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Abstract

A graph is called arc-regular if its full automorphism group acts regularly on its arc set. In this paper, we
completely determine all the arc-regular Frobenius metacirculants of prime valency.
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1. Introduction

In this paper, graphs are assumed to be finite, simple and undirected.
A graph Γ is called arc-regular if its full automorphism group Aut Γ acts regularly

on its arc set. Since determining the full automorphism groups of graphs is one of the
fundamental topics in the field of algebraic graph theory, characterising arc-regular
graphs has received much attention (see, for example, [6, 19, 20, 22]).

For a graph Γ, if Aut Γ contains a metacyclic subgroup R which is transitive on the
vertex set of Γ, then Γ is called a metacirculant (this definition is slightly more general
than the original definition of Alspach and Parsons in [1]); if R is also a Frobenius
group, then Γ is called a Frobenius metacirculant (recall that a group R is metacyclic
if R has a normal cyclic subgroup N such that the quotient group R/N is also cyclic).
In some cases, to emphasise the metacyclic group, we say that Γ is a metacirculant of
R. As usual, a graph Γ is called a circulant or a dihedrant if Aut Γ has a regular cyclic
subgroup or a dihedral subgroup, respectively.

The class of metacirculants provides a rich source of many interesting families of
graphs and has been extensively studied. For example, some special edge-transitive
metacirculants have been characterised (see [12, 14] for circulants, [5, 21] for the case
of order a product of two primes, [18] for the case of prime-power order, [15] for
the vertex-primitive case and [17, 24] for the case of Frobenius metacirculants with
small valency). Moreover, an infinite family of arc-regular dihedrants of any prescribed
valency is constructed in [11] and arc-regular dihedrants of prime valency are
classified in [7].
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[2] Arc-regular metacirculants 21

The main purpose of this paper is to determine arc-regular Frobenius metacirculants
of any prime valency.

A graph Γ is called a Cayley graph if there exist a group G and a subset S ⊆ G\{1}
with S = S −1 := {s−1 | s ∈ S } such that the vertex set VΓ = G and a vertex x is adjacent
to a vertex y if and only if yx−1 ∈ S . This Cayley graph is denoted by Cay(G, S ). It is
well known that a graph Γ is isomorphic to a Cayley graph if and only if Aut Γ contains
a subgroup R which acts regularly on VΓ (see [2, Proposition 16.3]). In particular, if R
is normal in Aut Γ, then Γ is called a normal Cayley graph of R. Since a metacirculant
is not necessarily a Cayley graph (for example, the Petersen graph), Cayley graphs of
metacyclic groups form a proper subfamily of metacirculants.

For a positive integer m, we denote by D2m the dihedral group of order 2m and by
Zm the cyclic group of order m. Given two groups N and H, denote by N × H the direct
product of N and H and by N · H an extension of N by H. If such an extension is split,
we write N : H instead of N · H.

Example 1.1. Let G = 〈a, b | am = b2 = 1, ab = a−1〉 � D2m be a dihedral group and let
p be an odd prime. Suppose that k is a solution of the equation

xp−1 + xp−2 + · · · + x + 1 ≡ 0 (mod m)

and set

S = {b, ab, ak+1b, . . . , akp−2+kp−3+···+1b}, CD2m,p,k = Cay(G, S ).

The letters ‘CD’ stand for ‘Cayley graphs of dihedral groups’.

The main result of this paper is the following assertion, which completely
determines arc-regular Frobenius metacirculants of odd prime valency.

Theorem 1.2. Let R be a Frobenius metacyclic group and Γ be a connected arc-regular
metacirculant of R of odd prime valency p. Then Γ is a dihedrant and one of the
following statements holds:

(1) Γ � CD2n,p,k is not a Cayley graph of R, and R � Zn : Z2p with n ≥ 13;
(2) Γ � CD2ptn,p,k is a normal Cayley graph of R, and R � D2ptn with ptn ≥ 13 and

t ≤ 1;
(3) Γ � CD2pn,p,k is a Cayley graph of R but not normal, and R � Zn : Z2p,

where, in parts (1)–(3), n = pe1
1 pe2

2 · · · p
es
s with s ≥ 1 and p1, p2, . . . , ps are distinct

primes such that p | pi − 1 for i = 1, 2, . . . , s.
Up to isomorphism, there are exactly (p − 1)s−1 graphs in each part of Theorem 1.2.

This paper is organised as follows. After this introductory section, we give some
preliminary results in Section 2. We then prove some technical lemmas in Section 3
and complete the proof of Theorem 1.2 in Section 4.
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2. Preliminaries

In this section, we quote certain preliminary results that will be used later. The first
one is a classification of transitive permutation groups of prime degree.

Lemma 2.1 [4, page 99]. Let G ≤ Sym(Ω) be a transitive permutation group of prime
degree p. Then G is either affine or almost simple, and one of the following statements
is true, where α ∈ Ω:

(1) Zp ≤ G ≤ Zp : Zp−1;
(2) (G,Gα) = (Ap,Ap−1) or (Sp,Sp−1) with p ≥ 5;
(3) (G,Gα) = (PSL(2, 11),A5), (M11,M10) or (M23,M22);
(4) G is a projective group with PSL(d, q) CG ≤ PΓL(d, q), acting naturally on the

set of projective points of degree p = (qd − 1)/(q − 1).

For a group G and its subgroup H, let CG(H) and NG(H) denote the centraliser
and normaliser of H in G, respectively. The following result is the well-known ‘N/C’
theorem.

Lemma 2.2 [10, Ch. I, Lemma 4.5]. Let G be a group and H a subgroup of G. Then
NG(H)/CG(H) ≤ Aut(H).

Let Γ = Cay(G, S ) be a Cayley graph of a group G. Let

Ĝ = {ĝ | ĝ : x 7→ xg, for all g, x ∈ G},
Aut(G, S ) = {σ ∈ Aut(G) | S σ = S }.

Then both Ĝ and Aut(G,S ) are subgroups of Aut Γ. Further, the following lemma holds.

Lemma 2.3 [9, Lemma 2.1]. Let Γ = Cay(G,S ) be a Cayley graph. Then the normaliser
NAut Γ(Ĝ) = Ĝ : Aut(G, S ).

We remark that the regular subgroup Ĝ is isomorphic (but not equal) to the defining
group G. However, for convenience, we will often write Ĝ as G.

For a group G and a subgroup H, the core of H in G, denoted by coreG(H), is the
largest normal subgroup of G contained in H. In particular, if coreG(H) = 1, then H is
called core-free in G.

Given a group X and two subgroups L and R such that L ∩ R is core-free in X,
define a bipartite graph, Cos(X, L, R), with vertex set [X : L] ∪ [X : R], and Lx, Ry
with x, y ∈ X adjacent if and only if yx−1 ∈ RL. This graph is called a bi-coset graph.

Lemma 2.4 [8, Lemma 3.7]. Let Γ = Cos(X, L,R) be as above. Then:

(1) X ≤ Aut Γ, and Γ is X-vertex-intransitive and X-edge-transitive;
(2) Γ is connected if and only if 〈L,R〉 = X.

Conversely, each X-vertex-intransitive and X-edge-transitive graph is isomorphic to
Cos(X, Xα, Xβ), where α and β are adjacent vertices.
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A typical method for studying graphs is taking normal quotient graphs. Suppose
that Γ is a graph, and X ≤ Aut Γ has an intransitive normal subgroup N. Denote by
VΓN the set of N-orbits in VΓ. The normal quotient graph ΓN of Γ induced by N has
vertex set VΓN , and two vertices B,C ∈ VΓN are adjacent if and only if some vertex in
B is adjacent in Γ to some vertex in C. If further Γ and ΓN have the same valency, then
Γ is called a normal N-cover (or regular N-cover) of ΓN .

Theorem 2.5 [16, Lemma 2.5]. Let Γ be an X-arc-transitive graph of odd prime
valency and let N C X have at least three orbits on VΓ. Then N is semiregular on
VΓ, X/N ≤ Aut ΓN , ΓN is X/N-arc-transitive and Γ is a normal N-cover of ΓN .

Lemma 2.6 [7, Theorem 3.1]. Let Γ be a connected arc-regular Cayley graph of a
dihedral group R � D2m of prime valency p. Then Γ � CD2m,p,k is a normal Cayley
graph of R, and m = pt pe1

1 pe2
2 · · · p

es
s ≥ 13, with p1, p2, . . . , ps distinct primes, t ≤ 1,

s ≥ 1 and p | pi − 1 for i = 1, 2, . . . , s.

3. Technical lemmas

For a graph Γ, if there is an automorphism group X ≤ Aut Γ which acts regularly on
the arc set of Γ, then Γ is called X-arc-regular.

Lemma 3.1. Let Γ be an X-arc-regular Cayley graph of odd prime valency of a
metacyclic group R, where R ≤ X ≤ Aut Γ. Then R is not core-free in X.

Proof. Suppose that val(Γ) = p. Then |X : R| = p, Xα � Zp and X = RXα, where α ∈ VΓ.
Assume that, on the contrary, R is core-free in X. Then X acts faithfully on [X : R]

(the set of right cosets of R in X) by the coset action:

(Rx)y = Rxy where Rx ∈ [X : R], y ∈ X.

(This action was introduced by Li [13] and is often called a ‘dual-action’ of the action
of X on VΓ.) Thus, X can be viewed as a transitive permutation group of prime degree
p on the set [X : R] and hence X satisfies Lemma 2.1.

If X ≤ Zp : Zp−1 is an affine group, then Zp � Xα C X, which is a contradiction.
Suppose that X is an almost simple group. View R as a point of [X : R]. Then the

point stabiliser XR = R and so the tuple (X,R) (as (G,Gα) there) satisfies parts (2)–(4) of
Lemma 2.1. For parts (2) and (3), R is not a metacyclic group, which is a contradiction.

Consider the case that (X,R) satisfies part (4) of Lemma 2.1. Then

R ≥ (PSL(d, q))R � [qd−1] · Z(q−1)/(d,q−1) · PSL(d − 1, q) · Z(d−1,q−1),

where [qd−1] denotes an elementary abelian group of order qd−1. Assume first that
d ≥ 3. If (d, q) = (3, 2) or (3, 3), by the Atlas [3], R ≥ S4 or Z2

3 : 2S4, respectively,
and, for the other cases, R has a nonabelian simple section PSL(d − 1, q). So R is
never metacyclic in the case d ≥ 3, yielding a contradiction. Assume that d = 2. Then
q = p − 1 is even, so q = 2e with e ≥ 2. It follows that R � Ze

2 : Z2e−1 is not metacyclic,
also yielding a contradiction. �
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For a Cayley graph Γ = Cay(G, S ), where G is a cyclic group and |S | ≥ 3 is odd,
since G has an automorphism σ : x→ x−1 which preserves S (noting that Γ is assumed
to be undirected, so S = S −1), we see that σ ∈ Aut(G, S ) ≤ (Aut Γ)1, where 1 denotes
the vertex of Γ corresponding to the identity element of G. So (Aut Γ)1 ≥ 〈σ〉 � Z2 is
not regular on Γ(1) = S . Thus, a circulant of odd valency is never an arc-regular graph.
However, Γ may be X-arc-regular for some proper subgroup X of Aut Γ.

The next lemma characterises a class of X-arc-regular circulants.

Lemma 3.2. Let Γ be a connected X-arc-regular Cayley graph of odd prime valency p
of a cyclic group 〈a〉, where 〈a〉 ≤ X ≤ Aut Γ. Suppose further that coreX(〈a〉) = 〈a2〉.
Then Γ � Kp,p is a complete bipartite graph and 〈a〉 � Z2p.

Proof. Suppose that 〈a〉 � Zm. Since Γ is of odd valency, m = |VΓ| is even. Set m = 2n
and K = coreX(〈a〉).

Assume that n is even. Because 〈a4〉 is a characteristic subgroup of K, it is normal
in X. Since 〈a〉 is regular on VΓ, 〈a4〉 has four orbits on VΓ, by Theorem 2.5, and
the quotient graph Γ〈a4〉 is an X/〈a4〉-arc-regular Cayley graph of 〈a〉/〈a4〉 � Z4, so
val(Γ〈a4〉) = 3 and Γ〈a4〉 � K4. Since |X/〈a4〉| = 12 and Aut(K4) � S4, we conclude that
Z4 � R/〈a4〉 ≤ X/〈a4〉 � A4, which is a contradiction.

Thus, n is odd. Since |X| = 2np, |X/〈a2〉| = 2p, and X/〈a2〉 � Z2p or D2p. If
X/〈a2〉 � Z2p, then 〈a〉 C X, which contradicts the assumption coreX(〈a〉) = 〈a2〉.

Consider the case X/〈a2〉 � D2p. Let C = CX(〈a2〉). If C = 〈a2〉, Lemma 2.2 implies
that D2p � X/〈a2〉 = X/C ≤ Aut(〈a2〉) is abelian, which is a contradiction. Hence,
C ⊃ 〈a2〉. Since 1 , C/〈a2〉 C X/〈a2〉 � D2p, C has an abelian subgroup isomorphic
to 〈a2〉 · Zp, so X � Zpn · Z2, or (Zn × Zp) · Z2 with p | n. For the former case, since
Xα � Zp for α ∈ VΓ, we have Xα C X, which is not possible. For the latter case, we
may write n = peq, where e ≥ 1 and (p, q) = 1. If q , 1, then X has a normal Sylow
p-subgroup Xp, by [25, Theorem 3.4], and Xp has 2q orbits on VΓ. It then follows from
Theorem 2.5 that Xp is semiregular on VΓ, so |Xp| = pe+1 divides |VΓ| = 2peq, yielding
a contradiction. Hence, q = 1, n = pe and, by [25, Theorem 3.4], Γ is Xp-edge-transitive
and Xp-vertex-intransitive. If e ≥ 2, by Lemma 2.4, Γ � Cos(Xp, (Xp)α, (Xp)β), where
α and β are adjacent vertices of Γ; however, as Xp is abelian, and (Xp)α � (Xp)β � Zp,
we have 〈(Xp)α, (Xp)β〉 <Gp, so Γ is disconnected, which is a contradiction. Therefore,
e = 1 and |VΓ| = 2p. Now, since 〈a2〉 C X has exactly two orbits on VΓ, Γ is a bipartite
graph of order 2p and valency p; hence, Γ � Kp,p. �

We remark that the complete bipartite graph Γ = Kp,p is really an example satisfying
the assumptions of Lemma 3.2. Let {1, 2, . . . , p} and {1′, 2′, . . . , p′} be the two parts
of Γ. Then

X := 〈(12 · · · p), (1′2′ · · · p′), (11′)(22′) · · · (pp′)〉 � Zp o Z2

is an arc-regular automorphism group of Γ and X has a cyclic subgroup

R := 〈(12 · · · p)(1′2′ · · · p′), (11′)(22′) · · · (pp′)〉 = 〈(12′3 . . . p1′2 . . . p′)〉 � Z2p
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which is regular on VΓ (so Γ is a Cayley graph of R). Set a = (12′3 . . . p1′2 . . . p′).
Since R = 〈a〉 is not normal in X and 〈a2〉 = 〈(12 · · · p)(1′2′ · · · p′)〉 C X, we see that
coreX(R) = 〈a2〉.

Generalised dihedral groups are natural generalisations of dihedral groups. A group
G is called a generalised dihedral group if G = H : 〈g〉 for some abelian subgroup H
and an involution g such that hg = h−1 for each h ∈ H. This generalised dihedral group
is denoted by Dih(H). Clearly, Dih(Zm) � D2m.

Lemma 3.3. Let Γ be an X-edge-transitive graph with X ≤ Aut Γ, and suppose that
X has an abelian normal subgroup H which acts semiregularly and has exactly two
orbits on VΓ. Then Γ is a Cayley graph of the generalised dihedral group Dih(H).

Proof. Let H = {h1, h2, . . . , hn}, and let ∆1 and ∆2 be the two orbits of H on VΓ. Then
∆1 = {uhi | 1 ≤ i ≤ n} and ∆2 = {vhi | 1 ≤ i ≤ n}, where u ∈ ∆1 and v ∈ ∆2. Since Γ is
X-edge-transitive and H C X, it is easy to show that there is no edge in both ∆1 and ∆2.
Suppose that val(Γ) = k. Then k ≤ n and, without loss of generality, we may assume
that Γ(u) = {vhi | 1 ≤ i ≤ k}. Then Γ(v) = {uh−1

i | 1 ≤ i ≤ k}. Define

σ : uhi → vh−1
i , vhi → uh−1

i for 1 ≤ i ≤ n.

Clearly, σ is a permutation on VΓ with order two. Since H is abelian,

uhi ∼ vh j ⇐⇒ u ∼ vh jh−1
i

⇐⇒ h−1
i h j = h jh−1

i ∈ {h1, h2, . . . , hk}

⇐⇒ h−1
j hi ∈ {h−1

1 , h−1
2 , . . . , h−1

k }

⇐⇒ v ∼ uh−1
j hi

⇐⇒ vh−1
i ∼ uh−1

j

⇐⇒ (uhi )σ ∼ (vh j )σ.

Thus, σ ∈ Aut Γ. Further, for any h, hi ∈ H, we have (uhi )σhσ = (vh−1
i )hσ = (vh−1

i h)σ =

uh−1hi = (uhi )h−1
and, similarly, (vhi )σhσ = (vhi )h−1

. Consequently, hσ = σhσ = h−1, and
〈H, σ〉 � Dih(H) is a generalised dihedral group. Because 〈H, σ〉 is regular on VΓ, Γ is
a Cayley graph of 〈H, σ〉 � Dih(H). �

We end this section with an observation on the automorphism groups of Frobenius
metacyclic groups.

Lemma 3.4. Let R = 〈a〉 : 〈b〉 � Zm : Zn be a Frobenius group. Then Aut(R) � Zm : Z∗m,
where Z∗m denotes the multiplicative group of the residue class ring modulo m, and
each automorphism σ of R has the form

σ : a→ ai, b→ a jb where (i,m) = 1, 0 ≤ j ≤ m − 1.

Proof. Since R is a Frobenius group, n | m − 1, so 〈a〉 is a characteristic subgroup of R,
and σ(a) = ai with (i,m) = 1.
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Suppose that ab = ar and σ(b) = a jbk. Then σ(ab) = ai+ jbk; also, as ab = bar,
we have σ(ab) = σ(bar) = a jbkair, so ai+ jbk = a jbkair and aibk = bkair. It follows
that airk

= b−kaibk = air. Hence, irk ≡ ir (mod m) and, in turn, rk−1 ≡ 1 (mod m) as
(ir,m) = 1. Because R is a Frobenius group, n is the smallest positive integer solution
of the equation rx ≡ 1 (mod m) (for, otherwise, R has a nontrivial centre). We conclude
that n | k − 1 and σ(b) = a jb, that is, σ has the form stated in Lemma 3.4. Conversely,
it is straightforward to verify that the map σ given in the lemma really determines an
automorphism of R.

Now, let

τ : a→ a, b→ ab, M = {φ ∈ Aut(R) | φ : a→ ai, b→ b, (i,m) = 1}.

Then it is easy to show that Aut(R) = 〈τ〉M, Zm � 〈τ〉 C Aut(R), M � Z∗m and
〈τ〉 ∩ M = 1. Hence, Aut(R) � Zm : Z∗m. �

4. Proof of Theorem 1.2

Let Γ be a connected arc-regular metacirculant of R, with odd prime valency p, and
suppose that R = 〈a〉 : 〈b〉 � Zm : Zl is a Frobenius metacyclic group and transitive on
VΓ. Then l | m − 1 and, as Γ is of odd valency and ml is even, it follows that m is odd
and l is even.

Let A = Aut Γ. Then |A| = p|VΓ|, A = RAα and Aα � Zp, where α ∈ VΓ.

Lemma 4.1. Suppose that R is not regular on VΓ. Then Γ and R satisfy part (1) of
Theorem 1.2.

Proof. Since R is not regular on VΓ and Rα ≤ Aα � Zp, we have Rα = Aα and R = A.
Because 〈a〉 is a characteristic subgroup of R, 〈a〉α ≤ Rα is normal in R and, as Rα is
core-free in R, we conclude that 〈a〉α = 1, that is, 〈a〉 is semiregular on VΓ.

Suppose that 〈a〉 has at least three orbits on VΓ. By Theorem 2.5, the normal
quotient graph Γ〈a〉 is an R/〈a〉-arc-regular graph of valency p, which is impossible as
R/〈a〉 � 〈b〉 is a cyclic group, so 〈a〉 has at most two orbits on VΓ. If 〈a〉 is transitive,
then 〈a〉 is regular on VΓ, that is, Γ is an arc-regular circulant, which is not possible by
the remarks before Lemma 3.2.

Thus, 〈a〉 has exactly two orbits on VΓ, m = 1
2 |VΓ| and l = 2p. By Lemma 3.3, Γ is a

Cayley graph of a dihedral group isomorphic to D2m. It then follows from Lemma 2.6
that Γ � CD2m,p,k, where m = pt pe1

1 pe2
2 · · · p

es
s ≥ 13 with p1, p2, . . . , ps distinct primes,

t ≤ 1, s ≥ 1 and p | pi − 1 for each i; further, if t = 1, then (m, l) , 1, which is impossible
as l | m − 1. Hence, t = 0 and Γ and R are as in part (1) of Theorem 1.2. �

The next lemma treats the case where R is regular on VΓ and normal in A.

Lemma 4.2. Suppose that R is normal in A and regular on VΓ. Then Γ and R satisfy
part (2) of Theorem 1.2.

https://doi.org/10.1017/S0004972715001811 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972715001811


[8] Arc-regular metacirculants 27

Proof. Since R is regular on VΓ, Γ is a Cayley graph of R, so Γ = Cay(R, S ) for
some S = S −1 ⊆ R\{1}. Since R is normal in A, by Lemma 2.3, A = R : Aut(R, S ), and
A1 = Aut(R, S ) � Zp is regular on Γ(1) = S , where 1 denotes the vertex corresponding
to the identity element of R. So S = s〈σ〉, where σ ∈ Aut(R, S ) is of order p and s ∈ S .
In particular, all elements in S have the same order. Further, if o(s) > 2, then, for each
s′ ∈ S , as S = S −1, we have that (s′)−1 , s′ is also in S . It follows that |S | = val(Γ) is
even, which is a contradiction. Hence, s is an involution.

Recall that l is even and set l = 2l′. Since m is odd, R has a cyclic Sylow 2-subgroup
and s is conjugate to bl′ in R. Since Cay(R, S ) � Cay(R, S φ) for each φ ∈ Aut(R), up to
isomorphism, we may assume that s = bl′. By Lemma 3.4, σ has the form

σ : a→ ai, b→ a jb where (i,m) = 1 and 0 ≤ j ≤ m − 1.

Noting that σ(s) = (σ(b))l′ = (a jb)l′ = a j′bl′ for some integer j′, we conclude that
σk(s) ∈ 〈a, bl′〉 for each integer k. Therefore, if l′ > 1, we have that 〈S 〉 ⊆ 〈a, bl′〉 �
Zm : Z2 is a proper subgroup of R, which contradicts the connectivity of Γ. Thus, l′ = 1
and l = 2. Now, R � Zm : Z2 is a Frobenius group, so R � D2m and, by Lemma 2.6, Γ

satisfies part (2) of Theorem 1.2. �

We finally consider the case where R is regular on VΓ but not normal in A. Let
K = coreA(R), so that K < R.

Note that a Cayley graph may be expressed as a Cayley graph of different groups. It
can be a normal Cayley graph for one of them, but not for another. A simple example
is the complete graph K4, which is a normal Cayley graph of Z2

2 and a Cayley graph
(but not normal) of Z4.

Lemma 4.3. Suppose that K has exactly two orbits on VΓ. Then Γ and R satisfy part
(3) of Theorem 1.2.

Proof. By assumption, K has index two in R. Since 〈a〉/(K ∩ 〈a〉) � K〈a〉/K ≤ R/K
� Z2 and |〈a〉| = m is odd, we conclude that 〈a〉 C K � Zm : Zl/2. Since (m, l/2) = 1, 〈a〉
is a characteristic subgroup of K and hence a normal subgroup of A.

Assume that K = 〈a〉. By Lemma 3.3, Γ is a Cayley graph of a dihedral group
H := 〈a〉 : 〈c〉 � D2m, where c ∈ A is an involution such that ac = a−1. Then Lemma 2.6
implies that H C A and m = pt pe1

1 pe2
2 · · · p

es
s ≥ 13, where t ≤ 1, s ≥ 1 and p1, p2, . . . , ps

are distinct primes such that p | pi − 1 for each i. Let x be an involution of R. Then
〈x〉 � 〈c〉 � Z2 are Sylow 2-subgroups of A, so x is conjugate to c in A, say x = cy

for some y ∈ A. It follows that R = 〈a〉 : 〈x〉 = 〈a〉y : 〈cy〉 = Hy = H C A, which is a
contradiction as K = coreA(R) < R.

Therefore, 〈a〉 < K has at least four orbits on VΓ. As 〈a〉 C A, by Theorem 2.5, Γ〈a〉
is an A/〈a〉-arc-regular Cayley graph of R/〈a〉 � Zl with l ≥ 4. Since K/〈a〉 � Zl/2 is
normal in A/〈a〉 and R/〈a〉 � Zl is not normal in A/〈a〉, coreA/〈a〉(R/〈a〉) � Zl/2. Then,
by Lemma 3.2, we have l = 2p, R � Zm : Z2p and Γ〈a〉 � Kp,p. Further, by Theorem 2.5,
Γ is a normal Zm-cover of Kp,p. Note that p does not divide m. By [23, Theorem 1.1],
Γ is a normal Cayley graph of a dihedral group D2pm and hence satisfies part (3) of
Theorem 1.2, by Lemma 2.6. �
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Proof of Theorem 1.2. If R is not regular on VΓ, by Lemma 4.1, part (1) of
Theorem 1.2 holds.

Suppose that R is regular on VΓ. Let A = Aut Γ. By Lemma 3.1, R is not core-free
in A, that is, K := coreA(R) , 1.

Assume that K has at least three orbits on VΓ. By Theorem 2.5, ΓK is an A/K-arc-
regular Cayley graph of R/K with valency p. But R/K is core-free in A/K, and R/K is
metacyclic by Lemma 3.1, which is a contradiction. Hence, K has at most two orbits
on VΓ.

If K is transitive on VΓ, then R = K CA, by Lemma 4.2, and part (2) of Theorem 1.2
holds. If K has two orbits on VΓ, by Lemma 4.3, part (3) of Theorem 1.2 holds. Finally,
the last statement in Theorem 1.2 holds by [7, Theorem 3.1]. �
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[20] D. Marušič, ‘A family of one-regular graphs of valency 4’, European J. Combin. 18 (1997),
59–64.
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