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ABSTRACT

Generative design (GD) algorithms is a fast growing field. From the point of view of Design Science,
this fast growth leads to wonder what exactly is 'generated' by GD algorithms and how? In the last
decades, advances in design theory enabled to establish conditions and operators that characterize
design generativity. Thus, it is now possible to study GD algorithms with the lenses of Design Science
in order to reach a deeper and unified understanding of their generative techniques, their differences
and, if possible, find new paths for improving their generativity.

In this paper, first, we rely on C-K ttheory to build a canonical model of GD, based independent of the
field of application of the algorithm. This model shows that GD is generative if and only if it builds,
not one single artefact, but a "topology of artefacts" that allows for design constructability, covering
strategies, and functional comparability of designs. Second, we use the canonical model to compare
four well documented and most advanced types of GD algorithms. From these cases, it appears that
generating a topology enables the analyses of interdependences and the design of resilience.
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1 INTRODUCTION: GENERATIVE DESIGN ALGORITHMS THROUGH THE
LENSES OF DESIGN SCIENCE

Generative design algorithms (GDA) is a fast growing field that develops “design approaches that use
algorithms to generate designs” (Caetano et al., 2020). Advances in CAD software (in particular with
the launch of Autodesk so-called generative design (Kazi et al., 2017)), computing power and new
computer science algorithms have contributed to the emergence of various “generative design tools”
(Buonamici et al., 2020) with multiple applications. This fast growth leads to critical questions about
generative design algorithms from the point of view of design science. What is exactly ‘generated’ and
how? What means progress in the field? And more fundamentally, what can design science say for the
theoretical understandings and enhancement of generative algorithms?

Design science have also achieved major steps. C-K theory has paved the way to new formalizations
of a design process with a high level of generality. Design science is now able to establish conditions
and operators that define and enable design generativity and generative power. Such notions are now
independent of “what” is designed and of classic technical models. They describe generativity as the
transformation of known objects into new ones using a new abstract language which received wide
validation in the literature: concepts, generic extensions, restrictive and expansive partitions, identity
of objects, independence and splitting structures of knowledge (Hatchuel et al., 2011, Le Masson et
al., 2016). Thus, it is now possible to study Generative design algorithms with the lenses of Design
Science in order to reach a deeper and unified understanding of their generative techniques, their
differences and, if possible, find new paths for improving their generativity.

This paper develops such study through four steps that correspond to the sections of the article. In the
literature review (part 2), we describe a brief state of the art of GDA and applications. In part 3, since
any GDA is necessarily a constructive and iterative process, applying C-K theory to such constraints
we can predict a general C-K logic for GDA. We define it as a canonical model of GDA that is not
dependent of the field of application of the algorithm. This model mainly shows that GDA is
generative if and only if it builds, not one single artefact, but a special “topology of artefacts” that
allows for design constructability, covering strategies, and functional comparability of designs. In part
4, using the canonical model we compare the generative power of four well documented and most
advanced types of GDA, which confirm their capacity to generate a ‘topology of artefacts’.

2 LITERATURE REVIEW: THE VARIETY OF GD ALGORITHMS INVENTIONS

2.1 GD definition.

Recent reviews on GDA (Caetano et al., 2020, Mountstephens and Teo, 2020) share a definition of
GDA: “a design approach that uses algorithms to generate designs” (Caetano et al., 2020); GDA is
also seen “as the exploration of the principle of generating complex forms and patterns from a simple
specification [with an algorithm]” (Shea et al., 2005, McCormack et al., 2005). Some authors insist on
potential “creative outcomes” (Bernal et al., 2015) or “happy accidents” ie “unexpected results” born
from “the number of design variations” and “the range of the variations”, that positively impact the
design process” (Chaszar and Joyce, 2016). Hence GDA definition focuses on the presence of an
algorithm but remains relatively fuzzy on what exactly generativity consists in. The notion of the
variety of designs provided by the software is key in GD A, even if the link between design variations
and GD generativity is not clearly explained and loosely related to how GDA provokes ‘surprises’.

2.2 A variety of Generative Design techniques.

GDA s clearly related to algorithmic rule-based processes that mainly refer to evolutionary techniques
but are not limited to them (Caetano et al., 2020) (p. 294) - More specifically, (Mountstephens and Teo,
2020) identifies four generation methods: genetic algorithms, Shape grammars, L-Systems, Swarm
intelligence - the authors mention other useful techniques: parametric modeling and topology
optimisation. One could also add the recent use of techniques coming from Al like Generative
Adversarial Networks (GAN) Variational AutoEncoders (VAE) to enhance topology optimization (Oh et
al., 2019) or to enable shape parameterization for further generation processes (Burnap et al., 2016,
Umetani, 2017). In this paper, we will rely on well-known Multi-Objective Generative Algorithms (also
known as Multi-Objective Evolutionary Algorithms - MOEA) - and we will pay a particular attention to
a new family of algorithms called quality-diversity, which are particularly relevant for GDA: quality-
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diversity algorithms (Pugh et al., 2016) “evolve an archive of solutions which is, according to a user-
defined behaviour space, as diverse as possible while obtaining for each solution a high performance”
(Bossens et al., 2020). This family contains for the moment two prototypical algorithms: Novelty-
Search with Local Competition (Lehman and Stanley, 2011a) and Multidimensional Archive of
Phenotypic Elites (MAP-Elites) (Mouret and Clune, 2015).

2.3 Generativity in GD algorithms: a need for clarification and unification.

The field of GDA presents multiple streams of works that develop original algorithms applied to ad
hoc design cases. Each software has its applications and illustrates one form of generativity. For
instance:

- Byrne et al present a multi Objective Evolutionary Algorithm for design exploration and
optimisation of a wing profile (Byrne et al., 2014);

- Multi-Objective Genetic Algorithm (in Autodesk) has been used in architectural space planning
(Nagy et al., 2017), the design of office table (Nagy et al., 2017) (Chen et al., 2018);

- Novelty Search was used to evolve robot controllers into a deceptive maze (Pugh et al., 2016,
Lehman and Stanley, 2011b) or to design images (Woolley and Stanley, 2011);

- Map-Eliteswas used to design a self-repairing hexapod robot (Cully et al., 2015) or wing profile
(Cully et al., 2015) as well as in video game (Fontaine et al., 2019), automated image generation
(Nguyen et al., 2015), robot morphologies and controllers (Hart et al., 2018);

- Autogenetic Design Theory was used for gearbox design (Winsch et al., 2012).

This variety of applications calls for a clarification of the design logic associated to each GD software.

2.4 Thelocus of generativity in GDA: an engine to generate a population of artefacts?

Self-evidently, GDA operates on a parametrically defined object with constraints on the parameters,
which restrict its use in design processes. (Mountstephens and Teo, 2020) proposed to distinguish
between autonomous and interactive generative design: in a parametrically defined solution space,
autonomous design might sound quite self-evident and generativity could appear only coming from
interaction (capacity to use the GDA in a more or less creative way, at varied moments in the design
process). Still, maybe counterintuitively, in this paper we first focus precisely on the specific
generativity of the algorithm itself, its capacity to generate a collection of varied artefacts. Even if this
generativity might sound limited (‘parametric’?), we investigate how a unique property of GDA
software lies in its capacity to offer a structured set of alternatives, and, then, how the user might react
to this set.

In this paper, we focus on the generative logic of GDA such as: MOGA, quality-diversity algorithms,
topologic optimisation, particle swarm optimisation, space filling techniques... Qualifying their
generativity of these algorithms is not an easy task - and, to our knowledge, no systematic study was
done until now. Hence, our research question: how can we characterize formally and
systematically the generativity logic of GDA ‘engines’?

3 A C-KCANONICAL MODEL TO UNCOVER THE GENERATIVITY OF GDA

3.1 Method: casting GDA in C-K theory.

C-K theory (Hatchuel and Weil, 2009), is one of the most advanced formulations of a design theory
(Hatchuel et al., 2018). C-K theory presents the advantage to be independent of what is designed and
can account for very strong forms of generativity (Hatchuel et al., 2011).

Casting a design method in C-K theory has already been done in other papers (Reich et al., 2012, Kroll
et al., 2014). We will follow the same method. We first codify in a canonical model what can make the
generativity of a GDA. Based on this analytical model, we analyse the generativity of a sample of
published GDA.

3.2 A canonical model of GDA: concepts, object model, expansions.

3.2.1 Knowledge base - object model and splitting condition
A GDA operates on an initial state of knowledge K, which contains an object model M, with:
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— Variables that can be assimilated to ‘design dp_arameters’_ or also called ‘genotypical
parameters’ - parameters that are considered as directly actionable by the designer, noted

Xi=1...n '

— Variables that can be assimilated to functional (or behavioural or phenotypical) features, o;.
They are not directly actionable; their value is computed in the object model: X, | — o;.

— One artefact is a point value X;_; , that has the features ¢, ..

GDA apply in situations where:
— The object model Mo is not invertible: given specific ¢, ., the object model M, doesn’t

enable to find even one X,_;  that meets ¢, . infinite reasonable time (see H1 below).
— The object model Mg is not derivable not continuous, which means that a small change in one
X, can provoke strong changes in @i, and conversely a small change in ¢; can

correspond to a strong change in X,_, . In particular, this means that it is not possible, for a

known object (X ,,¢., ), to know what is its neighbourhood in terms of genotype and

(even less) in term of phenotype - so that in this kind of Ko, there is no self-evident solution to
ahprol?]lem of optimisation, ie finding an object that, at least locally, phenotypically dominates
the others.

Design theory leads us to wonder whether this initial knowledge base Ko is splitting (Le Masson et al.,
2016), ie non-modular and non-deterministic. Modularity would mean that some design parameters
could be added without effect on phenomenology. As we just mentioned, initially, in Ko, the design
parameters are supposed to influence phenomenology. Determinism would mean that some design
parameters would determine the phenomenological behaviour: again, as we just mentioned, initially,
in Ko, one can’t say that such deterministic law exist. So in usual contexts, we have:

Property P1: usually GDA operates on a knowledge base that meet the splitting condition, hence
GDA is compatible with a generative process.

3.2.2 Concepts as departures of a GDA:

Following C-K theory, any GDA that aims to design some X begins necessarily with a concept of the
form “X that fulfils P(X)”, P(X) being a series of properties of X such that:
— P(X) are undecidable in Ky ie. there is no constructive rule that allows to design such X with
Ko (of course, since we want to describe the mechanism of the GDA ‘engine’ following the C-K
operators, the ‘engine’ itself is not in K; otherwise it would appear as a constructive rule and the
design is finished)
— P(X) will be constructible, true and compatible in some established K, state of K.
It has to be underlined that here is a specific feature of GDA: GDA actually work to generate a
collection of artefacts, ie in the concept {X, P (X)}, X actually refers to a collection of artefacts; and P
actually refers to a property of this collection: in the concept “the set of wing profiles that form a
Pareto front”, we want to generate a collection (X) of wing profiles, and this collection has the
property to form a Pareto front (this is a property of the population, and not of a lone artefact). Hence a
second property:

P2: usually GDA designs a collection of artefacts with specific property, this property can make
that it is undecidable whether it is possible or impossible to get a population with property P.

P has to be interpretable (hence it is in Ko) and just needs to make X undecidable in Ko. Illustration:
— "a collection of N artefacts": it can be generated by instantiating Mo N-times. It is not a
concept.
— "a collection of N artefacts generated by random variation of genotype™: it can easily be
generated as soon as one knows of random number generator. This is not a concept.
— "a collection of N artefacts generated by variation of phenotype": if the object model is non-
invertible, this is a concept.

3.2.3 Expansion in space K and concepts partition in space C

C-K theory models Concept partitions and expansions through tree structured sequences of nested
partitions. They describe a constructive refinement of Co that should lead to the design of X; each of
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these steps may activate space K, hence creating a knowledge expansion. At least, the last refinement
produces an acceptable design that is integrated as a new true object in space K.
In the case of GDA, the algorithm is parameterized to produce knowledge and concept expansions. In
a genetic algorithm, this is done by variation-selection. But the partitions can’t be easily followed.
When successive partitions can’t be easily followed, it is possible to evaluate the expansions:
— If the initial proposition {X, P(X)} was a concept and has become knowledge (in C-K terms:
there was an initial disjunction and there is a final conjunction), then there was C-expansion.
— By comparing the knowledge base before (Ko) and after the GD process (Kfinal), ONe can
estimate K-expansion.

P3: a criteria to evaluate the generativity of a GD is twofold: a- is there a conjunction after an
initial disjunction? b- what is the knowledge expansion between Ko and Kiinal?

P1, P2, P3 are the main properties of a canonical model of GDA in C-K framework (Fig. 2)

C A population {( =1, @=1-m)1-n} erations Variations on Capacity to compare 4
with property P based on: '
property \ - criteria P / genotype param phenotypica
Nwen the ii=1-n features
Based on some parameters (initial collection ¥ t
data, computation param...-)\ of artefacts Genotype param Phenotype param:
/\ M variations ii=1-n = Xij=1-n jj=1-m
) Topology other d i
Topology with set L=l Rules to compute: J

paramets, at time t, param, other time...

A topology on

object L

object model

model

X=1e —™ Q:l--m

not-invertible,
splitting

Figure 1. A canonical model of GD algorithms in C-K. P1: object model is non-invertible, a
priori non continuous (hence splitting); P2: Property P is undecidable; P3: generativity is
measured on disjunction-conjunction and K-expansions (a topology on object model Mo)

3.3 Avoiding the combinatorial trap in GDA: C-K conditions for generativity and the
emergent topology of designs.

3.3.1 Variation and selection in GDA: the combinatorial trap

GDA raise a critical question for design theory: in which way can an algorithm be generative in the
sense of C-K theory? Usual applications of C-K theory consider that K-space contains propositions
(that are true or false) as well as propositions that can be logically deducted one from the other -
hence not every new proposition is a K-expansion. Hence the knowledge base contains an internal
“knowledge production engine” and one considers that there is expansion only if one goes ‘beyond’
this internal knowledge production engine. In the case of a GDA, our hypothesis is:

H1: we consider that classical computations techniques in finite time are available in K and their
results are not considered as K-expansions. The algorithm that is under investigation is not in K.

3.3.2 Generativity in GD: the emergence of atopology of artefacts.

Building on properties P1 to P3 and hypothesis H1, what does C-K predict on GDA generativity?

— According to P1 and H1: even GDA-knowledge base is purely made of combinatorial
knowledge, the knowledge base is splitting and enables generativity

— According to P2 and H1: concepts in GDA are related to specific properties associated to a
collection of artefacts - the concept doesn’t come from the number of entities (because of H1);
hence the concepts comes from the structure and descriptors of this collection.

— According to P3: expansions can be evaluated by analysing initial and final C and final K-
expansion. In the end of a GDA process, one gets a collection of artefacts that meet the
structural property P. So that the generativity is in this new structure of the collection of
artefacts.

At first sight, GDA appears trapped into a closed world of combinatorial designs. To avoid such trap,
C-K theory calls for thorough examination of all knowledge produced by the algorithm. Clearly this
knowledge is much more extended than the single artefacts that are designed. We have to recognize
that the GDA not only explores single designs but compares them, positions them one to another,
creating structures in the collection of artefacts. GDA provides new knowledge on the topology of Xis.
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The expansion comes from the emergence of a ‘geometry’, a space in which artefacts can be relatively
positioned. This new structure is a topology on the model of objects, in the sense that:
— GDA expresses each object in all its dimensions (Xizl...n’(szl...m>' Hence this space is
multidimensional, linking genotypic dimensions and phenotypic dimensions.
— GDA enables to distinguish certain objects - each object of the final collection is carefully
separated (in singletons).
— GDA also enables to not distinguish other objects: all the ‘dominated’ artefacts are considered
in the same “neighbourhood”
— In this topology, the object model can be inverted (almost) everywhere: for each point of the
topology, one relevant artefact can be associated (with respect to the criteria P). It means that
in the resulting topology the knowledge base is not splitting anymore.

3.3.3 How topological knowledge provides a source of generativity for the user

For sure, there is a circular logic here: the topology that emerges is dependent of the iterative
algorithm and another GDA technique would produce a different topology. Conversely, the
information on the topology of designs can improve the GDA. However, what counts for the
generativity of GDA is the type of new knowledge extracted from the topology that appeared.
Information linked to this topology helps to explore dimensions of expansion predicted by canonical
model Fig. 1:

— The topology can be extended by extending X, .9, ., and/or the model object M,:

adding or deleting some X;, changing range, or modifying ¢, , .
— The topology of the X,_, .9, ,, revealed by the population of designs can help to compute

some property P that will be introduced to change the iteration rules. E.g an algorithm can use
the density of designs in some areas of the Xis to evolve the selection rules.

4 GDA: UNCOVERING TOPOLOGIES AND COMPARING GENERATIVITY

We now have analytical tools (canonical model) and clear predictions (GDA tools generate topology
of artefacts). We test them on a sample of most recent GDA. This sample was built on GDA recent
reviews (Caetano et al., 2020, Mountstephens and Teo, 2020). We hence selected the following
methods:

— MOEA (with one particular illustrative use case: (Byrne et al., 2014)),

— space-filling techniques (one particular illustrative use case: (Khan and Awan, 2018)),

— topological optimization (illustrative use case: (Matejka et al., 2018))

— Quality-Diversity (QD) algorithms (illustrative use case: (Clune et al., 2013))

4.1 Analysis of four GDA tools with the C-K canonical model

4.1.1 Multi-Objective Evolutionary Algorithm (MOAE)

Byrne et al. (Byrne et al., 2014) present a use case evolving parametric aircraft models. Coded with the
canonical model (see Fig. 2 below): the designer knows a model of the aircraft, where given design
parameters lead to two particular functional performances, Lift and Drag. The concept is: “A Pareto
Front on the functions, max Lift, min Drag”. The designer makes variations on a subset of three
parameters among the set of possible design parameters and run the GDA tool, powered by a multi-
objective evolutionary algorithm (MOEA) non-sorting genetic algorithm-11 (NSGA-II) (Deb et al.,
2002). This leads to a first Pareto front (see blue dots in the figure). Then the designer selects a larger
set of parameters and run the algorithm again, to get another Pareto front (see red dots in the figure).

3424 ICED21

https://doi.org/10.1017/pds.2021.603 Published online by Cambridge University Press


https://doi.org/10.1017/pds.2021.603

/"

APhretoErontloh UnaxOftC); minDragl}), I~ Genetic algorithm for Pareto fronts (NSGA I1)

@ * select 3 (or 5) parameters to be varied

» select functions for the Pareto front
Figure 2. Pareto front GDA tool (MOEA NSGA-II), from Byrne et al 2014. Parametric object
model in K. GDA generates the topology associated to a Pareto front.
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Generativity analysed within the canonical model:
— the designer designs a Pareto front (not a single aircraft). We have a clear topology: single
artefacts along the front, dominated artefacts below the front, no artefacts beyond.
— Modifying the design parameters to be varied, the designer gets several topologies (in case 1,
the designer only evolved the wing profile, in case 2, the designer also evolved the fuselage).

4.1.2 Space-filling generative design

Khan & Awan (Khan and Awan, 2018) give (among others) an simple illustration of a “generative
design technique for exploring shape variation”, based on space-filling technique. In GD canonical
model (see Fig. 3 below): in K, the designer disposes of a parameterized CAD-model (here a lamp,
with two design parameters). The concept is: a map that represents the diversity of possible CAD
shapes. To this end, the designer selects mapping criteria P: either space-filling (the criteria pushes to
maximise the distance between shapes), or non-collapsing criteria (avoiding too different shapes
(Dragulji¢ et al., 2012)) or both. Powered also by MOES NSGA-II, the GD tool generates a map of
CAD shapes.

A map that represents the variety of CAD models Genetic algorithm for Pareto fronts (NSGA 1), K
— adapted to population constraints distribution
From selected design parameters ; - L —— « 2 parametersto be varied
T / « Different properties P (P, P»...)
/—\ for the collection (mapping criteria)
Based on P;: Based on P,: Based on P, and P;: \ 1\
space-filling non-collapsing space-filling and non- — ~
criteria only criteria only collapsing criteria Variations on n=2
param No function, only
24 2é e 5 Jaseear 52, Saseraas! | ¥ CAD file
. ~% . = 5 - Genotype param
Y ' a ¥ ’CL e & - | ‘/ ii=1--n = Xii=1--n
: ; a . B b
L sl fe W Ty . Rulesto compute
‘ { (eaaae! FasErsE” iaad 4 ; object file
s v iy Y ey model
Y ¥ v W ¥ 1 - ] 3 vy v

Figure 3. Space-filling GD tool (MOEA-NSGA-II) from Khan et al. 2014

Generativity analysed within the canonical model:
— the designer designs a map (not a single CAD shape) - hence a topology of artefacts.
— Formally speaking, the only difference with Pareto front case is that the former relies on
mapping criteria whereas Pareto case, the mapping criteria are the function themselves.

4.1.3 Topological optimization algorithm

Matejka et al. present an example of topological optimization GDA for “exploration and visualization
of large-scale generative design data set” (Matejka et al., 2018). In GD canonical model (see Fig. 4
below): in K, the designer has defined functions of the object (an office table) and the design
parameters are only the presence or absence of matter. The concept can be formulated as “a large
variety of (possibly surprising) office tables”. To design one office table (CAD shape), the designer
can fix a level to each of the constraints and use a topological optimization algorithm, optimizing the
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office table weight while meeting the functional requirements - depending on optimization parameters
(eg voxel size). By varying the functional levels and the optimization parameters, the designer gets a
variety of shapes.

A large variety of (possibly surpising) office Repeated topological optimization
tables, generated by topological optimization * With selected functionsto be varied
— » Algo parameters (voxel size...)
Modifying initial constraints/functions .
Modifying the parameters of the -{77 . Variation step on
topological optimisation algorithm L - functions ;
¥
= ~ Genotype param Set functions,
X / ii=1-n = Xij=1-n optimize weight
& ’ L Topological
- ) optimization:
/' A - » > object X oqu = file
model

Figure 4. Topological algorithm GD tool coded in C-K - based on Matejka et al. 2018

Generativity analysed within the canonical model:

— the designer designs a variety of tables (X, F;), on a functional map. Hence a topology.

— the object model is different: in MOEA case, design parameters determine functions; here the
model can be punctually inverted: for one functional definition, topological optimization
determines the design parameters (matter or not matter in each voxel). Still the model is only
punctually invertible and so the topology is a concept.

— This GDA tool seems different from MOEA - but formally it leads to quite similar results: a
set of artefacts ordered according to functional dimensions, with design parameters for each
artefact.

4.1.4 MAP-Elites Quality-Diversity (QD) algorithm

MAP-Elites QD algorithm was used in a large variety of problems. One good illustration is the mapping
of gaits of a hexapod robot (Cully et al., 2015, Koos et al., 2013). In GDA canonical model (see Fig. 5
below): the designer has a model of an hexapod described by 24 parameters, which create numerous
gaits, from purely quadruped gait to classic tripod gait. The gait is a phenotype that can be described in
several ways. For instance, one phenotype dimension can be ¢i=the speed in forward-axis - to be
maximized. The concept can be formulated as: a map of gaits that present an optimal ¢i. This map is
unknown and the designer can work on the space in which she will design these gaits. She has to propose
a mapping criteria @,. She can map the ¢:-optimal gaits according to the y-axis speed - and this will
probably result in a Pareto front. She can choose to map the gaits according to another phenotype
dimension such as the fraction of time that each of the 6 legs touches ground (6-dimensional map).
Based on @1 and ¢z, the MAP-Elites algorithm constructs an elite for each ¢, niche.

Generativity analysed within the canonical model:

— The design process results in a topology of artefacts. Compared to Pareto front GDA, user
relies on a phenotype feature that is not functional; compared to space-filling GDA, user
defines his/her own phenomenological feature. Hence mapping criteria is a free parameter of
the tool.

— The map can be seen as a generalization of topological optimization GDA tools: map
dimensions are made by a phenomenological feature ¢, and there is @i-optimized genotype (in
topological space: for each set of functional levels, there is a shape that minimizes the weight).
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Figure 5. Map-Elitesalgorithm GD tool, from (Cully et al., 2015, Koos et al., 2013)

ii=1-n = Xii=1-n

. Rules to compute:
object
model

X=q. 7 10 2

Characterizing the generativity of GDA tools: the design of topologies

We can synthesize the results just obtained above:

1.

2.

We confirm that GDA tools don’t generate one artefact but generate a topology of artefacts
which is the locus of the generative power of the algorithm.

In this topology design process, GDA tools differ (at least!) by the degree of freedom they offer
for building the topology. Pareto front GDA tools maximize correlated functions; space filling
techniques maximize phenotypic distances; topological optimization paves functional space with
weight optimal artefacts; Map-Elites has the interesting (generic) property to be free in term of
phenomenological and genotypical features.

As predicted, the GDA tools also open diverse directions for design expansions Each GDA tool
generates a specific topology which impacts DP’s or FR’s generativity (see table below). One can

predict the emergence of complementary GDA algorithms to work on the relevant X, .,

explore the ¢,_, . and evolve the resulting M,. (Gaier et al., 2017, Bossens et al., 2020). One

can also predict the emergence of algorithms with double generativity (on DPs and FRs).

Analysing GDA as tools for designing topologies has several consequences for understanding

their generativity, their value and their use:

— GDA tools help analyse interdependences between functions, not only correlation -as in
Pareto front MOEA- but also independences - as in QD algorithm.

— The capacity to map independences can’t be underestimated in engineering design: this is
precisely the capacity required to design resilient systems, capable of being independent of
external events. Hence GDA tools might actually be useful for designing resilience.

— Mapping phenotypes to genotypical elites, GDA tools also contribute to “invert” usual models
that compute functional requirements from design parameters. The maps generated by GDA
tools gives a genotype for each phenotype niche. Doing so, GD A tool actually contributes to
uncover general laws and models linking phenotypes to their genotypical roots. Hence it
contributes to establish design rules. Mac Cormack (McCormack et al., 2005) considered that
GDA tools would lead designers to focus on the design of design rules and GDA tools would
then generate artefacts based on these new design rules. Fifteen years later, one could rather
say that GDA tools could be an essential tool to uncover design rules and hence improves
the generativity of users.

Table 1. Expansion directions opened by GD-generated topology

_ Pareto front Space filling Topological optimization m

Topology Pareto front topology
generativity (elites / dominated)
DP Identifies DP for

generativity

FR
generativity

improved Pareto front

None

ICED21

Identifies design neighbours

None

Paves the way to new FR,
sensations, emotions
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Cover functional map with
(weight) optimal artefacts

May help identify new
families of DPs (table legs...)

None

Find elite gait for each specific
behavioral niche

None

Explore altearntive behavioral
niche types = resilient design
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5 CONCLUSION

We analysed GDA in the light of design theory, to better characterize their generative power. Since
these algorithms are based on a parametric of object, their generativity might sound limited to generate
‘varied artefacts’ from the same model, however we show that GDA design topologies of artefacts - ie
large, ordered, structured, actionable sets of artefacts. GDA finally open the field of topological
generativity. We show that GDA tools evolve today to enable more degree of freedom in the topology
design, from the analysis of interdependences to the analysis of independences, leading possibly to
designing resilience or to uncover design rules.

This design-theory based analyses of GDA tools helps uncover some of their critical properties,
identifies some development trends and even suggests ways for further improvement. Conversely, the
analysis invites to deepen design theory: with the help of C-K theory applied to Topos (Hatchuel et al.,
2019) it might be possible to give an enriched account of the design of topologies by GDA tools,
hence better addressing the issues of resilient design and the design of design rules.
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