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ON A COMBINATORIAL PROOF FOR AN IDENTITY
INVOLVING THE TRIANGULAR NUMBERS
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Abstract

In this paper, we present a combinatorial proof for an identity involving the triangular numbers. The proof
resembles Franklin’s proof of Euler’s pentagonal number theorem.

2000 Mathematics subject classification: primary 05A19; secondary 11P84.

Keywords and phrases: partition identities, combinatorics, Ferrers graph.

1. Introduction

In its analytical version Euler’s pentagonal number theorem can be stated as follows.

THEOREM 1.1 (Euler’s pentagonal number theorem).

∞∑
n=−∞

(−1)nqn(3n−1)/2
= (q; q)∞,

where (q; q)∞ = (1− q)(1− q2)(1− q3) · · · .

This theorem has a beautiful combinatorial interpretation due to Legendre given
below.

THEOREM 1.2 (Combinatorial version of Euler’s pentagonal number theorem). Let
De(n) denote the number of partitions of n into an even number of distinct parts, and
let Do(n) denote the number of partitions of n into an odd number of distinct parts.
Then

De(n)− Do(n)=

{
(−1) j if n = j (3 j ± 1)/2,

0 otherwise.

For this version of Euler’s theorem there is a well-known combinatorial proof given
by Franklin in 1881 (see [2]). In this paper we present a proof of the following identity
that resembles Franklin’s proof.
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THEOREM 1.3. For any complex number |q|< 1,

1+ q +
∞∑

n=1

(1− q2)(1− q4) · · · (1− q2n)

(1− q3)(1− q5) · · · (1− q2n+1)
q2n+1

=

∞∑
n=0

qn(n+1)/2. (1.1)

2. The bijective proof

The right-hand side of (1.1) is Ramanujan’s partial theta function ψ(q). This
identity is already known (see [1, 2]). What we present here is a combinatorial proof
for it. A different proof is presented in [3].

We know that the sum on the left-hand side of (1.1) generates partitions into parts
greater than 1 where the even parts are distinct, the largest part is odd, and having
weight (−1)m , where m is the number of even parts. We also know that the exponents
of q on the right-hand side of (1.1) are the triangular numbers.

The identity (1.1) can be rewritten as
∞∑

n=1

(1− q2)(1− q4) · · · (1− q2n)

(1− q3)(1− q5) · · · (1− q2n+1)
q2n+1

=

∞∑
n=2

qn(n+1)/2. (2.1)

In order to prove the identity (2.1) we have to show that the coefficient of qn on the
left-hand side is either 1 if n is a triangular number or 0 otherwise. In other words,
if pe(n) (po(n)) denotes the number of partitions of n generated by the left-hand side
of (2.1) having an even (odd) number of even parts, then we have to show that

pe(n)− po(n)=

{
1 if n is a triangular number,

0 otherwise.
(2.2)

PROOF OF THEOREM 1.3. On the set P(n) of partitions of n into parts greater than
1 where the even parts are distinct and the largest part is odd we define the following
map. Given a partition λ= λ1 + · · · + λs ∈ P(n) we look at the Ferrers graph of λ.
From this diagram we remove the last two columns to form a new part λs+1, being
left with a partition λ′ = λ′1 + · · · + λ′s of n − λs+1. We insert this new part below the
smallest part of λ′ when either λs+1 ≤ λ

′
s and λ′s is odd or λs+1 < λ

′
s and λ′s is even,

obtaining the partition λ′′ = λ′1 + · · · + λ′s + λs+1 ∈ P(n). For example:

and
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But if λs+1 > λ
′
s or λs+1 = λ

′
s and λ′s is even, we cannot do this operation in order

to obtain a partition in P(n). In this case, we remove the smallest part λs to form two
new columns that are equal (when λs is even) or differ by 1 (when λs is odd). We add
these columns to the Ferrers graph of the partition λ1 + · · · + λs−1. It is easy to verify
that the partition obtained in this way is in P(n). For example:

and

We observe now that when n is a triangular number, n = k(k + 1)/2, this procedure
does not work for that partition in P(n) having k/2 parts k + 1, when k is even, or
(k + 1)/2 parts k, if k is odd. In fact:
• if we remove the last two columns from the partition having k/2 parts k + 1,

when k is even, the new part will have length 2(k/2)= k which cannot be put
below the smallest part k + 1− 2= k − 1. Also, by removing the smallest
part of length k + 1, we cannot put the new two columns (one having length
(k/2)+ 1 and the other having length k/2) in front of the last column (that has
length (k/2)− 1) of the partition with the smallest part removed.

• if we remove the last two columns from the partition having (k + 1)/2 parts k,
when k is odd, the new part will have length 2(k + 1)/2= k + 1 which cannot
be put below the new smallest part k − 2. Also, by removing the smallest part
of length k, we cannot put the new two columns (the largest one having length
(k + 1)/2) in front of the last column (that has length (k − 1)/2) of the partition
with the smallest part removed.

For example, it is not possible to apply any of the operations described above in the
partitions of 15 (k = 5) and 21 (k = 6) below.

To finish the proof, we have to show that the operations on the Ferrers graphs of the
partitions in P(n) described above change the parity of the number of even parts. By
doing this we will have shown that (2.2) holds.

For those partitions in P(n) for which we can remove the two last columns of the
Ferrers graphs and form new smallest parts, there are two possibilities: if the columns
have the same length, we do not modify the number of odd parts and the new part
has length even, which modifies the parity of the number of even parts; if the columns
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differ by one we lose one even part and obtain an odd part as the new part, modifying
the parity of the number of even parts. These arguments can be easily reversed in
order to show that the inverse operation also modifies the parity of the number of even
parts. 2
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