mor38]. Furthermore, a quintic
𝑋5 ⊂ P𝑛+1 containing a 3-plane and otherwise general is unirational if 𝑛 ≥ 6 [CMM08]. To the best of
our knowledge, these are the only results on the unirationality of quintics.

Conventions on the base field, terminology and organization of the paper

All along the paper, the base field k will be of characteristic zero. Let X be a variety over k. When we
say that X is rational or unirational, without specifying over which field, we will always mean that X is
rational or unirational over k. Similarly, we will say that X has a point or contains a variety with certain
properties meaning that X has a k-rational point or contains a variety defined over k with the required
properties.

In Section 2, we will introduce the notation, prove some preliminary results about the relation between
hypersurfaces in projective spaces and certain divisors in projective bundles and give an immediate
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generalization of a unirationality criterion due to F. Enriques. In Section 3, we will investigate the
unirationality of quartic hypersurfaces and cubic complexes that are complete intersections of a quadric
and a cubic. Finally, in Section 4 we will address the unirationality of quintics and divisors in products
of projective spaces.

2. Hypersurfaces and divisors in projective bundles

Let 𝑎0, . . . , 𝑎ℎ+1 ∈ Z≥0 be nonnegative integers, and consider the simplicial toric variety T𝑎0 ,...,𝑎ℎ+1

with Cox ring

Cox(T𝑎0 ,...,𝑎ℎ+1 ) � 𝑘 [𝑥0, . . . , 𝑥𝑛−ℎ , 𝑦0, . . . , 𝑦ℎ+1]

Z
2-grading given, with respect to a fixed basis (𝐻1, 𝐻2) of Pic(T𝑎0 ,...,𝑎ℎ+1 ), by the following matrix

���
𝑥0 . . . 𝑥𝑛−ℎ 𝑦0 . . . 𝑦ℎ+1
1 . . . 1 −𝑎0 . . . −𝑎ℎ+1
0 . . . 0 1 . . . 1

���
and irrelevant ideal (𝑥0, . . . , 𝑥𝑛−ℎ) ∩ (𝑦0, . . . , 𝑦ℎ+1). Then

T𝑎0 ,...,𝑎ℎ+1 � P(E𝑎0 ,...,𝑎ℎ+1 )

with E𝑎0 ,...,𝑎ℎ+1 � OP𝑛−ℎ (𝑎0) ⊕ · · · ⊕ OP𝑛−ℎ (𝑎ℎ+1). The secondary fan of T𝑎0 ,...,𝑎ℎ+1 is as follows

𝑣ℎ+1𝑣ℎ𝑣0 𝐻2

𝐻1,

where 𝐻1 = (1, 0) corresponds to the sections 𝑥0, . . . , 𝑥𝑛−ℎ , 𝐻2 = (0, 1), and 𝑣𝑖 = (−𝑎𝑖 , 1) corresponds
to the section 𝑦𝑖 for 𝑖 = 0, . . . , ℎ + 1.

Definition 2.1. A divisor 𝐷 ⊂ T𝑎0 ,...,𝑎ℎ+1 of multidegree (𝛿𝑑,0,...,0, . . . , 𝛿0,...,0,𝑑; 𝑑) is a hypersurface
given by an equation of the following form

𝐷 :=
⎧⎪⎪⎨⎪⎪⎩

∑
0≤𝑖0≤···≤𝑖ℎ+1 | 𝑖0+···+𝑖ℎ+1=𝑑

𝜎𝑖0 ,...,𝑖ℎ+1 (𝑥0, . . . , 𝑥𝑛−ℎ)𝑦
𝑖0
0 . . . 𝑦𝑖ℎ+1

ℎ+1 = 0
⎫⎪⎪⎬⎪⎪⎭ ⊂ T𝑎0 ,...,𝑎ℎ+1 , (2.2)

where 𝜎𝑖0 ,...,𝑖ℎ+1 ∈ 𝑘 [𝑥0, . . . , 𝑥𝑛−ℎ]𝛿𝑖0 ,...,𝑖ℎ+1
and

𝛿𝑑,0,...,0 − 𝑑𝑎0 = 𝛿𝑑−1,1,0,...,0 − (𝑑 − 1)𝑎0 − 𝑎1 = · · · = 𝛿0,...,0,𝑑 − 𝑑𝑎ℎ+1. (2.3)

Without loss of generality, we may assume that 𝑎0 ≥ 𝑎1 ≥ · · · ≥ 𝑎ℎ+1 so that (2.3) yields 𝛿𝑑,0,...,0 ≥

𝛿0,𝑑,0,...,0 ≥ · · · ≥ 𝛿0,...,0,𝑑 .

Lemma 2.4. Let 𝑋𝑑 ⊂ P𝑛+1 be a hypersurface of degree d having multiplicity m along an h-plane Λ,
and 𝑋𝑑 the blowup of 𝑋𝑑 along Λ with exceptional divisor 𝐸 ⊂ 𝑋𝑑 . Then 𝑋𝑑 is isomorphic to a divisor
of multidegree

(𝑑, 𝑑 − 1, . . . , 𝑑 − 1, . . . , 𝑑 − 𝑗 , . . . , 𝑑 − 𝑗 , . . . , 𝑚, . . . , 𝑚; 𝑑 − 𝑚)

in T1,0,...,0, where 𝑑 − 𝑗 is repeated
(ℎ+ 𝑗
𝑗

)
times for 𝑗 = 0, . . . , 𝑑 − 𝑚. The exceptional divisor 𝐸 is a

divisor of bidegree (𝑚, 𝑑 − 𝑚) in P𝑛−ℎ × Pℎ .
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Proof. We may assume that Λ = {𝑧0 = · · · = 𝑧𝑛−ℎ = 0} and

𝑋𝑑 =

{ ∑
𝑚0+···+𝑚𝑛−ℎ=𝑚

𝑧𝑚0
0 . . . 𝑧𝑚𝑛−ℎ

𝑛−ℎ 𝐴𝑚0 ,...,𝑚𝑛−ℎ (𝑧0, . . . , 𝑧𝑛+1) = 0

}
⊂ P𝑛+1

with 𝐴𝑚0 ,...,𝑚𝑛−ℎ ∈ 𝑘 [𝑧0, . . . , 𝑧𝑛+1]𝑑−𝑚. The blowup of P𝑛+1 along Λ is the simplicial toric variety T
with Cox ring

Cox(T ) � 𝑘 [𝑥0, . . . , 𝑥𝑛−ℎ , 𝑦0, . . . , 𝑦ℎ+1]

Z
2-grading given, with respect to a fixed basis (𝐻1, 𝐻2) of Pic(T ), by the following matrix:

���
𝑥0 . . . 𝑥𝑛−ℎ 𝑦0 𝑦1 . . . 𝑦ℎ+1
1 . . . 1 0 1 . . . 1
−1 . . . −1 1 0 . . . 0

���
and irrelevant ideal (𝑥0, . . . , 𝑥𝑛−ℎ) ∩ (𝑦0, . . . , 𝑦ℎ+1). Substituting in the above matrix the first row with
the sum of the rows and then swapping the rows an multiplying the top row by −1 we get to the following
grading matrix

���
𝑥0 . . . 𝑥𝑛−ℎ 𝑦0 𝑦1 . . . 𝑦ℎ+1
1 . . . 1 −1 0 . . . 0
0 . . . 0 1 1 . . . 1

��� (2.5)

and hence T = T1,0,...,0. The blow-down morphism is given by

𝜙 : T1,0,...,0 −→ P
𝑛+1

(𝑥0, . . . , 𝑥𝑛−ℎ , 𝑦0, . . . , 𝑦ℎ+1) ↦→ [𝑥0𝑦0 : · · · : 𝑥𝑛−ℎ𝑦0 : 𝑦1 : · · · : 𝑦ℎ+1]

and the exceptional divisor is 𝐸 = {𝑦0 = 0}. Hence, the strict transform of 𝑋𝑑 is defined by

𝑋𝑑 =

{ ∑
𝑚0+···+𝑚𝑛−ℎ=𝑚

𝑥𝑚0
0 . . . 𝑥𝑚𝑛−ℎ

𝑛−ℎ 𝐴𝑚0 ,...,𝑚𝑛−ℎ (𝑥0𝑦0, . . . , 𝑥𝑛−ℎ𝑦0, 𝑦1, . . . , 𝑦ℎ+1) = 0

}
⊂ T1,0,...,0, (2.6)

and the claim on the multidegree follows. Note that (2.5) yields that 𝐸 � P𝑛−ℎ
(𝑥0 ,...,𝑥𝑛−ℎ)

× Pℎ
(𝑦1 ,...,𝑦ℎ+1)

and
hence 𝐸 = 𝑋𝑑 ∩ 𝐸 ⊂ P𝑛−ℎ

(𝑥0 ,...,𝑥𝑛−ℎ)
× Pℎ

(𝑦1 ,...,𝑦ℎ+1)
is a divisor of bidegree (𝑚, 𝑑 − 𝑚). �

The following is a straightforward generalization of a unirationality criterion for conic bundles due
to F. Enriques [IP99, Proposition 10.1.1].

Proposition 2.7. Let 𝑓 : 𝑋 → 𝑌 be a fibration over a unirational variety Y with X an irreducible variety.
Assume that there exists a unirational subvariety 𝑍 ⊂ 𝑋 such that 𝑓 |𝑍 : 𝑍 → 𝑌 is dominant, consider
the fiber product

𝑋𝑍 = 𝑋 ×𝑌 𝑍 𝑋

𝑍 𝑌

𝑓

𝑓|𝑍

𝑓

and denote by 𝑋𝑍,𝜂 the generic fiber of �̃� : 𝑋𝑍 → 𝑍 . Assume that 𝑋𝑍,𝜂 is integral. Finally, assume that
𝑋𝑍,𝜂 is unirational over 𝑘 (𝑍) if and only if it has a 𝑘 (𝑍)-rational point. Then X is unirational.
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Proof. Since 𝑋𝑍,𝜂 is integral after replacing Z by an open subset, we may assume that 𝑋𝑍 is irreducible.
Now, note that the dominant morphism 𝑓 |𝑍 : 𝑍 → 𝑌 yields a rational section of �̃� : 𝑋𝑍 → 𝑍 . So

𝑋𝑍,𝜂 has a 𝑘 (𝑍)-rational point, and hence, it is unirational over 𝑘 (𝑍). Therefore, 𝑋𝑍 is unirational, and
hence, X is unirational as well. �

We will apply Proposition 2.7 to fibrations in irreducible m-dimensional quadric or cubic hypersur-
faces. In these cases, 𝑋𝑍,𝜂 ⊂ P𝑚+1

𝑘 (𝑍 )
is an irreducible quadric or cubic hypersurface over 𝑘 (𝑍). So after

replacing Z by an open subset, we may assume that 𝑋𝑍 is irreducible.
Remark 2.8. A quadric hypersurface over a field k with a smooth point is rational. Furthermore, by
[Kol02, Theorem 1.2] a cubic hypersurface of dimension at least two with a point and which is not a
cone is unirational.
Definition 2.9. Fix a real number 𝑟 ∈ R≥0. A field k is 𝐶𝑟 if and only if every homogeneous polynomial
𝑓 ∈ 𝑘 [𝑥0, . . . , 𝑛𝑛]𝑑 of degree 𝑑 > 0 in 𝑛 + 1 variables with 𝑛 + 1 > 𝑑𝑟 has a nontrivial zero in 𝑘𝑛+1.
Remark 2.10. (Lang’s theorem) If k is a 𝐶𝑟 field, 𝑓1, . . . , 𝑓𝑠 ∈ 𝑘 [𝑥0, . . . , 𝑛𝑛]𝑑 are homogeneous
polynomials of the same degree and 𝑛+ 1 > 𝑠𝑑𝑟 , then 𝑓1, . . . , 𝑓𝑠 have a nontrivial common zero in 𝑘𝑛+1

[Poo17, Proposition 1.2.6]. Furthermore, if k is 𝐶𝑟 , then 𝑘 (𝑡) is 𝐶𝑟+1 [Poo17, Theorem 1.2.7].
In the last section, we will need the following.

Proposition 2.11. Let 𝐷 ⊂ T𝑎0 ,...,𝑎ℎ+1 → P𝑛−ℎ be a divisor of multidegree (𝛿2,0,...,0, . . . , 𝛿0,...,0,2, 2).
Then D is birational to a hypersurface 𝑋𝑛

𝛿2,0,...,0+2 ⊂ P𝑛+1 of degree 𝛿2,0,...,0 + 2 having multiplicity
𝛿2,0,...,0 along an h-plane Λ and multiplicity two along an (𝑛 − ℎ − 1)-plane Λ′ such that Λ ∩ Λ′ = ∅.
Proof. Write 𝐷 ⊂ T𝑎0 ,...,𝑎ℎ+1 as in (2.2) and dehomogenize with respect to 𝑥𝑛−ℎ and 𝑦ℎ+1 to get an
affine hypersurface

𝑋 = { 𝑓 (𝑥0, . . . , 𝑥𝑛−ℎ−1, 𝑦0, . . . , 𝑦ℎ) = 0} ⊂ A𝑛+1
(𝑥0 ,...,𝑥𝑛−ℎ−1 ,𝑦0 ,...,𝑦ℎ)

.

Now, we introduce a new variable that we will keep denoting by 𝑥𝑛−ℎ and homogenize f in order to get
a polynomial 𝑓 (𝑥0, . . . , 𝑥𝑛−ℎ−1, 𝑦0, . . . , 𝑦ℎ , 𝑥𝑛−ℎ) which is homogeneous of degree 𝛿2,0,...,0 + 2. Note
that 𝑓 has the following form

𝑓 =
∑

𝑖0+···+𝑖𝑛−ℎ=𝛿2,0,...,0

𝑥𝑖00 . . . 𝑥𝑖𝑛−ℎ𝑛−ℎ 𝐴𝑖0 ,...,𝑖𝑛−ℎ (𝑦0, . . . , 𝑦ℎ , 𝑥𝑛−ℎ) (2.12)

with 𝐴𝑖0 ,...,𝑖𝑛−ℎ ∈ 𝑘 [𝑦0, . . . , 𝑦ℎ , 𝑥𝑛−ℎ]2 for all 0 ≤ 𝑖0 ≤ · · · ≤ 𝑖𝑛−ℎ ≤ 𝛿2,0,...,0. The hypersurface

𝑋𝑛
𝛿2,0,...,0+2 = { 𝑓 (𝑥0, . . . , 𝑥𝑛−ℎ−1, 𝑦0, . . . , 𝑦ℎ , 𝑥𝑛−ℎ) = 0} ⊂ P𝑛+1

is birational to X, and hence, it is birational to D as well. To conclude, set

Λ = {𝑥0 = · · · = 𝑥𝑛−ℎ = 0}, Λ′ = {𝑦0 = · · · = 𝑦ℎ = 𝑥𝑛−ℎ = 0}

and note that (2.12) yields multΛ 𝑋𝑛
𝛿2,0,...,0+2 = 𝛿2,0,...,0 and multΛ′ 𝑋𝑛

𝛿2,0,...,0+2 = 2. �

3. Cubic complexes and Quartics

In this section, we investigate the unirationality of quartic hypersurfaces containing linear subspaces
and quadrics, and of complete intersections of quadric and cubic hypersurfaces. The following is an
immediate consequence of [CMM07, Theorem 2.1].
Lemma 3.1. Let 𝑌2,3 = 𝑌2 ∩ 𝑌3 ⊂ P𝑛+2 with 𝑛 ≥ 3 be a smooth complete intersection, of a smooth
quadric 𝑌2 and a cubic 𝑌3, defined over a field k with char(𝑘) ≠ 2, 3. If 𝑌2 contains a 2-plane Π, then
𝑌2,3 is unirational.
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Proof. For 𝑛 = 3, the statement has been proven in [CMM07, Theorem 2.1]. Now, consider the incidence
varieties

𝑊2 = {(𝑦, 𝐻) | 𝑦 ∈ 𝐻 ∩ 𝑌2} ⊂ 𝑌2 × G(𝑛 − 4, 𝑛 − 1);
𝑊3 = {(𝑦, 𝐻) | 𝑦 ∈ 𝐻 ∩ 𝑌3} ⊂ 𝑌3 × G(𝑛 − 4, 𝑛 − 1);
𝑊2,3 = {(𝑦, 𝐻) | 𝑦 ∈ 𝐻 ∩ 𝑌2,3} = 𝑊2 ∩ 𝑊3 ⊂ 𝑌2,3 × G(𝑛 − 4, 𝑛 − 1),

where G(𝑛 − 4, 𝑛 − 1) is the Grassmannian of 5-planes in P𝑛+2 containing Π. Let 𝑊2,𝜂 , 𝑊3,𝜂 , 𝑊2,3,𝜂 be
the generic fibers of the second projection onto G(𝑛 − 4, 𝑛 − 1) from 𝑊2, 𝑊3, 𝑊2,3, respectively.

The 2-plane Π ⊂ 𝑌2 yields a 2-plane Π′ ⊂ 𝑊2,𝜂 defined over 𝑘 (𝑡1, . . . , 𝑡3(𝑛−3) ), and since 𝑌2 is
smooth, we have that 𝑊2,𝜂 is smooth.

Hence, 𝑊2,3,𝜂 ⊂ P5
𝑘 (𝑡1 ,...,𝑡3(𝑛−3) )

is a smooth complete intersection over 𝑘 (𝑡1, . . . , 𝑡3(𝑛−3) ) of a quadric
and a cubic satisfying the hypotheses of [CMM07, Theorem 2.1], and so 𝑊2,3,𝜂 is unirational over the
function field 𝑘 (𝑡1, . . . , 𝑡3(𝑛−3) ). As in the proof of Proposition 2.7, after replacing G(𝑛 − 4, 𝑛 − 1) by
an open subset we may assume that 𝑊2,3 is irreducible.

Therefore, 𝑊2,3 is unirational over the base field k, and to conclude it is enough to observe that the
first projection 𝑊2,3 → 𝑌2,3 is dominant. �

Lemma 3.2. Let 𝑄0 ⊂ P𝑛+1 be a smooth (𝑛 − 1)-dimensional quadric and 𝑋𝑑 ⊂ P𝑛+1 an irreducible
hypersurface of degree d containing 𝑄0 with multiplicity one and otherwise general. Then there exists
a complete intersection

𝑌2,𝑑−1 = 𝑌2 ∩ 𝑌𝑑−1 ⊂ P𝑛+2

of a quadric 𝑌2 and a hypersurface 𝑌𝑑−1 of degree 𝑑 − 1 such that:

(i) 𝑌2,𝑑−1 has a point 𝑣 ∈ 𝑌2,𝑑−1 of multiplicity 𝑑 − 2, and
(ii) the linear projection from v yields a birational map 𝜋𝑣 : 𝑌2,𝑑−1 � 𝑋𝑑 .

Furthermore, 𝑌2 is smooth and mult𝑣 𝑌𝑑−1 = 𝑑 − 2.

Proof. We may write 𝑄0 = {𝑧1 = 𝑄 = 0} with 𝑄 ∈ 𝑘 [𝑧0, . . . , 𝑧𝑛+1]2. Then 𝑋𝑑 is of the form

𝑋𝑑 = {𝑧1 𝐴 + 𝐵𝑄 = 0}

with 𝐴 ∈ 𝑘 [𝑧0, . . . , 𝑧𝑛+1]𝑑−1 and 𝐵 ∈ 𝑘 [𝑧0, . . . , 𝑧𝑛+1]𝑑−2. Consider the quadric 𝑌2 = {𝑧1𝑢 − 𝑄 = 0}
with 𝑧0, . . . , 𝑧𝑛+1, 𝑢 homogeneous coordinates on P𝑛+2. Since 𝑄0 is smooth, we may assume that
𝑄 = 𝑧2

0 + · · · + 𝑧2
𝑛+1. Hence, 𝑌2 is a smooth as well.

Denote by 𝐶𝑋𝑑 , 𝐶𝑄0 the cones, respectively, over 𝑋𝑑 and 𝑄0 with vertex 𝑣 = [0 : · · · : 0 : 1]. Then
𝐶𝑄0 ⊂ 𝑌2 and

𝑌2 ∩ 𝐶𝑋𝑑 = 𝐶𝑄0 ∪ {𝑧1𝑢 − 𝑄 = 𝐴 + 𝑢𝐵 = 0}.

Set 𝑌𝑑−1 = {𝐴 + 𝑢𝐵 = 0} and 𝑌2,𝑑−1 = {𝑧1𝑢 − 𝑄 = 𝐴 + 𝑢𝐵 = 0}. Note that the tangent space of 𝑌2 at v
is the hyperplane {𝑧1 = 0}, the tangent cone of 𝑌𝑑−1 at v is given by {𝐵 = 0} and the tangent cone of
𝑌2,𝑑−1 at v is cut out by {𝑧1 = 𝐵 = 0}. Hence,

mult𝑣 𝑌𝑑−1 = mult𝑣 𝑌2,𝑑−1 = 𝑑 − 2.

Therefore, if 𝑝 ∈ 𝑌2,𝑑−1 is a general point the line 〈𝑣, 𝑝〉 intersects 𝑌2,𝑑−1 just in v with multiplicity
𝑑 − 2 and in p with multiplicity one. So the projection 𝜋𝑣 : 𝑌2,𝑑−1 � P𝑛+1 is birational onto 𝜋𝑣 (𝑌2,𝑑−1)
which must then be a hypersurface of degree 2(𝑑 − 1) − (𝑑 − 2) = 𝑑. To conclude, it is enough to note
that since 𝑌2,𝑑−1 is not a cone of vertex v and 𝑌2,𝑑−1 ⊂ 𝐶𝑋𝑑 we have 𝜋𝑣 (𝑌2,𝑑−1) = 𝑋𝑑 . �
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Lemma 3.3. Consider the complete intersection

𝑌2,𝑑−1 = 𝑌2 ∩ 𝑌𝑑−1 ⊂ P𝑛+2,

where 𝑌2 = {𝑧1𝑢 − 𝐴1 = 0} ⊂ P𝑛+2
(𝑧0 ,...,𝑧𝑛−1 ,𝑢)

and

𝑌𝑑−1 = {𝑧𝑑−2
0 𝑢 + 𝑧𝑑−3

0 𝐴2 + 𝑧𝑑−4
0 𝑧1 𝐴3 + · · · + 𝑧𝑑−3

1 𝐴𝑑−1 = 0} ⊂ P𝑛+2
(𝑧0 ,...,𝑧𝑛−1 ,𝑢)

with 𝐴𝑖 general homogeneous polynomial of degree two. Assume that the (𝑛 − 2)-dimensional quadric
𝑄 = {𝑧0 = 𝑧1 = 𝐴1 = 0} has a point.

Then there exists a variety W, with a surjective morphism onto a rational surface S, such that if W is
unirational, then there is a dominant rational map 𝑊 � 𝑌2,𝑑−1 and hence 𝑌2,𝑑−1 is unirational as well.
Furthermore, the general fiber of 𝑊 → 𝑆 is a complete intersection of a quadric and a hypersurface of
degree 𝑑 − 3.

Proof. Set 𝑣 = [0 : · · · : 0 : 1] and 𝐻 = {𝑧0 = 𝑧1 = 0} ⊂ P𝑛+2. Then

mult𝑣 𝑌𝑑−1 = 𝑑 − 2, mult𝐻 𝑌𝑑−1 = 𝑑 − 3.

Take a general point 𝑝 ∈ 𝐻. The lines through p that intersect 𝑌𝑑−1 at p with multiplicity at least 𝑑 − 2
are parametrized by a hypersurface 𝑊𝑑−3 cut out in the (𝑛 + 1)-dimensional projective space P(𝑇𝑝P𝑛+2)
of lines through p by a polynomial in 𝑘 [𝑧0, 𝑧1]𝑑−3.

Now, consider the cone 𝐶𝑄 over the (𝑛−2)-dimensional quadric 𝑄 = {𝑧0 = 𝑧1 = 𝐴1 = 0}, and take a
general point 𝑝 ∈ 𝐶𝑄. Note that 𝐶𝑄 ⊂ 𝑌2. The lines through p that are contained in 𝑌2 are parametrized
by a quadric hypersurface 𝑊2 ⊂ P(𝑇𝑝𝑌2).

Let F = T𝑌2 |𝐶𝑄
be the restriction of the tangent sheaf of 𝑌2 to 𝐶𝑄. Summing up, there is a subvariety

𝑊2,𝑑−3 ⊂ P(F) with a surjective morphism 𝜌 : 𝑊2,𝑑−3 → 𝐶𝑄 whose fiber over a general point of
𝑝 ∈ 𝐶𝑄 is a complete intersection of a quadric and a hypersurface of degree 𝑑 − 3 in P𝑛. Hence,
dim(𝑊2,𝑑−3) = 2𝑛 − 3.

By hypothesis, 𝑄 has a point. Let 𝐶 be a conic in 𝑄 through this point and S the cone over 𝐶 with
vertex v. Then 𝑆 ⊂ 𝐶𝑄 is a rational surface. Set 𝑊 = 𝜌−1(𝑆) and 𝑊𝑠 = 𝜌−1(𝑠) for 𝑠 ∈ 𝑆. A general
point 𝑤 ∈ 𝑊 represents a pair (𝑠, 𝑙𝑠), where 𝑠 ∈ 𝑆 and 𝑙𝑠 is a line through s which is contained in 𝑌2
and intersects 𝑌𝑑−1 with multiplicity 𝑑 − 2 at s. Since deg(𝑌𝑑−1) = 𝑑 − 1 the line 𝑙𝑠 intersects 𝑌𝑑−1 just
at one more point 𝑥 (𝑠,𝑙𝑠) ∈ 𝑌2 ∩ 𝑌𝑑−1 = 𝑌2,𝑑−1 and we get a rational map

𝜓 : 𝑊 � 𝑌2,𝑑−1
(𝑠, 𝑙𝑠) ↦−→ 𝑥 (𝑠,𝑙𝑠) .

If W is unirational, in order to prove that 𝜓 is dominant it is enough to prove that the induced map
𝜓 : 𝑊 � 𝑌2,𝑑−1 between the algebraic closures is dominant. Take a general point 𝑝 ∈ 𝑌2,𝑑−1, and
assume that 𝑥 (𝑠,𝑙𝑠) = 𝑝. Then 𝑙𝑠 lies in the tangent space of 𝑌2 at p which is given by {𝐿 = 0}. Such
tangent space intersects 𝑆 in a conic, and further intersecting with 𝑊𝑑−3 we see that there are finitely
may points 𝑠 ∈ 𝑆 such that 𝑥 (𝑠,𝑙𝑠) = 𝑝 for some 𝑙𝑠 ∈ 𝑊𝑠 . Furthermore, if 𝑥 (𝑠,𝑙𝑠) = 𝑥 (𝑠,𝑙′𝑠) , then 𝑙𝑠 = 𝑙 ′𝑠 .
Hence, 𝜓 is generically finite and since dim(𝑊) = dim(𝑌2,𝑑−1) we conclude that 𝜓 is dominant. �

Proposition 3.4. Let 𝑋𝑑 ⊂ P𝑛+1 be a hypersurface of degree d having multiplicity 𝑑−2 along an (𝑛−1)-
plane Λ ⊂ P𝑛+1. Assume that there is a quadric 𝑄𝑝 in the quadric fibration induced by the projection
from Λ such that the quadric 𝑄𝑝 ∩ Λ is smooth and has a point and that 𝑋𝑑 is otherwise general.

Then there exist a rational surface S and a variety W with a morphism onto S such that if W is
unirational, then there is a dominant rational map 𝑊 � 𝑋𝑑 and hence 𝑋𝑑 is unirational as well.
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Proof. We may write Λ = {𝑧0 = 𝑧1 = 0} and

𝑋𝑑 = {𝑧𝑑−2
0 𝐴1 + 𝑧𝑑−3

0 𝑧1 𝐴2 + · · · + 𝑧𝑑−2
1 𝐴𝑑−1 = 0}

with 𝐴𝑖 ∈ 𝑘 [𝑧0, . . . , 𝑧𝑛+1]2. Note that 𝑋𝑑 contains the smooth (𝑛 − 1)-dimensional quadric 𝑄𝑝 = {𝑧1 =
𝐴1 = 0}. Hence, by Lemma 3.2 there is an irreducible complete intersection 𝑌2,𝑑−1 ⊂ P𝑛+2 which is
birational to 𝑋𝑑 .

Consider the quadric 𝑌2 = {𝑧1𝑢 − 𝐴1 = 0} ⊂ P𝑛+2 with homogeneous coordinates 𝑧0, . . . , 𝑧𝑛+1, 𝑢,
and let 𝐶𝑋𝑑 be the cone over 𝑋𝑑 as in the proof of Lemma 3.2. The intersection 𝑌2 ∩ 𝐶𝑋𝑑 has two
components: the cone 𝐶𝑄𝑝 over 𝑄𝑝 and the degree 𝑑 − 1 hypersurface

𝑌𝑑−1 = {𝑧𝑑−2
0 𝑢 + 𝑧𝑑−3

0 𝐴2 + 𝑧𝑑−4
0 𝑧1 𝐴3 + · · · + 𝑧𝑑−3

1 𝐴𝑑−1 = 0}.

Let 𝑊 → 𝑆 be the fibration constructed in Lemma 3.3 starting from the complete intersection
𝑌2,𝑑−1 = 𝑌2 ∩ 𝑌𝑑−1. If W is unirational, Lemma 3.3 yields a dominant rational map 𝜓 : 𝑊 � 𝑌2,𝑑−1.
Finally, let 𝜋𝑣 : 𝑌2,𝑑−1 � 𝑋𝑑 be the dominant rational map in Lemma 3.2. By considering the
composition

𝑊 𝑌2,𝑑−1

𝑋𝑑 ,

𝜓

𝑔
𝜋𝑣

we get a dominant rational map 𝑔 : 𝑊 � 𝑋𝑑 , and hence 𝑋𝑑 is unirational. �

Proposition 3.5. Let 𝑌2,3 = 𝑌2 ∩ 𝑌3 ⊂ P𝑛+2 be a complete intersection of a quadric and a cubic of the
following form

𝑌2,3 = {𝑢𝑧1 − 𝐴 = 𝑧2
0𝑢 + 𝑧0𝐵 + 𝑧1𝐶 = 0}

with 𝐴, 𝐵, 𝐶 ∈ 𝑘 [𝑧0, . . . , 𝑧𝑛+1]2 general. If the quadric 𝑄 = {𝑧0 = 𝑧1 = 𝐴 = 0} is smooth and has a
point, then 𝑌2,3 is unirational.

Proof. By Lemma 3.3 with 𝑑 = 4, there exists a variety W with a morphism onto a rational surface S
whose general fiber is a complete intersection of a quadric and a hyperplane. Hence, W has a structure
of quadric bundle 𝑊 → 𝑆 over S with (𝑛 − 2)-dimensional quadrics as fibers.

By the proof of Lemma 3.3, S is a cone over a conic and it is contained in 𝑌2 = {𝑢𝑧1 − 𝐴 = 0}. In
particular, any line in S through its vertex is contained in 𝑌2. Moreover, S is contained in the intersection
of 𝑌3 with its tangent cone at v. Hence, the lines in S through its vertex yield a section of the quadric
bundle 𝑊 → 𝑆 and so W is rational. Finally, to conclude it is enough to apply Lemma 3.3. �

Corollary 3.6. Let 𝑋4 ⊂ P𝑛+1 be a quartic hypersurface having multiplicity two along an (𝑛 − 1)-
plane Λ ⊂ P𝑛+1 with 𝑛 ≥ 3. Assume that there is a quadric 𝑄𝑝 in the quadric fibration induced by the
projection from Λ such that the quadric 𝑄Λ = 𝑄𝑝∩Λ is smooth and has a point and that 𝑋4 is otherwise
general. Then 𝑋4 is unirational.

Proof. Up to a change of coordinates, we may assume that Λ = {𝑧0 = 𝑧1 = 0}, 𝑋4 is given by

𝑋4 = {𝑧2
0 𝐴 + 𝑧0𝑧1𝐵 + 𝑧2

1𝐶 = 0} ⊂ P𝑛+1

and 𝑄Λ = {𝑧1 = 𝐴 = 0}. The intersection {𝑧1𝑢 − 𝐴 = 𝑧2
0 𝐴 + 𝑧0𝑧1𝐵 + 𝑧2

1𝐶 = 0} ⊂ P𝑛+2
(𝑧0 ,...,𝑧𝑛+1 ,𝑢)

has two
components: {𝑧1 = 𝐴 = 0} and

𝑌2,3 = {𝑧1𝑢 − 𝐴 = 𝑢𝑧2
0 + 𝑧0𝐵 + 𝑧2

1𝐶 = 0} ⊂ P𝑛+2
(𝑧0 ,...,𝑧𝑛+1 ,𝑢)

.
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By Lemma 3.2 and its proof, there exists a birational map 𝑌2,3 � 𝑋4. To conclude, it is enough to note
that 𝑌2,3 is a complete intersection of the form covered by Proposition 3.5. �

Corollary 3.7. Let 𝑋4 ⊂ P𝑛+1, with 𝑛 ≥ 5, be a quartic hypersurface containing an (𝑛−1)-dimensional
smooth quadric 𝑄0 which contains a 2-plane and otherwise general. Then 𝑋4 is unirational.

Proof. By Lemma 3.2, 𝑋4 is birational to a complete intersection 𝑌2,3 = 𝑌2 ∩ 𝑌3, where 𝑌2 is a smooth
quadric. By the proof of Lemma 3.2, we have that since 𝑄0 contains a 2-plane 𝑌2 contains a 2-plane as
well. Hence, 𝑌2 is a smooth quadric containing a 2-plane and we conclude by Lemma 3.1. �

Corollary 3.8. Let 𝑋4 ⊂ P𝑛+1, with 𝑛 ≥ 2, be a quartic hypersurface having multiplicity two along an
(𝑛 − 1)-dimensional smooth quadric Q, with a point and otherwise general. Then 𝑋4 is unirational.

Proof. Slightly modifying the proof of Lemma 3.2, we see that in this case 𝑋4 is birational to a complete
intersection 𝑌2 ∩𝑌 ′

2 ⊂ P𝑛+2 of two quadrics, and hence, the claim follows from [CTSSD87, Proposition
2.3]. �

In the following, we will investigate the unirationality of quartic hypersurfaces by constructing explicit
birational maps to divisors in products of projective spaces. In particular, we will get an improvement
of Corollary 3.6 when 𝑛 ≥ 4.

Lemma 3.9. Consider the hypersurface

𝑋𝑑 = {𝑧𝑑−2
0 (𝑧0𝐿 + 𝑄) + 𝑧𝑑−3

0 𝑧1 𝐴1 + · · · + 𝑧0𝑧𝑑−3
1 𝐴𝑑−3 + 𝑧𝑑−2

1 𝐴𝑑−2 = 0} ⊂ P𝑛+1
(𝑧0 ,...,𝑧𝑛+1) ,

where 𝐴𝑖 = 𝐴2
𝑖 + 𝑧0 𝐴1

𝑖 + 𝑧2
0 𝐴0

𝑖 , and 𝐿, 𝐴1
𝑖 ∈ 𝑘 [𝑧1, . . . , 𝑧𝑛+1]1, 𝑄, 𝐴2

𝑖 ∈ 𝑘 [𝑧1, . . . , 𝑧𝑛+1]2, 𝐴0
𝑖 ∈ 𝑘 for

𝑖 = 1, . . . , 𝑑 − 2. Then 𝑋𝑑 is birational to the divisor

𝑌(𝑑−1,2) =

{
𝑑−1∑
𝑖=0

𝑥𝑑−1−𝑖
0 𝑥𝑖1𝐵𝑖 = 0

}
⊂ P1

(𝑥0 ,𝑥1)
× P𝑛(𝑤1 ,...,𝑤𝑛+1)

of bidegree (𝑑 − 1, 2), where 𝐵0 = 𝑤1𝐿 + 𝐴0
1𝑤2

1, 𝐵1 = 𝑄 + 𝑤1 𝐴1
1 + 𝑤2

1 𝐴0
2, 𝐵 𝑗 = 𝐴2

𝑗−1 + 𝑤1 𝐴1
𝑗 + 𝑤2

1 𝐴0
𝑗+1

for 𝑗 = 2, . . . , 𝑑 − 3, 𝐵𝑑−2 = 𝐴2
𝑑−3 + 𝑤1 𝐴1

𝑑−2, 𝐵𝑑−1 = 𝐴2
𝑑−2.

Proof. Note that 𝑋𝑑 passes through the point 𝑝 = [1 : 0 : · · · : 0], and the rational map

𝜑 : P𝑛+1
(𝑧0 ,...,𝑧𝑛+1)

� P𝑛+1
(𝑤0 ,...,𝑤𝑛+1)

[𝑧0 : · · · : 𝑧𝑛+1] ↦→ [𝑧0𝐿 : 𝑧2
1 : 𝑧1𝑧2 : · · · : 𝑧1𝑧𝑛+1]

is birational with birational inverse

𝜑−1 : P𝑛+1
(𝑤0 ,...,𝑤𝑛+1)

� P𝑛+1
(𝑧0 ,...,𝑧𝑛+1)

[𝑤0 : · · · : 𝑤𝑛+1] ↦→ [𝑤0𝑤1 : 𝑤1𝐿 : 𝑤2𝐿 : · · · : 𝑤𝑛+1𝐿],

where 𝐿 = 𝐿(𝑤1, . . . , 𝑤𝑛+1). Note that 𝜑−1 contracts the divisor {𝐿 = 0} to the point p. The strict
transform of 𝑋𝑑 via 𝜑−1 is given by

𝑋𝑑 = {𝑤𝑑−2
0 (𝑤0𝑤1𝐿 + 𝐿𝑄) + 𝑤𝑑−3

0 (𝑤2
0𝑤2

1 𝐴0
1 + 𝑤0𝑤1𝐿𝐴1

1 + 𝐿2 𝐴2
1) + . . .

+ 𝐿𝑑−3 (𝑤2
0𝑤2

1 𝐴0
𝑑−2 + 𝑤0𝑤1𝐿𝐴1

𝑑−2 + 𝐿2 𝐴2
𝑑−2) = 0},

which we rewrite as

𝑋𝑑 = {𝑤𝑑−1
0 (𝑤1𝐿 + 𝑤2

1 𝐴0
1) + 𝑤𝑑−2

0 𝐿(𝑄 + 𝑤1 𝐴1
1 + 𝑤2

1 𝐴0
2) + . . .

+ 𝑤0𝐿𝑑−2 (𝐴2
𝑑−3 + 𝑤1 𝐴1

𝑑−2) + 𝐿𝑑−1 𝐴2
𝑑−2 = 0}.
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Finally, substituting 𝑤0 = 𝑥0
𝑥1

𝐿 we get the equation cutting out the divisor 𝑌(𝑑−1,2) ⊂ P1
(𝑥0 ,𝑥1)

×

P
𝑛
(𝑤1:· · ·:𝑤𝑛+1)

in the statement. �

Proposition 3.10. Let 𝑌(3,2) be a general divisor of the form

𝑌(3,2) =

{ 3∑
𝑖=0

𝑥3−𝑖
0 𝑥𝑖1𝐵𝑖 = 0

}
⊂ P1

(𝑥0 ,𝑥1)
× P𝑛(𝑤1 ,...,𝑤𝑛+1) ,

where 𝐵0 = 𝑤1𝐿 + 𝐴0
1𝑤2

1, 𝐵1 = 𝑄 + 𝑤1 𝐴1
1 + 𝑤2

1 𝐴0
2, 𝐵2 = 𝐴2

1 + 𝑤1 𝐴1
2, 𝐵3 = 𝐴2

2, and 𝐿, 𝐴1
𝑖 ∈

𝑘 [𝑤1, . . . , 𝑤𝑛+1]1, 𝑄, 𝐴2
𝑖 ∈ 𝑘 [𝑤1, . . . , 𝑤𝑛+1]2, 𝐴0

𝑖 ∈ 𝑘 for 𝑖 = 1, 2 are general. If 𝑛 ≥ 4, then 𝑌(3,2) is
unirational.

Proof. Consider the rational map

𝜂 : P1
(𝑥0 ,𝑥1)

× P𝑛
(𝑤1 ,...,𝑤𝑛+1)

� P2
(𝑢1 ,𝑢2 ,𝑢3)

( [𝑥0 : 𝑥1], [𝑤1 : · · · : 𝑤𝑛+1]) ↦→ [𝜂1 : 𝜂2 : 𝜂3],
(3.11)

where 𝜂𝑖 = 𝐵𝑖𝑥
2
0+𝐵𝑖+1𝑥0𝑥1+· · ·+𝐵3𝑥𝑖−1

0 𝑥3−𝑖
1 for 𝑖 = 1, 2, 3. By [Ott15, Theorem 1.1 (ii)] the rational map

P
1
(𝑥0 ,𝑥1)

× P𝑛
(𝑤1 ,...,𝑤𝑛+1)

� P2
(𝑢1 ,𝑢2 ,𝑢3)

× P𝑛
(𝑤1 ,...,𝑤𝑛+1)

( [𝑥0 : 𝑥1], [𝑤1 : · · · : 𝑤𝑛+1]) ↦→ (𝜂([𝑥0 : 𝑥1], [𝑤1 : · · · : 𝑤𝑛+1]), [𝑤1 : · · · : 𝑤𝑛+1])

yields a small transformation 𝜂+ : 𝑌(3,2) � 𝑌+
(3,2) , where 𝑌+

(3,2) ⊂ P
2
(𝑢1 ,𝑢2 ,𝑢3)

× P𝑛
(𝑤1 ,...,𝑤𝑛+1)

is cut out by
the minors of order three of the following matrix:

𝑀(𝑢1 ,𝑢2 ,𝑢3) =
�����

0 𝑢1 𝐵0
−𝑢1 𝑢2 𝐵1
−𝑢2 𝑢3 𝐵2
−𝑢3 0 𝐵3

�����. (3.12)

Consider the point 𝑝 = ([1 : 0], [0 : · · · : 0 : 1]) ∈ 𝑌(3,2) , its image

𝑞 = ([𝐵1 (0, . . . , 0, 1), 𝐵2 (0, . . . , 0, 1)], 𝐵3 (0, . . . , 0, 1)])
= ([𝑄(0, . . . , 0, 1), 𝐴2

1 (0, . . . , 0, 1), 𝐴2
2 (0, . . . , 0, 1)])

via 𝜂 and set 𝑢1 = 𝑄(0, . . . , 0, 1), 𝑢2 = 𝐴2
1 (0, . . . , 0, 1), 𝑢3 = 𝐴2

2 (0, . . . , 0, 1). Let 𝐹𝑢 be the fiber of the
first projection 𝜋1 : P2

(𝑢1 ,𝑢2 ,𝑢3)
× P𝑛

(𝑤1 ,...,𝑤𝑛+1)
→ P2

(𝑢1 ,𝑢2 ,𝑢3)
over 𝑢 = [𝑢1 : 𝑢2 : 𝑢3]. Then

𝐹𝑢 = {rank(𝑀(𝑢1 ,𝑢2 ,𝑢3) ) < 3} ⊂ P𝑛(𝑤1 ,...,𝑤𝑛+1)

is a complete intersection of two quadrics. Note that 𝑞 ∈ 𝐹𝑢 and since the 𝑢𝑖 are general, 𝐹𝑢 is smooth.
Therefore, if 𝑛 ≥ 4 [CTSSD87, Proposition 2.3] yields the unirationality of 𝐹𝑢 . The strict transform of
𝐹𝑢 via 𝜂+ is given by

𝐹𝑢 =

{
rank

(
𝑢1 𝑢2 𝑢3

𝐵1𝑥2
0 + 𝐵2𝑥0𝑥1 + 𝐵3𝑥2

1 𝐵2𝑥2
0 + 𝐵3𝑥0𝑥1 𝐵3𝑥2

0

)
< 2

}
⊂ P1

(𝑥0 ,𝑥1)
× P𝑛(𝑤1 ,...,𝑤𝑛+1)

.

So 𝐹𝑢 is unirational and maps dominantly onto P1
(𝑥0 ,𝑥1)

. Finally, to conclude it is enough to note that
𝑌(3,2) → P

1
(𝑥0 ,𝑥1)

is a fibration in quadric hypersurfaces and to apply Proposition 2.7 and Remark 2.8. �
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Proposition 3.13. Let 𝑋4 ⊂ P𝑛+1 be a quartic hypersurface having double points along a codimension
two linear subspace Λ ⊂ P𝑛+1, with a point 𝑝 ∈ 𝑋4 \ Λ and otherwise general. If 𝑛 ≥ 4, then 𝑋4 is
unirational.

Proof. The equation of 𝑋4 ⊂ P𝑛+1 can be written as in Lemma 3.9 for 𝑑 = 4. Hence, the claim follows
from Lemma 3.9 and Proposition 3.10. �

For quartic 3-folds, we have the following density result.

Proposition 3.14. Let 𝑋4 ⊂ P4 be a quartic hypersurface, over a number field k, having double points
along a codimension two linear subspace Λ ⊂ P4, with a point 𝑝 ∈ 𝑋4 \ Λ and otherwise general. The
set 𝑋4 (𝑘) of the k-rational points of 𝑋4 is Zariski dense in 𝑋4.

Proof. By Lemma 3.9, it is enough to prove that a general divisor 𝑌3,2 ⊂ P1 × P3 as in Proposition 3.10
has dense k-points. Consider the 2-plane 𝐻 = {𝑥1 = 𝑤1 = 0} ⊂ 𝑌3,2 and the rational map

𝜂′ : 𝑌(3,2) � P2
(𝑢1 ,𝑢2 ,𝑢3)

( [𝑥0 : 𝑥1], [𝑤1 : · · · : 𝑤4]) ↦→ [𝜂1 : 𝜂2 : 𝜂3]

induced by (3.11). Note that 𝜂′ maps H dominantly onto P2
(𝑢1 ,𝑢2 ,𝑢3)

. Take a general point 𝑝 ∈ 𝐻, its image
𝑞 = 𝜂′(𝑝) and a general line 𝐿 = {𝛼1𝑢1 +𝛼2𝑢2 +𝛼3𝑢3 = 0} ⊂ P2

(𝑢1 ,...,𝑢3)
through q. Set 𝑆𝐿,𝑝 = 𝜂′−1 (𝐿).

Since 𝑌(3,2) is general 𝜂′ restricts to a morphism 𝜂′
|𝑆𝐿,𝑝

: 𝑆𝐿,𝑝 → P
1. A straightforward computation

shows that 𝑆𝐿,𝑝 is smooth, and by the argument in the second part of the proof of Proposition 3.10, the
general fiber of 𝜂′

|𝑆𝐿,𝑝
: 𝑆𝐿,𝑝 → P1 is a smooth curve of genus one.

Furthermore, 𝐶 = 𝐻 ∩ 𝑆𝐿,𝑝 = {𝛼1𝐵1 + 𝛼2𝐵2 + 𝛼3𝐵3 = 𝑥1 = 𝑤1 = 0}. Hence, since 𝑌3,2 is general, C
is a smooth conic with a point 𝑝 ∈ 𝐶. Note that a general fiber of 𝜂′

|𝑆𝐿,𝑝
: 𝑆𝐿,𝑝 → P1 intersects a general

fiber of the quadric bundle 𝑌3,2 → P1 in a zero-dimensional scheme of degree eight. So, 𝐶 ⊂ 𝑆𝐿,𝑝 is a
rational 4-section of 𝜂′

|𝑆𝐿,𝑝
.

Consider the fiber product 𝑇 = 𝐶 ×𝐿 𝑆𝐿,𝑝 . Since 𝑝, 𝐿 and 𝑌3,2 are general, the ramification divisor of
𝜂′
|𝐶

: 𝐶 → P1 is disjoint from the singular fibers of 𝜂′
|𝑆𝐿,𝑝

. Hence, T is smooth and the proof of [HT00,
Theorem 8.1] goes through. So the set 𝑆𝐿,𝑝 (𝑘) of the k-rational points of 𝑆𝐿,𝑝 is Zariski dense in 𝑆𝐿,𝑝 .
Finally, letting the point p vary in H and the line L vary among the lines passing through 𝑞 = 𝜂′(𝑝) we
get the claim. �

The following is our main result on the unirationality of quadric hypersurfaces having double points
along a linear subspace.

Theorem 3.15. Let 𝑋4 ⊂ P𝑛+1 be a quartic hypersurface having double points along an h-plane
Λ ⊂ P𝑛+1, with a point 𝑝 ∈ 𝑋4 \ Λ and otherwise general. If 𝑛 ≥ 4 and ℎ ≥ 3, then 𝑋4 is unirational.

Furthermore, if k is a 𝐶𝑟 field, 𝑛 ≥ 3, and 𝑠 + 1 > 2𝑟 , where 𝑠 = max{𝑛 − ℎ, ℎ} a general quartic
hypersurface 𝑋4 ⊂ P𝑛+1 having double points along an h-plane is unirational.

Proof. The case ℎ = 𝑛 − 1 comes from Proposition 3.13. Let 𝜋𝐻 : 𝑋4 � P𝑛−ℎ−1 be the projection
from 𝐻 = 〈𝑝,Λ〉, �̃�𝐻 : 𝑋4 → P𝑛−ℎ−1, and 𝐹𝑝 � P𝑛−ℎ−1 the fiber over p of the blowup 𝑋4 → 𝑋4 along
𝐻 ∩ 𝑋4. Note that since 𝑋4 is irreducible the blowup 𝑋4 is also irreducible.

The generic fiber 𝑋4,𝜂 of �̃�𝐻 : 𝑋4 → P𝑛−ℎ−1 is a quartic hypersurface 𝑋4,𝜂 ⊂ Pℎ+2
𝑘 (𝑡1 ,...,𝑡𝑛−ℎ−1)

with
double points along an h-plane and with a 𝑘 (𝑡1, . . . , 𝑡𝑛−ℎ−1)-rational point induced by 𝐹𝑝 .

Therefore, Proposition 3.13 yields that 𝑋4,𝜂 is unirational over 𝑘 (𝑡1, . . . , 𝑡𝑛−ℎ−1) and since 𝑋4 is
irreducible 𝑋4 is unirational.

Now, assume k to be 𝐶𝑟 . The exceptional divisor 𝐸 in Lemma 2.4 is a divisor of bidegree (2, 2) in
P
𝑛−ℎ ×Pℎ , and since 𝑋4 is general 𝐸 maps dominantly onto P𝑛−ℎ . Furthermore, since both the fibrations

on 𝐸 have quadric hypersurfaces as fibers and 𝑠 + 1 > 2𝑟 by Remark 2.10 the divisor 𝐸 has a point. To
conclude, it is enough to apply [Mas22, Theorem 1.8] and Proposition 2.7. �
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Remark 3.16. In the second part of Theorem 3.15, the assumption on the base field is needed in order
to ensure the existence of a point in the exceptional divisor 𝐸 ⊂ P𝑛−ℎ × Pℎ . Indeed, over non 𝐶𝑟 fields
there are divisors of bidegree (2, 2) in P𝑛−ℎ × Pℎ without points [Mas22, Remark 4.15].

Remark 3.17. In Theorem 3.15, the assumption on the existence of a point in 𝑋4 \Λ is necessary as the
following argument shows. Take, for instance, 𝑛 = 3, ℎ = 1 and 𝑘 = R. By Lemma 2.4, 𝑋4 is birational to
a conic bundle 𝐷 ⊂ T1,0,0 of multidegree (4, 3, 3, 2, 2, 2). We may write D as the zero set of a polynomial

𝑓 = 𝑎0𝑥4
0 + 𝑎1𝑥3

0𝑥1 + 𝑎2𝑥2
0𝑥2

1 + 𝑎3𝑥0𝑥3
1 + 𝑎4𝑥4

1,

where 𝑎𝑖 ∈ R[𝑥1, 𝑥2, 𝑦0, 𝑦1, 𝑦2]. Let V be the R-vector space parametrizing these conic bundles and
consider the map

𝑒𝑣 : 𝑉 × R5 −→ R
5

( 𝑓 , (𝑥1, 𝑥2, 𝑦0, 𝑦1, 𝑦2)) ↦→ 𝑃 𝑓 ,𝑥1 ,𝑥2 ,𝑦0 ,𝑦1 ,𝑦2 (𝑥0),

where 𝑃 𝑓 ,𝑥1 ,𝑥2 ,𝑦0 ,𝑦1 ,𝑦2 (𝑥0) = 𝑓 (𝑥0, 𝑥1, 𝑥2, 𝑦0, 𝑦1, 𝑦2) ∈ R[𝑥0]. The polynomials 𝑃 𝑓 ,𝑥1 ,𝑥2 ,𝑦0 ,𝑦1 ,𝑦2 (𝑥0)

with a real root form a semialgebraic subset 𝑅𝑟𝑟 ⊂ R5 of maximal dimension; see, for instance, [BPR06,
Section 4.2.3]. Hence, 𝑒𝑣−1(𝑅𝑟𝑟 ) ⊂ 𝑉 × R5 is also a semialgebraic subset of maximal dimension and
then the Tarski–Seidenberg principle [BCR98, Section 2.2] yields that 𝑍𝑟 𝑝 = 𝜋1 (𝑒𝑣−1(𝑅𝑟𝑟 )) ⊂ 𝑉 ,
where 𝜋1 : 𝑉 × R5 → 𝑉 is the projection, is a semialgebraic subset of maximal dimension. Note that

𝑍𝑟 𝑝 = {𝐷 ⊂ T1,0,0 of mutidegree (4, 3, 3, 2, 2, 2) having a rational point}.

The complementary set 𝑍𝑛𝑟 𝑝 = 𝑍𝑐
𝑟 𝑝 is nonempty, take, for instance,

𝐷 = {(𝑥2
0 + 𝑥2

1 + 𝑥2
2)

2𝑦2
0 + (𝑥2

0 + 𝑥2
1 + 2𝑥2

2)𝑦
2
1 + (𝑥2

0 + 𝑥2
1 + 3𝑥2

2)𝑦
2
2 = 0} ⊂ T1,0,0.

Hence, 𝑍𝑛𝑟 𝑝 ⊂ 𝑉 is also a semialgebraic subset of maximal dimension. By Lemma 2.4, the quartics
𝑋4 ⊂ P4 corresponding to the conic bundles in 𝑍𝑛𝑟 𝑝 do not have a point in 𝑋4 \ Λ, and hence, they
cannot be unirational.

Lemma 3.18. Consider the hypersurface

𝑋𝑑 = {𝑧𝑑−2
0 𝑄 + 𝑧𝑑−3

0 𝑧1 𝐴1 + · · · + 𝑧0𝑧𝑑−3
1 𝐴𝑑−3 + 𝑧𝑑−2

1 𝐴𝑑−2 = 0} ⊂ P𝑛+1
(𝑧0 ,...,𝑧𝑛+1) ,

where 𝐴𝑖 = 𝐴2
𝑖 + 𝑧0 𝐴1

𝑖 + 𝑧2
0 𝐴0

𝑖 , and 𝐴1
𝑖 ∈ 𝑘 [𝑧1, . . . , 𝑧𝑛+1]1, 𝑄, 𝐴2

𝑖 ∈ 𝑘 [𝑧1, . . . , 𝑧𝑛+1]2, 𝐴0
𝑖 ∈ 𝑘 for

𝑖 = 1, . . . , 𝑑 − 2. Then 𝑋𝑑 is birational to the divisor

𝑌(𝑑−2,2) =

{
𝑥𝑑−2

0 𝑄 +

𝑑−2∑
𝑖=1

𝑥𝑑−2−𝑖
0 𝑥𝑖1 𝐴𝑖 = 0

}
⊂ P1

(𝑥0 ,𝑥1)
× P𝑛(𝑧1 ,...,𝑧𝑛+1)

of bidegree (𝑑 − 2, 2).

Proof. It is enough to substitute 𝑧0 = 𝑥0
𝑥1

𝑧1 in the equation of 𝑋𝑑 and to clear the denominators of the
resulting polynomial. �

For quartic hypersurfaces with a double point, we get a version of Theorem 3.15 with a slightly less
restrictive condition on n.

Proposition 3.19. Let 𝑋𝑑 ⊂ P𝑛+1 be a hypersurface of degree d having multiplicity 𝑑 − 2 along a
codimension two linear subspace Λ ⊂ P𝑛+1, with a point 𝑝 ∈ 𝑋𝑑 \ Λ, a double point 𝑞 ∈ 𝑋𝑑 \ Λ and
otherwise general. If either 𝑑 = 4 and 𝑛 ≥ 2 or 𝑑 = 5 and 𝑛 ≥ 4, then 𝑋𝑑 is unirational.
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Proof. We may assume thatΛ = {𝑧0 = 𝑧1 = 0} and 𝑞 = [1 : 0 : · · · : 0] so that the equation of 𝑋𝑑 ⊂ P𝑛+1

can be written as in Lemma 3.18. First, consider the case 𝑑 = 4. By Lemma 3.18 𝑋4 is birational to a
divisor 𝑌(2,2) ⊂ P

1
(𝑥0 ,𝑥1)

×P𝑛
(𝑧1 ,...,𝑧𝑛+1)

of bidegree (2, 2). The point 𝑝 ∈ 𝑋𝑑 \Λ yields a point 𝑝′ ∈ 𝑌(2,2) .
Let H be a general 2-plane in P𝑛

(𝑧1 ,...,𝑧𝑛+1)
through the projection of 𝑝′ and set Γ = P1

(𝑥0 ,𝑥1)
× 𝐻. Then

𝑊 = 𝑌(2,2) ∩Γ is a divisor of bidegree (2, 2) in P1
(𝑥0 ,𝑥1)

×P2 which by [KM17, Corollary 8] is unirational.
Since W maps dominantly onto P1

(𝑥0 ,𝑥1)
, to conclude it is enough to apply Proposition 2.7.

Now, let 𝑑 = 5. Then by Lemma 3.18 𝑋5 is birational to a divisor 𝑌(3,2) ⊂ P
1
(𝑥0 ,𝑥1)

× P𝑛
(𝑧1 ,...,𝑧𝑛+1)

of
bidegree (3, 2). This divisor is not of the same form of those considered in Proposition 3.10. However,
the argument in the proof of Proposition 3.10 goes through smoothly and shows 𝑌(3,2) is unirational. �

Remark 3.20. The argument in the proof of Proposition 3.10 works indeed for a general divisor of
bidegree (3, 2) as shown in [Mas22, Proposition 3.2] which works for a divisor of bidegree (3, 2) in
P

1 × P𝑛 with a point and otherwise general. So [Mas22, Proposition 3.2] cannot be applied directly to
the divisors 𝑌(3,2) in Proposition 3.10 which are special. In the proof of Proposition 3.10, it is shown
that the argument in the proof of [Mas22, Proposition 3.2] works for a general 𝑌(3,2) , in other words that
a general divisor of the form 𝑌(3,2) is general enough, among the divisor of bidegree (3, 2) in P1 × P𝑛,
for [Mas22, Proposition 3.2] to apply.

Lemma 3.21. Let 𝐷 ⊂ P𝑛−ℎ × Pℎ be an irreducible divisor of bidegree (1, 𝑎). Then D is rational.

Proof. If 𝑛 − ℎ = 1, then the projection 𝜋2 |𝐷 : 𝐷 → Pℎ is birational. Assume 𝑛 − ℎ ≥ 2. The generic
fiber of 𝜋2 |𝐷 : 𝐷 → Pℎ is an (𝑛 − ℎ − 1)-dimensional projective space over the function field of Pℎ . So
we can find an open subset 𝑈 ⊂ Pℎ such that 𝜋−1

2 |𝐷 (𝑈) is birational to 𝑈 × P𝑛−ℎ−1. Finally, since D is
irreducible we conclude that D is rational. �

The following is our main result on the unirationality of quartic hypersurface containing a linear
subspace.

Theorem 3.22. Let 𝑋4 ⊂ P𝑛+1 be an irreducible quartic hypersurface containing an h-plane Λ ⊂ P𝑛+1.
Assume that Λ ∩ Sing(𝑋4) has dimension at most ℎ − 2 and that 𝑋4 is not a cone over a quartic of
smaller dimension. If 𝑛 ≥ 3 and ℎ ≥ 2, then 𝑋4 is unirational.

Proof. Consider the blowup 𝑋4 along Λ in Lemma 2.4. Under our hypotheses, 𝑋4 cannot be singular
at the general point of Λ. So the exceptional divisor 𝐸 ⊂ P𝑛−ℎ × Pℎ has bidegree (1, 3), and Lemma
3.21 yields that 𝐸 is unirational. The projection 𝜋 : 𝑋4 → P

𝑛−ℎ is a fibration in h-dimensional cubic
hypersurfaces. Therefore, thanks to Proposition 2.7 and Remark 2.8 to conclude it is enough to show
that 𝜋 |𝐸 : 𝐸 → P𝑛−ℎ is dominant.

Since 𝑋4 is not a cone over a quartic of smaller dimension by the expression of 𝑋4 in (2.6), we see
that 𝜋 |𝐸 : 𝐸 → P𝑛−ℎ is not dominant if and only if the equation of 𝑋𝑑 is of the following form

𝑋𝑑 =

{
𝑛−ℎ∑
𝑖=0

𝑧𝑖 (𝐶𝑖 (𝑧0, . . . , 𝑧𝑛−ℎ) + 𝑐𝑖𝑃) = 0

}
⊂ P𝑛+1,

where 𝐶𝑖 ∈ 𝑘 [𝑧0, . . . , 𝑧𝑛−ℎ]𝑑−1, 𝑐𝑖 ∈ 𝑘 and 𝑃 ∈ 𝑘 [𝑧0, . . . , 𝑧𝑛+1]𝑑−1. In particular,

𝑍 = {𝑧0 = · · · = 𝑧𝑛−ℎ = 𝑃 = 0} ⊂ Λ ∩ Sing(𝑋𝑑)

and since dim(𝑍) ≥ ℎ − 1 we get a contradiction. �

Corollary 3.23. Assume that ℎ ≥ 2, 𝑛 > 2ℎ − 1, and let 𝑋4 ⊂ P𝑛+1 be a general quartic hypersurface
containing an h-plane. Then 𝑋4 is unirational.

Proof. Note that 𝑛 > 2ℎ − 1 yields that a general quartic containing a fixed h-plane is smooth. The
claim follows from Theorem 3.22. �
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4. Divisors in products of projective spaces and Quintics

We now study the unirationality of quintic hypersurfaces that are singular along linear subspaces and
of divisors of bidegree (3, 2) in products of projective spaces. We begin with a series of preliminary
results that we will need later on.

Lemma 4.1. Let C → 𝑊 be a fibration in m-dimensional cubic hypersurfaces with 𝑚 ≥ 2, C irreducible
and W a rational variety over a 𝐶𝑟 field k. If the general fiber of C → 𝑊 is an irreducible cubic with no
triple point and

𝑚 > 3𝑟+dim(𝑊 ) − 2,

then C is unirational.

Proof. Let C ′ be the generic fiber of C → 𝑊 . Then C ′ is a cubic hypersurface over the function field
𝐹 = 𝑘 (𝑡1, . . . , 𝑡dim(𝑊 ) ). Since 𝑚 + 2 > 3𝑟+dim(𝑊 ) , Remark 2.10 yields that C ′ has a point. Hence, by
[Kol02, Theorem 1] C ′ is unirational over F and so since C is irreducible C is unirational. �

Lemma 4.2. Let 𝑄𝑁−1 ⊂ P𝑁 be a smooth (𝑁 − 1)-dimensional quadric hypersurface over a 𝐶𝑟 field. If

𝑁 − 2𝑠 + 1 > 2𝑟

for some 0 ≤ 𝑠 ≤ � 𝑁−1
2 �, then through any point of 𝑄𝑁−1 there is an s-plane contained in 𝑄𝑁−1.

Proof. Since 𝑁−1 > 2𝑟 −2 by Remark 2.10 𝑄𝑁−1 has a point. Hence, 𝑄𝑁−1 is rational and in particular
the set of its rational points is dense. Take a point 𝑥0 ∈ 𝑄𝑁−1.

The tangent space 𝑇𝑥0𝑄
𝑁−1 cuts out on 𝑄𝑁−1 a cone with vertex 𝑥0 over an (𝑁 − 3)-dimensional

quadric 𝑄𝑁−3. Since 𝑁 − 3 > 2𝑟 − 2 Remark 2.10 yields the existence of a point 𝑥1 ∈ 𝑄𝑁−3. The line
〈𝑥0, 𝑥1〉 is therefore contained in 𝑄𝑁−1.

Now, 𝑇𝑥1𝑄
𝑁−3 ∩ 𝑄𝑁−3 is a cone with vertex 𝑥1 over an (𝑁 − 5)-dimensional quadric 𝑄𝑁−5 which

again by Remark 2.10 has a point 𝑥2 ∈ 𝑄𝑁−5. The 2-plane 〈𝑥0, 𝑥1, 𝑥2〉 is contained in 𝑄𝑁−1.
Proceeding recursively, we have that 𝑇𝑥𝑠−1𝑄

𝑁−2(𝑠−1)−1 ∩𝑄𝑁−2(𝑠−1)−1 is a cone with vertex 𝑥𝑠−1 over
an (𝑁 − 2𝑠 − 1)-dimensional quadric 𝑄𝑁−2𝑠−1. Since 𝑁 − 2𝑠 + 1 > 2𝑟 , the quadric 𝑄𝑁−2𝑠−1 has a point
𝑥𝑠 and the s-plane 〈𝑥0, . . . , 𝑥𝑠〉 is then contained in 𝑄𝑁−1. �

Lemma 4.3. Let 𝑋 = 𝑄1 ∩ · · · ∩ 𝑄𝑐 ⊂ P𝑁 be a smooth complete intersection of quadrics. Assume that
X contains a (𝑐 − 1)-plane Λ. Then X is rational.

Proof. Note that since X is smooth 𝑄𝑖 must be smooth along X. Let H be a general c-plane containing
Λ. Then H intersects 𝑄𝑖 along Λ ∪ 𝐻𝑖 where 𝐻𝑖 is a (𝑐 − 1)-plane. Hence, we get c linear subspaces of
dimension 𝑐 − 1 of 𝐻 � P𝑐 .

Since H is general, these (𝑐 − 1)-planes intersect in a point 𝑥𝐻 = 𝐻1 ∩ · · · ∩ 𝐻𝑐 ∈ 𝑋 . To conclude,
it is enough to parametrize X with the P𝑁−𝑐 of c-planes containing Λ. �

Proposition 4.4. Let 𝑋 = 𝑄1 ∩ · · · ∩𝑄𝑐 ⊂ P𝑁 be a smooth complete intersection of quadrics over a 𝐶𝑟

field. If

𝑁 − 𝑠(𝑐 + 1) + 1 > 2𝑟 𝑐,

then through any point of X there is an s-plane contained in X.

Proof. For 𝑠 = 0, the claim follows from Remark 2.10. We proceed by induction on s. Since

𝑁 − (𝑠 − 1) (𝑐 + 1) + 1 > 𝑁 − 𝑠(𝑐 + 1) + 1 > 2𝑟 𝑐

through any point of X, there is an (𝑠 − 1)-plane. Fix one of these (𝑠 − 1)-planes, and denote it by
Λ𝑠−1 ⊂ 𝑋 . The s-planes in P𝑁 containing Λ𝑠−1 are parametrized by P𝑁−𝑠 .
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Arguing as in the proof of Lemma 4.2, we see that requiring such an s-plane to be contained in 𝑄𝑖

yields s linear equations given by the tangent spaces of 𝑄𝑖 at s general points of Λ𝑠−1 plus a quadratic
equation induced by 𝑄𝑖 itself.

Hence, the points of P𝑁−𝑠 corresponding to s-planes contained in X are parametrized by a subvariety
cut out by 𝑠𝑐 linear equations and c quadratic equations that is an intersection Y of c quadrics in P𝑁−𝑠−𝑠𝑐 .
Since dim(𝑌 ) = 𝑁 − 𝑠(𝑐 + 1) − 𝑐 > 2𝑟 𝑐 − 1 − 𝑐 ≥ −1 and 𝑁 − 𝑠(𝑐 + 1) + 1 > 2𝑟 𝑐, Remark 2.10 yields
that Y has a point and so there is an s-plane through Λ𝑠−1 contained in X. �

Corollary 4.5. Let 𝑋 = 𝑄1 ∩ · · · ∩ 𝑄𝑐 ⊂ P𝑁 be a smooth complete intersection of quadrics over a 𝐶𝑟

field. If

𝑁 − 𝑐2 + 2 > 2𝑟 𝑐,

then X is rational.

Proof. By Proposition 4.4 with 𝑠 = 𝑐 − 1, the complete intersection X contains a (𝑐 − 1)-plane, and
hence, the claim follows from Lemma 4.3. �

We are now ready to prove our first result on unirationality of quintic hypersurfaces.

Proposition 4.6. Let 𝑋𝑛
5 = { 𝑓 = 0} ⊂ P𝑛+1 be a quintic hypersurface of the form

𝑓 =
∑

𝑖0+···+𝑖𝑛−ℎ=3
𝑥𝑖00 . . . 𝑥𝑖𝑛−ℎ𝑛−ℎ 𝐴𝑖0 ,...,𝑖𝑛−ℎ (𝑦0, . . . , 𝑦ℎ , 𝑥𝑛−ℎ)

with 𝐴𝑖0 ,...,𝑖𝑛−ℎ quadratic polynomials. If either

(i) ℎ ≥ 4 and the complete intersection

𝑊 ′ = {𝐴3,...,0 = 𝐴2,1,0,...,0 = 𝑥0 = · · · = 𝑥𝑛−ℎ = 0} ⊂ Pℎ(𝑦0 ,...,𝑦ℎ)

contains a line, or
(ii) ℎ ≥ 5 and the quadric

𝑄 = {𝑥0 = · · · = 𝑥𝑛−ℎ = 𝐴3,...,0 = 0} ⊂ Pℎ(𝑦0 ,...,𝑦ℎ)

contains a 2-plane,

and 𝑋𝑛
5 is otherwise general, then 𝑋𝑛

5 is unirational.

Proof. Note that 𝑋𝑛
5 is a hypersurface of the form (2.12) in Proposition 2.11. Hence, 𝑋𝑛

5 has multiplicity
three along Λ = {𝑥0 = · · · = 𝑥𝑛−ℎ = 0}, and multiplicity two along Λ′ = {𝑦0 = · · · = 𝑦ℎ = 𝑥𝑛−ℎ = 0}.

First, consider (i). Fix a point 𝑝 ∈ Λ′, say 𝑝 = [1 : 0 : · · · : 0]. The lines through p intersecting 𝑋𝑛
5

at p with multiplicity at least four are parametrized by the variety

𝑌 = {𝐴3,...,0 = 𝑥1 𝐴2,1,0,...,0 + · · · + 𝑥𝑛−ℎ𝐴2,0,...,0,1 = 0} ⊂ P𝑛(𝑥1 ,...,𝑥𝑛−ℎ ,𝑦0 ,...,𝑦ℎ)
.

Assume Y to be unirational. Associating to a general point 𝑦 ∈ 𝑌 , representing a line 𝑙𝑦 , the fifth
intersection point of 𝑙𝑦 and 𝑋𝑛

5 we get a rational map

𝜓 : 𝑌 � 𝑋𝑛
5 .

Set 𝑌𝜓 = 𝜓(𝑌 ) ⊂ 𝑋𝑛
5 , and let 𝜋 : 𝑋𝑛

5 � P
𝑛−ℎ be the restriction to 𝑋𝑛

5 of the projection from Λ. We want
to prove that 𝜋 |𝑌𝜓 : 𝑌𝜓 � P𝑛−ℎ is dominant. Indeed, if so 𝑌𝜓 would be a unirational variety transverse
to the quadric fibration induced by the projection from Λ and dominating P𝑛−ℎ , and Proposition 2.7
would imply that 𝑋𝑛

5 is unirational.
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Since 𝑌𝜓 is unirational it is enough to prove that the induced map 𝜋 |𝑌𝜓 : 𝑌 𝜓 � P𝑛−ℎ between the
algebraic closures is dominant. Consider the complete intersection

𝑍 = 𝑌 ∩ 𝑋𝑛
5 = {𝐴3,...,0 = 𝑥1 𝐴2,1,0,...,0 + · · · + 𝑥𝑛−ℎ𝐴2,0,...,0,1 = 𝑓 = 0} ⊂ P𝑛+1

(𝑥0 ,...,𝑥𝑛−ℎ ,𝑦0 ,...,𝑦ℎ)
.

A general point of 𝑧 ∈ 𝑍 ⊂ 𝑋𝑛
5 represents a line 𝑙𝑧 intersecting 𝑋𝑛

5 with multiplicity four at p and
multiplicity one at z. Hence, 𝑍 ⊂ 𝑌𝜓 .

Fix a general point 𝑞 ∈ P𝑛−ℎ , and consider

𝑍𝑞 = 𝜋−1
|𝑌𝜓

(𝑞) ∩ 𝑍.

Note that since 𝑞 ∈ P𝑛−ℎ is defined by 𝑛 − ℎ equations, 𝑍 ⊂ P𝑛+1
(𝑥0 ,...,𝑥𝑛−ℎ ,𝑦0 ,...,𝑦ℎ)

is cut out by three
equations and by hypothesis 𝑛 + 1− (𝑛− ℎ) − 3 = ℎ− 2 > 0. So 𝑍𝑞 is nonempty. Then 𝜋 |𝑊𝜓 is dominant
when restricted to 𝑍 , and hence, it is dominant.

Now, we prove that Y is unirational. In P𝑛
(𝑥1 ,...,𝑥𝑛−ℎ ,𝑦0 ,...,𝑦ℎ)

, fix the point 𝑝′ = [1 : 0 : · · · : 0]. The
quadric

{𝑥1 = · · · = 𝑥𝑛−ℎ = 𝐴2,1,0,...,0} ⊂ P
ℎ
(𝑦0 ,...,𝑦ℎ)

parametrizes lines that are contained in

𝑌3 = {𝑥1 𝐴2,1,0,...,0 + · · · + 𝑥𝑛−ℎ𝐴2,0,...,0,1}.

Indeed, the tangent cone of 𝑌3 at 𝑝′ is defined by {𝐴2,1,0,...,0 = 0} and {𝑥1 = · · · = 𝑥𝑛−ℎ = 0} ⊂ 𝑌3. So
these lines intersect 𝑌3 with multiplicity three at 𝑝′ and at another point in the linear space {𝑥1 = · · · =
𝑥𝑛−ℎ = 0}.

Set 𝑌2 = {𝐴3,...,0 = 0}, and let W be the cone over 𝑊 ′ with vertex 𝑝′. Since 𝑝′ is in the vertex of 𝑌2,
we have that

𝑊 ⊂ 𝑌 = 𝑌2 ∩ 𝑌3.

Furthermore, since 𝑊 ′ contains a line by Lemma 4.3 it is rational, and hence, W is rational as well.
As in the proof of Proposition 3.4, we construct a quadric bundle Q̃ → 𝑊 with (𝑛 − 4)-dimensional

fibers whose general point (𝑤, 𝑙𝑤 ) represents a point 𝑤 ∈ 𝑊 and a line 𝑙𝑤 which is contained in 𝑌2 and
intersects 𝑌3 with multiplicity two at w.

Associating to (𝑤, 𝑙𝑤 ) the third point of intersection of 𝑙𝑤 and 𝑌3, we get a rational map 𝑊 � 𝑌 and
arguing as in the proof of Proposition 3.4 we see that such rational map is dominant.

Now, we consider (ii). Note that

𝑄 ′ = {𝑥1 = · · · = 𝑥𝑛−ℎ = 𝐴3,...,0 = 0} ⊂ 𝑋𝑛
5 ⊂ P𝑛+1

is an h-dimensional quadric cone over 𝑄 with vertex [1 : 0 : · · · : 0]. Since 𝑄 contains a 2-plane
𝑄 ′ contains a 3-plane 𝐻 ⊂ 𝑋𝑛

5 . If 𝑥 ∈ 𝐻 is a general point the lines through x intersecting 𝑋𝑛
5 with

multiplicity four at x are parametrized by a complete intersection of a quadric and a cubic in P𝑛−1.
Hence, we get a fibration Y2,3 → 𝐻 whose fiber over a general 𝑥 ∈ 𝐻 is a complete intersection 𝑌2,3,𝑥
of a quadric 𝑌2,𝑥 ⊂ P𝑛−1 and a cubic 𝑌3,𝑥 ⊂ P𝑛−1. Note that since 𝑋𝑛

5 is general among the quintics
satisfying (𝑖𝑖) for 𝑥 ∈ 𝐻 both 𝑌2,𝑥 and 𝑌2,3,𝑥 are smooth.

The generic fiber of Y2,3 → 𝐻 is then a complete intersection Y2,3,𝑘 (𝐻 ) = Y2,𝑘 (𝐻 ) ∩ Y3,𝑘 (𝐻 )

satisfying the hypotheses of Lemma 3.1. Indeed, by considering the 2-plane parametrizing lines in H
through a general 𝑥 ∈ 𝐻 we get a 2-plane over 𝑘 (𝐻) contained in Y2,𝑘 (𝐻 ) .

Therefore, by Lemma 3.1 Y2,3,𝑘 (𝐻 ) is unirational over 𝑘 (𝐻). As usual after replacing H by an open
subset, we may assume that Y2,3 is irreducible and so we get that Y2,3 is unirational. Now, a general point
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of Y2,3 represents a pair (𝑥, 𝑙𝑥) with 𝑥 ∈ 𝐻 general and 𝑙𝑥 a line intersecting 𝑋𝑛
5 with multiplicity four at

x. As usual, associating to (𝑥, 𝑙𝑥) ∈ Y2,3 the fifth point of intersection of 𝑙𝑥 with 𝑋𝑛
5 we get a rational map

𝜙 : Y2,3 � 𝑋𝑛
5 .

Note that dim(Y2,3) = 3 + (𝑛 − 3) = 𝑛. Arguing as in the last part of the proof of Proposition 3.4, we
see that 𝜙 is generically finite and therefore it is dominant. �

Theorem 4.7. Let 𝐷 ⊂ P𝑛−ℎ × Pℎ+1, with 𝑛 − ℎ ≥ 2, be a general divisor of bidegree (3, 2) over a 𝐶𝑟

field. If either

(i) 𝑛 ≥ 4, 2ℎ ≥ 𝑛 + 3 and ℎ > 2𝑟+1 + 2, or
(ii) 𝑛 ≥ 6, ℎ ≥ 5 and ℎ > 2𝑟 + 3, or

(iii) 𝑛 − ℎ − 1 > 3𝑟+1 − 2,

then D is unirational.

Proof. By Proposition 2.11, D is birational to a quintic hypersurface 𝑋𝑛
5 ⊂ P𝑛+1 of the form considered

in Proposition 4.6.
Consider (i). Since, ℎ > 2𝑟+1 + 2 by Proposition 4.4 the complete intersection 𝑊 ′ in Proposition 4.6

contains a line, and hence, Proposition 4.6 yields that 𝑋𝑛
5 is unirational.

For (ii), note that since ℎ > 2𝑟 + 3 Lemma 4.2 implies that the quadric 𝑄 in Proposition 4.6 contains
a 2-plane.

Now, consider (iii). The projection 𝜋2 : 𝐷 → P
ℎ+1 endows D with a structure of fibration in

(𝑛 − ℎ − 1)-dimensional cubic hypersurfaces. Take a general line 𝐿 ⊂ Pℎ+1, and set C𝐿 = 𝜋−1
2 (𝐿). Then

C𝐿 is a fibration in (𝑛 − ℎ − 1)-dimensional cubic hypersurfaces over P1 and since 𝑛 − ℎ − 1 > 3𝑟+1 − 2
Lemma 4.1 yields that C𝐿 is unirational. Finally, to conclude it is enough to note that 𝜋 |C𝐿 : C𝐿 → P𝑛−ℎ

is dominant and to apply Proposition 2.7. �

Remark 4.8. Take for instance 𝑟 = 0 that is k is algebraically closed. Remark 2.10 gives the rationality
of a 𝐷 ⊂ P𝑛−ℎ × Pℎ+1 as in Theorem 4.7 for ℎ > 2𝑛−ℎ − 2 while Theorem 4.7 gives the unirationality
of D for ℎ > 4 as long as 𝑛 ≥ 4 and ℎ ≥ 𝑛 − ℎ + 3. For example, take ℎ = 10. Then Remark 2.10 yields
that D is rational for 𝑛 ≤ 13 while Theorem 4.7 gives the unirationality of D for 𝑛 ≤ 17.

Furthermore, there are cases covered by (iii) but not by (i). For instance, by (iii) we get that a general
𝐷 ⊂ P𝑛−1 × P2 of bidegree (3, 2) and dimension at least four is unirational.

For 𝑟 ≥ 1, (i) generally performs better that (ii). For instance, the case ℎ = 7, 𝑛 = 11 is covered by (i)
but not by (ii).

Remark 4.9. In particular, Theorem 4.7 (ii) together with [ABP18, Theorem A] yields that a very
general, meaning outside of a countable union of closed subsets of the corresponding parameter space,
divisor of bidegree (3, 2) in P3×P2, over an algebraically closed field of characteristic zero, is unirational
but not stably rational.

We end this section with our main results on the unirationality of quintic hypersurfaces which are
singular along a linear subspace.

Theorem 4.10. Let 𝑋5 ⊂ P𝑛+1 be a quintic hypersurface over a 𝐶𝑟 field having multiplicity three along
an h-plane and otherwise general. Assume that 𝑛 − ℎ ≥ 2. If either

(i) 𝑛 ≥ 5, 2ℎ ≥ 𝑛 + 4 and ℎ > 2𝑟+1 + 3, or
(ii) 𝑛 ≥ 7, ℎ ≥ 6 and ℎ > 2𝑟 + 4, or

(iii) 𝑛 − ℎ − 1 > 3𝑟+1 − 2,

then 𝑋5 is unirational.
Similarly, if 𝑋5 ⊂ P𝑛+1 has multiplicity two along an h-plane with ℎ ≥ 2 and is otherwise general,

and either
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(i) 𝑛 ≥ 5, 2ℎ ≤ 𝑛 − 4 and 𝑛 − ℎ > 2𝑟+1 + 3, or
(ii) 𝑛 ≥ 7, 𝑛 − ℎ − 1 ≥ 5 and 𝑛 − ℎ − 1 > 2𝑟 + 3, or

(iii) ℎ > 3𝑟+1 − 1,

then 𝑋5 is unirational.

Proof. By Lemma 2.4, the exceptional divisor 𝐸 ⊂ 𝑋5 is a divisor of bidegree (3, 2) in P𝑛−ℎ × Pℎ .
Since 𝑋5 is general, 𝐸 maps dominantly onto P𝑛−ℎ , and hence, to conclude we apply Proposition 2.7
and Theorem 4.7. For the second statement, it is enough to argue as in the previous case on a divisor of
bidegree (2, 3) in P𝑛−ℎ × Pℎ . �

Proposition 4.11. Let 𝑋5 ⊂ P𝑛+1 be a quintic hypersurface over a field k having multiplicity three along
an (𝑛 − 1)-plane and otherwise general. If either

(i) 𝑛 ≥ 5 and k is either a number field or a real closed field, or
(ii) k is 𝐶𝑟 , 𝑛 > 4 and 𝑛 > 2𝑟 ,

then 𝑋5 is unirational.

Proof. The exceptional divisor 𝐸 ⊂ 𝑋5 is a general divisor of bidegree (3, 2) in P1 × P𝑛−1. By [Mas22,
Corollary 4.13, Lemma 4.18] and Remark 2.10, under our hypotheses 𝐸 has a point and hence [Mas22,
Theorem 1.8] yields that 𝐸 is unirational. To conclude, it is enough to argue as in the proof of Theorem
4.10 applying Propositions 2.7. �

Remark 4.12. When k is a real closed field, the unirationality of a quintic hypersurface 𝑋5 ⊂ P𝑛+1 as
in Proposition 4.11 follows from [Kol99, Corollary 1.8].

Proposition 4.13. Let 𝑋𝑑 ⊂ P𝑛+1 be a hypersurface of degree d over a field k having multiplicity 𝑑 − 2
along an h-plane and otherwise general. Assume that (ℎ + 1) (𝑑 − 2) is odd. If either

(i) 𝑑 ≤ 5ℎ+3
ℎ+1 , or

(ii) 𝑑 ≤ 6ℎ+1
ℎ+1 , ℎ ≤ 4, k is 𝐶𝑟 and ℎ + 1 > 2𝑟+𝑛−ℎ−1,

then 𝑋5 is unirational.

Proof. In this case, the exceptional divisor 𝐸 ⊂ 𝑋𝑑 is a general divisor of bidegree (𝑑−2, 2) in P𝑛−ℎ×Pℎ .
Note that the discriminant of the quadric bundle 𝐸 → P𝑛−ℎ has degree (ℎ + 1) (𝑑 − 2). Hence, the claim
follows from [Mas22, Theorem 1.7] and Propositions 2.7. �
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