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Abstract
Much like other social and nonsocial evaluations, estimates of numerical quantities are susceptible to comparative
influences. However, numerical representations can take either a nonsymbolic (e.g., a grouping of dots) or a
symbolic numerical form (e.g., Hindu–Arabic numerals), which each produce comparative biases in opposite
directions. The current work takes a fine-grained curve fitting approach across a wide range of values to the
investigation of their potential nonlinear influence in the context of a numerical estimation task. A series of 3
experiments (N = 1,613) showed how nonsymbolic standards produce linear contrastive patterns (Study 1), whereas
symbolic numerical anchors show a cubic assimilative effect with a leveling off in strength for more extreme
standards (Study 2). Sequential contrast from the previous patterns and assimilation to the previous response were
found to be present and additive in the presence of both representations but were larger in absence of the symbolic
numerical anchors (Study 3).

1. Introduction

Imagine, you have the task to estimate the number of political supporters at the presidential inauguration
ceremony of Donald Trump. As virtually any judgment, your exact estimate will be susceptible to
potentially irrelevant influences such as a more or less arbitrarily chosen comparison standards (e.g.,
supporters on Barack Obama’s 2009 inauguration). Importantly, this standard could be presented
as a merely numerical symbolic representation (i.e., the number 1.8 million) or non-symbolically
as a pictorial representation of the crowd. While the former has been well-established to prompt
assimilative anchoring effects (the judgment moves closer to the 1.8 million), the latter is more likely
to produce contrast (Trump’s crowd looks small when compared visually). The present research sought
to revisit these different comparative effects in light of recent developments in social comparison
research highlighting the importance of nonlinear relationship (Barker and Imhoff, 2021). For social
judgments, the strength of assimilation decreases with increased extremity of a comparison standard,
ultimately leading to contrast effects, a data pattern that can be modeled by a positive linear in
combination with a negative cubic effect (Barker and Imhoff, 2021). Although it is still unclear if
such nonlinearity extends to these more basic comparative judgments, theoretical accounts predict both
the contrastive effects, reported for nonsymbolic numerical representations, as well as the anchoring
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effects, for symbolic numerical representations, to produce these complex patterns. The current work
will investigate these possibilities for both of these representations of numerical standards as well as
their sequential dependencies on previous responses and standards, offering additional insights into the
various processes that underlie both phenomena.

To facilitate the flow of our argument, let us provide an illustrative example. Imagine a situation
of a protest and a counter-protest (not an infrequent occurrence in most European cities). As a police
officer, your task is to estimate the number of protestors in order to allocate a proportional number of
accompanying police forces. The comparative question underlying our research is now: How will the
size of the counter protest and the modality of receiving this information affect your estimate? Will the
number of protestors seem larger next to a small counter-protest and smaller next to a huge one? Will
it make a difference if you see the 2 protests as clusters of people or whether a colleague provides you
with the number of counter-protestors in a numerical, symbolic way?

Many of our perceptions and judgments rely heavily on the context surrounding the stimuli we
are about to judge. In the famous Ebbinghaus illusion, for instance, the central circle is consistently
overestimated or underestimated based on whether the circles surrounding it are smaller or larger.
Similar contrast effects, where one’s experience or estimation is moved away from the comparative
state, have been found in both simultaneous and sequential magnitude judgments across various
domains (e.g., Cordes et al., 2014; Jesteadt et al., 1977; Preston, 1936). The reason for these contrastive
patterns has generally been attributed to shifts in the internal representation of the stimuli themselves,
resulting from the inhibition of the areas surrounding the representational center of the standards that
produces this contrastive force (Levine and Grossberg, 1976). Indeed, more recent work suggests that
this may be a fundamental constraint to the information processing capacity of humans in general
(Carandini and Heeger, 2012). Thus, the same crowd of protestors might seem comparatively small
next to a big counter-protest.

In addition to these contrastive effects related to the visual display of quantities, written numbers
can affect estimates in a completely different manner. In essence, numerical representation can take 2
forms. One is nonsymbolic, an actual representation of the given quantity, be it inauguration guests,
protestors, or dots on a screen. The other one is a symbolic representation, as is the case when we
represent quantities with Hindu–Arabic numerals. Humans appear not only to have distinct ways to
code nonsymbolic and symbolic representations in memory (Roggeman et al., 2007), but these different
representations have decisively different comparative effects on numerical estimates. In contrast to the
nonsymbolic numerical representations that produce contrastive effects when used as a comparison
standard, symbolic representations have been found to robustly produce assimilative biases (Furnham
and Boo, 2011). Both symbolic numerical representations provided externally as well as the own
responses given in symbolic numerical form in previous trials can act as a reference point to which
the current estimate will assimilate (Mochon and Frederick, 2013). These effects are widely described
as ‘anchoring’ effects, in reference to the ‘anchoring and adjustment’ heuristic first proposed for this
phenomenon by Tversky and Kahneman (1974). In these insufficient adjustment explanations, people
are assumed to anchor to a symbolic numerical representation as a reference (e.g., the value given
in an initial comparative question asking whether the target is higher or lower than it, but also self-
generated or merely incidentally displayed anchor values; Critcher and Gilovich, 2008; Epley and
Gilovich, 2001) after which they adjust this value until they reach the first plausible response for
the judgment stimuli. Assimilation occurs as this adjustment is typically stopped too early to fully
eliminate the influence of the anchor, that is, the direction from which the adjustment starts. Thus,
seeing a moderately sized protest and learning that the counter-protest is comprised of 150,000 people
will lead to a downward adjustment until a window of plausible values of protestors is entered (from
the upper end). If the counter-protest is said to involve only 20 people, adjustment will go upward
until it enters the same window of plausible values, but this times from the lower end. Thus, the
same initial window of plausible values (e.g., 2,000 to 5,000 people) will create drastically different
estimates depending on whether the adjustment start from a low anchor (here: 20) or a high anchor
(here: 150,000).
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A more recent explanation for the anchoring effect has been given in the scale distortion theory
(Frederick and Mochon, 2012; Mochon and Frederick, 2013), which proposes that the symbolic
numerical values simply distort the mapping of the actual estimate on an internal response scale via
a contrastive process similar to the one reported for nonsymbolic numbers. More specifically, the
presence of a lower/higher symbolic numerical anchor will cause the symbolic numerical estimate,
which would have seemed reasonable if no anchor were present, to now seem too high/low due to
a contrastive effect. As a result, the now distorted mapping of the unchanged representation of the
stimuli will fall on a lower/higher value than it would have otherwise been associated with. To make it
more concrete: When you see a protest and judge it to be roughly 4,000 people, this number will seem
ridiculously small if you learn that the counter-protest had 150,000 people (a contrast effect). You thus
calibrate your response to be bigger. Your belief about the target size has not changed but your use
of the numerical scale—what you consider to be an adequate indicator of a small, medium, or large
quantity has.

1.1. Nonlinear effects on numerical judgments

A lot of research on contrast as well as assimilation effects compares the influence of either a target
judgment in the absence versus presence of a comparison standard or the effect of a high versus a low
comparison standard. Such designs with 2 conditions to compare can only uncover linear effects (either
contrast or assimilation). It is plausible, however, that the influence of a comparison standard is not
just a linear function of its size, but might either attenuate with increasing size (as would be expected
for insufficient adjustment where the span of the adjustment process should not affect the width of
the window of plausible estimates) or even reverse. An example of the latter effect has recently been
provided in the field of comparative judgments involving social stimuli (Barker and Imhoff, 2021).
Specifically, estimates of traits (e.g., trustworthiness) from faces assimilated to moderate upward or
downward comparison standards presented next to the target stimulus, but once these comparison
standards became more extreme, the target judgments contrasted away from these. A fine-grained
manipulation of the standards allows to uncover such cubic effects required to adequately model either
an attenuation of assimilative effects or even a reversal to contrastive tendencies. Similar sensitivity to
the extremity of the comparative stimulus has on also been reported in sequential contrast effects in,
for example, attractiveness ratings (Cogan et al., 2013).

As alluded to above, the anchoring effects that dominate when symbolic numerical representations
are used as comparisons standards are, in fact, predicted to produce nonlinear effects by some
theoretical accounts. For instance, the insufficient adjustment process described earlier clearly suggests
a nonlinear relationship, where anchors outside the plausible range of values will produce similar sized
shifts in the final judgments as participants will adjust toward the first plausible value no matter the size
of the anchor (Tversky and Kahneman, 1974). Indeed, extreme anchors have been reported to produce
the same sized effect as more moderate standards implying this nonlinear relationship (Chapman and
Johnson, 1994; Mussweiler and Strack, 2001).

1.2. The present research

The current work will attempt to measure these potential nonlinear patterns in sequential judgments
in the presence of context stimuli (standards). This allows for judgments to be influenced not only
by the present standard but also by the standard presented in the previous trial and their own
response to it. In this general approach, we will investigate the effects associated with the 2 distinct
comparative processes related to numerical representations: one caused by the current and previous
nonsymbolic numerical stimuli, associated with contrastive effects, and the other related to the external
symbolic numerical stimuli and previous responses, leading to assimilation. In addition, these different
representations of the numerical stimuli and their associated comparative processes may run in parallel,
mutually suppress one another, or lead to one form dominating during the formation of the judgment.
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To investigate all these possibilities, response patterns and their sequential dependencies will be
modeled precisely in a comparative dot enumeration task. Initially, this task will include only the
nonsymbolic visual stimuli (Study 1), then the symbolic numerical estimates will also be included
(Study 2), and finally both patterns will be compared in a single investigation (Study 3). We also
explored the data for interactions of concurrent and sequential effects, but only report these in Appendix
B, where we also explain why these may be artifacts of the sequential design. All studies report
full descriptions of the determination of sample size, data exclusion, manipulations, and measures
used. All sample sizes were determined before data collection. Furthermore, all anonymized raw1 and
aggregated data, additional analysis details and supplementary materials for all studies can be found
on the Open Science Framework page at https://osf.io/cmw9r/. Studies 1 and 2 were not pre-registered,
Study 3 was pre-registered at https://aspredicted.org/vt7xm.pdf.

2. Study 1

In this first study, the comparative pattern associated with nonsymbolic numerical representations will
be investigated along with its dependency on the previous comparative stimulus and the previous
response given. Based on the existing literature on magnitude estimation (Mo, 1971; Preston, 1936),
we expected numerical judgments of the number of dots also to contrast away from the standards that
are presented alongside the judgment image (for a similar reasoning, see also Cordes et al., 2014).
This effect could take a purely linear form or may show signs of reduced comparative effects for the
more extreme standard as reported for social stimuli (Cogan et al., 2013), which would be reflected in
a cubic function with a negative linear term and a positive cubic function (Barker and Imhoff, 2021).
In addition, previously seen nonsymbolic numerical representations are similarly expected to result
in additive contrastive patterns, whereas previous responses are expected to form an anchor to which
subsequent judgments assimilate.

Using our illustrative example from before, the same protest might seem smaller next to large
counter-protest (compared to a tiny counter-protest) as well as after seeing a particularly large (versus
small) protest. The numerical estimate, however, will also be influenced in the direction of previously
given estimates (i.e., the estimated size will be larger after estimating 10,000 than after estimating 1,000
as these will serve as anchors to start an adjustment process).

2.1. Method

2.1.1. Participants
In lack of a clear effect size estimate, the sample size for this study was based on a previous investigation
into the nonlinear comparative relationships among social stimuli with an identical granularity of
comparison standards and also z-standardized estimates as dependent variable (Barker and Imhoff,
2021). In that study, a cubic effect as small as B = 0.002 was detected to be significantly different from
zero using a sample of 160 participants. As such, 160 German speakers were recruited on campus at
the University of Cologne to participate in the study for a monetary reward of 10 euros. This sample
consisted of 43.8% females and was aged between 17 and 57 years (M = 23.26, SD = 5.00).

2.1.2. Dot judgment task (DJT)
To gain a large number of estimates, the dot judgment task (DJT) was created. In this task, participants
were asked to estimate the number of dots present in a random pattern of white dots on a black
background (300 × 300 pixels). These judgment patterns always included between 490 and 510 dots. A
substantially large number was used to avoid counting of individual dots. Alongside each judgment

1Data about participants’ study area and gender are not included for lab studies nor are any timestamps for all studies to ensure
the complete anonymity of participants.
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Figure 1. Example trial for which high values (contrast away from small comparison standard are
expected).

pattern, a second unique comparison pattern was presented (in the same resolution) that included
up to 400 more or fewer dots than the judgment pattern in increments of 10 dots, resulting in 81
extremity steps (Figure 1). Both images remained on the screen until a response was given. To ensure
that participants judged the correct pattern, they were asked to first identify the pattern labeled as the
‘judgment target’ prior to giving their estimate. They could indicate this by pressing either ‘Z’ for
the left (on the German keyboards used this was the letter ‘Y’ in the same location) or ‘C’ for the
right pattern. After this, participants were gave their estimate in an open-ended fashion with no time
constraints. In addition to preventing confusion, the accurate identifying of the judgment pattern was
also used as an attention check to exclude non-informative responses later on. Participants completed 4
blocks of the 81 trials resulting in 324 total estimates.

2.1.3. Additional measures
Basic demographics such as age, sex, and education were recorded at the start of the study. The Iowa-
Netherlands Comparison Orientation Scale (INCOM; Gibbons and Buunk, 1999) was administered at
the end of the study for exploratory purposes to see if propensity to engage in social comparisons may
also affect these nonsocial comparisons. The INCOM scale includes 11 items (𝛼 = 0.78), 2 of which
are reverse coded, that are averaged to create the final INCOM score with higher scores reflecting
a stronger disposition to engage in social comparisons in daily life. However, the measure was not
found to produce interesting findings and will not be further reported in this paper, but the raw data are
available in the online materials.
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2.1.4. Procedure
Participants were recruited on campus at the University of Cologne were fully informed regarding the
general procedure of the study and data storage policy before giving their consent and taking part in
the study. Initially, the basic demographics were recorded, after which the DJT was fully explained.
Two practice trials were presented and participants were given the opportunity to ask additional
questions regarding the task. If no questions remained, the main batch of 324 trials were completed in
random order after which participants were debriefed and given their compensation. The study lasted
approximately 30 min on average.

2.1.5. Data treatment
All nonnumeric and empty responses were removed and made up 0.1% of trials. Another 5.3% of trials
were marked by a failed attention check and were removed. The remaining scores were z-transformed
separately per participant to account for personal differences in response ranges. Z-scores above 3 or
below −3, or instances where no z-score could be calculated (e.g., because participants always gave the
same response and SD was thus zero), were removed, which was the case for 1.8% of trials. Due to
co-occurrences of these criteria a total of 7.2% of the original trials were not used in the analyses. Two
participants have no longer offered any informative trials, leaving 158 participants with data suitable
for use in the main analysis.

In this and all following studies, the main analyses were conducted in mixed models regression
using a restricted maximum likelihood estimation (REML; using the lme4 package; Bates et al., 2015)
run in R (Version 4.0.4). In addition to the fixed effects of interests, we included random intercepts
for subject (all studies) and stimulus set (only Study 1), as well as random slopes per subject for all
fixed effects. When these full models failed to converge or led to singular fit, we removed random
effects until the model converged and showed no singular fit. We only report these models below.
To determine the confidence intervals and p-values for separate fixed effects in this and all following
studies, Satterthwaite’s approximations were used to estimate the appropriate degrees of freedom (using
the lmerTest package; Kuznetsova et al., 2017; and the parameters package in R; Lüdecke et al., 2020).

2.2. Results

Our first model tested the influence of simultaneously presented standards. We thus predicted the
estimated number of dots for the actual judgment target by the actual number of presented dots (centered
and divided by 10, thus ranging from −1 to +1)2, and the relative number of dots presented in the
adjacent standard (ranging from −400 to +400 in 81 steps). To allow not only for linear effects of
the relative number of dots in the standard, we included the linear, as well as the quadratic and cubic
term of this relative number (of more or fewer dots than the target) as fixed effects. We also included
random intercepts per participant and per stimulus set, as well as random slopes of all 3 polynomials
per participant. A linear effect of the number of actually presented dots indicated that participants were
indeed sensitive to the actual judgment target, t(46141.87) = 2.156, 𝛽 = 0.010, 95% CI [0.001, 0.020],
p = .031, suggesting that an increase in 10 dots in the target corresponded to an increase in estimated
dot number of 0.01 z-scores. Speaking to strictly linear contrasts, results yielded only a negative linear
effect, t(158.08) = −9.29, 𝛽 = −15.43, 95% CI [−18.71, −12.15], p < .001, with all other orthogonal
polynomial terms p > .61 (Figure 2). Thus, there was no indication that the overall contrast effect was
reduced for the more extreme relative numbers of dots, as would have been indicated by a significant
positive cubic effect.

2Note that we did not plan (or preregister in Study 3) the inclusion of this predictor, as we were not optimistic that participants
would be sensitive to such subtle variations. During the review process, however, it became apparent that effects of standards
and prior trials would be much more informative if they were shown to operate in addition to an actual and serious estimation of
the target. We thus included the number of dots in the target image as an additional predictor in all analyses. Analyses without
this predictor (as planned/ pre-registered for Study 3) yielded results identical not in terms of exact estimates, but in terms of
inferences one would draw from them.
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Figure 2. Predicted Z-scores at each extremity step and 95% CI (created with the ggeffects package,
Lüdecke, 2018).

Following this main analysis for simultaneously presented standard, we followed up with analyses
adding potential sequential effects. Specifically, the response given in the previous trial was suspected to
have an assimilative influence, as participants might use it as an initial anchor and (insufficiently) adjust
from there. Likewise, the relative number of dots in the previous standard might exert an influence of a
contrastive nature. As these 2 lagged predictors were dependent (as shown in the initial analyses where
there was an effect of relative standard on response within a trial), we investigated their respective
influence both in competition to each other in a combined model (reported below) as well as in separate
analyses that avoid potential issues with collinearity between the 2 lagged predictors. As these latter
separate analyses did not yield the same estimates but suggested identical inferences to be drawn from
them, we reported them in Tables A1 and A2.

We predicted participants’ z-transformed responses by the number of dots in the target, the relative
number in the current standard, as well as the lagged z-transformed responses and lagged relative
number of dots from the previous trial as fixed effects. We dropped all random slopes as their inclusion
created singular fit. Results showed that all effects reached significance (Table 1). More precisely,
participants were above-chance accurate in guessing the number of dots, larger responses in previous
trials were associated with larger responses in the current trial, while the simultaneous contrast effect
remained unaffected and of a similar size. The comparison standard in the previous trial did create an
incremental contrast effect.

2.3. Discussion

The study showed a robust contrast effect of a simultaneously present standard. Although participants
were above chance accurate in estimating the number of presented dots in the target, the larger (smaller)
the number of dots presented in the allegedly irrelevant and spatially separated context stimulus, the
lower (higher) the numbers of estimated dots in the judgment target. Turning to our police officer,
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Table 1. All fixed effects and related statistics from mixed model analysis controlling for lagged
response in Study 1.

Fixed effects B [95% CI] SE t df p

(Intercept) −0.035 [−0.046; −0.024] 0.005 −7.04 14.86 <.001
Dots 0.012 [0.003; 0.021] 0.005 2.58 42650.67 .010
x −16.11 [−17.30; −14.92] 0.605 −26.61 46086.45 <.001
x2 0.084 [−1.103; 1.271] 0.606 0.14 46086.07 .890
x3

−0.464 [−1.650; 0.721] 0.605 −0.77 46085.00 .442
Lagged response (LR) 0.246 [0.240; 0.252] 0.002 87.11 46125.14 <.001
Lagged extremity (LX) −0.161 [−0.185; −0.138] 0.012 −13.64 46086.95 <.001
Note: Dots are the actual number of dots in the target image, standardized and divided by 10, thus ranging from −1 to +1. x denotes relative
standard extremity ranging from −4 to +4 (number of dots relative to neutral target divided by 100). The lagged response (LR) is the response
given in a previous trial (z-standardized). The lagged extremities were rescaled to aid model conversion so that a 1-unit increase represents a step
of a 1,000 dots. Random intercepts per participant and stimulus set.

they will be able to give a rough estimate of the number of protestors, but a larger number of counter-
protestors will push their estimate down.

Given that target and standard were presented in 2 clearly separate (albeit adjacent) boxes, this
finding contrasts with previous investigations that found spatial separation of dot patterns to attenuate
all contrastive effect (Cordes et al., 2014). Although we have no definite information of what produced
these diverging results, one candidate might be the number of dots to-be-estimated (here: ~400; ~20
in Cordes et al., 2014). Thus, the judgment in the current study might have been experienced as more
challenging and thereby leading participants to rely more heavily on the surrounding stimuli to form
their judgments. Importantly, however, our results do not suggest that participants merely relied on the
contrastive influence of these surroundings as they had no other signal to rely on. On the contrary, they
were above-chance accurate in calibrating their estimates to the nuanced differences in actual number of
dots in the to-be-judged target (between 490 and 510). Furthermore, the contrastive pattern was found
to be completely linear with no signs that the more extreme standards attenuated the effect in any way,
as was reported for facial attractiveness (Cogan et al., 2013), allowing speculation whether nonlinearity
in contrast effects is specific to the social domain.

In addition to the simultaneous contrast from the comparative stimulus in the current trial, evidence
also emerged that the previous stimulus provided an additive contrastive effect in line with the
expectations. At the same time, the previous response was found to exert a strong assimilative anchoring
effect, with higher estimates in the previous trial predicting higher estimates in the current trial. The
fact that this effect of (self-generated) symbolic number representation worked in direct opposition
(assimilation) to the simultaneous effect of nonsymbolic representations (contrast) may indeed indicate
that the 2 modes of numerical representation seem to independently bias judgments in distinct ways.
However, in the current investigation, the symbolic anchors in the previous trials were self-generated
responses given by participants, whereas the nonsymbolic standards are externally presented. It may
be that offering external symbolic anchors alongside the nonsymbolic numerical standards would lead
participants to only consider one mode of numerical processing over the other. The next study, therefore,
used the same paradigm, but included informative anchors underneath the comparative dot patterns.

3. Study 2

In this second study, exact symbolic numerical anchors were included underneath the image of the
standard, offering immediate nonsymbolic and symbolic numerical information while the estimate is
given. Thereby, the current study assessed if the visual information in the nonsymbolic representation
still exerted their contrastive influence, or whether anchoring to the symbolic numerical representations
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dominated in the responses. We also investigated potential nonlinearity of the resulting pattern, as
was done for the contrastive patterns. Any insufficient adjustment type process would predict that the
anchoring effects would level off as the anchor value becomes more extreme (Mussweiler and Strack,
2001). We expected to see this pattern expressed as a cubic function with positive linear and a slight
negative cubic term.

The scale distortion theory (Frederick and Mochon, 2012) on the other hand does not directly predict
this leveling off, but a purely linear effect in which the sequential anchors would be expected to work in
an additive way (Mochon and Frederick, 2013). Finally, the study also probed if the sequential contrast
from previous standards still occurred when concrete symbolic numerical representations are available
within each the trial. In other words, the study was designed to provide insight whether a clear numeric
anchor will overrule the influence of the previous trial.

3.1. Method

3.1.1. Participants
The number of participants for this study was increased as a shortened online format was implemented.
The necessary sample size of 800 participants was again determined using simulations based on the
effect sizes and parameters found in previous work in the social comparative domain that used a similar
paradigm (Barker and Imhoff, 2021). Therefore, 803 participants recruited via Prolific Academic
completed the study for a reward of £1.25. This final sample consisted of 59% females and was aged
between 18 and 74 years (M = 35.48, SD = 13.31).

3.1.2. DJT-41
As in the previous experiment, each trial consisted of a target image (indicated by “judgment target”)
for which the number of dots had to be estimated horizontally next to a standard image (both images
300 × 300 pixel) without any time constraints. For half of the trials, the target image was on the left and
the standard on the right, for the other half it was vice versa. In order to rule out confusion regarding
which image to estimate, participants had to click a radio button to indicate what they thought the target
image was (trials with wrong clicks were excluded). Different from the previous study, the nonsymbolic
dot pattern of the standard was now accompanied by the symbolic numeric information displaying the
actual number of dots presented in this standard (“This image contains [between 93 and 901] dots.”).
A visual display of the trials can be found on OSF.

For better use online and to reduce strain on participants, the DJT was shortened to include just
41 trials per participant. In order to keep a similar granularity in measurement steps, however, 2
counterbalancing conditions were created so that half of the participants were randomly assigned to
either estimate 41 dot patterns of around 500 dots (±10 dots) next to standards that varied between
400 dots above or below the target image in intervals of 20 dots. The second group judged 40 similar
dot images in the presence of standards at each 20-dot-interval between 390 dots below or above
the target image as well as one in which the both images had an equal number of dots. In effect,
this counterbalancing offers the same 81-step precision in measurement that was also included in the
previous study.

3.1.3. Additional measures
Again, some basic demographics were recorded, including age, sex, and education, although the
INCOM was no longer administered in this study. An additional item was included at the start of the
survey to check for correct image display by asking participants to describe what they saw on a simple
image containing 3 shapes of different colors. A small traditional anchoring task, closely modeled on
the task and one of the questions in Strack and Mussweiler’s work (1997), was also included after the
main task for exploratory purposes not directly related to this line of research. This task and its analysis
are described in detail in the additional materials available online. After this, an open-ended item
was included to gauge participant’s suspicions regarding the goal of the current study. Finally, a new
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data-quality item was included in which participants were asked to indicate if their responses were
made in earnest or not in order to increase the quality of the data in the final analyses. Participants were
guaranteed to not be affected in any way based on their responses to this item, but that it would help the
researchers in their investigation if they responded honestly. Responses were given on a Likert scale
ranging from “Definitely do not use my data” (1) to “Definitely use my data” (4). Responses of 2 or
lower were taken as an indication of poor data-quality and used for the exclusion of participants from
the analyses.

3.1.4. Procedure
Participants were fully informed about the data storage policy, procedure, and their rights before they
were asked for their consent to take part in the study. After the image display check and demographics
items participants completed 2 practice trails to get familiarized with the procedure of the main task.
Randomly allocated to 1 of the 2 counter balancing conditions, participants completed the main batch of
41 trials and afterward the traditional anchoring task. After this, the suspicion check item and the data-
quality item were presented before participants were debriefed, thanked and given their compensation.
The study lasted about 10 min.

3.1.5. Data treatment
Nonnumeric and empty responses made up 1% of trials while 0.7% showed a failed attention check
leading to their exclusion. This time, responses that exceeded the maximum or minimum standard
value (lower than 100 or higher than 900) were also removed (0.5%) to increase data quality, as such
estimates are unlikely to be honest estimates as a clear reference was available. The remaining scores
were z-transformed separately per participant to account for personal differences in response ranges.
Z-scores above 3 or below −3, or instances where no z-score could be calculated were removed (e.g.,
because participants always gave the same estimate, resulting in a denominator of zero), which was the
case for 0.2% of trials. Due to co-occurrences of these criteria a total of 2.4% of the original trials were
not used in the analyses. In addition, 12 participants indicated their data quality was low and should not
be included in the analysis. Combined the exclusion criteria left a total of 790 participants with data
suitable for use in the main analysis.

3.2. Results

Again, the main analysis took the form of a mixed model regression with REML that included fixed
effects for the number of dots present in the target, as well as the standard (and additionally given as
a numeric anchor below the standard) in hundreds and modeled up to the third polynomials term. We
included random slopes of the 3 polynomials as well as the actual number of dots for participants to
account for participant level variation in patterns (no random intercept was estimated due to singular
fit issues). As in Study 1, participants were above-chance accurate in detecting subtle differences in the
judged target stimulus (main effect of dots; Table 2). In addition, both the linear and cubic term of the
comparison standard reached significance in this analysis (Table 2), describing a pattern of assimilation
in which the participants’ z-transformed estimates increased as the standards became more removed up
until a difference of around 300 dots was reached, after which estimates remained stable (Figure 3).
Thus, the provided symbolic anchor yielded an exclusively assimilative influence (leveled off toward
extreme values) that completely overrode the contrastive influence of the (still present) nonsymbolic
representation.

As in the previous study, we conducted a second analysis adding 2 lagged predictors from the
previous trials (the relative extremity of the standard as well as participants’ self-generated and
standardized responses), as well as random slopes for all fixed effects per participant. This model
showed an increased fit overall compared to the base model, 𝜒2(4) = 393.93, p < .001. The results
suggested that in addition to the (basically unaltered) effects reported above, there are again 2 opposing
influences from the previous trial. While a high response in the previous trial increased the estimate,
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Table 2. All fixed effects and related statistics from mixed model analysis (Study 2).

Fixed effects B [95% CI] SE t df p

(Intercept) −0.004 [−0.012; 0.006] 0.005 −0.79 27856.53 .429
Dots 0.074 [0.058; 0.090] 0.008 9.03 325.42 <.001
x 45.05 [39.93; 50.17] 2.608 17.28 740.10 <.001
x2 0.623 [−2.090; 3.336] 1.382 0.45 743.06 .652
x3

−8.210 [−10.395; −6.025] 1.113 −7.38 755.11 <.001
Note: Dots are the actual number of dots in the target image, standardized and divided by 10, thus ranging from −1 to +1. x
denotes relative standard extremity ranging from −4 to +4 (number of dots relative to neutral target divided by 100). Random
slopes of dots and the polynomial terms of x per participant.

Figure 3. Predicted intercept adjusted marginal Z-scores at each extremity step and predicted 95% CI.

a high numerical standard (accompanied by a symbolic anchor) decreased the estimate. This is
noteworthy, as the symbolic representation had an assimilative influence for current standards, but a
contrastive one for the lagged standards from the previous trial.

As a caveat, however, the assimilative influence of symbolic numerical standard in the same trial
was substantially larger (about 5 times as large) than the contrastive influence of the nonsymbolic
representations in Study 1. Thus, both lagged predictors show more overlap in this than the previous
study, allowing for the possibility of (spurious) suppression effects due to collinearity (Table 3).
Separate analyses yielded that all significant main effects remained significant and in the same direction
when lagged response and lagged extremity were entered in separate models (Tables A3 and A4).

3.3. Discussion

The addition of symbolic numerical anchors within the DJT paradigm produced a complete flip in
comparative patterns. Instead of contrastive influences, standards now produced a purely assimilative
effect in line with the anchoring literature. Furthermore, the pattern reflected the nonlinear association
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Table 3. All fixed effects and related statistics from mixed model analysis including lagged response
and lagged standard extremity (Study 2).

Fixed effects B [95% CI] SE t df p

(Intercept) −0.002 [−0.011; 0.007] 0.005 −0.37 25633.14 .710
Dots 0.075 [0.059; 0.091] 0.008 9.03 391.78 <.001
x 43.38 [38.29; 48.46] 2.589 16.78 738.54 <.001
x2 0.378 [−2.310; 3.067] 1.369 0.27 744.41 .782
x3

−7.654 [−7.799; −5.509] 1.093 −7.01 755.05 <.001
Lagged response (LR) 0.090 [0.079; 0.102] 0.005 15.79 785.55 <.001
Lagged extremity (LX) −0.278 [−0.324; −0.232] 0.023 −11.89 797.67 <.001
Note: Responses are z-standardized within participant to adjust for different response scales and detect outliers. Dots are the actual number of dots
in the target image, standardized and divided by 10, thus ranging from −1 to +1. x denotes relative standard extremity ranging from −4 to +4
(number of dots relative to neutral target divided by 100). The lagged response (LR) is the response given in a previous trial (z-standardized). The
lagged extremities (LX) are the actual number of dots presented in the previous trials, rescaled to aid model conversion so that a 1-unit increase
represents a step of a 1,000 dots. Random slopes per participants for all fixed effects.

that was predicted by previous work and an anchoring and adjustment type mechanism (Chapman and
Johnson, 1994; Mussweiler and Strack, 2001), with the assimilative strength leveling off for extreme
standards. This is remarkable as there was no longer any apparent effect of the concurrent nonsymbolic
information. Although the police officer in our leading example contrasted their numerical estimate
of protestors away from the larger counter-protest this effect completely flipped to assimilation once
symbolic information (the actual number of counter-protestors) entered the picture.

However, the sequential anchoring effects proved to be additive and here, the nonnumerical
information continued to exert a contrastive effect. Spelling this complex pattern out suggests that
the current estimate was assimilated to the concurrent standard and the symbolic (numerical) response
given in the previous standard independently, but still contrasted away from the nonsymbolic image in
the previous trial. One perceptual explanation may be that, although the symbolic standard is no longer
taken into account, the nonsymbolic visual information causes an inhibitory force that suppresses the
expression of the current target stimulus. Thus, the contrast from the nonsymbolic numerical standards
seems to not be easily disregarded even when clear objective symbolic numerical estimates are present
and dominate the judgment process.

Although the concurrent effects in Studies 1 and 2 were clearly in diametrically opposed directions
(strong linear contrast in Study 1, even stronger assimilation leveled off toward extreme anchors in
Study 2), directly comparing them is constrained by the fact that participants were not randomly
allocated to either of the 2 conditions. In addition, Study 1 was a lab study with a large number of trials,
Study 2 was considerably shorter. Although none of these differences suggest themselves to explain the
different result, we conducted a final, pre-registered study to directly compare these 2 conditions (and
their sequential effects).

4. Study 3

As different populations, methods, and contexts were used in Studies 1 and 2, the sizes of the different
effects are not directly comparable. To offer a more formal test of these differences, our final study
thus combined both to replicate the findings reported so far and explore any differences in sequential
effect between the 2 conditions in a pre-registered study (https://aspredicted.org/vt7xm.pdf). Based on
the previous findings, we expected a purely negative linear contrastive effect when only nonsymbolic
numerical representations were presented as dot patterns, whereas the inclusion of symbolic numerical
anchors below the images would reverse the effect, leading to a purely assimilative force that levels out
for more extreme standards as seen in a cubic effect with a positive linear and negative cubic function.
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4.1. Method

4.1.1. Participants
As the size of both effects was found to be substantially larger than those found in the social comparative
domain previously (Barker and Imhoff, 2021), simulations were conducted based on the effect sizes
and variance parameters found in the previous 2 studies. The results showed that only 650 participants
would be needed to offer over 80% power to detect the smaller simultaneous contrast effect in absence
of a numerical anchor. Therefore, 650 participants were recruited on Prolific for a reward of £1.25 and
consisted of 59.7% females and was aged between 18 and 80 years (M = 36.58, SD = 13.20).

4.1.2. Procedure
The overall procedure was identical to Study 2 with only one alteration: It was manipulated between
subjects (orthogonal to the counter-balancing factor) whether symbolic numerical anchors informed
about the number of dots in the standard or not. All else was identical.

4.1.3. Data treatment
As was the case in the previous study, trials with null responses or only nonnumeric symbols (0.2%
of trials), trials in which the attention check was failed (0.8%), and response that exceeded the
maximum standard value (6.4%) were removed for the analysis. Remaining scores were z-transformed
per participant and truncated above 3 and below −3 (0.3%). A total of 7.7% of all trials were excluded
by these criteria. Finally, 12 participants indicated that their data were of low quality and should be
excluded, leaving 626 participants’ data usable in the analyses.3

4.2. Results

Two mixed models regression with ML estimation were implemented with the number of dots as well
as polynomials up to the third degree for the standard extremity steps as fixed effects and the orthogonal
random slopes for the 3 polynomial terms of standard extremity per each participants. However, one of
the models included the condition variable as a fixed effect along with all its interactions. Comparing
these 2 models revealed that the anchor condition indeed significantly influenced the dot estimates that
participants gave, 𝜒2(4) = 205.55, p < .001, in opposite directions and in line with the predictions
(Figure 4). Specifically, the condition moderated the linear, as well as the cubic effect of standard
extremity (Table A5). Separate models per condition yielded only a negative linear (contrast) effect
of standard extremity in the condition with only nonsymbolic information, as in Study 1 (Table 4).
Adding a symbolic anchor flipped this pattern to a positive linear and negative cubic effect, as in Study
2 (Table 5).

To investigate the potential variation of the sequential anchoring effects in the different conditions,
a cubic model for the extremity steps with the condition variable, the number of target dots, the lagged
response, lagged extremity and all interactions with the condition variable was fitted using ML on trials
that included valid lagged responses. This model was then compared to a reduced model that did not
include the interaction between the condition variable and lagged response or extremity. This analysis
showed that the inclusion of the interaction effects significantly improved the model, 𝜒2(2) = 713.83,
p < .001, indicating that the sequential effects differed between conditions. To gain a more detailed
insight into the main effects and their sequential dependencies, separate models using REML for both
the anchor and non-anchor conditions were modeled.

Fully replicating Study 1, in the no-anchor condition (exclusively nonsymbolic information), the
concurrent standard produced a contrast effect while the lagged response served as an assimilative

3Both the maximum value and z-score exclusion criteria resulted in significantly more removed trials in the no-anchor
condition than in the anchor condition. However, the main analysis still provided substantially similar results when these criteria
were not enforced.
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Figure 4. Predicted intercept adjusted marginal z-scores at each extremity step and predicted 95% CI.

Table 4. All fixed effects and related statistics from mixed model analysis in the no-anchor condition.

Fixed effects B [95% CI] SE t df p

(Intercept) −0.003 [−0.029; 0.024] 0.014 −0.22 765.03 .827
Dots 0.048 [0.018; 0.078] 0.015 3.10 10421.24 .002
x −0.089 [−0.114; −0.064] 0.013 −7.04 299.26 <.001
x2

−0.003 [−0.007; 0.001] 0.002 −1.46 267.12 .147
x3 0.000 [−0.002; 0.003] 0.000 −0.44 291.73 .663
Note: Dots are the actual number of dots in the target image, standardized and divided by 10, thus ranging from −1 to +1. x denotes relative standard
extremity ranging from −4 to +4 (number of dots relative to neutral target divided by 100). Random slopes for polynomials of standard extremity.

Table 5. All fixed effects and related statistics from mixed model analysis in the anchor condition.

Fixed effects B [95% CI] SE t df p

(Intercept) −0.011 [−0.040; 0.0190] 0.015 −0.71 535.03 .479
Dots 0.099 [0.074; 0.124] 0.013 7.77 12510.00 <.001
x 0.137 [0.107; 0.168] 0.015 8.97 332.80 <.001
x2 0.001 [−0.004; 0.006] 0.002 0.46 327.44 .648
x3

−0.002 [−0.004; −0.001] 0.001 −2.50 335.10 .013
Note: Dots are the actual number of dots in the target image, standardized and divided by 10, thus ranging from −1 to +1. x denotes relative standard
extremity ranging from −4 to +4 (number of dots relative to neutral target divided by 100). Random slopes for polynomials of standard extremity.

anchor and the lagged extremity was associated in the direction of an additional contrast effect
(Table 6).

In the anchor condition, all linear effects observed in Study 2 were replicated. The symbolic
representation of the concurrent standard overrode the nonsymbolic representation in yielding an
assimilation effect. This assimilative effect was additive to the exerted by the response given in the
previous trial. The lagged extremity, however, again produced a reliable contrast effect (Table 7).
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Table 6. All fixed effects and related statistics from mixed model analysis including lagged response
and lagged standard extremity in the no-anchor condition (Study 3).

Fixed effects B [95% CI] SE t df p

(Intercept) −0.001 [−0.025; 0.025] 0.012 −0.11 728.88 .911
Dots 0.058 [0.026; 0.082] 0.014 4.16 9674.60 <.001
x −0.094 [−0.118; −0.072] 0.011 −8.29 284.61 <.001
x2

−0.003 [−0.007; 0.000] 0.002 −1.76 263.57 .080
x3 0.000 [−0.002; 0.002] 0.001 0.23 284.36 .822
Lagged response (LR) 0.362 [0.353; 0.385] 0.015 24.39 289.43 <.001
Lagged extremity (LX) −0.082 [−0.129; 0.011] 0.037 −2.21 273.93 .028
Note: Responses are z-standardized within participant to adjust for different response scales and detect outliers. Dots are the actual number of dots
in the target image, standardized and divided by 10, thus ranging from −1 to +1. x denotes relative standard extremity ranging from −4 to +4
(number of dots relative to neutral target divided by 100). The lagged response (LR) is the response given in a previous trial (z-standardized). The
lagged extremities were rescaled to aid model conversion so that a 1-unit increase represents a step of a 1,000 dots. Random slopes for the 3
polynomials of x, lagged response and lagged extremity.

Table 7. All fixed effects and related statistics from mixed model analysis including lagged response
and lagged standard extremity in the anchor condition (Study 3).

Fixed effects B [95% CI] SE t df p

(Intercept) −0.008 [−0.032; 0.016] 0.012 −0.66 12512.14 .506
Dots 0.100 [0.069; 0.131] 0.016 6.29 354.74 <.001
x 3.134 [0.116; 0.151] 0.009 14.84 12535.81 <.001
x2 0.001 [−0.003; 0.004] 0.002 0.36 12577.32 .722
x3

−0.003 [−0.004; −0.001] 0.001 −3.02 12600.25 .003
Lagged response (LR) 0.064 [0.044; 0.084] 0.010 6.31 353.52 <.001
Lagged extremity (LX) −0.274 [−0.349; −0.199] 0.038 −7.22 350.95 <.001
Note: Responses are z-standardized within participant to adjust for different response scales and detect outliers. Dots are the actual number of dots
in the target image, standardized and divided by 10, thus ranging from −1 to +1. x denotes relative standard extremity ranging from −4 to +4
(number of dots relative to neutral target divided by 100). The lagged response (LR) is the response given in a previous trial (z-standardized). The
lagged extremities were rescaled to aid model conversion so that a 1-unit increase represents a step of a 1,000 dots. Random slopes for dots,
lagged response, and lagged extremity.

4.3. Discussion

Confirming the findings from the previous studies, the current results show a purely linear contrastive
influence of the nonsymbolic numerical standards that turns into an assimilative and cubic pattern
once symbolic numerical anchors are included underneath the standards. Furthermore, the sequential
anchoring effect (to the self-generated response), although present in both conditions, was smaller when
the symbolic anchors were present. This may be a result of the increased information that the objective
anchors provide, which has been known to reduce the magnitude of sequential effects by narrowing the
range of probable values (Mori, 1998; Ward, 1979; Wilson et al., 1996). The opposite was true for the
sequential contrast effect that was substantially larger in the condition with symbolic information and
descriptively in the expected direction but not significantly different from zero anymore in the condition
with only nonsymbolic information. The third pre-registered study thus largely corroborated the results
of the first 2 studies and thus solidifies a rather complex and rich picture of influences on sequential
numerical judgments.

5. General discussion

Across 3 studies, we consistently find that participants contrast their numerical estimates away from
a (purely nonsymbolic) comparison standard that is either displayed adjacent to the target stimulus
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or in temporal proximity (the target in the previous trial). As soon as a symbolic representation, a
numerical anchor, however, is provided this redundant information completely overrides the contrastive
influence of the concurrent standard and yields assimilation to the numerical anchor instead. The same
is not true for the contrastive influence of the previous target that still yields a contrastive influence.
A self-generated numerical anchor, the response given in the previous trial, exerts an additional and
independent assimilation to that anchor. We observe evidence for all these influences independently
and in parallel to an above-chance accuracy in estimating the subtle variation (490 to 510) in number
of dots in the target image.

Initially, Study 1 showed that robust contrastive effects do occur for spatially separated nonsymbolic
numerical representations in a comparative context, despite previous work in this area reporting that
spatial separation of dot patterns can attenuate this influence (Cordes et al., 2014). In addition, this
contrastive pattern was found to be completely linear regardless of the extremity of the comparison
patterns that were presented alongside the target. These findings, thereby, do not support the presence
of nonlinear relationships for nonsymbolic numerical patterns that have been previously described in
the domain of facial attractiveness (Cogan et al., 2013) and earlier work on magnitude estimations of
weights (Sarris, 1968).

However, when symbolic numerical anchors were provided alongside the patterns in Study 2,
theses association became purely assimilative in nature. Furthermore, the association took on a slightly
cubic effect signaling an upper boundary to the assimilative strength for more extreme standards.
The pattern of a positive linear and a negative cubic relation mimics recent findings in the field
of social comparisons, with the exception that in the current studies very extreme standards do not
produce manifest contrast (Barker and Imhoff, 2021). These findings are compatible with previous
work describing the effects of extreme anchors (Chapman and Johnson, 1994; Mussweiler and Strack,
2001), and predictions based on insufficient adjustment accounts (Tversky and Kahneman, 1974).
People form an impression of a plausible range of estimates and correct either upward or downward
from the given numerical anchor. They stop this correction as soon as the range of plausible estimates
is entered. More extreme anchors will then only result in an extended adjustment, not in a shifted range
of plausible estimates. An alternative explanation might be that extreme numerical symbolic values
bear less informative weight; and thus, the contrasting force of the nonsymbolic representation wins
through. Future research presenting either symbolic and nonsymbolic (as in the current study) or only
symbolic information can test these 2 explanations.

Additionally, the insufficient adjustment accounts, in which respondents stop adjusting at the
boundary of the range of plausible values, do not offer a suitable explanations for the additive sequential
anchoring effects that were also found. The scale distortion account, on the other hand, does predict an
additive anchoring effect based on the fact that the contrast effects that are ultimately responsible for
the distortion of the response scale and eventual assimilative effects themselves work in an additive
way (Mochon and Frederick, 2013). In this way, the additive sequential anchoring effects, which can
work both to strengthen and to dampen the simultaneous anchoring effect can be explained by a single
mechanism.

Future research might also pit the different numerical representation directly against each other. In
the current work, the numerical anchor always provided accurate information about the number of dots
in the standard (and still completely reversed the influence). Future research might provide numerical
anchors inconsistent with the actually represented standard. Although this might hurt the credibility of
the anchor and introduce issues of deception (not present in the current research) it could also lead to
deeper understanding in how the anchors interact and influence the magnitude estimation.

An interesting note on the complex interaction between externally presented and self-generated
anchors is that the strong assimilation found toward the externally presented simultaneous anchor
disappeared completely in the sequential trials. Instead, although assimilation was found toward the
self-generated anchor of the previous response, the previous standards exerted a clearly contrastive
effect even when the symbolic anchor was present.
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Therefore, it seems the influence of the previous symbolic anchor is almost completely disregarded
in sequential trials, while the previous response is still used to form the next judgment. One reason for
this may be that external anchors are often evaluated in a more effortful manner and given extra weight
when credible and in agreement with one’s own self-generated anchor (Dowd et al., 2014). Indeed,
previous work has often emphasized the possible different relevance of self-generated and externally
presented anchors (Epley and Gilovich, 2001). This could explain why only the most salient external
anchor is considered for each judgment and why it seems to be most influential when it is in the same
direction as the self-generated anchor, especially when it may itself not be considered a highly credible
estimate (e.g., very extreme and, therefore not similar to the target).

More research would be needed to parse which of these is most the most plausible cause for
the complex assimilative patterns found for the simultaneous external and self-generated anchors.
Nevertheless, the fine-grained continuous approach of the current paradigm already highlights the
complex and nonlinear nature of these symbolic numerical representations compared to the purely
linear contrastive influence of nonsymbolic representations. Furthermore, the sequential contrast effects
from the previous standards in both conditions (albeit only descriptively there in Study 3) shows that
both representations may influence numerical estimations in a relatively independent fashion.

Coming back to our introductory example, the police officer’s estimate of the number of protestors
will likely be subject to many other influences than just their actual number. Their estimate will contrast
away from an adjacent counter-protest (i.e., increase in the presence of a small counter-protest and
decrease in presence of a large counter-protest) if they see it. If a colleague just gives them the number
of counter-protestors via radio (in a symbolic numerical expression), assimilation will prevail. This
fascinating dissociation of the influence acts in addition to the influence of the previous shift. Officers
will contrast their estimate away from yesterday’s protest but assimilate to their numerical estimate
from yesterday.

Our works thus has shown how numerical standards, even when spatially separated from targets,
can simultaneously produce assimilative and contrastive biases in numerical estimates depending on
whether they are presented symbolically or non-symbolically. Importantly, their influence was highly
systematic and robust, even though—from a strictly rational standpoint—the standards were always
completely irrelevant to the task at main (estimating the number of dots in the target).
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Appendix A. Additional analyses

Table A1. All fixed effects and related statistics from mixed model analysis including lagged response
(Study 1).

Fixed effects B [95% CI] SE t df p

(Intercept) −0.031 [−0.036; −0.026] 0.002 −12.38 46110.01 <.001
Dots 0.015 [0.007; 0.023] 0.004 3.59 45956.52 <.001
x −0.031 [−0.037; −0.025] 0.003 −9.71 158.56 <.001
Lagged response (LR) 0.309 [0.263; 0.340] 0.019 15.50 159.72 <.001
Note: Dots are the actual number of dots in the target image. x denotes relative standard extremity ranging from −4 to +4 (number of dots relative
to neutral target divided by 100). Random slopes for the standard extremity and lagged response.
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Table A2. All fixed effects and related statistics from mixed model analysis including lagged extremity
(Study 1).

Fixed effects B [95% CI] SE t df p

(Intercept) −0.036 [−0.042; −0.031] 0.003 −12.56 47694.77 <.001
Dots 0.011 [0.001; 0.020] 0.005 2.20 47820.67 .028
x −0.030 [−0.037; −0.024] 0.003 −9.36 158.12 <.001
Lagged extremity (LX) −0.235 [−0.276; −0.195] 0.021 −11.46 158.13 <.001
Note: Dots are the actual number of dots in the target image. x denotes relative standard extremity ranging from −4 to +4 (number of dots relative
to neutral target divided by 100). Random slopes for the standard extremity and lagged extremity.

Table A3. All fixed effects and related statistics from mixed model analysis including lagged response
(Study 2).

Fixed effects B [95% CI] SE t df p

(Intercept) −0.664 [−0.988; −0.340] 0.165 −4.02 4636.71 <.001
Dots 0.001 [0.001; 0.002] 0.000 4.03 4614.47 <.001
x 0.164 [0.145; 0.183] 0.010 17.10 732.85 <.001
x2

−0.000 [−0.003; 0.003] 0.002 −0.11 742.32 .910
x3

−0.005 [−0.006; −0.004] 0.001 −8.13 734.93 <.001
Lagged response (LR) 0.073 [0.062; 0.084] 0.006 12.98 700.42 <.001
Note: Dots are the actual number of dots in the target image. x denotes relative standard extremity ranging from −4 to +4 (number of dots relative
to neutral target divided by 100). Random slopes for the standard extremity polynomials and lagged response.

Table A4. All fixed effects and related statistics from mixed model analysis including lagged extremity
(Study 2).

Fixed effects B [95% CI] SE t df p

(Intercept) −0.736 [−1.055; −0.416] 0.163 −4.52 4938.34 <.001
Dots 0.001 [0.001; 0.002] 0.000 4.53 4915.08 <.001
x 0.163 [0.144; 0.182] 0.010 16.97 731.76 <.001
x2

−0.000 [−0.003; 0.003] 0.002 −0.11 741.38 .911
x3

−0.005 [−0.006; −0.004] 0.001 −8.08 734.85 <.001
Lagged extremity (LX) −0.180 [−0.225; −0.135] 0.023 −7.85 740.77 <.001
Note: Dots are the actual number of dots in the target image. Responses are z-standardized within participant to adjust for different response scales
and detect outliers. x denotes relative standard extremity ranging from −4 to +4 (number of dots relative to neutral target divided by 100). The
lagged extremities are the actual number of dots presented in the previous trials, rescaled to aid model conversion so that a 1-unit increase
represents a step of a 1,000 dots. Random slopes for the polynomials of the standard.
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Table A5. All fixed effects and related statistics from mixed model analysis including lagged response,
lagged extremity, condition, and interactions with condition (Study 3).

Fixed effects B [95% CI] SE t df p

(Intercept) −0.004 [−0.024; 0.016] 0.010 −0.44 1174.42 .663
Dots 0.078 [0.060; 0.097] 0.009 8.16 21970.28 <.001
Condition −0.005 [−0.046; 0.034] 0.020 −0.29 1163.00 .771
x 0.019 [−0.000; 0.039] 0.010 1.93 638.24 .054
x2

−0.001 [−0.004; 0.002] 0.002 −0.61 616.56 .540
x3

−0.001 [−0.002; 0.000] 0.001 −1.42 636.89 .156
Lagged response (LR) 0.219 [0.208; 0.230] 0.006 38.53 22447.11 <.001
Lagged extremity (LX) −0.169 [−0.217; −0.122] 0.024 −6.99 22472.60 <.001
Condition × x 0.235 [0.196; 0.273] 0.020 11.93 618.63 <.001
Condition × x2 0.004 [−0.002; 0.010] 0.003 1.23 614.82 .219
Condition × x3

−0.003 [−0.006; −0.001] 0.001 −2.43 613.46 .015
Condition × LR −0.301 [−0.323; −0.279] 0.011 −26.49 22447.32 <.001
Condition × LX −0.224 [−0.319; −0.129] 0.048 −4.63 22472.63 <.001
Note: Dots are the actual number of dots in the target image. Responses are z-standardized within participant to adjust for different response scales
and detect outliers. x denotes relative standard extremity ranging from −4 to +4 (number of dots relative to neutral target divided by 100). The
lagged extremities are the actual number of dots presented in the previous trials, rescaled to aid model conversion so that a 1-unit increase
represents a step of a 1,000 dots. Random slopes for the polynomials of the standard extremity.

Appendix B. Interaction effects

On an exploratory base, we included interaction terms between the sequential effects (lagged response
or lagged extremity, in separate models) with the 3 polynomial terms of the concurrent standard.
Tables B1 (lagged response) and B2 (lagged extremity) show this for Study 2, whereas Tables B3–B6
refer to Study 3, separate by condition.

The results do not provide a consistent picture. In the no-anchor condition, linear concurrent
standard extremity interacts with previous standard extremity in Study 3. This would suggest that higher
estimates were given when either both were negative or both were positive. For the anchor condition
and Study 2, no clear pattern emerges either. We thus refrained from interpreting these effects.

Table B1. All fixed effects and related statistics from mixed model analysis including lagged response
(Study 2).

Fixed effects B [95% CI] SE t df p

(Intercept) 0.001 [−0.019; 0.020] 0.010 0.06 1220.96 .952
Dots 0.013 [0.007; 0.020] 0.003 3.99 4515.25 <.001
x 0.164 [0.145; 0.183] 0.010 17.13 732.74 <.001
x2

−0.000 [−0.003; 0.003] 0.002 −0.05 741.96 .964
x3

−0.005 [−0.006; −0.004] 0.001 −8.18 735.29 <.001
Lagged response (LR) 0.062 [0.046; 0.078] 0.008 7.54 1275.64 <.001
x × LR 0.004 [−0.007; 0.015] 0.006 0.74 1743.86 .462
x2

× LR 0.002 [−0.000; 0.004] 0.001 1.85 749.83 .064
x3

× LR 0.000 [−0.001; 0.001] 0.001 0.65 991.73 .513
Note: Dots are the actual number of dots in the target image. x denotes relative standard extremity ranging from −4 to +4 (number of dots relative
to neutral target divided by 100). Random slopes for the standard extremity polynomials, lagged response and their interactions.
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Table B2. All fixed effects and related statistics from mixed model analysis including lagged extremity
(Study 2).

Fixed effects B [95% CI] SE t df p

(Intercept) 0.001 [−0.019; 0.021] 0.010 0.07 1244.77 .947
Dots 0.015 [0.008; 0.021] 0.003 4.50 4938.09 <.001
x 0.164 [0.145; 0.182] 0.010 16.99 731.64 <.001
x2

−0.000 [−0.003; 0.003] 0.002 −0.01 741.91 .995
x3

−0.005 [−0.007; −0.004] 0.001 −8.17 734.89 <.001
Lagged extremity (LX) 0.080 [−0.141; −0.019] 0.032 −2.55 27699.11 .011
x × LX 0.026 [−0.019; 0.071] 0.023 1.14 27865.89 .251
x2

× LX −0.020 [−0.029; −0.011] 0.004 −4.43 28074.69 <.001
x3

× LX 0.002 [−0.002; 0.006] 0.002 0.88 28357.89 .381
Note: Dots are the actual number of dots in the target image. Responses are z-standardized within participant to adjust for different response
scales and detect outliers. x denotes relative standard extremity ranging from −4 to +4 (number of dots relative to neutral target divided by 100).
The lagged extremities are the actual number of dots presented in the previous trials, rescaled to aid model conversion so that a 1-unit increase
represents a step of a 1,000 dots. Random slopes are only modeled for the polynomials of the standard extremity due to singular fit if all were
included.

Table B3. All fixed effects and related statistics from mixed model analysis including lagged response
in the no-anchor condition (Study 3).

Fixed effects B [95% CI] SE t df p

(Intercept) −0.002 [−0.026; 0.023] 0.012 −0.13 722.58 .901
Dots 0.058 [0.030; 0.085] 0.014 4.14 9676.18 <.001
x −0.093 [−0.116; −0.071] 0.001 −8.24 283.58 <.001
x2

−0.003 [−0.007; 0.000] 0.002 −1.73 262.33 .086
x3 0.000 [−0.002; 0.002] 0.001 0.20 283.47 .842
Lagged response (LR) 0.365 [0.331; 0.399] 0.017 21.23 509.68 <.001
x × LR 0.011 [−0.006; 0.028] 0.009 1.24 10082.95 .215
x2

× LR 0.000 [−0.003; 0.004] 0.002 0.17 9851.57 .914
x3

× LR −0.001 [−0.002; 0.001] 0.001 −0.85 9935.16 .394
Note: x denotes relative standard extremity ranging from −4 to +4 (number of dots relative to neutral target divided by 100).

Table B4. All fixed effects and related statistics from mixed model analysis including lagged response
in the anchor condition (Study 3).

Fixed effects B [95% CI] SE t df p

(Intercept) −0.009 [−0.040; 0.021] 0.015 −0.62 530.44 .534
Dots 0.099 [0.074; 0.124] 0.013 7.65 12066.34 <.001
x 0.134 [0.104; 0.164] 0.015 8.71 332.62 <.001
x2 0.001 [−0.004; 0.006] 0.003 0.54 327.37 .590
x3

−0.002 [−0.004; −0.000] 0.001 −2.41 335.91 .017
Lagged response (LR) 0.031 [0.007; 0.055] 0.012 2.58 932.45 .010
x × LR −0.000 [−0.016; 0.015] 0.007 −0.01 12304.83 .995
x2

× LR 0.004 [0.001; 0.007] 0.002 2.52 12374.98 .012
x3

× LR 0.000 [−0.001; 0.002] 0.001 0.23 12514.40 .816
Note: x denotes relative standard extremity ranging from −4 to +4 (number of dots relative to neutral target divided by 100).
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Table B5. All fixed effects and related statistics from mixed model analysis including lagged extremity
in the no-anchor condition (Study 3).

Fixed effects B [95% CI] SE t df p

(Intercept) −0.001 [−0.026; 0.025] 0.013 0.05 9913.84 .964
Dots 0.049 [0.018; 0.079] 0.016 3.09 10321.99 .002
x −0.091 [−0.112; −0.070] 0.011 −8.45 2195.16 <.001
x2

−0.003 [−0.007; 0.000] 0.002 −1.86 10022.45 .062
x3 0.000 [−0.001; 0.002] 0.001 0.30 10086.90 .786
Lagged extremity (LX) −0.351 [−0.464; −0.237] 0.058 −6.05 1102.47 <.001
x × LX 0.105 [0.025; 0.186] 0.041 2.57 5284.77 .010
x2

× LX −0.007 [−0.022; 0.009] 0.008 −0.84 10221.17 .401
x3

× LX −0.007 [−0.015; 0.000] 0.004 −1.90 10133.21 .058
Note: x denotes relative standard extremity ranging from −4 to +4 (number of dots relative to neutral target divided by 100). The lagged
extremities were rescaled to aid model conversion so that a 1-unit increase represents a step of a 1,000 dots.

Table B6. All fixed effects and related statistics from mixed model analysis including lagged extremity
in the anchor condition (Study 3).

Fixed effects B [95% CI] SE t df P

(Intercept) −0.009 [−0.039; 0.021] 0.015 −0.58 528.87 .565
Dots 0.098 [0.073; 0.124] 0.013 7.60 12086.90 <.001
x 0.135 [0.104; 0.165] 0.015 8.73 332.82 <.001
x2 0.001 [−0.004; 0.006] 0.003 0.50 327.21 .617
x3

−0.003 [−0.004; −0.001] 0.001 −2.53 336.16 .012
Lagged extremity (LX) −0.207 [−0.305; −0.108] 0.050 −4.11 556.35 <.001
x × LX 0.085 [0.017; 0.152] 0.034 2.47 401.15 .014
x2

× LX 0.001 [−0.014; 0.016] 0.007 0.14 313.42 .886
x3

× LX −0.002 [−0.009; 0.004] 0.003 −0.63 313.09 .532
Note: x denotes relative standard extremity ranging from −4 to +4 (number of dots relative to neutral target divided by 100). The lagged
extremities were rescaled to aid model conversion so that a 1-unit increase represents a step of a 1,000 dots.

A cautionary note also seems prudent with regard to interpreting sequential interaction in the current
design as we must consider a potential confounding methodological artifact that arises when extreme
anchors are investigated in a repeated measures design. Namely, as the current anchor becomes more
extreme in relation to the target, by necessity, the numerical distance from the previous response
simultaneously increases (at least on average). Spelled out, the anchor of 900 can have any distance
to the previous anchor between 20 and 800. In contrast, an anchor of 500 can maximally have a
distance of 400 to the previous anchor. Hence, the sequential distance between the current standard and
previous response is a secondary potential influence that is inherently confounded with the extremity
manipulation within a repeated measures design.

This can be easily illustrated by plotting the numerical distance between the previous response and
the current standard for each trial using the data from the anchoring condition in Study 3, with negative
scores indicating the previous response was less extreme or in the opposite direction from the target
compared to the standard (Figure B1). The sequential distances show that as standards become more
extreme, that is, they are further removed numerically from the target stimuli, they simultaneously
become further removed from the previous self-generated response. Therefore, the potential effects of
increasing sequential distance between the 2 numerical anchors and the standard extremity itself are
fundamentally confounded within the design.
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Figure B1. Scatterplot of the discrepancy between responses in previous trials and the absolute
extremity of the current anchor, with darker dots indicating larger sequential distances.
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