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CLASSIFICATIONS OF 2-COMPLEXES WHOSE FINITE
FUNDAMENTAL GROUP IS THAT OF A 3-MANIFOLD
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We consider spines of spherical space forms; i.e., spines of closed oriented 3-manifolds whose universal cover
is the 3-sphere. We give sufficient conditions for such spines to be homotopy or simple homotopy equivalent
to 2-complexes with the same fundamental group G and minimal Euler characteristic 1. If the group ring
ZG satisfies stably-free cancellation, then any such 2-complex is homotopy equivalent to a spine of a 3-
manifold. If K,(ZG) is represented by units and K is homotopy equivalent to a spine X, then K and X are
simple homotopy equivalent. We exhibit several infinite families of non-abelian groups G for which these
conditions apply.

1991 Mathematics subject classification: Primary 57M20; Secondary 57Q10, 57M60, 19B28, 19A31, 19A13.

Introduction

Considerable interest has developed recently in the algebraic topology of 2-
complexes, particularly that of spines of 3-manifolds. Historically, 2-complexes were
thought to be a possible tool in the study of 3-manifolds. The obvious connections did
not work out. For example, there are many distinct lens spaces with the same spine
[6]. Recently developed connections and tools continue to give us new insights into the
topology of manifolds and the study of finite groups [8, 14, 23].

Our interests are the connection between the Generalized Andrews-Curtis Conjecture
[10] and Thurston's Geometrization Conjecture [24] (for finite fundamental groups).
The Andrews-Curtis Conjecture, stated topologically, says that every finite 2-complex
with trivial fundamental group 3-deforms to a wedge of spheres [10]. For Euler
characteristic 1, this would mean such a 2-complex would 3-deform to a point. A
counter-example to Andrews-Curtis which is also a spine of a 3-manifold would give a
counter-example to the Poincare Conjecture [10].

Metzler [17] gave the first examples of 2-complexes with the same (non-trivial)
fundamental group and same Euler characteristic which are not homotopy equivalent.
These examples gave rise to two questions [3]:

(1) Does homotopy equivalence imply simple homotopy equivalence for 2-
complexes?

For all finite abelian fundamental groups, homotopy equivalence does imply simple
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homotopy equivalence for 2-complexes [12]. For finite non-abelian fundamental
groups, partial results are known [7, 13]. In general, there exist homotopy equivalent
2-complexes (with infinite fundamental group) which are not simple homotopy
equivalent [15, 18].

(2) Does simple homotopy equivalence of finite 2-complexes imply equivalence via
3-deformations?

This question is called the Generalized Andrews-Curtis Conjecture. A 3-deformation
is a sequence of elementary expansions and collapses, where all of the intermediate
spaces have dimension 3 or less. A counter-example pair with finite fundamental
group, both of which are spines of a 3-manifold, would also give a counter-example to
Thurston's Geometrization Conjecture. This can be seen in the following way:

Thurston's Geometrization Conjecture, if true, would imply in particular that all
closed 3-manifolds with finite fundamental group would arise as quotients of
orthogonal actions on S3. Since an orthogonal action on S3 gives rise to a Seifert
fibration, Thurston's Conjecture would imply that all closed 3-manifolds with finite
fundamental group are Seifert fibered. Now, using Threlfall and Seifert [29], for any
given non-cyclic finite fundamental group there is exactly one closed Seifert fibered
3-manifold. Consequently, Thurston's Conjecture would imply that there is exactly one
closed 3-manifold corresponding to each non-cyclic finite fundamental group. In
particular, every 3-manifold spine with a given non-cyclic finite fundamental group
would 3-deform to every other one, as they would be spines of the same 3-manifold.

In this paper, we take the first steps in the study of the connection between the
Generalized Andrews-Curtis Conjecture and Thurston's Geometrization Conjecture.
That is, we study the homotopy classifications of 2-complexes whose fundamental
group acts orthogonally* on S3. In particular, we consider only finite groups in this
paper.

Finite groups that admit a fixed-point-free orthogonal* action on S3 are given by
the following four classes [19, 28]:

(I) The binary polyhedral groups:
the binary dihedral groups Q4n = (x, y | x2 — (xy)2 = y"), n > 2;
the binary tetrahedral group T24 = (x, y \ x2 — (xy)3 — y3, x4 = 1 >;
the binary octahedral group 048 = (x, y | x2 = (xy)3 = y4, x" = 1 >;
the binary icosahedral group Il20 — (x, y | x2 = (xy)3 = y5, x" = 1).

(II) The groups

D(2\2Z+1)= <x,y |x2' = l,y2l+l = l.xyx"1 = y"'>, k > 3,/> 1.

* Added in proof (August 1996): Ian Hambleton and Ronnie Lee just announced their solution of the
Spherical Space Form Problem: The list of finite groups acting on a closed connected 3-manifold consists only
of those groups that can act orthogonally on the 3-sphere. Thus the groups considered in this paper are all
finite 3-manifold groups.
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(III) The groups

7(8, 3*) = (x, y,z\x2 = (xy)2 = y2, z2" = 1, zxz~x = y, zyz"1 = xy), k>2.

(IV) Cyclic groups Cm and direct products Cm x G, where G is any group in class (I),
(II), or (III), with order relatively prime to m.

We thank William A. Bogley, Martin Lustig, Robert Oliver, Allan Sieradski and
the referee for their assistance.

1. Homotopy types of some 2-complexes

In this section we discuss the homotopy type of minimal (G, 2)-complexes, where G
is finite and admits a free orthogonal action on S3. A minimal (G, 2)-complex is a
2-dimensional CW-complex K whose Euler characteristic is minimal with respect to the
fundamental group nt(K) = G. The following hypothesis will hold throughout the next
two sections:

Hypothesis 1.1. Let M be a closed connected orientable 3-manifold whose
fundamental group G is finite.

Suppose M satisfies (1.1). We may assume that M is a PLCW-complex (see [10,
Chapter 1]). We may view M as consisting of a 2-complex X, the spine, and a single
attached 3-cell which intersects each open 2-cell of X exactly twice. This can be seen in
the following way. The PLCW structure may be suitably subdivided to be simplical.
Consider a maximal tree in the dual complex. Adjacent vertices in this tree correspond
to 3-cells in M which share a boundary 2-cell. We may remove this common 2-cell
and replace the adjoining 3-cells by a single 3-cell, attached by the obvious
combinatorial characteristic map. Starting from a terminal branch of the tree, we may
use this procedure to inductively define a single 3-cell that contains the interiors of
all the original 3-cells. Since each 2-cell lies in the boundary of exactly two of the
original 3-cells, any open 2-cell in the boundary of this new 3-cell appears exactly
twice. An orientation on the 3-cell induces opposite orientations on the two copies of
this 2-cell.

A spine of a 3-manifold satisfying (1.1) is minimal, as it has Euler characteristic 1.
Such a 2-complex may be assumed to have a single 0-cell by collapsing a maximal tree
in the 1-skeleton. The group presentation associated to this collapsed 2-complex is
balanced.

Proposition 1.2. Let X be a (G,2)-complex which is a spine of a 3-manifold M
satisfying (1.1). Then n2(X) ^ ZG/NG, where N is the sum of all group elements and NG
is the ideal generated by N. In particular, assuming X has a single 0-cell, n2(X) is
generated by an element of the form

(<7, - 1)S, + (9l - 1)S2 + . . . + (gn - \)Sn (1.3)

where the S, are 2-cells representing relators and the g( generate the group.
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Proof. We may assume that M has the combinatorial CW-structure given
above, with a single 3-cell c3 and a single 0-cell c°. Remove an open ball B from
the interior of the 3-cell. The spine A' is a deformation retract of M — B, where dB is
radially deformed to the boundary of the single 3-cell. Now consider a preferred
lift B of B in the universal cover M. The 3-manifold M — {g • B\g e G) is simply
connected by a Seifert-Van Kampen argument and is the universal cover of M - B.
By Hurewicz, n2(X) ^ H2(M — B). The 2-cycles consist of the free abelian group
generated by {g • dB\g e G}, while d{M~B) — HgdB generates the 2-boundaries. Thus
n2(X) ^ ZG/NG, generated by dB.

The deformation retraction r : M - B \ X identifies the image r(3B) with the
boundary of the 3-cell c3. This lifts to a deformation retraction r of the universal cover
M -B. Choose a lift c3 of c3 and a lift B of B with B<Zc\ Let c° c ?(9B) be a lift of
c°. Since r(3B) meets each open 2-cell of X exactly twice, once in each orientation, and
meets every 2-cell at the single vertex c°, we may represent r(3B) as Z(l — gt) • S,, where
the S, are 2-cells and g{ e G.

Now consider the 1-skeleton of the dual complex, Ml
D, and let st c3 denote the star

of the vertex corresponding to c3 in M'D. Since G • st c* = M'D and M], is connected, the
set {g | g • st c3 n st c3 ^ 0} = {#,-, gr.r1 | i = 1, 2 , . . . , «} generates G ([25, p. 30]). •

Whenever we refer to a (G, 2)-complex X that is a spine of a 3-manifold, we can
(and will) assume that X has a single 0-cell and 7r2(A') has a generator of the form given
in the preceding proposition.

Now let K be any minimal (G, 2)-complex. By shrinking a maximal tree in the
1-skeleton, we may assume that K is a complex associated with some presentation of G
given by PK = (y|r). Let Px = (z|s) be the presentation associated with the spine X.
Given an isomorphism a : n}(X) —y K,(K), the images of the generators z, can be
expressed as words in the generators y, of 7r,(/C), a(z,) = w,(y). We form the expanded
presentation for n^K):

(y, z|r, zr'w,(y)for z, e z).

The complex associated with this presentation is obtained from K by elementary
cellular expansions and therefore is simple homotopy equivalent to K. Similarly, we
can expand X to a presentation complex on generators z U y by using a"1.

Thus from now on we assume that X and K have identical 1-skeletons when
considering the problem of their homotopy equivalence—or even simple homotopy
equivalence. However, one must keep in mind that the identification of the 1-skeletons
comes from the map a. When we identify 1-skeletons, we may not assume that an
equivalence will respect this identification. The equivalences we construct will, in
general, respect a given identification of 1-skeletons. Note also that the second
homotopy group of the expanded spine is still singly generated by the element (1.3).

Consider the two partial free ZG-resolutions of Z given by the chain complexes of
the universal covers of X and K, respectively. Given that the 1-skeletons are identified,
Schanuel's Lemma yields
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n2(K) © C2(X) s n2(X) © C2(K).

Since the Euler characteristics of X and /£ are equal, the ranks of the free ZG
summands added to each side have the same value, say k. By Proposition 1.2

n2(K) © [ZG]" 3* ZG/NG © [ZG]1. (1.4)

Definition 1.5. The group ring ZG has stably-free cancellation if every stably-free
module is free; that is, whenever a ZG-projective P satisfies P © ZG = [ZG]k © ZG for
finite k, we have P ̂  [ZG]*.

A stronger version of the following proposition is due to Dyer ([5, Prop. 5.4]). For
completeness, we supply a proof for the version needed here.

Proposition 1.6. Let ZG have stably-free cancellation. If M is a ZG-module such that
M © [ZG]' ^ ZG/NG © [ZG]* for finite k, then M =* ZG/NG.

Proof. Consider the exact sequence

0 -^-NG —> ZG —>• ZG/NG —»• 0

Given some isomorphism (1: ZG/NG © [ZG]* ^ M © [ZG]*, we have the exact
sequence

0 —• NG ^ l ZG © [ZG]' ^ M © [ZG]* —• 0. (1.7)

Let p2: M © [ZG]* -»• [ZG]* be the projection onto the second factor. Since [ZG]* is
projective, there exists a map h : [ZG]* - • ZG © [ZG]* such that p2j?[a © id]h = id[ZG]k.

Let P = ker{p2fl[<x @id]}. Then im[i,0]CP, and ZG © [ZG]* is the internal direct
sum of P and im h. Since im h ^ [ZG]*, our hypothesis implies P = ZG. These identifi-
cations give a change of basis in ZG © [ZG]*, under which (1.7) takes the form

0 -^ NG -^L ZG © [ZG]* L —• J M © [ZG]* —» 0, (1.8)

where the given matrices act on the right. Since the inverse image of M © 0 in (1.8) is
contained in ZG © 0, y is surjective. By restricting our attention to the first factor, we
extract the exact sequence

0 —• NG -U ZG -U M —+ 0.

The result follows upon showing that imj is NG itself, not just some isomorphic copy.
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Since NG is largest submodule of ZG with trivial G-action and j is G-linear,
we have imj<zNG. Now observe that M is annihilated by N, since
M ffi [ZG]* s ZG/NG ffi [ZG]* implies AT M © [Z]' s [Z]* as abelian groups. Thus
NG c. kery = imj. •

Proposition 1.9. Le/ K be a minimal (G, 2)-complex where G is the fundamental group
of a 3-manifold M satisfying (1.1) with spine X. Assume that ZG satisfies stably-free
cancellation, or that n2(K) is singly generated. Then K2(K) = ZG/NG = n2(X).

Proof. If ZG satisfies stably-free cancellation, then the conclusion follows from
(1.4) and Proposition 1.6. On the other hand, if n2(K) is singly generated, there is an
epimorphism a : ZG -> n2(K). By (1.4), we have n2(K) © [ZG]* ̂  ZG/NG ffi [ZG]*, hence
N • n2(K) ffi Z* = Z* as abelian groups, and N annihilates n2(K). Thus N e ker a and a
factors through an epimorphism f! : ZG/NG -»• n2(K). Now rank (ZG/NG) = \G\ - 1 as
a free abelian group. Since K has minimal Euler characteristic 1, we have

\G\ = x(K) = rank[H0(k)]-rank[Hl(K)] + rank[H2(k)]= 1 - 0 + rank[n2(K)].

Thus P is an isomorphism, since ZG/NG and n2(K) have the same free abelian rank. •

Theorem 1.10. Let K be a minimal (G, 2)-complex where G is the finite fundamental
group of a closed orientable 3-manifold M. Suppose that ZG has stably-free cancellation.
Then K is homotopy equivalent to a spine of M.

Proof. We will show how to construct a cellular map from a spine X to K which
induces isomorphisms on both the first and second homotopy groups. By Whitehead's
theorem [30], this will give a homotopy equivalence. The preceding discussion shows
that we may assume that K and X have identical 1-skeletons. Consider any cellular
m a p / : X -> K extending the identity on the 1-skeleton, and the induced maps on the
universal cover

0 - • TI2(X) -4 C2(X) -+ C^X) H» C0(X) -»• Z - * 0

IT I L i /, II /o II II
0 -+ n2(K) -4 C2(K) ->• C,(£) - • C0(K) -> Z -> 0

We will use a Puppe modification ([12, Lemma 1.4, p. 656]) to change the action o f /
on 2-cells (but leaving the identification of the 1-skeletons unchanged), so that the new
map is a homotopy equivalence. Such modifications result in replacing f2 by f2 +j o y
and f* by f* + y o i, where y : C2(X) -*• n2(K) is arbitrary. For this construction, recall
that n2(X) =« ZG/NG ^ 7t2(K) by Proposition 1.9, and let a, z generate n2(X), n2(K),
respectively. Let St,S2,... ,Sn be the usual basis for C2(X). Then J2*{a) — t] • T, where
t\ e ZG is determined up to a multiple of N. Given At, A2,..., Ane ZG, we may replace
/ by a map h with
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Applying hf to the generator a = (#, - 1)S, + (g2 - 1)S2 4- . . . + (gn - \)Sn gives

fc*(ff) = [r, + (g, - \ ) A , + (<?2 - 1) ,4 2 + . . . + ( g n - l)An] • T .

Since the A{ are arbitrary and the gt generate G, we may use this process to replace r\
by any element of ZG with the same augmentation mod \G\.

The map f*, together with all Puppe modifications, represents a A>invariant class;
that is, an element of

H\G\ n2(K)) ^ Hom(n2{X), n2(K))/i'Hom(C2(X), n2(K)) =* Z/\G\Z

[2]. Here we specifically identify Hom(n2(X), n2{K))/i'Hom(C2{X), n2{K)) with Z/|G| by
choosing [k] e Z/|G| to represent the class of the map given by multiplication by
k mod \G\ : a ->• k • T. Thus [/2

#] = [k] where fc = e(rj) mod \G\. Dyer ([5, Theorem 3.5])
has shown that if a k-invariant can be realized by a map between cellular chain
complexes then the Swan projective (k, N) is stably-free with (k, N)®ZG^ ZG © ZG.
Our cancellation hypothesis then ensures that (k, iV) = ZG. Thus there exists a unit in
ZG/NG with augmentation k mod |G| ([26, Lemma 6.3]). By an appropriate choice of
A,, A2,..., An, we may now use a Puppe modification to replace the m a p / with a map
7i such that the rj defined by f* is replaced by this unit. Then hf : n2(X) ^ K2(K). Since
/i maintains the identification of the 1-skeletons, we have constructed a homotopy
equivalence. •

If it is already known that n2(K) ^ ZG/NG, inspection of the above proof of
Theorem 1.10 shows that the hypothesis of stably-free cancellation may be weakened.

Definition 1.11. A group ZG satisfies weak cancellation if every stably-free Swan
projective (k, N) is free.

Corollary 1.12. Let K be a minimal (G, 2)-complex where G is the finite fundamental
group of a closed orientable 3-manifold M. Suppose n2(K) is singly generated and that
ZG satisfies weak cancellation. Then K is homotopy equivalent to a spine of M.

Proof. This follows from Proposition 1.9 and the proof of Theorem 1.10. •

2. Simple homotopy types of some 2-complexes

We have seen that there are many examples where minimal (G, 2)-complexes, with
G the fundamental group of a closed 3-manifold M, are all homotopy equivalent to a
spine of M. It is natural to ask whether they are also simple homotopy equivalent.
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Definition 2.1. An element x in Kt(ZG) is represented by a unit ofiG if there exists
a ^ in the unit group ZG* such that x = \ji\ in /C,(ZG). We say the K,(ZG) is
represented by units if each of its elements is.

Lemma 2.2 Let R be a ring with unity and M 6 Mn(R) be a square matrix of the
form

M = I + crr,

where I is the n x n identity matrix and c, r are n-dimensional column vectors.
Then

M 0 \+rTc 0 ]
0 l\

is an equivalence under elementary row and column operations, in the sense of Cohen
[3]. In particular, M is invertible if and only if 1 -+• rT • c is a unit of R, in which case M is
represented by this unit in Kt(R).

Proof.

l + crT 0 ] \l + c-rT -c] \ l -c~\

o i J ~ L o i r | y i J
0 ]

1 + r7" - c J
l+rT-c O

where each step follows from ([3, p. 38]). •

Lemma 2.3. Let X be a spine of a closed orientable 3-manifold M with fundamental
group G. Every unit \i e ZG can be realized as the Whitehead torsion of some self
equivalence h : X = X.

Proof. Every unit /i of ZG has augmentation ±1. Since Whitehead torsion lives in
K,(ZG)/±G, we may assume that ft has augmentation +1. Recall that n2{X) has a
generator of the form a = E(l — gt) • 5, where the g, generate G, and the S, correspond
to 2-cells in a complex associated with some presentation of G. Since e(/i) = 1, we have
H — 1 4- E(l - g,) • a, for some choice of a, 6 ZG. Define a cellular map h : X -*• X
which is the identity on the 1-skeleton, and which induces a map h2 : C2(X) -> C2(X)
given by

Note that a Puppe modification of the identity map can be used to obtain the map h.
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One may verify that h induces multiplication by fi on n2(X). Lemma 2.2 shows that
the matrix representing h is equivalent to [p] in K{(ZG). D

Theorem 2.4. Suppose that K,(ZG) is represented by units. Let K be a (G, 2)-complex
which is homotopy equivalent to a spine X of a closed, orientable 3-manifold. Then K
and X are simple homotopy equivalent.

Proof. We may assume that K and X have identical 1-skeletons and that the
homotopy equivalence / : X -» K preserves this identification. In this situation
f2 : C2(X) -*• C2{k) is an isomorphism. The Whitehead torsion of/ is given by the class
of the matrix M2, which represents the induced map /2 with respect to the standard
bases [3]. By hypothesis, M2 is equivalent to a unit [fi\ in K,(ZG). By Lemma 2.3, [/i~']
is represented by the torsion of a self equivalence h: X -*• X. The composition fh is a
simple homotopy equivalence. •

3. Examples

In this section we give examples of groups G that satisfy stably-free cancellation,
weak cancellation, or for which /C,(ZG) is represented by units. We also point out cases
where these conditions fail. This is not intended to be an exhaustive list. All of our
examples act orthogonally on S3. Most arguments of this section were suggested to us
by Robert Oliver, in particular the proof of Theorem 3.5 is due to him.

Cancellation Properties
The cancellation properties connected with binary polyhedral groups were studied

by Swan [27]. He defined cancellation to hold for a ring R provided that
R © P = R © Q implies P = Q for finitely generated projectives P and Q. Cancellation
for ZG implies stably-free cancellation, and either implies weak cancellation. The
following are direct consequences of his results:
(1) ([27, Theorem I, p. 66]) Let G be a binary polyhedral group. Then ZG satisfies

cancellation and stably-free cancellation if and only if G is one of the seven groups

(2) ([27, Theorem 15.5, p. 128]) Cancellation holds for direct products G — CmxL,
provided L has cancellation and Cm has odd order. By choosing L to be one of the
seven groups in (1), and an odd m relatively prime to the order of L, we can
manufacture an infinite number of groups in class (IV) whose integral group rings
satisfy stably-free cancellation.

(3) When G = Q2», n > 3, ([27, Theorem 17.7, p. 138]) implies that the Swan projectives
(N, r) are either free or not even stably-free. If p is an odd prime, then all Swan
projectives for G — QAp are free ([27, Theorem 17.8, p. 138]). Thus these groups
satisfy weak cancellation.
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Units in
Magurn, Oliver, and Vaserstein [16] have developed techniques for determining

whether /C,(ZG) is represented by units. They provide the following examples for
binary polyhedral groups (class I).

Examples 3.1 (i) K](ZQ2») is represented by units ([16, Theorem 7.15]).
(ii) For any odd prime p, K,(Zg4p) is represented by units if and only if the class

number hp of the pth cyclotomic field is odd ([16, Theorem 7.16]). Recall that in
our notation Q4p has order 4p.

(iii) If G is r24, O48, or /l20, then K,(ZG) is represented by units ([16, Corollary 7.17]).
(iv) For any prime p = —\ mod 8, Kt(ZQl6p) is not represented by units ([16, Theorem

7.18]).
(v) SKX{ZG) vanishes for a finite abelian group G if and only if either G = (C2)" or

each Sylow p-subgroup of G has the form Cp or Cp x C^ ([16, p. 325]).

Let G be a group of Type II, III or IV. We now exhibit three different techniques
for showing that /C,(ZG) can be represented by units. For many of these groups, this
can be reduced to the same question for an appropriate binary polyhedral quotient
group. We will need some definitions and results which we state here for convenience.

Let G be a finite group. The group algebra QG is semisimple, and hence has a
decomposition as a direct sum of simple algebras by Wedderburn's theorem. A
component algebra H is simple if and only if its centre is a field K. Since G is finite, K
is a finite-dimensional extension of Q; therefore, an isomorphic copy of K may be
obtained from Q by adjoining a finite number of roots of irreducible polynomials over
Q. A choice of such roots defines an embedding p : K c->- C

We now single out a type of simple component that is known to cause technical
difficulties. For a detailed motivation of the Eichler condition see [4]. The following
will suffice for our purposes.

Definition 3.2. A simple H component of QG is a non-Eichler component if it is a
totally definite quaternion algebra; that is, both of the following conditions hold:
(1) Every embedding of the centre K into C has image contained in R.
(2) Given an embedding p : K <L-» R, we may always define an extension to

H *-*• R <8>K H by identifying elements of K with their image under p. For every
such embedding, we have R <g>K H = M, where H is the skewfield of real
quaternions.

If either (1) or (2) do not hold, H is called an Eichler component.

Theorem 3.3. ([16, Theorem 6.2, p. 339]). Let A = V ® D be a decomposition of
finite-dimensional semisimple Q-algebras, and suppose every simple component of V is
non-commutative and Eichler. Let 31 be a Ij-order in A with image I) under projection to
D. Then an element x in K,(9l) is represented by a unit ofH if and only if its image in

is represented by a unit o/D.
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Lemma 3.4. Let M be a normal subgroup of the finite group G in the intersection of
all normal subgroups L whose associated factor group G/L is binary polyhedral. Let 5G

be the image ofZG in the sum of non-Eichler components ofQG, and Jr>c/M be the image
ofZ{G/M) in the sum of non-Eichler components o/Q(G/M). Then §G is isomorphic to
$>G/M-

Proof. Let H be a simple non-Eichler component of QG. Let the field K be the
centre of H, and let p : K c-> R be an embedding. Then

where H is the skewfield of real quaternions. Let L be the kernel of the composite
map

then G/L is isomorphic to a subgroup of HP, whose elements span HI over R. This
quotient is nonabelian and hence must be one of the binary polyhedral groups, non-
cyclic in particular ([4, II p. 305]). We may also identify G/L with a subgroup of HI*
whose elements span HI over Q. This implies that H is a non-Eichler component of
Q(G/L). If M c L is a normal subgroup of G, then H is a simple non-Eichler
component of Q(G/M) as well.

Let ®H{ be the sum of the simple non-Eichler components of QG. For each simple
//,-, let L, be the subgroup described above. Consider the surjection QG —>• Q(G/M)
induced by G —*• G/M. Since M c p) L, by hypothesis, we have

G ^ ZG -» § c c ©//, c QG

4- i 4- ii ;

G/M ^ Z(G/M) -v §C/M c ©//,- c Q(G/M).

Therefore, the map QG -+ <Q>(G/M) restricts to an isomorphism § c = §G/M. D

Theorem 3.5. Let G be a finite group with quotient Q = G/M such that Gab —> Qab

or Q-* Qab splits. Assume also that the simple non-Eichler components ofQG are among
the simple components of QQ. If K,(ZQ) and Ki{ZGab) are represented by units, then
Kt(ZG) is represented by units.

Proof. This proof will be an application of Theorem 3.3. Consider the Milnor
square associated to ZG and the ideals /, = ker{ZG -»• ZGab) and 72 = ker{ZG -+ ZQ}.
Using ZG//, £* ZG"* and ZG//2 ^ ZQ and setting D = ZG/(/, n /2), A = ZG/(7, + /2),
we obtain the commutative square
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ZG

D - ZG- ( 3 6 )

ZQ -* A,

where all maps are surjective. Upon tensoring with Q, we obtain a commutative square
of QG-modules

Q 0 T> -> QGah

QQ -» Q 0 A .

Since QG is semisimple and this is a pullback square, the simple components of
D = Q 0 T> consist of the union of the simple components of QQ and QG"6. By
assumption QQ contains all of the non-Eichler components of QG. Therefore D
contains all of the commutative and non-Eichler components of QG. Since 35 embeds
in D, the image of ZG in D is D.

Once we verify that /C,(T)) is represented by units, all of the assumptions of Theorem
3.3. will be met with A = QG and 91 = ZG. We will then be able to conclude that all
elements of Kt(ZG) are represented by units. Consider the Mayer-Vietoris sequence
associated to the square (3.6):

» K2(ZQ)ffi K2(ZGab) -X K2(A)

X Kt(ZQ) © K,{ZGab) -X K,(A)...

The assumed splitting of groups gives rise to similar splittings at the Kt and K2

levels. Thus V, and V2
 a r e surjective, 3 = 0 and A, is injective. Therefore the image of

diagram (3.6) under the functor Kt is again a pullback square (of abelian groups).
Any element x e K,(D) is represented by a pair (x,,x2) in K,(ZQ) © K^ZG"1") with

x, = x2 e A. According to (3.1) (i) and (v), there are units //, in (ZQ)* and n2 in (ZG°*)*
representing x, and x2, respectively. Noting that A is commutative and that
det: GLOO(A) -+ A* factors over /C,(A), we conclude \ix — ft2 in A. As (3.6) is a
pullback, there exists a unit fx in X) with projections /z, and n2. Since [/i] e K}(1)) and x
have the same projections in K,(ZQ) and Kl(ZGab), respectively, x and [p\ agree. •

Theorem 3.7. Let G be a Type IV group; i.e., of the form Qx Cm with (m, |Q|) = 1
and Q of Type I, II, or III. If K^ZQ) is represented by units, then Kt(ZG) is represented
by units.
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Proof. All groups Q of Type I, II, or III abelianize to cyclic groups, C2 x C2 or
the trivial group. Consequently Gab has cyclic Sylow subgroups or Sylow subgroups of
the form C2 x C2. Thus K](ZG°b) is generated by units by (3.1) (v). The obvious
splitting of G —*• Q carries over to the abelianizations. Now we can apply (3.5). •

Definition 3.8. For any Z-order 21 and any rational prime p, let 9lp = Zp ®z 91
denote the p-adic completion of 91. Let

C/,(9l) = ker

where the map is induced by completions at every rational prime.

Theorem 3.9. ([16, Theorem 7.1, p. 342]). Let A be a finite-dimensional semisimple
Q-algebra and let H denote the sum of its non-Eichler components. Let 91 be a Z-order in
A with image §> under the projection A —»• H. An element x of Kl(A)/Cll(SH) is
represented by a unit if and only if its image in K^^/Clii^i) is represented by a unit of
H. •

To apply these reduction theorems, we either need to know which Eichler
components are noncommutative, or be able to compute C/,. The following summary
of results shows that we may ignore C/,(9l) in many, but not all, cases.

Examples 3.10. (i) For n > 1, C7,(Zg4n) = 0 ([21, Theorem 4]). But for any odd m,
C/,(ZQ2n x Cm) ^ (Z/2Z)t(m)~\ where x(m) is the number of divisors of m, including 1
and m ([20, Theorem 4]).
(ii) If every Sylow /^-subgroup of G is cyclic, then C/,(ZG) = 0. In particular, Cl^ZG)

vanishes when G is any group in class II; or when G = H x Cm, where H is in class II
and Cm is a cyclic group with order relative prime to \G\ ([20, Theorem 2]).
(Hi) If G = 7(8, 3*) is in class III, Cl^G) = (Z/2Z)*"1 ([22, Example 14.4, p. 333]).

Theorem 3.11. If K,(ZQ4(2/+1)) is represented by units, then K,(ZD(2\2/+ 1)) is
represented by units for allk^3.If2l+\ is prime and the class number h2M is odd, then

\ 2/ + 1)) is represented by units for all k > 3.

x2
Proof. The centre of G = D(2k, 21+ 1) is a cyclic group of order 2k ' generated by
. Since every binary polyhedral group has centre isomorphic to Z2, any

homomorphism of D(2\2/+l) onto a binary polyhedral group must have (x4) in
the kernel. Then M = (x4) satisfies the hypotheses of Lemma 3.4, and
D(2\ 2/ + \)/M ^ Q^i+i) = Q- Let q : G -+ Q be the projection. By Lemma 3.4, the
image §G of ZG in the sum of the non-Eichler components of QG is isomorphic to the
image 9)Q of ZQ in the sum of the non-Eichler components QQ. The homomorphism
q induces a commutative diagram
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K,(ZG) -> Ktd

I q.

By the previous step, qm is an isomorphism.
The last assertion follows from the first, by Example 3.1 (ii). From now on, we

assume that KX{ZQ) is represented by units. Let x e K,(ZG) and let y = Kx{Zq){x).
Recall from (i) and (ii) of (3.10) that CZ,(Z0 = 0 and C/,(ZG) = 0. By Theorem (3.9),
the image z of y in /C,(ir)c)/C/(§e) is represented by a unit. Since the image of x
in /^i(§G)/C/,(§G) equals q~'(z), a second application of Theorem 3.9 gives that x
is represented by a unit. •

Theorem 3.12. ([11, Theorem 3, p. 47]). Let G be a finite group. If Kt(ZH) is
represented by units for every hyperelementary subgroup H C G, then Kt(ZG) is
represented by units. •

Theorem 3.13. If G = T(S, 3k), or G = T(8, 3k) x Cm with (m, 6) = 1, then K,(ZG) is
represented by units.

Proof. The hyperelementary subgroups of G are among the following types: cyclic,
or <28 or Qg x C, with / odd. All of these groups have K, represented by units. By
(3.1) (i) and (v) and Theorem 3.7, the assertion now follows from (3.12). This proof
could also have been done using (3.5). •

Theorems 3.7, 3.11 and 3.13 show that for a large number of 3-manifold groups G,
a (G, 2)-complex is homotopy equivalent to a spine of a 3-manifold if and only if it is
simple homotopy equivalent to a spine. The following theorem states a stronger result
for a particular class of 3-manifold groups:

Theorem 3.14. Let G be one of

Qs'Qil, 2,6.220.^24. O48,/120

or the direct product of one of the above groups with a cyclic group of relatively prime
order. Then all minimal (G, 2)-complexes are simple homotopy equivalent to a spine of a
3-manifold.

Proof. This proof essentially consists of verifying the hypotheses of (1.10) and
(2.4). That these groups satisfy stably-free cancellation follows from Cancellation
Properties (1) and (2). By Example 3.1 (i), (ii), and (iii) and Theorem 3.7, K^ZG) is
represented by units for all of the groups of the hypothesis. For Ql2 and Q20 we also
invoke /J3 = 1 and h5 = 1 from ([9, p. 593]). •
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