A NOTE ON COMPLEMENTARY SUBSPACES IN c_0

I. D. BERG

A well known result of A. Pelcyński [2] states that each subspace of c_0 which is isomorphic to c_0 and of infinite deficiency has a complementary subspace which is itself isomorphic to c_0 . We are concerned here with the question of when there exists R, a subset of the integers, such that the complementary subspace X can actually be taken to be $c_0(R)$. That is, we are concerned with determining when the basis vectors for X can be chosen as a subset of the usual basis vectors for c_0 . If $T: c_0 \rightarrow c_0$ is norm increasing and ||T|| < 2, it is not hard to see, as we shall show, that Tc_0 admits a complement of the form $c_0(R)$. However, this bound cannot be improved; indeed, it is possible to construct norm increasing $T: c_0 \rightarrow c_0$ such that ||T|| = 2 and yet Tc_0 admits no such complement. The construction of such a T is the main point of this note. This construction also enables us to dispose of a speculation of ours in [1].

Our notation is standard except for a few conventions. We denote the set of positive integers by ω . We denote by $c_0(\omega)$, or simply c_0 , the Banach space under the sup norm of complex-valued sequences tending to 0. If $R \subset \omega$, we denote by $c_0(R)$ the subspace of c_0 consisting of sequences supported on R. We denote by E^R the operator of perpendicular projection on $c_0(R)$. That is, $E^R: c_0 \to c_0(R)$ is defined by

$$(E^R x)(n) = x(n), \quad n \in R$$

= 0, $n \notin R.$

We denote by *m* the Banach space of bounded sequences and, considering *m* as the second dual of c_0 , let $T^c: m \to m$ denote the extension of continuous $T: c_0 \to c_0$ as a second adjoint. We denote by δ_i the sequence which is 1 at *i* and 0 elsewhere. We make here two observations to which we will refer in the sequel.

(1) If $T: c_0 \to c_0$ is an isomorphism into (that is, except for a scalar factor, T is a norm increasing, bounded map), then necessary and sufficient that Tc_0 admit $c_0(R)$ as a complement is that $E^{\omega \setminus R}T: c_0 \to c_0(\omega \setminus R)$ be an isomorphism onto.

(2) If we extend the matrix $T: c_0 \to c_0$ to $T^{\circ}: m \to m$ by simply letting the matrix operate on m, then T° is the extension by second adjoint of T and so, if $T^{\circ}x \in c_0$ for some $x \in m \setminus c_0$, then $T: c_0 \to c_0$ cannot be an isomorphism into.

The first observation is easily verified; the second is not trivial but is a standard result.

Received July 6, 1971.

I. D. BERG

The following easy proposition is essentially contained in [1] as Proposition 1.3, together with a reference to some relevant results of M. Cambern. We prove it here in order to show just how the complementary subspaces $c_0(R)$ arise. It is interesting that, despite the crudeness of the method, the bound $\rho < 2$ cannot be improved.

PROPOSITION 1. Let $T: c_0 \to c_0$ be a norm increasing map such that $||T|| \leq \rho < 2$. Then Tc_0 admits a complementary subspace of the form $c_0(R)$.

Proof. To each *i*, we associate a single n_i such that $|T\delta_i(n_i)| \ge 1$. If ||x|| = 1and |x(i)| = 1, then $|Tx(n_i)| \ge 2 - \rho$. Indeed, if ||y|| = 1 and y(i) = 0, then $|Ty(n_i)| \le \rho - 1$; for, otherwise, for some α of modulus 1 we would have $|T(\delta_i + \alpha y)(n_i)| > \rho$. Similarly, it is clear that, if $i \ne j$, then $n_i \ne n_j$. Hence, if we let $s = \{n_i\}$ we see that $E^sT: c_0 \rightarrow c_0(s)$ is within $\rho - 1$ of the isometry $T': c_0 \rightarrow c_0(s)$ defined by $(T'x)(n_i) = x(i)$. Hence, $E^sT: c_0 \rightarrow c_0(s)$ is an isomorphism onto. Therefore, by our observation (1), we see that $c_0(\omega \setminus s)$ is a complement to Tc_0 . This completes our proof.

There are conditions other than norm conditions which would guarantee that Tc_0 admit a complement $c_0(R)$; for example, if Tc_0 is an isomorphic image of c_0 of finite deficiency n, it is not hard to see that there exists a set R of cardinality n such that $c_0(R)$ is a complement to Tc_0 . We are interested here, however, in norm conditions.

We come now to the example which shows the bound $\rho < 2$ is best possible.

PROPOSITION 2. Let $T: c_0 \rightarrow c_0$ be defined by

$$(Tx)(2n-1) = x(n) - \sum_{j=n+1}^{n^1} x(j)/(n!-n),$$

$$(Tx)(2n) = x(n) + \sum_{j=n+1}^{n^1} x(j)/(n!-n).$$

Then $T: c_0 \rightarrow c_0$ is norm increasing, ||T|| = 2, but Tc_0 admits no complementary subspace of the form $c_0(R)$.

Proof. It is clear that T is norm increasing and that ||T|| = 2. By observation (1), we see that necessary and sufficient that Tc_0 admit a complementary subspace $c_0(R)$ is that E^sT : $c_0 \to c_0(s)$ be an isomorphism, where $s = \omega \setminus R$. We now show that no such s can exist. Suppose, for the sake of contradiction, that there is such an s. Then there must exist $\eta > 0$ such that

$$\inf_{\|x\|=1} ||E^s T x|| > \eta.$$

Then for all $n > 2/\eta$, either 2n or 2n - 1 would be in s; for, otherwise, $||E^sT\delta_n|| < \eta$. Now if we assume that $2n \in s$, we can see that $2n - 1 \notin s$, and vice versa.

For, suppose that there were $x \in c_0$ such that $\delta_{2n} = E^s T x$. Then, for each m > n, we would have either Tx(2m - 1) = 0 or Tx(2m) = 0. But if $x \in c_0$, then for $\epsilon > 0$, we have

$$\left|\sum_{j=M+1}^{M^1} x(j)/(M!-M)\right| < \epsilon,$$

for large enough M and so, since either Tx(2M) = 0 or Tx(2M - 1) = 0, we see that $|x(M)| < \epsilon$. We now have

$$\left|\sum_{j=M}^{(M-1)!} x(j)/(M-1)! - (M-1)\right| < \epsilon,$$

and so we see that $|x(M-1)| < \epsilon$, and so on, back to $|x(n+1)| < \epsilon$. Since ϵ is arbitrary, we see that x(n+k) = 0 and so Tx(2n) = Tx(2n-1). Therefore, either $2n \in s$ or $2n - 1 \in s$, but not both. So we are left with our hypothetical s consisting of exactly one of 2n or 2n - 1, for all large enough n. But now, having such an s, we see that there is a bounded sequence $y = (\pm 1, \pm 1, \pm 1, \ldots)$, with appropriate choice of sign in each coordinate depending on s, such that $(E^sT)^c y \in c_0$.

Indeed, we can define y as follows: For $j \leq 6$, we let y(j) = 1. For j > 6, we let

$$y(j) = y(n)$$
 $(n-1)! < j \le n!$ if $2n - 1 \in s$
 $y(j) = -y(n)$ $(n-1)! < j \le n!$ if $2n \in s$.

(The rapidly increasing indices in the summation allow each average to be approximately y(n) or -y(n), as desired, despite the fact that the first block of terms in the sum is already determined.)

By our observation (2) concerning second adjoints, we see that $E^sT: c_0 \to c_0(s)$ is not an isomorphism, contradicting our hypothesis on s and, therefore, showing that no suitable s exists. (Of course, for $\epsilon > 0$ we could simply taper the sequence y sufficiently slowly to 0 to construct directly a $\tilde{y} \in c_0$ such that $||\tilde{y}|| = 1$ and $||E^sT\tilde{y}|| < \epsilon$ and, thus also, show that $E^sT: c_0 \to c_0(s)$ is not an isomorphism.)

Hence, we have shown that there cannot exist s such that $c_0(\omega \setminus s)$ is a complement to Tc_0 , and our proof is complete.

In [1], we speculated on the possibility that if $T: c_0 \to c_0$ is an isomorphism into, then there must exist *s* such that $(E^sT)^{c_1} : m \to m(s)$ is an isomorphism onto. But our example is just such an isomorphism for which no such *s* exists. Our observation (2) on second adjoints and the fact that $E^sT: c_0 \to c_0$ is assumed to be an isomorphism into, indicate that, if $[(E^sT)^{c_x}](n) = 0$ for large enough *n*, then $x \in c_0$. Therefore, in the one step where we explicitly use c_0 , showing that only one of 2n or 2n - 1 is in *s*, we may, from the assumption that $x \in m$, deduce $x \in c_0$ and conclude the same contradiction as in Proposition 2.

I. D. BERG

References

- 1. I. D. Berg, Extensions of certain maps to automorphisms of m, Can J. Math. 22 (1970), 308-316.
- 2. A. Pełcyński, Projections in certain Banach spaces, Studia Math. 19 (1960), 209-228.

Queen's University, Kingston, Ontario; University of Illinois, Urbana, Illinois

540