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1. Introduction. The purpose of this paper is to study the lattice of 
invariant subspaces of a linear transformation on a finite-dimensional vector 
space over an arbitrary field. Among the topics discussed are structure 
theorems for such lattices, implications between linear-algebraic properties 
and lattice-theoretic properties, nilpotent transformations, and the conditions 
for the isomorphism of two such lattices. These topics correspond roughly to 
§§2, 3, 4, and 5 respectively. 

Before summarizing our results, wTe shall introduce some notation and recall 
some pertinent notions and properties. Let A be a linear transformation on a 
finite-dimensional vector space V over a field F. We denote by LF(A), or 
simply L(A), the set of all subspaces M of F such that A M C M. (The symbol 
" C " allows the possibility of equality.) Such subspaces are called invariant. 
We denote by mA the minimum polynomial of A. If mA = pn for some irreduc
ible polynomial p and some positive integer n, we shall say that A is primary 
or, if necessary, p-primary. If mA = TLipft is the prime factorization of mA, 
if Vi = ker pi(A)n\ and if At = A\VU then we shall call the A t the primary 
summands of A. (We recall that the Vt are invariant, F = Yli® Vu 
A = E i © At, and mAi = p"*.) If xu x2} . . . G F, (xu x2, . . .) will denote 
the subspace of V spanned by Xi, x2, . . . . If M is a subspace of F, and if M = 
(x, Ax, A2x, . . .) for some x £ V, then M is called a cyclic subspace and x a 
cyclic vector for M. If F is a cyclic subspace, we say that A is a cyclic transforma
tion. We recall that A is cyclic if and only if A t is cyclic for all i if and only if 
^4|ker pi(A) is cyclic for all i. A semi-linear transformation from V over F to V 
over F' is a pair (T, a) such that T: F —> F r, a is an isomorphism of F onto T7', 
and T(ax + py) = c^Tx + &aTy for all a, (3 £ F and x, 3/ G F. 

A lattice is a partially ordered system in which each pair of elements M, N 
has a meet (greatest lower bound), denoted M r\ N, and a join (least upper 
bound), denoted M + N. Clearly L(A) is a lattice with inclusion as order, 
with intersection as meet, and with linear sum as join. If M ^N, we shall say 
that N covers M if there is no lattice element strictly between M and N. All 
lattices considered in the paper will have a zero element {0} and a unit element V 
such that {0} C M C F for all lattice elements M. Such a lattice is comple
mented if for any element M there exists at least one element N with M P\ iV = 
{0} and Af + iV = F. If M and iV are any lattice elements, we denote by 
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[M, N] the set of lattice elements P with M C P C AT. If each interval sub-
lattice [M, N] is complemented, then the lattice is said to be relatively com
plemented. A lattice is distributive if (M + N) H P = {M (~\ P) + {N Pi P) 
for all elements M, N, P , and modular if this identity holds whenever M C P. 
I t is well known tha t the lattice of all subspaces of V is modular, and therefore 
so is its sublattice L(A). A Boolean algebra is a distributive and complemented 
lattice. A lattice L is said to be the direct sum of sublattices Li and L2 (notat ion: 
L = L\® L2) if each M Ç L is uniquely representable in the form M = ikfi + 
ikf2 with M i G Li and M2 G £2 (notation: M = Mi® M2) in such a way tha t 
the lattice operations can be performed "coordinate-wise." It follows tha t if 
V is the unit element of L, and V = Vi® F2 , then V\ and F 2 are comple
mentary , and Lt = {M G L\ M C F f} (i = 1, 2). A lattice tha t cannot be 
wri t ten as a direct sum (except trivially) will be called irreducible. A lattice 
homomorphism is a mapping between lattices which preserves meets and joins. 
( Such a mapping is necessarily order-preserving.) Two lattices are isomorphic 
(anti-isomorphic) if there exists a one-to-one correspondence between them 
which preserves (reverses) order. A lattice is self-dual if it is anti-isomorphic to 
itself. Finally, a lattice is called simple if it admits only trivial homomorphisms 
(isomorphisms and constant maps) . We note that a simple lattice is necessarily 
irreducible. 

Our main results may be outlined as follows. In §2, L(A) is investigated for 
the general linear transformation A. We find a t once tha t L(A) = J^t ® L(At) 
(the A t being the pr imary summands of A) and tha t the L(A z) are irreducible. 
Fur ther s tudy proves tha t each L(A t) is either simple or a finite chain. Finally, 
it is observed tha t L(A) is always self-dual. Section 3 contains the following 
information: L(A) is distributive if and only if A is cyclic; L(A) is a Boolean 
algebra if and only if A is cyclic and mA is a product of distinct primes; L{A) 
is a chain if and only if A is cyclic and pr imary; L(A) is simple bu t not 
j{0}, V} if and only if A is non-cyclic and primary. In §4 we obtain a formula 
for the lattice of an arbi t rary nilpotent transformation. The use of the formula 
is illustrated by two examples, and the resulting lattices are sketched. Thus , 
the following question is of interest: Given a ^-pr imary transformation A, 
does there exist a nilpotent transformation with the same lattice? We find tha t 
this is so if p is separable. (Here we permit an enlargement of the scalar field F. 
More specifically, we adjoin to F a root of p, make V a vector space over the 
resulting field K, and find a X-linear nilpotent transformation Q such tha t 
LK(Q) = LF(A).) If p is not separable, the answer to the above question is 
probably " n o " . In the final section we present some necessary and sufficient 
conditions in order tha t two pr imary transformations have isomorphic lattices, 
and a lattice inclusion theorem for two commuting transformations. 

2. Genera l s t ruc ture t h e o r e m s . The main object of this section is to 
analyse L(A) as far as possible assuming nothing about A beyond linearity. 
Consequences of further assumptions are considered in §3. 
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LEMMA 1. Let V\ and V2 be non-trivial finite-dimensional vector spaces over 
the field F, and let A\ and A2 be linear transformations on Vi and V2 respectively. 
Then 

L(AX © A2) = L(AX) © L(A2) <=> (mAlJ mA2) = 1. 

Proof. In any case we have the inclusion L(Ai) ® L(A2) C L(A\ © A2). 
Suppose that (mAl, mA2) = 1. Let N € L(Ai © A2), and let Ni and iV2 be the 
projections of N on V\ (along V2) and on V2 (along Vi) respectively. Clearly 
Nx 6 L(Ai), N2 e L(A2), and N C Nx © N2. To prove that N D Ni © N2, 
let r\ and r2 be polynomials (coefficients in F) such that r\ mAl + r2 mAl = 1, 
and let gi = ^ w 4 l . Then iV D qx(Ai © 42)iV = ( 0 0 qi(A2))N = N2. Simi
larly N D Nl9 so N = N!®N2e L(Ai) © L(i42); cf. (4, p. 213). 

Conversely, suppose mAl and mA2 have a common prime factor q. Then for 
i = 1, 2, there exist non-zero vectors xt Ç Vi such that g(^4^)Xi = 0. Let 

M = {r(Ai)xi + r(A2)x2\ deg r < deg q}. 

Then M 6 L{AX © ^ 2 ) . If M = ikTi © ikf2 with Mt Ç L ^ O , we should have 
Mx = M H Fi and ikT2 = ilf H F2. But r (^ i )x i + r(^l2)x2 Ç ikf H Fi implies 
that r(^42)x2 = 0 and therefore r = 0. Thus i n F i = (0), and similarly 
M C\V2= {0}. Hence M = {0}, a contradiction. 

THEOREM 1. Le/ Abe a linear transformation on V with primary summands A t. 
Then 

HA) = Et®L(At) 

and each direct summand L {A t) is irreducible. 

Proof. The asserted equation follows from Lemma 1 by induction. To prove 
the last statement suppose that A is primary and that L(A) is not irreducible. 
Then, as explained in §1, there exist non-trivial complementary subspaces 
Vlt V2 £ L{A) such that L(A) = L{A\V1) © L{A\V2). But the minimum 
polynomials of A\V\ and A\V2 are divisors oi mA. Therefore they are not 
relatively prime, and this contradicts Lemma 1. 

Remark. The last statement of this theorem will be superseded by the 
deeper Theorem 2, which asserts that each L(A t) is either simple or a chain. 

COROLLARY. If F is algebraically closed, then each irreducible summand of 
L(A) is of the form L(Q) for a suitable nilpotent transformation Q. 

Proof. The hypothesis implies that mA has the form TLi(t — Xi)ni. Hence At 

satisfies (At - \i)ni = 0. Clearly L(At) = L(At - X,). Thus Q = At - A* 
is the required nilpotent transformation. 

LEMMA 2. L{A) is a chain if and only if A is cyclic and primary. 

Proof. Assume A is cyclic and mA = pn. We shall show that 

L(A) = {ker p(A)*\ k = 0, 1, . . . , » } . 
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Indeed, if {0} Ï£ M Ç L(A), then A\M has minimum polynomial pk for some 
k > 1. Hence M C ker £ 04)*. Now, the restriction of a cyclic transformation 
to any invariant subspace is again cyclic (5, p. 129). Thus both A\M and 
A\kerp(A)k are cyclic with minimum polynomial pk. Therefore 

dim M = deg pk = dim ker p(A)k, 

and so M = ker p(A)k. 
Conversely, if mA contains distinct irreducible factors, then by Theorem 1, 

L(A) is not irreducible and is therefore not a chain. Again, if A is not cyclic, 
then it is a direct sum of two or more cyclic transformations. Consequently 
there exist non-trivial disjoint invariant subspaces, and so L(A) is not a 
chain. 

COROLLARY. L(A) = {{0}, V] if and only if A is cyclic and mA is irreducible. 

The next lemma will be used repeatedly throughout the paper. 

LEMMA 3. Let mA be irreducible, and let K be the algebra of polynomials in A 
with coefficients in F. Then 

(a) K is afield isomorphic to that obtained by adjoining a root of mA to F, 
(b) V is naturally a vector space over K of K-dimension equal to the number of 

summands in a representation of A as a direct sum of cyclic transformations, 
(c) A is K-linear, and 
(d) LF(A) is the lattice of all K-linear subspaces of V. 

Proof. We shall prove only the dimensionality assertion of (b). Let 
V = Y,i © Vu where A\Vt is cyclic. If xt is a cyclic vector for A\VU then 
Vi = {f(A)Xi\ d e g / < deg mA\. From this it is clear that the i^-dimension of 
Vi is 1, and (b) follows. 

LEMMA 4. Let A be p-primary, and let d = deg p. If M, N G L(A) and N 
covers M, then 

(a) p(A)NCM, 
(b) dim N = d + dim M. 

Consequently 
(c) d|dim M for every I f L(A). 

Proof. Let Af be the quotient transformation induced by A on V/M. Then 
Nf = N/M is a minimal non-zero element of L{A'). But p(A')N' C N' and 
p(A')N' £ L(A'). Since p{A') is nilpotent, p{A')N'^Nf. Hence p(A') 
annihilates N', and this is equivalent to (a). To prove (b) we apply Lemma 3 
to the transformation Af\ker p{Af). Since Nf is a minimal lattice element for 
this transformation, we can conclude from (d) that N' has .K-dimension 1. 
Since [K: F] = d, Nf has .F-dimension d, and (b) follows. Finally, (c) follows 
from (b) by construction of a maximal chain in L(A) extending from {0} to M. 
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LEMMA 5. Let A be p-primary, and let M Ç. L(A). Then 
(a) p(A)-W 6 L(A), 
(b) the interval [M, p(A)~lM] in L(A) is a simple sublattice, and 
(c) M C rng p(A) implies dim p(A)~lM — dim M = dim ker p(A). 

Proof. Part (a) is immediate. Let A' be the quotient transformation induced 
by A on p(A)~lM/M. Then p(Af) = 0. Consequently Lemma 3 implies that 
L(Af) is the lattice of all subspaces of the vector space p{A)~~lM/M over the 
field of polynomials in A'. Therefore L(Ar) is simple (3, p. 121). But L(A') 
and [M, p(A)~1M] are isomorphic, and so (b) is proved. For (c) we apply the 
equation 

dim ker B + dim rng B = dim dom B 

with B = p(A)\p{A)~lM. Since M C rng p(A), we have rng B = M. More
over, since \ner p(A) C p(A)~lM, we also have ker B = ker£>(^4). 

LEMMA 6. Let A be p-primary and non-cyclic. If M, N £ L(A\mg p(A)) 
and if N covers M, then N ^p(A)~1M. 

Proof. The weak inclusion N C p(A)~lM was established in Lemma 4. 
Now dim N — dim M = d by the same lemma, and since M C N C p(A)~lM, 
the desired conclusion will follow if dim p(A)~xM — dim M > d. By Lemma 
5(c), this is equivalent to dim ker p(A) > d. But ^4|ker£>(^4) has the same 
number of cvclic summands as A. Therefore Lemma 3 implies that dim ker 
p(A) > 2d. ' 

THEOREM 2. Let A be a linear transformation on V with primary summands A t. 
Then 

L{A) = T,i®L(At), 

and each direct summand L(At) is simple or a chain according as A t is non-
cyclic or cyclic. 

Proof. By Lemma 2 and Theorem 1 we need only prove that if a linear 
transformation A is primary and non-cyclic, then L{A) is simple. For this we 
suppose given a homomorphism h of L{A) which identifies two distinct 
elements. It follows easily that h is constant on the entire interval determined 
by the meet and join of these two elements. Hence there exist iVi, N2 6 L(A) 
with h(Ni) = h(N2)j and which have the property that N2 covers N±. If 
M = p(A)N2, it follows from Lemma 4 that N1} N2 G [M, p{A)~lM\. By 
Lemma 5, such an interval of L(A) is a simple sublattice, and so h identifies 
all its elements. Now we select a maximal chain 

{0} = Mo =Mi = . . . ^Mh = mgp(A) 

of invariant subspaces which includes M and which extends from {0} to 
rng p{A). Let It = [Mu p{A)~^Mi] (i = 0, 1, . . . , k). Then 

/ ,_! m t = [Mu p{A)-mi.1\ (i = l , . . . , k). 
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Since Mt covers M^_i, we can use Lemma 6 to conclude t ha t 

Thus adjacent members of the sequence I0, Ii, . . . , Ik intersect in a t least 
two elements. This together with the fact t ha t h is constant on one of the It 

implies t ha t h is constant on U^ It. Since M0 = {0} and p{A)~lMk = V, we 
can conclude t ha t h is constant on L(A). 

T H E O R E M 3. If A is any linear transformation on V, then L(A) is self-dual. 

Proof. Let F* and A* be the duals of V and A respectively. Then A is 
similar to A* (5, p . 98), and therefore L(A) and L(A*) are isomorphic. B u t 
if M £ L(A) and M° is the annihila tor of I f in V*, the mapping M —> M ° is 
evidently an anti-isomorphism of L(A) onto L(A*). 

3. Spec ia l s t ruc ture t h e o r e m s . T h e results in this section relate properties 
of a linear transformation A to properties of its invariant subspace lattice 
L(A). For illustration and convenience, we begin by collecting the results of 
this nature already found in §2. 

1. L(A) is irreducible if and only if A is pr imary. 
2. L (A ) is a chain if and only if A is cyclic and primary. 
3. L (A ) is trivial if and only if A is cyclic and mA is irreducible. 
4. L(A) is simple b u t non-trivial if and only if A is non-cyclic and primary. 

T H E O R E M 4. The following statements are equivalent: 
(a) A is cyclic, 
(b) L(A) is a (finite) direct sum of chains, and 
(c) L(A) is distributive. 

Each of these conditions implies that 
(d) L(A) is finite, 

and if F is infinite all the conditions ( a ) - (d ) are equivalent (cf., (5, p . 129, Ex. 3) 
for the equivalence of (a) and (d) ) . 

Proof. If A is cyclic, then so are its pr imary summands A t. Hence the irreduc
ible summands L(A f) of L(A) are chains by Lemma 2. Thus we obtain (b) by 
Theorem 1. 

Since a chain is finite and distributive, so is a (finite) product of chains, and 
therefore (b) implies (c) and (d). 

T o prove tha t (c) implies (a) let us suppose tha t A is not cyclic. I t follows 
tha t a t least one of the Au say Ai, is not cyclic. If Ax decomposes into m > 1 
cyclic summands, the same is true of B = Ai\ker pi(Ai). By Lemma 3, 
k e r ^ i 0 4 i ) has X-dimension m, where K is the field of polynomials in B. I t 
follows from (d) of Lemma 3 t ha t L(B) is not distributive. Since L(B) is a 
sublatt ice of L(A), the lat ter is not distributive either. Hence (c) implies (a) . 

Finally, let us assume tha t F is infinite and tha t A is not cyclic. Then we may 
again suppose t ha t Ai is not cyclic. I t follows tha t K, L(B), and L(A) are all 
infinite. T h u s (d) implies (a). 
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COROLLARY. The cyclic invariant subspaces of A are precisely the elements 
M G L(A) such that [{0}, M] is a distributive sublattice. 

COROLLARY. If F is algebraically closed, each of the conditions (a)-(d) is 
equivalent to the statement: 

(e) All the eigenspaces of A are one-dimensional. 

Proof. Since F is algebraically closed, F is infinite, and so (a)-(d) are equi
valent. We complete the proof by observing that (e) is equivalent to the state
ment that all eigenspaces are cyclic, that this is equivalent to all generalized 
eigenspaces being cyclic, and this is equivalent to (a). 

The next theorem is well known (4, p. 214; 5, p. 129); we include it for 
completeness and for the possible interest of our proof. 

THEOREM 5. L{A) is complemented if and only if mA is a product of distinct 
irreducible polynomials. 

Proof. We observe that L(A) is complemented if and only if the direct 
summands L(Ai) are complemented. Now if mA = J\ipu then pi(At) = 0, 
and therefore L(At) is the lattice of all subspaces of a certain vector space 
(Lemma 3(d)). Hence L(At) is complemented. 

Conversely, let us suppose that L(A) is complemented and (if possible) 
that mAi = pfi with nt > 2 for some i. Then At has a direct summand A't 
which is cyclic and which has the same minimum polynomial. By (the proof of) 
Lemma 2, L(Af

t) is a chain of nt + 1 elements. Since nt + 1 > 3, L(Af
t) is 

not complemented. Since L(A't) is an interval mL{Ai)1 L(At) is not relatively 
complemented. But a complemented modular lattice is necessarily relatively 
complemented (3, Theorem 1, p. 114). Having reached this contradiction, we 
may conclude that nt = 1 for all i. 

Remark. The polynomial mA is a product of distinct irreducible polynomials 
if and only if the algebra of polynomials in A is semi-simple. Such transforma
tions are called semi-simple. 

COROLLARY. If F is algebraically closed, L(A) is complemented if, and only if, 
A can be reduced to diagonal form. 

COROLLARY. L(A) is a Boolean algebra if and only if A is cyclic and mA is a 
product of distinct irreducible polynomials. L(A) is then a {finite) direct sum of 
two-element chains. 

4. Nilpotent transformations. In the proof of Lemma 5(b) we showed 
that if A is ^-primary, and M £ L{A), then the interval \_M, p(A) lM\ in 
L{A) is isomorphic to the lattice of all subspaces of a certain vector space over 
the field K obtained by adjoining to F a root of p. Moreover, it is easy to see 
that L(A) = KJ [M, p(A)~lM], where the union is over all 

MeL(A)\mgp(A)). 
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Thus in a vague sense all the invariant subspaces of A are K-linear. Under the 
additional assumption that p is separable we shall now make this precise by 
causing K to act on V in such a way that V becomes a K-vector space, and A 
and all its invariant subspaces are indeed K-linear. Moreover, we shall obtain 
(Theorem 6) a K-linear nilpotent transformation Q such that LF(A) = LK(Q). 
The value of reducing considerations to the lattice of a nilpotent transforma
tion will be apparent from Theorem 7 and the subsequent remarks. 

THEOREM 6. Let A be p-primary with p separable. Let A = S + Q be the 
decomposition of A into its semi-simple and nilpotent parts (4, p. 217, Th. 8). 
Let K be the algebra of polynomials in S over F. Then K is afield, V is naturally 
a K-vector space, A is K-linear, and LF(A) = LK(A) = LK(Q). 

Proof. We first remark that although Theorem 8 of (4, p. 217) is stated with 
the assumption that F is a subfield of the complex numbers, the proof is valid 
in the more general situation that the irreducible factors of the minimum 
polynomial are all separable. Taylor's formula for polynomials is not valid 
over fields of finite characteristic, but the proof in (4) requires only an equation 
of the form f(a + b) = f(a) + f (a)b (mod b2) and this is always valid. 
From (4, p. 218) we obtain the equation p(S) = 0. Hence our first two asser
tions are immediate (as in Lemma 3). Since Q and S are polynomials in A 
(4, Th. 8), AS = SA, and therefore A is .K-linear. If ikf G LF(A), then clearly 
M G L F (S). Thus M is K-linear, and so LF{A) = LK(A). Finally, M £ LK(A) 
is clearly equivalent to M G LK(A — S). Hence LK(A) = LK(Q). 

Remarks. If A is regarded as a K-linear transformation, the equation 
A = Q + S exhibits A as the sum of a nilpotent transformation and a scalar. 
Therefore there is a basis {ei, . . . , em\ for V over K with respect to which the 
matrix of A is in Jordan canonical form. If degree p = d, then 

C\\ . . . \ em, ioem, . . . , o em\ 

is a basis for V over F. With respect to this basis, A, now regarded as an 
.F-linear transformation, has for its matrix a direct sum of matrices of the form 

VC "I 
\I C 

• • C \ 

where C is the companion matrix of p and / is the identity matrix of order d. 
Such matrices are more convenient for computation than those occurring in the 
classical canonical form (5) because the diagonal and off-diagonal parts 
commute. 
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THEOREM 7. If Q is nilpotent on V, then 

L(Q) = U [M, Q-'M], 
MZLiQlQV) 

where [M, Q~lM] is an interval in the lattice of all subspaces of V. Each interval 
satisfies the equation 

dim QrlM - dim M = dim ker Q. 

Proof. H M € L(Q) and if N is any subspace of V with M C N C Q~lM, 
then QN C QQrxM C M C N. Hence N Ç L(Q). Conversely if N Ç L(Q), 
then QN Ç L(Q\QV) and QN C N C Q^QN. Thus our formula is established. 
The final statement is a special case of that of Lemma 5(c). 

Remarks. Since the intervals [M, Q^~lM] are taken in the subspace lattice 
of V, the above formula does not contain the "circularity" present in the more 
general formula L(A) = U [M, p(A)~lM]. It is true that L(A) is given in 
terms of L(Q\QV) but this is clearly a reduction in complexity, for dim QV < 
dim V, and also the index of nilpotence of Q\QV is less (by 1) than that of Q. 
(Indeed, one can easily "iterate" the above formula and obtain a multiple-
union formula for L(Q) which involves nothing but Q and the lattice of all 
subspaces of V.) 

V 

^<e2 , . . -, e s > / A^c2 

/ 
/ / 

/ \ \ 
\ 

/ / X > < e q - P e q . - - - . e s > 

/ / / / > 
/ / / / / 

/ / . / / ' 
/ / ' ' / '' 

/ / / / < / / / / 
< e 2 , . . . , e q > ^ / / / 

x / / / 

10) 

FIGURE 1 
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V 
A, 

\ \ 
\ \ 

w z v /<^e1+^e.,e2,e4\\ \ 
< e i 1 e 2 l e 4 > ^ X _ ! 3? 4 / K ><e2 ,e3 >e4> 

/ 
/ 

/ / 
/ / 

/ 

\ e 2 ' e 4 
\ / / 

-> 
/ \x 

<e2>4 
7 <c<e2+y5e4>

x / \ 
^ > < e 4 > 

\ / / 
V7 

(01 

FIGURE 2 

We conclude §4 by presenting two examples in each of which the lattice of a 
nilpotent transformation is computed using the formula of Theorem 7. 

1. Let V = (ei, . . . , e8), Q: ex -+ e2 ->...-> eq -* 0, eq+1 —> 0, . . . , es —> 0. 
Then QV = (e2, . . . , £«?), <2|QF: e2 —> £3 —» . • • —> ^ —> 0, and 

i ( e i e n = {oj, <o, <^-i, *,>,..., (e2,..., o } . 
(See Lemma 2.) Hence Theorem 7 gives 

L(Q) = [{0J, <efl> . . . , e,)] U [(^), <^_i, * „ . . . , e,>] 

W[(^_i, efl), (eff_2, ^ - 1 , . . . , es)] U . . . U [(e2, . . . , eq), V]. 

2. Let F = (ei, e2y es, e4) and let Q be denned on V by Qei = e2} Qe2 = 0, 
<2e3 = £4, Qe* = 0. Thus 

matrix Q = 

0 0 0 0 
1 0 0 0 
0 0 0 0 
0 0 1 0 
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Then by Theorem 7 

L(Q)= U [M, Q-'M]. 
M C(e2,fi4> 

Hence 

L(Q) = [{0}, (e2y 64>] U [<e2, e4>, 7 ] U ( U a , , [<^ 2 + fa), 

(aei + (3ez, e2, e4)]). 

This lattice is pictured above, dot ted lines indicating some of the inclusion 
relations. There is a one-parameter family of intervals extending from dimen
sion 1 to dimension 3, only one of which is drawn. 

5. I s o m o r p h i s m t h e o r e m s . W e now present our results concerning 
isomorphism and equali ty of invar iant subspace lattices. 

T H E O R E M 8. For i = 1,2 let A t be a pi-primary linear transformation on the 
vector space Vt over the field Ft. If there is a non-singular semi-linear transforma
tion {T, <r) of Vi over Fi onto V2 over F2 such that TAi = A2 T, then p-f = p2 

and T induces an isomorphism of L(Ai) onto L(A2). Conversely, if L(A\) = 
L(A2) and if o is any isomorphism of F± onto F2 with pf = p2, then there exists 
a non-singular semi-linear transformation (T, a) such that TA\ — A2 T. 

Proof. T h e proof of the first s t a t ement is a routine computa t ion . We suppose 
then, t h a t M —» M' is an isomorphism of L(A\) onto L(A2), and t h a t a is an 
isomorphism of F± onto F2 with pf = p2. We can select Wi, . . . , Wk G L(Ai) 
such t h a t Vi = W\ © . . . © Wk, and the restrictions Ai\Wi are cyclic (and 
pr imary) . By Lemma 2 the interval [{0}, Wi] is a chain, and hence so is 
[{0}, W'i]. Therefore A2\W'i is cyclic. Le t xt and x't be cyclic vectors for Wt 

and W' i respectively. T h e n each element of Wt is of the form f(A\)xt for a 
unique polynomial / of degree less than t h a t of the minimum polynomial of 
Ai\Wi. W e define T on Wt by Tf{Ax)xt = f°(A2)x'u and extend T to Vx 
u b y addi t iv i ty ." I t follows easily t h a t (T, a) is as required. 

COROLLARY. Let A\ and A2 be p-primary linear transformations on the vector 
space V. Then L(A\) = L{A2) if and only if A± and A2 are similar. 

T H E O R E M 9. For i = 1, 2 let pi be an irreducible and separable polynomial over 
the field Fi} and let At be a linear transformation on the vector space Vt over Ft 

which is a direct sum of at least three cyclic prprimary transformations. Let 
Ai = Si + Qi be the decomposition of A t into its semi-simple and nilpotent parts, 
and let Kt be the field of polynomials in Si over Ft (See Theorem 6) . Then 
L(Ai) = L(A2) if and only if there exists a non-singular semi-linear trans
formation {T, a) of Vi over Kx onto V2 over K2 such that TQ± = Q2 T. 

Proof. Suppose t h a t the semi-linear transformation (T, a) satisfies TQi = 
Q2 T. Then LKl(Qx) ^ LK2(Q2). Bu t L(At) = LKi(Qt) by Theorem 6, so t ha t 
L(A1)^L(A2). 
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Suppose conversely that L(Ai) ~L(A2). We show that this implies that 
Ki ~ K2. The minimum polynomial of ^4i|ker pi(Ai) is pi, and so by Lemma 3 
the interval [{0}, ker piÇAx)}] in L(Ai) is the lattice of all subspaces of a 
vector space over K±. The dimension of this space is the number of summands 
in a decomposition of A i as a direct sum of cyclic transformations, and thus 
is at least 3. Since this interval is complemented, so is its image [{0}, TV] in 
L(A2). Theorem 5 now implies that p2 is the minimum polynomial of A2\N, 
and Lemma 3 implies that [{0}, TV] is the lattice of all subspaces of a vector 
space over K2. By one of the fundamental theorems of projective geometry 
(2, p. 51) the isomorphism of [{0}, ker^i(^4i)] and [{0}, N] is induced by a 
semi-linear transformation. In particular Ki ~ K2. Now since L(Ai) = L(A2), 
Theorem 6 implies that LKl (Qi) = LK2 (Q2). Hence the existence of the required 
semi-linear transformation follows from Theorem 8. 

Remark. By way of generalizing the result from projective geometry used 
in the above proof, it would be interesting to determine when an isomorphism 
L(Ai) = L(A2) is induced by a semi-linear transformation on the underlying 
vector space. Baer (1, Th. II.3.1) has investigated similar questions. 

THEOREM 10. Let A and B be commuting linear transformations on V. Then 
L(A) C L(B) if and only if B is a polynomial in A. 

Proof. The other implication being trivial, suppose that L{A) C L(B). We 
can write V = V\ © . . . © VK such that the Vt are cyclic and invariant 
relative to A, and such that the minimum polynomials mt of A\Vt have the 
property: mi+i\miiori = 1, . . . , k — 1. By assumption the Vt are ^-invariant. 
If ei is a cyclic vector for Vi, there is a polynomial q\ such that Be\ = qi(A)ei. 
Any vector x G Vi is of the form x = r{A)ei for some polynomial r, and there
fore Bx = Br(A)ei = r{A)Bei = r(^)gi(^4)^i = qi(A)x, so that B = qi(A) 
on V\. In like manner, if e2 is a cyclic vector for V2, then Be2 = q2(A)e2 and 
B = q2(A) on V2. Consider now the vector f = ei + e2. The subspace 
(/, Af, . . .) is A -invariant, hence ^-invariant, and so Bf = s(A)f for some 
polynomial s. We then have Bet = s{A)ei for i = 1, 2, and therefore 

5 = gi + ki m± = q2 + k2 m2 

for suitable polynomials ki and k2. Since m2\mi, we conclude that q\ (A ) = q2 (A ) 
on V2. Hence B = qi(A) on Vi © V2. Iteration of this procedure yields 
B = q\ (A ) on all of V, and completes the proof. 

Remark. The theorem is false if it is not assumed that A and B commute. 
However, an elaboration of the above argument shows that this hypothesis 
may be dropped if mi = m2 in the notation of the above proof; cf., (1, 
Th. II.2.2.). 
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