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Generative design (GD) algorithms is a fast growing field. From the point of view of Design Science, 
this fast growth leads to wonder what exactly is 'generated' by GD algorithms and how? In the last 
decades, advances in design theory enabled to establish conditions and operators that characterize 
design generativity. Thus, it is now possible to study GD algorithms with the lenses of Design Science 
in order to reach a deeper and unified understanding of their generative techniques, their differences 
and, if possible, find new paths for improving their generativity. 
In this paper, first, we rely on C-K ttheory to build a canonical model of GD, based independent of the 
field of application of the algorithm. This model shows that GD is generative if and only if it builds, 
not one single artefact, but a "topology of artefacts" that allows for design constructability, covering 
strategies, and functional comparability of designs. Second, we use the canonical model to compare 
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1 INTRODUCTION: GENERATIVE DESIGN ALGORITHMS THROUGH THE 

LENSES OF DESIGN SCIENCE  

Generative design algorithms (GDA) is a fast growing field that develops “design approaches that use 

algorithms to generate designs” (Caetano et al., 2020). Advances in CAD software (in particular with 

the launch of Autodesk so-called generative design (Kazi et al., 2017)), computing power and new 

computer science algorithms have contributed to the emergence of various “generative design tools” 

(Buonamici et al., 2020) with multiple applications. This fast growth leads to critical questions about 

generative design algorithms from the point of view of design science. What is exactly ‘generated’ and 

how? What means progress in the field? And more fundamentally, what can design science say for the 

theoretical understandings and enhancement of generative algorithms?  

Design science have also achieved major steps.  C-K theory has paved the way to new formalizations 

of a design process with a high level of generality. Design science is now able to establish conditions 

and operators that define and enable design generativity and generative power. Such notions are now 

independent of “what” is designed and of classic technical models. They describe generativity as the 

transformation of known objects into new ones using a new abstract language which received wide 

validation in the literature: concepts, generic extensions, restrictive and expansive partitions, identity 

of objects, independence and splitting structures of knowledge (Hatchuel et al., 2011, Le Masson et 

al., 2016). Thus, it is now possible to study Generative design algorithms with the lenses of Design 

Science in order to reach a deeper and unified understanding of their generative techniques, their 

differences and, if possible, find new paths for improving their generativity.  

This paper develops such study through four steps that correspond to the sections of the article. In the 

literature review (part 2), we describe a brief state of the art of GDA and applications. In part 3, since 

any GDA is necessarily a constructive and iterative process, applying C-K theory to such constraints 

we can predict a general C-K logic for GDA. We define it as a canonical model of GDA that is not 

dependent of the field of application of the algorithm. This model mainly shows that GDA is 

generative if and only if it builds, not one single artefact, but a special “topology of artefacts” that 

allows for design constructability, covering strategies, and functional comparability of designs. In part 

4, using the canonical model we compare the generative power of four well documented and most 

advanced types of GDA, which confirm their capacity to generate a ‘topology of artefacts’.  

2 LITERATURE REVIEW: THE VARIETY OF GD ALGORITHMS INVENTIONS 

2.1 GD definition.  

Recent reviews on GDA (Caetano et al., 2020, Mountstephens and Teo, 2020) share a definition of 

GDA: “a design approach that uses algorithms to generate designs” (Caetano et al., 2020); GDA is 

also seen “as the exploration of the principle of generating complex forms and patterns from a simple 

specification [with an algorithm]” (Shea et al., 2005, McCormack et al., 2005). Some authors insist on 

potential “creative outcomes” (Bernal et al., 2015) or “happy accidents” ie “unexpected results” born 

from “the number of design variations” and “the range of the variations”, that positively impact the 

design process” (Chaszar and Joyce, 2016). Hence GDA definition focuses on the presence of an 

algorithm but remains relatively fuzzy on what exactly generativity consists in. The notion of the 

variety of designs provided by the software is key in GD A, even if the link between design variations 

 and GD generativity is not clearly explained and loosely related to how GDA provokes ‘surprises’.  

2.2 A variety of Generative Design techniques.  

GDA  is clearly related to algorithmic rule-based processes that mainly refer to evolutionary techniques 

but are not limited to them (Caetano et al., 2020) (p. 294) - More specifically, (Mountstephens and Teo, 

2020) identifies four generation methods: genetic algorithms, Shape grammars, L-Systems, Swarm 

intelligence - the authors mention other useful techniques: parametric modeling and topology 

optimisation. One could also add the recent use of techniques coming from AI like Generative 

Adversarial Networks (GAN) Variational AutoEncoders (VAE) to enhance topology optimization (Oh et 

al., 2019)  or to enable shape parameterization for further generation processes (Burnap et al., 2016, 

Umetani, 2017). In this paper, we will rely on well-known Multi-Objective Generative Algorithms (also 

known as Multi-Objective Evolutionary Algorithms - MOEA) - and we will pay a particular attention to 

a new family of algorithms called quality-diversity, which are particularly relevant for GDA: quality-
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diversity algorithms (Pugh et al., 2016) “evolve an archive of solutions which is, according to a user-

defined behaviour space, as diverse as possible while obtaining for each solution a high performance” 

(Bossens et al., 2020). This family contains for the moment two prototypical algorithms: Novelty-

Search with Local Competition (Lehman and Stanley, 2011a) and Multidimensional Archive of 

Phenotypic Elites (MAP-Elites) (Mouret and Clune, 2015).  

2.3 Generativity in GD algorithms: a need for clarification and unification.   

The field of GDA presents multiple streams of works that develop original algorithms applied to ad 

hoc design cases. Each software has its applications and illustrates one form of generativity. For 

instance: 

-  Byrne et al present a multi Objective Evolutionary Algorithm for design exploration and 

optimisation of a wing profile (Byrne et al., 2014);  

- Multi-Objective Genetic Algorithm (in Autodesk) has been used in architectural space planning 

(Nagy et al., 2017), the design of office table (Nagy et al., 2017) (Chen et al., 2018);  

- Novelty Search was used to evolve robot controllers into a deceptive maze (Pugh et al., 2016, 

Lehman and Stanley, 2011b) or to design images (Woolley and Stanley, 2011);  

- Map-Eliteswas used to design a self-repairing hexapod robot (Cully et al., 2015) or wing profile 

(Cully et al., 2015) as well as in video game (Fontaine et al., 2019), automated image generation 

(Nguyen et al., 2015), robot morphologies and controllers (Hart et al., 2018);  

- Autogenetic Design Theory was used for gearbox design (Wünsch et al., 2012).  

This variety of applications calls for a clarification of the design logic associated to each GD software.   

2.4 The locus of generativity in GDA: an engine to generate a population of artefacts?  

Self-evidently, GDA operates on a parametrically defined object with constraints on the parameters, 

which restrict its use in design processes. (Mountstephens and Teo, 2020) proposed to distinguish 

between autonomous and interactive generative design: in a parametrically defined solution space, 

autonomous design might sound quite self-evident and generativity could appear only coming from 

interaction (capacity to use the GDA in a more or less creative way, at varied moments in the design 

process). Still, maybe counterintuitively, in this paper we first focus precisely on the specific 

generativity of the algorithm itself, its capacity to generate a collection of varied artefacts. Even if this 

generativity might sound limited (‘parametric’?), we investigate how a unique property of GDA 

software lies in its capacity to offer a structured set of alternatives, and, then, how the user might react 

to this set.  

In this paper, we focus on the generative logic of GDA such as: MOGA, quality-diversity algorithms, 

topologic optimisation, particle swarm optimisation, space filling techniques... Qualifying their 

generativity of these algorithms is not an easy task - and, to our knowledge, no systematic study was 

done until now. Hence, our research question: how can we characterize formally and 

systematically the generativity logic of GDA ‘engines’?  

3 A C-K CANONICAL MODEL TO UNCOVER THE GENERATIVITY OF GDA 

3.1 Method: casting GDA in C-K theory.  

C-K theory (Hatchuel and Weil, 2009), is one of the most advanced formulations of a design theory 

(Hatchuel et al., 2018). C-K theory  presents the advantage to be independent of what is designed and 

can account for very strong forms of generativity (Hatchuel et al., 2011).  

Casting a design method in C-K theory has already been done in other papers (Reich et al., 2012, Kroll 

et al., 2014). We will follow the same method. We first codify in a canonical model what can make the 

generativity of a GDA. Based on this analytical model, we analyse the generativity of a sample of 

published GDA.  

3.2 A canonical model of GDA: concepts, object model, expansions.  

3.2.1 Knowledge base - object model and splitting condition 

A GDA operates on an initial state of knowledge 𝐾0 which contains an object model 𝑀0 with:  
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– Variables that can be assimilated to ‘design parameters’ or also called ‘genotypical 
parameters’ - parameters that are considered as directly actionable by the designer, noted 

1i nX =  .  

– Variables that can be assimilated to functional (or behavioural or phenotypical) features, 
jφ . 

They are not directly actionable; their value is computed in the object model: 
1 jφi nX =  → .  

– One artefact is a point value 1i nx =   that has the features 
j 1 mφ = 

. 

GDA apply in situations where:  

– The object model M0 is not invertible: given specific 
j 1 mφ = 

, the object model 0M  doesn’t 

enable to find even one 1i nX =   that meets 
j 1 mφ = 

 in finite reasonable time (see H1 below).  

– The object model M0 is not derivable not continuous, which means that a small change in one  

iX  can provoke strong changes in 
j 1 mφ = 

 and conversely a small change in 
jφ  can 

correspond to a strong change in 1i nX =  . In particular, this means that it is not possible, for a 

known object 
1 j 1 m( , φi nX =  = 

), to know what is its neighbourhood in terms of genotype and 

(even less) in term of phenotype - so that in this kind of K0, there is no self-evident solution to 
a problem of optimisation, ie finding an object that, at least locally, phenotypically dominates 
the others.  

Design theory leads us to wonder whether this initial knowledge base K0 is splitting (Le Masson et al., 

2016), ie non-modular and non-deterministic. Modularity would mean that some design parameters 

could be added without effect on phenomenology. As we just mentioned, initially, in K0, the design 

parameters are supposed to influence phenomenology. Determinism would mean that some design 

parameters would determine the phenomenological behaviour: again, as we just mentioned, initially, 

in K0, one can’t say that such deterministic law exist. So in usual contexts, we have:  

Property P1: usually GDA operates on a knowledge base that meet the splitting condition, hence 

GDA is compatible with a generative process.  

3.2.2 Concepts as departures of a GDA:  

Following C-K theory, any GDA that aims to design some X begins necessarily with a concept of the 

form “X that fulfils P(X)”, P(X) being a series of properties of X such that: 

– P(X) are undecidable in K0 ie. there is no constructive rule that allows to design such X with 

K0 (of course, since we want to describe the mechanism of the GDA ‘engine’ following the C-K 

operators, the ‘engine’ itself is not in K; otherwise it would appear as a constructive rule and the 

design is finished)  

–  P(X) will be constructible, true and compatible in some established Kn state of K.  

It has to be underlined that here is a specific feature of GDA: GDA actually work to generate a 

collection of artefacts, ie in the concept {X, P (X)}, X actually refers to a collection of artefacts; and P 

actually refers to a property of this collection: in the concept “the set of wing profiles that form a 

Pareto front”, we want to generate a collection (X) of wing profiles, and this collection has the 

property to form a Pareto front (this is a property of the population, and not of a lone artefact). Hence a 

second property: 

P2: usually GDA designs a collection of artefacts with specific property, this property can make 

that it is undecidable whether it is possible or impossible to get a population with property P.  

P has to be interpretable (hence it is in K0) and just needs to make X undecidable in K0. Illustration:  

– "a collection of N artefacts": it can be generated by instantiating M0 N-times. It is not a 

concept.  

– "a collection of N artefacts generated by random variation of genotype": it can easily be 

generated as soon as one knows of random number generator. This is not a concept.  

– "a collection of N artefacts generated by variation of phenotype": if the object model is non-

invertible, this is a concept.  

3.2.3 Expansion in space K and concepts partition in space C 

C-K theory models Concept partitions and expansions through tree structured sequences of nested 

partitions. They describe a constructive refinement of C0 that should lead to the design of X; each of 
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these steps may activate space K, hence creating a knowledge expansion. At least, the last refinement 

produces an acceptable design that is integrated as a new true object in space K. 

In the case of GDA, the algorithm is parameterized to produce knowledge and concept expansions. In 

a genetic algorithm, this is done by variation-selection. But the partitions can’t be easily followed. 

When successive partitions can’t be easily followed, it is possible to evaluate the expansions:  

– If the initial proposition {X, P(X)} was a concept and has become knowledge (in C-K terms: 

there was an initial disjunction and there is a final conjunction), then there was C-expansion.  

– By comparing the knowledge base before (K0) and after the GD process (Kfinal), one can 

estimate K-expansion.  

P3: a criteria to evaluate the generativity of a GD is twofold: a- is there a conjunction after an 

initial disjunction? b- what is the knowledge expansion between K0 and Kfinal?  

P1, P2, P3 are the main properties of a canonical model of GDA in C-K framework (Fig. 2)  

 

Figure 1. A canonical model of GD algorithms in C-K. P1: object model is non-invertible, a 
priori non continuous (hence splitting); P2: Property P is undecidable; P3: generativity is 
measured on disjunction-conjunction and K-expansions (a topology on object model M0) 

3.3 Avoiding the combinatorial trap in GDA: C-K conditions for generativity and the 
emergent topology of designs.   

3.3.1 Variation and selection in GDA: the combinatorial trap 

GDA raise a critical question for design theory: in which way can an algorithm be generative in the 

sense of C-K theory? Usual applications of C-K theory consider that K-space contains propositions 

(that are true or false) as well as propositions that can be logically deducted one from the other - 

hence not every new proposition is a K-expansion. Hence the knowledge base contains an internal 

“knowledge production engine” and one considers that there is expansion only if one goes ‘beyond’ 

this internal knowledge production engine. In the case of a GDA, our hypothesis is:  

H1: we consider that classical computations techniques in finite time are available in K and their 

results are not considered as K-expansions. The algorithm that is under investigation is not in K.  

3.3.2 Generativity in GD: the emergence of a topology of artefacts.  

Building on properties P1 to P3 and hypothesis H1, what does C-K predict on GDA generativity?  

– According to P1 and H1: even GDA-knowledge base is purely made of combinatorial 

knowledge, the knowledge base is splitting and enables generativity 

– According to P2 and H1: concepts in GDA are related to specific properties associated to a 

collection of artefacts - the concept doesn’t come from the number of entities (because of H1); 

hence the concepts comes from the structure and descriptors of this collection.  

– According to P3: expansions can be evaluated by analysing initial and final C and final K-

expansion. In the end of a GDA process, one gets a collection of artefacts that meet the 

structural property P. So that the generativity is in this new structure of the collection of 

artefacts.  

At first sight, GDA appears trapped into a closed world of combinatorial designs. To avoid such trap, 

C-K theory calls for thorough examination of all knowledge produced by the algorithm. Clearly this 

knowledge is much more extended than the single artefacts that are designed. We have to recognize 

that the GDA not only explores single designs but compares them, positions them one to another, 

creating structures in the collection of artefacts. GDA provides new knowledge on the topology of Xis. 
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The expansion comes from the emergence of a ‘geometry’, a space in which artefacts can be relatively 

positioned. This new structure is a topology on the model of objects, in the sense that:  

– GDA expresses each object in all its dimensions ( )1 j 1 m, φi nX =  = 
. Hence this space is 

multidimensional, linking genotypic dimensions and phenotypic dimensions. 
– GDA enables to distinguish certain objects - each object of the final collection is carefully 

separated (in singletons).  

– GDA also enables to not distinguish other objects: all the ‘dominated’ artefacts are considered 

in the same “neighbourhood”  

– In this topology, the object model can be inverted (almost) everywhere: for each point of the 

topology, one relevant artefact can be associated (with respect to the criteria P). It means that 

in the resulting topology the knowledge base is not splitting anymore.  

3.3.3 How topological knowledge provides a source of generativity for the user 

For sure, there is a circular logic here: the topology that emerges is dependent of the iterative 

algorithm and another GDA technique would produce a different topology. Conversely, the 

information on the topology of designs can improve the GDA. However, what counts for the 

generativity of GDA is the type of new knowledge extracted from the topology that appeared. 

Information linked to this topology helps to explore dimensions of expansion predicted by canonical 

model Fig. 1:  

– The topology can be extended by extending 
1 j 1 m, φi nX =  = 

, and/or the model object 0M : 

adding or deleting some iX , changing range, or modifying 
j 1 mφ = 

.  

– The topology of the 
1 j 1 m, φi nX =  = 

 revealed by the population of designs can help to compute 

some property P that will be introduced to change the iteration rules. E.g an algorithm can use 

the density of designs in some areas of the Xis to evolve the selection rules.  

4 GDA: UNCOVERING TOPOLOGIES AND COMPARING GENERATIVITY  

We now have analytical tools (canonical model) and clear predictions (GDA tools generate topology 

of artefacts). We test them on a sample of most recent GDA. This sample was built on GDA recent 

reviews (Caetano et al., 2020, Mountstephens and Teo, 2020). We hence selected the following 

methods:  

– MOEA (with one particular illustrative use case: (Byrne et al., 2014)), 

– space-filling techniques (one particular illustrative use case: (Khan and Awan, 2018)),  

– topological optimization (illustrative use case: (Matejka et al., 2018)) 

– Quality-Diversity (QD) algorithms (illustrative use case: (Clune et al., 2013)) 

4.1 Analysis of four GDA tools with the C-K canonical model 

4.1.1 Multi-Objective Evolutionary Algorithm (MOAE) 

Byrne et al. (Byrne et al., 2014) present a use case evolving parametric aircraft models. Coded with the 

canonical model (see Fig. 2 below): the designer knows a model of the aircraft, where given design 

parameters lead to two particular functional performances, Lift and Drag. The concept is: “A Pareto 

Front on the functions, max Lift, min Drag”. The designer makes variations on a subset of three 

parameters among the set of possible design parameters and run the GDA tool, powered by a multi-

objective evolutionary algorithm (MOEA) non-sorting genetic algorithm-II (NSGA-II) (Deb et al., 

2002). This leads to a first Pareto front (see blue dots in the figure). Then the designer selects a larger 

set of parameters and run the algorithm again, to get another Pareto front (see red dots in the figure).  
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Figure 2. Pareto front GDA tool (MOEA NSGA-II), from Byrne et al 2014. Parametric object 

model in K. GDA generates the topology associated to a Pareto front.  

Generativity analysed within the canonical model:  

– the designer designs a Pareto front (not a single aircraft). We have a clear topology: single 

artefacts along the front, dominated artefacts below the front, no artefacts beyond.  

– Modifying the design parameters to be varied, the designer gets several topologies (in case 1, 

the designer only evolved the wing profile, in case 2, the designer also evolved the fuselage).  

4.1.2 Space-filling generative design  

Khan & Awan (Khan and Awan, 2018) give (among others) an simple illustration of a “generative 

design technique for exploring shape variation”, based on space-filling technique. In GD canonical 

model (see Fig. 3 below): in K, the designer disposes of a parameterized CAD-model (here a lamp, 

with two design parameters). The concept is: a map that represents the diversity of possible CAD 

shapes. To this end, the designer selects mapping criteria P: either space-filling (the criteria pushes to 

maximise the distance between shapes), or non-collapsing criteria (avoiding too different shapes 

(Draguljić et al., 2012)) or both. Powered also by MOES NSGA-II, the GD tool generates a map of 

CAD shapes.  

 

 

Figure 3. Space-filling GD tool (MOEA-NSGA-II) from Khan et al. 2014 

Generativity analysed within the canonical model:  

– the designer designs a map (not a single CAD shape) - hence a topology of artefacts.  

– Formally speaking, the only difference with Pareto front case is that the former relies on 

mapping criteria whereas Pareto case, the mapping criteria are the function themselves.  

4.1.3 Topological optimization algorithm 

Matejka et al. present an example of topological optimization GDA for “exploration and visualization 

of large-scale generative design data set” (Matejka et al., 2018). In GD canonical model (see Fig. 4 

below): in K, the designer has defined functions of the object (an office table) and the design 

parameters are only the presence or absence of matter. The concept can be formulated as “a large 

variety of (possibly surprising) office tables”. To design one office table (CAD shape), the designer 

can fix a level to each of the constraints and use a topological optimization algorithm, optimizing the 
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narrow down the design space and larger variation of designs may not

be achieved. Therefore, the decision on the selection of appropriate

design parameters should be carefully made.

One strategy, which the designer can follow, is to fi rst detect the

important features of a given model and then these features can be

parametrized with a relatively higher number of parameters and de-

signs can be generated with these parameters. Later, after some trials,

the designer can detect quixotic parameters and eliminate them by

directly modifying the CAD model. Such capabili ty of the generative

design system is recognized as ’designerly’ method, which allows de-

signers to modify the model under consideration and use its generative

capabili ties at any phase of the design process [12] . After exploring the

designs based on the important features, later, if required, design space

can be explored based on its nominal features.

3.6. Formulation of design space

As stated before, the design space for any CAD model is formed by

the number of the design parameters and their bounds. The di-

mensionality of the design space depends on the number of design

parameter used to define the CAD model and the limits of the design

space are set by defining the upper and lower bounds for each design

parameter. However, formulation of a suitable design space isa decisive

task as the performance of a technique in term of creating better design

alternatives mainly depends on it. Setting up the design space should be

carefully done in order to achieve the maximum performance of the Sf-

GDT and should have sufficient high potential region. If design space is

too narrow then Sf-GDT will result in the creation of similar/ same de-

signs. On the other hand, a vast design space can result in the waste of

computational effort in exploring undesirable regions of the design

space. Typically, a design space is set up by defining the upper and

lower bounds of the design parameters. Where each parameter re-

presents a dimension in the design space. Defining the upper and lowers

bounds usually done based on the initial design specifications and de-

signers’ understanding of the design.

In Sf-GDT, design space formulation can happen in three different

way; explicit formulation, autonomous formulation, and interactive

formulation.

Explicit Formulation: The explicit formulation of the design space

happens when the design specifications are known at the conceptual

stage and based on these specifications the designer limits the space.

Autonomous Formulation: The autonomous formulation helps to

coarsely form the design space as a percentage of the initial parameter

values of the design. This formulation happens when no primary un-

derstanding of the design specifications are available in the conceptual

phase. The autonomous formulation gives a good initial guess of sui-

table space limits. With this formulation, the designer can fi rst in-

adequately build up an initial map of promising regions of the design

space and then explore designs in that space. Afterward, the designer

can further reform the design space based on the previous exploration

results. There can be some infeasible designs in the autonomously

formalized space, but this can be overridden by implementing geo-

metric constraints.

Interactive Formulation: In the interactive formulation of the

design space, the designer creates multiple spaces and gradually pro-

ceeds to a final design. First, the designer can autonomously form an

initial design space around the given CAD model and creates designs in

this space. Afterward, the designer can select a design and then for-

malize an autonomous space around that design. In this way, the de-

signer can interactively proceed by selecting designs and forming the

design spaces unti l he/ she achieves a final desired design. For example,

Fig. 3 gives the illustration of the interactive formulation of the design

space. In which initial space (design space 1) is formed around the

initial design. A design (marked in green) is selected from this space

and then a new space (design space 2) is formed around the previously

selected design. This process continues unti l the final design is

achieved. During selection, if the designer selects more than one design,

then a new design space is created around the centroid of the selected

designs. The designer can also refine the space after each interaction as

he/ she approaches the final design. Once the final design is selected

then, if desired, it can be further modified easily due to its parametric

Fig. 3. Interactive formulation of design space.

Fig. 2. Design alternatives for a 3D CAD model

with two design parameters (a) are obtained in

2D spaces considering; (b) only space-fi lling

criterion, (c) only non-collapsing criterion, and

both space-fi lling and non-collapsing criteria

using Sf-GDT (d). Design alternatives for the

same CAD model with three parameters (e) are

generated in 3D design space using Sf-GDT

while considering both space-fi lling and non-

collapsing criteria (f).
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narrow down the design space and larger variation of designs may not

be achieved. Therefore, the decision on the selection of appropriate

design parameters should be carefully made.

One strategy, which the designer can follow, is to first detect the

important features of a given model and then these features can be

parametrized with a relatively higher number of parameters and de-

signs can be generated with these parameters. Later, after some trials,

the designer can detect quixotic parameters and eliminate them by

directly modifying the CAD model. Such capability of the generative

design system is recognized as ’designerly’ method, which allows de-

signers to modify the model under consideration and use its generative

capabilities at any phase of the design process [ 12] . After exploring the

designs based on the important features, later, if required, design space

can be explored based on its nominal features.

3.6. Formulation of design space

As stated before, the design space for any CAD model is formed by

the number of the design parameters and their bounds. The di-

mensionality of the design space depends on the number of design

parameter used to define the CAD model and the limits of the design

space are set by defining the upper and lower bounds for each design

parameter. However, formulation of a suitable design space isa decisive

task as the performance of a technique in term of creating better design

alternatives mainly depends on it. Setting up the design space should be

carefully done in order to achieve the maximum performance of the Sf-

GDT and should have sufficient high potential region. If design space is

too narrow then Sf-GDT will result in the creation of similar/ same de-

signs. On the other hand, a vast design space can result in the waste of

computational effort in exploring undesirable regions of the design

space. Typically, a design space is set up by defining the upper and

lower bounds of the design parameters. Where each parameter re-

presents a dimension in the design space. Defining the upper and lowers

bounds usually done based on the initial design specifications and de-

signers’ understanding of the design.

In Sf-GDT, design space formulation can happen in three different

way; explicit formulation, autonomous formulation, and interactive

formulation.

Explicit Formulation: The explicit formulation of the design space

happens when the design specifications are known at the conceptual

stage and based on these specifications the designer limits the space.

Autonomous Formulation: The autonomous formulation helps to

coarsely form the design space as a percentage of the initial parameter

values of the design. This formulation happens when no primary un-

derstanding of the design specifications are available in the conceptual

phase. The autonomous formulation gives a good initial guess of sui-

table space limits. With this formulation, the designer can first in-

adequately build up an initial map of promising regions of the design

space and then explore designs in that space. Afterward, the designer

can further reform the design space based on the previous exploration

results. There can be some infeasible designs in the autonomously

formalized space, but this can be overridden by implementing geo-

metric constraints.

Interactive Formulation: In the interactive formulation of the

design space, the designer creates multiple spaces and gradually pro-

ceeds to a final design. First, the designer can autonomously form an

initial design space around the given CAD model and creates designs in

this space. Afterward, the designer can select a design and then for-

malize an autonomous space around that design. In this way, the de-

signer can interactively proceed by selecting designs and forming the

design spaces until he/ she achieves a final desired design. For example,

Fig. 3 gives the illustration of the interactive formulation of the design

space. In which initial space (design space 1) is formed around the

initial design. A design (marked in green) is selected from this space

and then a new space (design space 2) is formed around the previously

selected design. This process continues until the final design is

achieved. During selection, if the designer selects more than one design,

then a new design space is created around the centroid of the selected

designs. The designer can also refine the space after each interaction as

he/ she approaches the final design. Once the final design is selected

then, if desired, it can be further modified easily due to its parametric

Fig. 3. Interactive formulation of design space.
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narrow down the design space and larger variation of designs may not

be achieved. Therefore, the decision on the selection of appropriate

design parameters should be carefully made.

One strategy, which the designer can follow, is to fi rst detect the

important features of a given model and then these features can be

parametrized with a relatively higher number of parameters and de-

signs can be generated with these parameters. Later, after some trials,

the designer can detect quixotic parameters and eliminate them by

directly modifying the CAD model. Such capabili ty of the generative

design system is recognized as ’designerly’ method, which allows de-

signers to modify the model under consideration and use its generative

capabili ties at any phase of the design process [12] . After exploring the

designs based on the important features, later, if required, design space

can be explored based on its nominal features.

3.6. Formulation of design space

As stated before, the design space for any CAD model is formed by

the number of the design parameters and their bounds. The di-

mensionality of the design space depends on the number of design

parameter used to define the CAD model and the limits of the design

space are set by defining the upper and lower bounds for each design

parameter. However, formulation of a suitable design space isa decisive

task as the performance of a technique in term of creating better design

alternatives mainly depends on it. Setting up the design space should be

carefully done in order to achieve the maximum performance of the Sf-

GDT and should have sufficient high potential region. If design space is

too narrow then Sf-GDT will result in the creation of similar/ same de-

signs. On the other hand, a vast design space can result in the waste of

computational effort in exploring undesirable regions of the design

space. Typically, a design space is set up by defining the upper and

lower bounds of the design parameters. Where each parameter re-

presents a dimension in the design space. Defining the upper and lowers

bounds usually done based on the initial design specifications and de-

signers’ understanding of the design.

In Sf-GDT, design space formulation can happen in three different

way; explicit formulation, autonomous formulation, and interactive

formulation.

Explicit Formulation: The explicit formulation of the design space

happens when the design specifications are known at the conceptual

stage and based on these specifications the designer limits the space.

Autonomous Formulation: The autonomous formulation helps to

coarsely form the design space as a percentage of the initial parameter

values of the design. This formulation happens when no primary un-

derstanding of the design specifications are available in the conceptual

phase. The autonomous formulation gives a good initial guess of sui-

table space limits. With this formulation, the designer can fi rst in-

adequately build up an initial map of promising regions of the design

space and then explore designs in that space. Afterward, the designer

can further reform the design space based on the previous exploration

results. There can be some infeasible designs in the autonomously

formalized space, but this can be overridden by implementing geo-

metric constraints.

Interactive Formulation: In the interactive formulation of the

design space, the designer creates multiple spaces and gradually pro-

ceeds to a final design. First, the designer can autonomously form an

initial design space around the given CAD model and creates designs in

this space. Afterward, the designer can select a design and then for-

malize an autonomous space around that design. In this way, the de-

signer can interactively proceed by selecting designs and forming the

design spaces unti l he/ she achieves a final desired design. For example,

Fig. 3 gives the illustration of the interactive formulation of the design

space. In which initial space (design space 1) is formed around the

initial design. A design (marked in green) is selected from this space

and then a new space (design space 2) is formed around the previously

selected design. This process continues unti l the final design is

achieved. During selection, if the designer selects more than one design,

then a new design space is created around the centroid of the selected

designs. The designer can also refine the space after each interaction as

he/ she approaches the final design. Once the final design is selected

then, if desired, it can be further modified easily due to its parametric

Fig. 3. Interactive formulation of design space.
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narrow down the design space and larger variation of designs may not

be achieved. Therefore, the decision on the selection of appropriate

design parameters should be carefully made.

One strategy, which the designer can follow, is to fi rst detect the

important features of a given model and then these features can be

parametrized with a relatively higher number of parameters and de-

signs can be generated with these parameters. Later, after some trials,

the designer can detect quixotic parameters and eliminate them by

directly modifying the CAD model. Such capability of the generative

design system is recognized as ’designerly’ method, which allows de-

signers to modify the model under consideration and use its generative

capabilities at any phase of the design process [ 12] . After exploring the

designs based on the important features, later, if required, design space

can be explored based on its nominal features.

3.6. Formulation of design space

As stated before, the design space for any CAD model is formed by

the number of the design parameters and their bounds. The di-

mensionality of the design space depends on the number of design

parameter used to define the CAD model and the limits of the design

space are set by defining the upper and lower bounds for each design

parameter. However, formulation of a suitable design space isa decisive

task as the performance of a technique in term of creating better design

alternatives mainly depends on it. Setting up the design space should be

carefully done in order to achieve the maximum performance of the Sf-

GDT and should have sufficient high potential region. If design space is

too narrow then Sf-GDT will result in the creation of similar/ same de-

signs. On the other hand, a vast design space can result in the waste of

computational effort in exploring undesirable regions of the design

space. Typically, a design space is set up by defining the upper and

lower bounds of the design parameters. Where each parameter re-

presents a dimension in the design space. Defining the upper and lowers

bounds usually done based on the initial design specifications and de-

signers’ understanding of the design.

In Sf-GDT, design space formulation can happen in three different

way; explicit formulation, autonomous formulation, and interactive

formulation.

Explicit Formulation: The explicit formulation of the design space

happens when the design specifications are known at the conceptual

stage and based on these specifications the designer limits the space.

Autonomous Formulation: The autonomous formulation helps to

coarsely form the design space as a percentage of the initial parameter

values of the design. This formulation happens when no primary un-

derstanding of the design specifications are available in the conceptual

phase. The autonomous formulation gives a good initial guess of sui-

table space limits. With this formulation, the designer can fi rst in-

adequately build up an initial map of promising regions of the design

space and then explore designs in that space. Afterward, the designer

can further reform the design space based on the previous exploration

results. There can be some infeasible designs in the autonomously

formalized space, but this can be overridden by implementing geo-

metric constraints.

Interactive Formulation: In the interactive formulation of the

design space, the designer creates multiple spaces and gradually pro-

ceeds to a final design. First, the designer can autonomously form an

initial design space around the given CAD model and creates designs in

this space. Afterward, the designer can select a design and then for-

malize an autonomous space around that design. In this way, the de-

signer can interactively proceed by selecting designs and forming the

design spaces until he/ she achieves a final desired design. For example,

Fig. 3 gives the illustration of the interactive formulation of the design

space. In which initial space (design space 1) is formed around the

initial design. A design (marked in green) is selected from this space

and then a new space (design space 2) is formed around the previously

selected design. This process continues until the final design is

achieved. During selection, if the designer selects more than one design,

then a new design space is created around the centroid of the selected

designs. The designer can also refine the space after each interaction as

he/ she approaches the final design. Once the final design is selected

then, if desired, it can be further modified easily due to its parametric

Fig. 3. Interactive formulation of design space.
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with two design parameters (a) are obtained in

2D spaces considering; (b) only space-fi lling
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collapsing criteria (f).

S. Khan, M.J. Awan

https://doi.org/10.1017/pds.2021.603 Published online by Cambridge University Press

https://doi.org/10.1017/pds.2021.603


3426  ICED21 

office table weight while meeting the functional requirements - depending on optimization parameters 

(eg voxel size). By varying the functional levels and the optimization parameters, the designer gets a 

variety of shapes.  

 

 

Figure 4. Topological algorithm GD tool coded in C-K - based on Matejka et al. 2018 

Generativity analysed within the canonical model:  

– the designer designs a variety of tables (Xi, Fj), on a functional map. Hence a topology.  

– the object model is different: in MOEA case, design parameters determine functions; here the 

model can be punctually inverted: for one functional definition, topological optimization 

determines the design parameters (matter or not matter in each voxel). Still the model is only 

punctually invertible and so the topology is a concept.  

– This GDA tool seems different from MOEA - but formally it leads to quite similar results: a 

set of artefacts ordered according to functional dimensions, with design parameters for each 

artefact.  

4.1.4 MAP-Elites Quality-Diversity (QD) algorithm 

MAP-Elites QD algorithm was used in a large variety of problems. One good illustration is the mapping 

of gaits of a hexapod robot (Cully et al., 2015, Koos et al., 2013). In GDA canonical model (see Fig. 5 

below): the designer has a model of an hexapod described by 24 parameters, which create numerous 

gaits, from purely quadruped gait to classic tripod gait. The gait is a phenotype that can be described in 

several ways. For instance, one phenotype dimension can be 1=the speed in forward-axis - to be 

maximized. The concept can be formulated as: a map of gaits that present an optimal 1. This map is 

unknown and the designer can work on the space in which she will design these gaits. She has to propose 

a mapping criteria 2. She can map the 1-optimal gaits according to the y-axis speed - and this will 

probably result in a Pareto front. She can choose to map the gaits according to another phenotype 

dimension such as the fraction of time that each of the 6 legs touches ground (6-dimensional map). 

Based on 1 and 2, the MAP-Elites algorithm constructs an elite for each 2 niche.  

Generativity analysed within the canonical model:  

– The design process results in a topology of artefacts. Compared to Pareto front GDA, user 

relies on a phenotype feature that is not functional; compared to space-filling GDA, user 

defines his/her own phenomenological feature. Hence mapping criteria is a free parameter of 

the tool.  

– The map can be seen as a generalization of topological optimization GDA tools: map 

dimensions are made by a phenomenological feature 2 and there is 1-optimized genotype (in 

topological space: for each set of functional levels, there is a shape that minimizes the weight).  
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Figure 5. Map-Elitesalgorithm GD tool, from (Cully et al., 2015, Koos et al., 2013) 

4.2 Characterizing the generativity of GDA tools: the design of topologies 

We can synthesize the results just obtained above:  

1. We confirm that GDA tools don’t generate one artefact but generate a topology of artefacts 

which is the locus of the generative power of the algorithm.  

2. In this topology design process, GDA tools differ (at least!) by the degree of freedom they offer 

for building the topology. Pareto front GDA tools maximize correlated functions; space filling 

techniques maximize phenotypic distances; topological optimization paves functional space with 

weight optimal artefacts; Map-Elites has the interesting (generic) property to be free in term of 

phenomenological and genotypical features. 
3. As predicted, the GDA tools also open diverse directions for design expansions Each GDA tool 

generates a specific topology which impacts DP’s or FR’s generativity (see table below). One can 

predict the emergence of complementary GDA algorithms to work on the relevant 1i nX =  , 

explore the 
j 1 mφ = 

 and evolve the resulting 0.M  (Gaier et al., 2017, Bossens et al., 2020). One 

can also predict the emergence of algorithms with double generativity (on DPs and FRs).  
4. Analysing GDA as tools for designing topologies has several consequences for understanding 

their generativity, their value and their use:  

– GDA tools help analyse interdependences between functions, not only correlation -as in 

Pareto front MOEA- but also independences - as in QD algorithm.  

– The capacity to map independences can’t be underestimated in engineering design: this is 

precisely the capacity required to design resilient systems, capable of being independent of 

external events. Hence GDA tools might actually be useful for designing resilience.  

– Mapping phenotypes to genotypical elites, GDA tools also contribute to “invert” usual models 

that compute functional requirements from design parameters. The maps generated by GDA 

tools gives a genotype for each phenotype niche. Doing so, GD A tool actually contributes to  

uncover general laws and models linking phenotypes to their genotypical roots. Hence it 

contributes to establish design rules. Mac Cormack (McCormack et al., 2005) considered that 

GDA tools would lead designers to focus on the design of design rules and GDA tools would 

then generate artefacts based on these new design rules. Fifteen years later, one could rather 

say that GDA tools could be an essential tool to uncover design rules and hence improves 

the generativity of users.  

Table 1. Expansion directions opened by GD-generated topology 
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Fast Damage Recovery in Robotics with the
T-Resilience Algorithm

Sylvain Koos, Antoine Cully and Jean-Baptiste Mouret⇤

Damage recovery is critical for autonomous robots that need

to operate for a long time without assistance. M ost current

methods are complex and costly because they require antici-

pating each potential damage in order to have a contingency

plan ready. As an alternative, we introduce the T-resilience al-

gorithm, a new algorithm that allows robots to quickly and au-

tonomously discover compensatory behaviors in unanticipated

situations. This algorithm equips the robot with a self-model

and discovers new behaviors by learning to avoid those that

perform differently in the self-model and in reality. Our algo-

rithm thusdoes not identify the damaged parts but it implicitly

searches for efficient behaviors that do not use them. We evalu-

ate the T-Resilience algorithm on a hexapod robot that needs to

adapt to leg removal, broken legs and motor failures; we com-

pare it to stochastic local search, policy gradient and the self-

modeling algorithm proposed by Bongard et al. The behavior

of the robot is assessed on-board thanks to a RGB-D sensor and

a SLAM algorithm. Using only 25 tests on the robot and an

overall running time of 20 minutes, T-Resilience consistently

leads to substantially better results than the other approaches.

1. Introduction

Autonomous robots are inherently complex machines that have

to cope w ith a dynamic and often hostile environment. They

face an even more demanding context when they operate for a

long time without any assistance, whether when exploring re-

mote places (Bellingham and Rajan, 2007) or, more prosaically, in

a house w ithout any robotics expert (Prassler and Kosuge, 2008).

As famously pointed out by Corbato (2007), when designing such

complex systems, “ [we should not] wonder if some mishap may

happen, but rather ask what one will do about it when it occurs” .

In autonomous robotics, this remark means that robots must be

able to pursue their mission in situations that have not been an-

ticipated by their designers. Legged robots clearly il lustrate this

need to handle the unexpected: to be as versatile as possible,

they involve many moving parts, many actuators and many sen-

sors (Kajita and Espiau, 2008); but they may be damaged in nu-

merous different ways. These robots would therefore greatly ben-

efit from being able to autonomously find a new behavior if some

legs are ripped off, if a leg is broken or if one motor is inadver-

tently disconnected (Fig. 1).

Fault tolerance and resilience are classic topics in robotics and

engineering. The most classic approaches combine intensive test-

ing w ith redundancy of components (Visinsky et al., 1994; Ko-

ren and Krishna, 2007). These methods undoubtedly proved their

usefulness in space, aeronautics and numerous complex systems,

but they also are expensive to operate and to design. More impor-

tantly, they require the identification of the faulty subsystems and

a procedure to bypass them, whereas both operations are difficult

for many kinds of faults – for example mechanical failures. An-

other classic approach to fault tolerance is to employ robust con-

trollers that can work in spite of damaged sensors or hardware

⇤ Sylvain Koos, Antoine Cully and Jean-Baptiste Mouret are with the ISIR, Univer-
sité Pierre et Marie Curie-Paris 6, CNRS UMR 7222, F-75252, Paris Cedex 05,
France. Contact: mouret@isir.upmc.fr

(a) Normal state. (b) Two legs ripped out.

(c) One broken leg. (d) Two unpowered motors.

Figure 1: Examples of situations in which an autonomous robot

needs to discover a qualitatively new behavior to pur-

sue its mission: in each case, classic hexapod gaits can-

not be used. The broken leg example (c) is a typical

damage that is hard to diagnose by direct sensing (be-

cause no actuator or sensor is damaged).

inefficiencies (Goldberg and Chen, 2001; Caccavale and Villani,

2002; Qu et al., 2003; Lin and Chen, 2007). Such controllers usu-

ally do not require diagnosing the damage, but this advantage is

tempered by the need to integrate the reaction to all faults in a

single controller. Last, a robot can embed a few pre-designed be-

haviors to cope w ith anticipated potential failures (Görner and

H irzinger, 2010; Jakimovski and Maehle, 2010; Mostafa et al.,

2010; Schleyer and Russell, 2010). For instance, if a hexapod robot

detects that one of its legs is not reacting as expected, it can drop it

and adapt the position of the other legs accordingly (Jakimovski

and Maehle, 2010; Mostafa et al., 2010).

An alternative line of thought is to let the robot learn on its own

the best behavior for the current situation. If the learning pro-

cess is open enough, then the robot should be able to discover

new compensatory behaviors in situations that have not been

foreseen by its designers. Numerous learning systems have been

experimented in robotics (for reviews, see Connell and Mahade-

van (1993); Argall et al. (2009); Nguyen-Tuong and Peters (2011);

Kober and Peters (2012)), w ith different levels of openness and

various a priori constraints. Many of them primarily aim at auto-

matically tuning controllers for complex robots (Kohl and Stone,

2004; Tedrake et al., 2005; Sproew itz et al., 2008; Hemker et al.,

2009) whereas only a handful of these systems has been explicitly

tested in situations in which a robot needs to adapt itself to un-

expected situations (Mahdavi and Bentley, 2003; Berenson et al.,

2005; Bongard et al., 2006).

Finding the behavior that maximizes performance in the cur-

rent situation is a reinforcement learning problem Sutton and Barto

(1998), but classic reinforcement learning algorithms (e.g. TD-
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5 CONCLUSION  

We analysed GDA in the light of design theory, to better characterize their generative power. Since 

these algorithms are based on a parametric of object, their generativity might sound limited to generate 

‘varied artefacts’ from the same model, however we show that GDA design topologies of artefacts - ie 

large, ordered, structured, actionable sets of artefacts. GDA finally open the field of topological 

generativity. We show that GDA tools evolve today to enable more degree of freedom in the topology 

design, from the analysis of interdependences to the analysis of independences, leading possibly to 

designing resilience or to uncover design rules.  

This design-theory based analyses of GDA tools helps uncover some of their critical properties, 

identifies some development trends and even suggests ways for further improvement. Conversely, the 

analysis invites to deepen design theory: with the help of C-K theory applied to Topos (Hatchuel et al., 

2019) it might be possible to give an enriched account of the design of topologies by GDA tools, 

hence better addressing the issues of resilient design and the design of design rules.  
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