A NOTE ON COMPLEMENTARY SUBSPACES IN c_{0}

I. D. BERG

A well known result of A. Pelcyński [2] states that each subspace of c_{0} which is isomorphic to c_{0} and of infinite deficiency has a complementary subspace which is itself isomorphic to c_{0}. We are concerned here with the question of when there exists R, a subset of the integers, such that the complementary subspace X can actually be taken to be $c_{0}(R)$. That is, we are concerned with determining when the basis vectors for X can be chosen as a subset of the usual basis vectors for c_{0}. If $T: c_{0} \rightarrow c_{0}$ is norm increasing and $\|T\|<2$, it is not hard to see, as we shall show, that $T c_{0}$ admits a complement of the form $c_{0}(R)$. However, this bound cannot be improved; indeed, it is possible to construct norm increasing $T: c_{0} \rightarrow c_{0}$ such that $\|T\|=2$ and yet $T c_{0}$ admits no such complement. The construction of such a T is the main point of this note. This construction also enables us to dispose of a speculation of ours in [1].

Our notation is standard except for a few conventions. We denote the set of positive integers by ω. We denote by $c_{0}(\omega)$, or simply c_{0}, the Banach space under the sup norm of complex-valued sequences tending to 0 . If $R \subset \omega$, we denote by $c_{0}(R)$ the subspace of c_{0} consisting of sequences supported on R. We denote by E^{R} the operator of perpendicular projection on $c_{0}(R)$. That is, $E^{R}: c_{0} \rightarrow c_{0}(R)$ is defined by

$$
\begin{aligned}
\left(E^{R} x\right)(n) & =x(n), & & n \in R \\
& =0, & & n \notin R .
\end{aligned}
$$

We denote by m the Banach space of bounded sequences and, considering m as the second dual of c_{0}, let $T^{c}: m \rightarrow m$ denote the extension of continuous $T: c_{0} \rightarrow c_{0}$ as a second adjoint. We denote by δ_{i} the sequence which is 1 at i and 0 elsewhere. We make here two observations to which we will refer in the sequel.
(1) If $T: c_{0} \rightarrow c_{0}$ is an isomorphism into (that is, except for a scalar factor, T is a norm increasing, bounded map), then necessary and sufficient that $T c_{0}$ admit $c_{0}(R)$ as a complement is that $E^{\omega \backslash R} T: c_{0} \rightarrow c_{0}(\omega \backslash R)$ be an isomorphism onto.
(2) If we extend the matrix $T: c_{0} \rightarrow c_{0}$ to $T^{c}: m \rightarrow m$ by simply letting the matrix operate on m, then T^{c} is the extension by second adjoint of T and so, if $T^{c} x \in c_{0}$ for some $x \in m \backslash c_{0}$, then $T: c_{0} \rightarrow c_{0}$ cannot be an isomorphism into.

The first observation is easily verified ; the second is not trivial but is a standard result.

[^0]The following easy proposition is essentially contained in [1] as Proposition 1.3, together with a reference to some relevant results of M. Cambern. We prove it here in order to show just how the complementary subspaces $c_{0}(R)$ arise. It is interesting that, despite the crudeness of the method, the bound $\rho<2$ cannot be improved.

Proposition 1. Let $T: c_{0} \rightarrow c_{0}$ be a norm increasing map such that $\|T\| \leqq \rho<2$. Then $T c_{0}$ admits a complementary subspace of the form $c_{0}(R)$.

Proof. To each i, we associate a single n_{i} such that $\left|T \delta_{i}\left(n_{i}\right)\right| \geqq 1$. If $\|x\|=1$ and $|x(i)|=1$, then $\left|T x\left(n_{i}\right)\right| \geqq 2-\rho$. Indeed, if $\|y\|=1$ and $y(i)=0$, then $\left|T y\left(n_{i}\right)\right| \leqq \rho-1$; for, otherwise, for some α of modulus 1 we would have $\left|T\left(\delta_{i}+\alpha y\right)\left(n_{i}\right)\right|>\rho$. Similarly, it is clear that, if $i \neq j$, then $n_{i} \neq n_{j}$. Hence, if we let $s=\left\{n_{i}\right\}$ we see that $E^{s} T: c_{0} \rightarrow c_{0}(s)$ is within $\rho-1$ of the isometry $T^{\prime}: c_{0} \rightarrow c_{0}(s)$ defined by $\left(T^{\prime} x\right)\left(n_{i}\right)=x(i)$. Hence, $E^{s} T: c_{0} \rightarrow c_{0}(s)$ is an isomorphism onto. Therefore, by our observation (1), we see that $c_{0}(\omega \backslash s)$ is a complement to $T c_{0}$. This completes our proof.

There are conditions other than norm conditions which would guarantee that $T c_{0}$ admit a complement $c_{0}(R)$; for example, if $T c_{0}$ is an isomorphic image of c_{0} of finite deficiency n, it is not hard to see that there exists a set R of cardinality n such that $c_{0}(R)$ is a complement to $T c_{0}$. We are interested here, however, in norm conditions.

We come now to the example which shows the bound $\rho<2$ is best possible.
Proposition 2. Let $T: c_{0} \rightarrow c_{0}$ be defined by

$$
\begin{aligned}
(T x)(2 n-1) & =x(n)-\sum_{j=n+1}^{n!} x(j) /(n!-n) \\
(T x)(2 n) & =x(n)+\sum_{j=n+1}^{n!} x(j) /(n!-n)
\end{aligned}
$$

Then $T: c_{0} \rightarrow c_{0}$ is norm increasing, $\|T\|=2$, but $T c_{0}$ admits no complementary subspace of the form $c_{0}(R)$.

Proof. It is clear that T is norm increasing and that $\|T\|=2$. By observation (1), we see that necessary and sufficient that $T c_{0}$ admit a complementary subspace $c_{0}(R)$ is that $E^{s} T: c_{0} \rightarrow c_{0}(s)$ be an isomorphism, where $s=\omega \backslash R$. We now show that no such s can exist. Suppose, for the sake of contradiction, that there is such an s. Then there must exist $\eta>0$ such that

$$
\inf _{\|x\|=1}\left\|E^{s} T x\right\|>\eta .
$$

Then for all $n>2 / \eta$, either $2 n$ or $2 n-1$ would be in s; for, otherwise, $\left\|E^{s} T \delta_{n}\right\|<\eta$. Now if we assume that $2 n \in s$, we can see that $2 n-1 \notin s$, and vice versa.

For, suppose that there were $x \in c_{0}$ such that $\delta_{2 n}=E^{s} T x$. Then, for each $m>n$, we would have either $T x(2 m-1)=0$ or $T x(2 m)=0$. But if $x \in c_{0}$, then for $\epsilon>0$, we have

$$
\left|\sum_{j=M+1}^{M!} x(j) /(M!-M)\right|<\epsilon
$$

for large enough M and so, since either $T x(2 M)=0$ or $T x(2 M-1)=0$, we see that $|x(M)|<\epsilon$. We now have

$$
\left|\sum_{j=M}^{(M-1)!} x(j) /(M-1)!-(M-1)\right|<\epsilon,
$$

and so we see that $|x(M-1)|<\epsilon$, and so on, back to $|x(n+1)|<\epsilon$. Since ϵ is arbitrary, we see that $x(n+k)=0$ and so $T x(2 n)=T x(2 n-1)$. Therefore, either $2 n \in s$ or $2 n-1 \in s$, but not both. So we are left with our hypothetical s consisting of exactly one of $2 n$ or $2 n-1$, for all large enough n. But now, having such an s, we see that there is a bounded sequence $y=(\pm 1, \pm 1, \pm 1, \ldots)$, with appropriate choice of sign in each coordinate depending on s, such that $\left(E^{s} T\right)^{c} y \in c_{0}$.

Indeed, we can define y as follows: For $j \leqq 6$, we let $y(j)=1$. For $j>6$, we let

$$
\begin{array}{lll}
y(j)=y(n) & (n-1)!<j \leqq n! & \text { if } 2 n-1 \in s \\
y(j)=-y(n) & (n-1)!<j \leqq n! & \text { if } 2 n \in s .
\end{array}
$$

(The rapidly increasing indices in the summation allow each average to be approximately $y(n)$ or $-y(n)$, as desired, despite the fact that the first block of terms in the sum is already determined.)

By our observation (2) concerning second adjoints, we see that $E^{s} T: c_{0} \rightarrow c_{0}(s)$ is not an isomorphism, contradicting our hypothesis on s and, therefore, showing that no suitable s exists. (Of course, for $\epsilon>0$ we could simply taper the sequence y sufficiently slowly to 0 to construct directly a $\tilde{y} \in c_{0}$ such that $\|\tilde{y}\|=1$ and $\left\|E^{s} T \tilde{y}\right\|<\epsilon$ and, thus also, show that $E^{s} T: c_{0} \rightarrow c_{0}(s)$ is not an isomorphism.)

Hence, we have shown that there cannot exist s such that $c_{0}(\omega \backslash s)$ is a complement to $T c_{0}$, and our proof is complete.

In [1], we speculated on the possibility that if $T: c_{0} \rightarrow c_{0}$ is an isomorphism into, then there must exist s such that $\left(E^{s} T\right)^{c}: m \rightarrow m(s)$ is an isomorphism onto. But our example is just such an isomorphism for which no such s exists. Our observation (2) on second adjoints and the fact that $E^{s} T: c_{0} \rightarrow c_{0}$ is assumed to be an isomorphism into, indicate that, if $\left[\left(E^{s} T\right)^{c} x\right](n)=0$ for large enough n, then $x \in c_{0}$. Therefore, in the one step where we explicitly use c_{0}, showing that only one of $2 n$ or $2 n-1$ is in s, we may, from the assumption that $x \in m$, deduce $x \in c_{0}$ and conclude the same contradiction as in Proposition 2.

References

1. I. D. Berg, Extensions of certain maps to automorphisms of m, Can J. Math. 22 (1970), 308-316.
2. A. Pełcyński, Projections in certain Banach spaces, Studia Math. 19 (1960), 209-228.

Queen's University, Kingston, Ontario;
University of Illinois,
Urbana, Illinois

[^0]: Received July 6, 1971.

