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A KINEMATIC WAVE MODEL OF GLACIER SURGES 
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ABST RACT. The existing theory of kinema tic waves on glaciers does not account for sel f-induced insta bility 
of the flow, or for surges which a re not the result of external disturbances. Surges do however have much in 
common with kinema tic waves. U nstable behaviour of glaciers can be expla ined by a stra ightforwa rd 
modification of kinematic wave theory. In this m odification the rela tion between the ice flow a nd the ice 
depth is not the sam e when the ice is accelerating as when it is slowing down. A simila r effect has p reviously 
been shown to explain observed insta bilities in the flow of highway tra ffi c, a phenomenon which is o therwise 
adequa tely described by a simp le kinema tic wave theory. 

R ESUME. Un modele d 'o/lde cinematique pour Les Joirages gLaciaires. Les theories ex istantes sur les ondes cine
matiques sur les glaciers ne renden t pas compte de l' insta bilite auto-induite de l'ecoulement, ou d es crues 
qui ne sont pas le resultat d 'une perturba tion ex terne. Le com portement instable des glaciers peut etre 
explique pa r une modifica tion linea ire de la theorie de l'onde cinematique. Dans cette modifica tion la 
relation entre l'ecou lement d e la glace et son epaisseur n'est pas le meme lorsque le mouvemen t de la glace 
vel'S l'aval est accelere ou re tarde. U n effet a nalogue a deja ete m is en evidence pour expliq uer l' insta bilite 
observee da ns l'ecoulement du tra fi c routier, un phenomene q ui au trement serai l bien decri t par la simple 
theorie des ondes cinema tiques. 

ZUSAMMENFASSUNG. Eille kinematische WeLLe aLs M odeLt Jur GLetscherausbriiche. Die bestehende T heorie von 
ki nem a tischen W ellen auf G letschern berU cksichtigt nicht selbstinduzierte Instabilitat des F liessens oder 
G letcherausbrUche, die nicht durch a ussere Storungen a usgelos t wurden . G leichwohl ha ben G letscheraus
brUche vieles m it kinematischen "Vellen gemein. I nsta biles Verha lten von G letschern ka nn du rch eine 
einfache Modifika tion der T heorie d el' ki nema tischen Welle erkla rt werd en . In diesel' Mod ifikalion ist das 
Verha ltn is zwischen Eisfluss und Eistiefe bei wachsender Geschwind igkeit des E ises verschieden von dem bei 
abnehmender Geschwindigkeit. M it einem a hnlichen Effekt konnten auch beobach tete Insta bili taten im 
Fliessen des Strassenverkeh rs erk la r t werden, einem Pha nomen, das im Ubrigen hinreichend d urch eine 
einfache Theorie del' kinema tischen Welle beschrieben wird . 

I NTRODUCTiON 

M any of the observed features of the flow of glaciers can be adequately described by a 
simple kinema tic wave model. Such a model does not accoun t for the instability in a n 
initia lly apparently steady fl ow which later develops into a surge. M any observations of the 
behaviour of highway traffic fl ow are similarly found to be quite consistent with a kinematic 
wave model, and yet traffic fl ow sometimes develops instabilities which h ave much in common 
wi th glacier surges. This paper explores the application to glaciers of a modification to sim pIe 
kinematic wave theory which has been shown to explain insta bilities in tI"affic. 

KINEMATIC W AVES AND INST ABILITIES OF H[ GHWAY TRAFF[C 

Ki nematic wave theory is explained in detail in a paper by Lighthill and Whi tham 
( I955 [a] , Cb] ) . Nye ( [960, 1963) has discussed its applica tion to glaciers, a nd recent develop
men ts have been discussed by Pa terson ( 1969). The central idea is very sim ple. Imagine a 
process in which some substance flows in a single stream in a single direction, a nd suppose the 
fl ow at some point on the stream to be completely described by the flow ra te q (the amount of 
substance that passes a fixed point in unit time) and the concentration k (defined so that the 
amoun t of substa nce in a short length of stream dx is k dx). Denote time by t and distance 
by x. If the substa nce is neither created nor destroyed within the stream, then it follows from 
conservation of the amount of substance tha t 

oq ok 
ox +at = o. 

I f q is a function of (alone, and c = dq/dk, then Equa tion ( I) becomes 

oq 1 oq 
ox +; at = 0 
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and the solutions to this first-order partial differential equation are kinematic waves moving 
down-stream with velocity c. Of course c will not in general be constant, but will instead be a 
function of k, so that the velocities of the waves will not be independent of their amplitude. 

Kinematic waves consistent with such a model have freq uently been observed on real 
glaciers, but it has been usual to make a careful distinction between surges and kinematic 
waves. Surges do however have som e of the features of kinematic waves. M eier and Pos t 
( '969) describe for instance a surge on the Tikke Glacier in the Alsek range of British 
Columbia. They looked for recognizable points on the surface of the glacier and plotted the 
positions of these points in successive years onto maps of the glacier. Independently they each 
year identified the zone of rap id flow. Their data has been replotted in Figure" in which the 
ordinate is time (iden tified only by the year) and the abscissa is distance, m easured down the 
centre-line of the glacier from an arbitrary origin. Solid lines represent trajectories of points 
on the ice; the less steeply a line slopes, the faster the motion of the point it represents. The 
rapid flow zone is bounded by the two dashed lines. Though few trajectories are available, 
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Fig. I. Wave and particle trajectories in a surge on the Tikke Glacier (Alsek rallge, British Columbia) . D ata from M eier 
alld Post ( 1969 ). 

the diagram does suggest that the rapid flow zone is preceded by an acceleration wave (the 
lower dashed line), so that as the wave passes a point on the ice the velocity of that point 
increases quite rapidly by a factor of the order of 4. The zone of rapid flow is followed by a 
deceleration wave moving at about the same speed as the acceleration wave, and as it passes 
the ice returns to its original velocity. The velocity of the acceleration and deceleration waves, 
which we might call the surge velocity, is about five times the velocity of the ice behind the 
acceleration wave. 

It seems clear that this surge does show at least some of the characteristics of a kinematic 
wave. The mathematical model of Equation ( , ) does not however explain how a surge can 
originate in a glacier apparently in a steady state, or rather only does so if there is some 
external disturbance which modifies the glacier's mass balance. 

Can there be self-induced instability which is not the consequence of an ex ternal distur
bance? Such an instability is known to occur in a quite different kind of flow, that of highway 
traffic, even though many of the observed fea tures of traffic fl ow can be explained by a simple 
kinematic wave theory like the one described above. In this simple theory (Lighthill a nd 
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' I\Thi tham, 1955[b] ) the flow- concentration relation for traffic has the general fOl'm illustrated 
in Figure 2. Traffic is thought of as a fluid continuum , k is the number of vehicles in unit 
length of road , and q is the rate at which they pass a fixed p oint. If the density of traffic is 
small each vehicle moves with its free speed , the speed it would have if it were entirely alone, 
and this is the slope of the graph at the origin. If the density of traffic is very high, it com es to 
a complete stop, and the flow is zero. In between there is a density at which the flow is a 
maximum. The graph is easier to interpret if it is replotted in such a way that one can at the 
same time think of the behaviour of a single vehicle, and this is done by p lotting the velocity 

flow 
q 

~ 
k 

concentration 
Fig. 2 . The relation betweenjlow and cOllcentration oJ highway traffic: simple theory (Lighthill and Whitham, 1955[b] ). 

qlk against the reciprocal of the concenu'a tion Ilk, the headway between vehicles (Fig. 3). 
The kinematic wave velocity corresponding to a point on the curve is then the intercept on 
the velocity axis of the tangent from the point. By considering the effe cts of a small perturba
tion, it can be shown that traffic flow governed by this model is always stable: a small distur
bance only gives rise to small and localized effects. Real traffic, however, is sometimes 
unstable. The best-known example is that of traffic in the Holland Tunnel in New York 

v=q !k 

headway 1/k 

c 

Fig. 3. The relatioll between velocify and headwayJor highway traffic: simple theory (Lighthill alld Whitham, 1955[b] ). 

(Greenberg and Daou, (960), an ideal case for the application of the simple theory because 
there are no intersections and overtaking is not allowed. In certain rush-hour conditions it 
happ ens that a small disturbance in the fl ow appears to originate near the beginning of the 
upgrade out of the tunnel. The disturbance grows rapidly, and soon cars are coming to a 
complete stop [or periods o[ the order of a minute, even though flow out of the tunnel is 
absolutely steady. A pulsating flow d evelops, with a period of the order of four m inutes. 

An explanation o[ this phenomenon is due to Newell (1962, 1965). H e suggested that the 
velocity- headway relation is less simple than that of Figure 3, because streams of vehicles 
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behave differently when they accelerate and when they decelerate. In his model, if the traffic 
were continuously accelerating the velocity-headway relation would follow the lower curve of 
Figure 4 but if instead it were continuously decelerating it would follow the upper curve. 
If the velocity increased until point I was reached, and then decreased, the point representing 
the velocity and headway would follow a connecting curve through point I until it reached the 
continuous d eceleration curve at 2, and would from then on follow that curve. There is a 
whole family of such connecting curves, one connecting each point on the acceleration curve 
to a point on the deceleration curve . If somewhere on such a connecting curve acceleration 
began again, the operating point would return along the curve. 

velocity 

headway 

Fig. 4. Velocity-headway relatiol1for highway traffic: modified theory (Newell, 1962). 

Consider the effect of small fluctuations in velocity. Suppose the state is at point [, on the 
acceleration curve, and at som e point in the traffic flow there is a sudden reduction in speed 
from VI to VI -8 followed by an acceleration back to VI' The state retreats along the con
necting curve to 3 a nd then returns to I . The initia l decleration produces a deceleration wave, 
moving with the velocity C3 corresponding to the intercept of the tangent from the connecting 
curve from I; the subsequent acceleration produces an acceleration wave moving with the 
same velocity. The two waves travel together, and the disturbance is transmitted but not 
magnified. 

An acceleration to VI + 8 followed by a deceleration to VI has a qualitatively different 
effect. Acceleration takes the operating point to 4, and deceleration takes it back to 5 along 
the connecting curve through 4. Two waves set out: an acceleration wave moving with 
velocity Cl (corresponding to the tangent to the acceleration curve) and a deceleration wave 
moving with velocity Cs (corresponding to the tangent to the connecting curve) . T he two 
waves have quite different velocities, and in fact in this case the acceleration wave moves up
stream and the deceleration wave down-stream. The effect is clear if one looks at trajectories 
of points in the stream (Figure 5), which can be thought of as single vehicles. Point A repre
sents the initial disturbance, a sudden rise in speed foll owed almost at once by a return to the 
original speed. At the acceleration wave, indicated by a dashed line, velocities increase by 8, 
and at the deceleration wave velocities decrease by 8. Everywhere within the triangular 
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region be tween the two waves the acceleration "signal" has a rrived bu t the deceleration signal 
has not, a nd so, even though the original disturbance was very brief, it produces a wider a nd 
wider region in which cars rem ain at the higher speed for longer a nd longer intervals. Further
m ore, a ll the points within the triangula r region are represented by a poin t on the acceleration 
curve (point 4) and so the region is in the same kind of state as it was initially in point I. 

Another upward fluctua tion in speed , however brief, will p roduce a region m oving at a still 
higher speed, a nd this drift to higher velociti es can continue until limited by the changing 
shape of the curves. Because the effects of upward and downward fluctua tions in speed do 
not cancel each o ther, the original flow of tra ffi c in sta te I was unsta ble, and the cumula tive 
effect of the fluctua tions is a ma rked a ltera tion in the fl ow, no m a tter how sm all the individual 
fluctuations a re. 

distance 
Fig. 5. Vehicle trajectories in unstable traffic flow. 

Newell was able to show that this kind of instabili ty could account for tra ffi c pulses in the 
H olland tunnel, a nd for the success of traffi c control m easures tha t had empirically been found 
to suppress pulsating fl ow. Simila r behaviour occurs at poin ts on the deceleration curve, 
which is why traffi c can come to a stop , and why cyclic flow can occu r. There is some observa
tional evidence that velocity- headway rela tionships a re indeed different during acceleration 
a nd deceleration . 

S UR GES ON GLACIERS 

Could an effect of this kind account for glacier surges? 
Suppose the relation between flow a nd depth of ice were like the one illustrated in Figure 6. 

If the flow were continuously accelera ting, the rela tion would follow the lower curve, and if it 
were decelera ting it would follow the upper curve. If it had been accelerating but stopped 
d oing so a nd began to decelerate, then it would follow a connecting cu rve back to the con
tinuous deceleration curve, and then would continue down that curve. 

Idealize the glacier as an accumulation zone (in which ice is deposited a t a consta n t rate) 
connected to an ablation zone (from which ice is removed at a consta nt ra te equal to the 
accum ula tion rate) by a third zone in which there is neither accumulation nor a bla tion . 
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Imagine that as long as the fl ow regime is a ltering only slowly, between surges, all the points 
in this th ird zone of the g lacier are represented by a single point on the fl ow- depth diagram, 
so that q a nd h are the same everywhere. Suppose that the flow rate has been slowly increasing, 
and that the state of the glacier has reached a point on the accelel"ation curve. 

A small downward fluctuation in the fl ow, followed by a return to the original flow, would 
send out two waves, with a lmost the same velocities . Depending on the d etailed shape of the 
connecting curve through the ini tial state, it might be that one wave would develop into a 
shock and annihilate the other , or t hat both would continue to travel down the g lacier, but in 
any case the effects of such a downward fluctuation in speed would be small . Consider, on the 
other hand, the effects of a small upward flu ctuation in flow followed by a deceleration back 
to the origina l flow. Exactly as in the traffic flow case, such a disturbance will cause two waves 
to set out, and they will move with markedly different velocities. The acceleration wave will 
have a velocity corre ponding to the gradient of the "accelerating fl ow" curve at the ini tial 
tate point, whereas the d eceleration wave will have the much smaller veloc ity corresponding 

flow 

ice depth 
Fig. 6. A cOlljectural relatioll between ice flow alld ice depth ill a glacier. 

to the gradient of the connecting curve through the same point. Between these two waves 
there will be a steadil y growing region in which the ice is moving more rapidly. Within that 
region the state is again at a point on the " accelerating flow" curve, and so the same kind of 
fluctuation can occur repeatedly, producing regions with still higher velocities. The origina l 
flow regime when the operating point reached the accelerating fl ow curve was unstable, in the 
sense that the effects of small random fluctuations accumulate and lead to quite a different 
flow regime. 

Within the growing accelerated region each of the acce leration waves, individually small in 
magnitude, has a velocity proportional to the gradient of the acce lerating fl ow curve at the 
state corresponding to the ice depth at that wave. The accelerating flow curve has a gradient 
which increases with increasing ice depth, which implies that the acceleration waves formed by 
fluctuations occurring later in the process will have higher velocities than acceleration waves 
originating earlier, and will therefore tend to catch them up. At the front of the accelerated 
region the waves will coalesce, to form an acceleration shock in which the ice velocity increases 
rapidly. This seems consistent with observations of surges. The speed with which this shock 
advances cannot be determined without detailed knowledge of the sha pe of the flow- depth 
curve, but the velocity of the acceleration shock between two points on the accelerating flow 
curve will correspond to the gradient of a secant drawn between the two points. This will be 
larger than the ice velocity behind the shock, which corresponds to the gradient of a line from 
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the origin to the point further up the accelerating flow curve. This is again consistent with the 
observations described in Figure I , and does indeed suggest that records like those ofMeier and 
Post ( [ 969), which are relatively easy to obtain, m ight be used to construct the relation 
between the fl ow and the ice depth. 

The implica tion of this model is that disturbances only move down-stream, and not up
stream, and so flow out of the accumulation zone will not be affected. 'I\Tithin the accelerated 
region the drift to higher flows will raise the flow above the supply from the accumulation zone, 
and large volumes of ice will move down-stream into the ablation zone. If this picture is 
correct, and the flow at a single point in the glacier were to be plotted against the depth at that 
point, at different times during the surge cycle, the relation between the two might be 
expected to be like the loop cycle illustrated in Figure 7, the loop being de cribed in a counter
clockwise direction . Different points in the glacier would not of course be in phase. Unfor
tunately there is no published field data reporting observations of both depth and velocity at 
different stages of a surge, and this makes it impossible to examine the validity of this con
jecture. 

fl ow 
su rge 

ice depth 
Fig. 7. The relation between flow and dejJth at a fixed point at different times during a surge cycle. 

One has of course to ask why the flow- depth relationship should resemble Figure 6. This 
must depend crucially on basal sliding theory, which is controversial and very far from 
completely understood . It does seem consistent with a Lliboutry model in which an important 
part is played by bodies of water in cavities beneath the glacier. If the flow alters rapidly, 
these cavities will take some time to respond and readjust themselves towards a new steady 
state. There will be a m emory effect by which basal liding depends not only on present 
velociti es and basal shear stresses but on their recent history, and behaviour in steadily 
accelerating flow will then be d ifferen t from that of decelerating flow. 

In the argument outlined above no account has been taken of the diffusion effect present 
in a less severely idealized version of the kinem a tic wave model (Weertman, 1958 ; Nye, 1960) . 
If this is included, Equation (2) becomes 

oq 1 oq olq 
ox +-;; at = D oX' 

where D is a positive diffusion coefficient. The added term accounts for the effect of the added 
term on the flow rate, which is then not just a function of q but also a fun ction of oq/ox. A 
hump in the glacier surface will then tend to diminish in size as time goes on, becau e the 
increased surface slope down-stream of the hump causes a local increase in the flow rate. The 
quantitative a nalyses by Weertman and Nye include this term, but only as part of a linearized 
small-perturbation theory. H owever, it seems reasonable to conjecture that its effects will be 
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broadly similar in a theory of the present type, which is of course essentially non-linear. 
Diffusion can be expected to cause sharp shock fronts to decay rapidly, and will exert a 
generally stabilizing influence. It seems unlikely to suppress instabiliti es entirely. 

MS. received 18 January 1971 and in revisedform 20 May 1971 
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