Duals of Banach spaces which admit nontrivial smooth functions

K. John and V. Zizler

If a Banach space X admits a continuously Fréchet differentiable function with bounded nonempty support, then X* admits a projectional resolution of identity and a continuous linear one-to-one map into $c_{0}(\Gamma)$.

1. Introduction

There are two difficulties in building up the projectional resolution of identity in nonseparable Banach spaces; such a resolution was originally constructed by Amir and Lindenstrauss ([1]) for spaces which are generated by a weakly compact set. First we need a compactness argument to ensure the existence of limit points for certain nets of operators and second we need to be able to ensure that the limit point is a projection. The first one can be overcome in any dual space. Tacon showed in ([4]) that also the second difficulty can be overcome in duals of spaces with Fréchet smooth norm. His argument relies on the uniqueness of Hahn-Banach extensions. Here we show that the projectional resolution of identity in X^* exists under the hypotheses in the abstract. This is done by basing the proof on the existence of differentials of certain functions constructed by Leduc ([2], [3]).

2. Notations and definitions

We will work in real Banach spaces. The norm $|\cdot|$ of a Banach space X is rotund if whenever |x+y| = 2, |x| = |y| = 1, then x = y. If X

Received 17 April 1974.

161

https://doi.org/10.1017/S0004972700043768 Published online by Cambridge University Press

is a Banach space, then, following [4], χ^{α} is the Banach space of all bounded homogeneous functionals on X with the sup-norm over the unit ball of X. If C is a subspace of X and $T: C^* \to X^*$ is a bounded linear map, then $\tilde{T}: X^* \to X^*$ is defined as $\tilde{T}f = TRf$, where R means the restriction-map to C^* . densX is the smallest cardinality of a dense subset of a Banach space X. The symbol clM denotes the norm closure of M in X.

3. Main result

THEOREM 1. Let X be a Banach space which admits a continuously Fréchet differentiable function with bounded nonempty support. Let μ be the first ordinal of cardinality densX. Then for every $0 \le \alpha \le \mu$ there is a subspace X_{α} of X and a linear operator $T : X_{\alpha}^* \rightarrow X^*$ such that $P = \tilde{T}_{\alpha}$ is a linear projection with $X_{\alpha} \subset X_{\beta}$ if $\alpha < \beta$ and $X_{\mu} = X$, and

1. $|P_{\alpha}| = 1$ for $\alpha > 0$, $P_{0} = 0$,

162

2. $P_{\alpha}X^*$ is linearly isometric to X_{α}^* , dens X_{α} (= dens X_{α}^*) $\leq \overline{\alpha}$ for infinite α ,

3.
$$P_{\alpha}P_{\beta} = P_{\beta}P_{\alpha} = P_{\beta}$$
, where $\beta < \alpha$,

- 4. U $P_{\beta+1}X^*$ is norm dense in $P_{\gamma}X^*$, or equivalently $\beta<\gamma$
- 5. for every $x^* \in X^*$, $P_{n}x^*$ is norm continuous on ordinals.

COROLLARY. If a Banach space X admits a continuously Fréchet differentiable function with bounded nonempty support, then X* admits a bounded linear one-to-one map into $c_0(\Gamma)$. Thus X* has an equivalent rotund norm.

4. Proof of the main result

We need the following result of Amir and Lindenstrauss.

LEMMA 1 (see [1], Lemma 2). Assume X is a normed linear space. Then given $\varepsilon > 0$, an integer n > 0, m elements f_1, \ldots, f_m of X* and any finite dimensional subspace $B \subset X$, there is an \aleph_0 -dimensional subspace $C \subset X$ containing B such that, for every subspace Z of X with $Z \supset B$ and $\dim Z/B = n$, there is a linear operator $T : Z \neq C$ with $|T| \leq 1 + \varepsilon$, Tb = b for every $b \in B$ and $|f_k(Z) - f_k(TZ)| \leq \varepsilon |Z|$ for every $Z \in Z$ and k = 1, 2, ..., m.

Also we need the following result of Leduc.

LEMMA 2 (see [2], Theorem 3 and [3], Corollary 1). If f is a continuously Fréchet differentiable real valued function on a Banach space X with bounded nonempty support (we may assume f(0) > 0 and $0 \le f \le 1$), then the gauge of f defined by the formula

$$v(x) = \left(\int_{-\infty}^{+\infty} f(tx) dt \right)^{-1}, \quad x \neq 0,$$

is continuously Fréchet differentiable, $v'(x) \neq 0$ and

$$cl\{v'(x)\cdot |v'(x)|^{-1}, |x| = 1\} = \{f \in X^*, |f| = 1\}$$

LEMMA 3. Let X be a Banach space, B a finite dimensional subspace of X, $f_1, \ldots, f_m \in X^*$. Then there is a separable subspace C of X and a linear operator $T: C^* \rightarrow X^*$ such that |T| = 1 and $\tilde{T}^*x = x$ for all $x \in B$, $\tilde{T}f_i = f_i$, $i = 1, 2, \ldots, m$.

Proof. Let $C_n \supset B$, n = 1, 2, ..., be the \aleph_0 -dimensional subspaces of X given by Lemma 1 for $\varepsilon = 1/n$, and let $C = \overline{sp} \left(\bigcup C_n \right)$. If E is a subspace of X, $E \supset B$, $\dim E/B = n$, then there is a linear operator $T_E : E \neq C$ such that $|T_E| \leq 1 + 1/n$, $T_E x = x$ for $x \in B$, $|f_k(T_{E'}) - f_k(z)| \leq \varepsilon |z|$, $z \in E$, k = 1, 2, ..., m. We extend T_E to a homogeneous map $T'_E : X \neq C$ by $T'_E x = 0$ if $x \in X \setminus E$. We consider $T'^* : C^* \neq X^{\alpha}$ where in the space of bounded linear maps $C^* \neq X^{\alpha}$ we consider the pointwise topology and on X^{α} the X-topology. By the Tychonoff Theorem, the net T'_E has a limit point $T : C^* \neq X^*$ and if $x \in X$, then $(\tilde{T}f_j)(x) = (TR)f_j(x) =$ $= \lim (T'_E Rf_j)(x) = \lim (T^*_E Rf_j)(x) = \lim (Rf_j)T_E x = f_j(x)$. Similarly $\tilde{T}^*x = x$ for $x \in B$.

LEMMA 4. Let X be a Banach space, f a continuously Fréchet differentiable function on X with bounded support such that $0 \le f \le 1$ and f(0) > 0. Let v be the gauge of f defined in Lemma 2, \aleph an infinite cardinal number. Assume 2, W are subspaces of X, X* respectively, densZ, dens $W \le \aleph$. Then there is a subspace $C \subseteq X$, dens $C \le \aleph$, $C \supset Z$, and a linear operator $T : C^* \rightarrow X^*$ with |T| = 1, TRg = g for $g \in W$, TRd = d for all differentials d of v at all points of $C \setminus \{0\}$ and $(TR)^*x = x$ for $x \in C$ and such that

 $TC^* = cl\{\lambda d, \lambda \ge 0, d \text{ differentials of } v \text{ at all points of } C \setminus \{0\}\}$. Then P = TR is a projection on X^* , |P| = 1 such that Pg = g for $g \in W$, $P^*x = x$ for $x \in C$. Furthermore, $R : PX^* \rightarrow C^*$ is an isometry onto C^* .

Proof. By transfinite induction on \aleph . If $\aleph = \aleph_0$ and x_j, f_j , j = 1, 2, ..., are dense in Z, W respectively, then there exist, by Lemma 3, separable subspaces $C_n \subset X$, n = 1, 2, ..., and linear operators $T_n: C_n^* \to X^*$ with $|T_n| = 1$, $\tilde{T}_n^* x_i = x_i$, $i = 1, 2, \ldots, n$, and $\tilde{T}_{n}^{*}x_{i}^{k} = x_{i}^{k}$, $1 \leq i \leq n$, $1 \leq k \leq n-1$, where $0 \neq x_{i}^{k}$, $i = 1, 2, ..., is dense in C_{i}, T_{n}f_{i} = f_{i}, i = 1, 2, ..., n, T_{n}d = d$ for all differentials d of v at x_i^k , $1 \le i \le n$, $1 \le k \le n-1$. Let us put $C = cl \cup C_n$. If R_n is the restriction map of C^* to C_n^* , then the limit point T in the X-operator topology of the net $\{T_n R_n\}_n$ is seen by the arguments used in Lemma 3 to satisfy that if P = \widetilde{T} , then |P| = 1, P is linear, $P^*x_i^k = x_i^k$ for i, k = 1, 2, ..., so that $P^*x = x$ for all $x \in C$ and similarly Pf = f for all $f \in W$, Pd = dfor all differentials d of v at all $x \in C$, $x \neq 0$. Here we use the continuous Fréchet differentiability of v on $X \setminus \{0\}$. It remains to prove that P is a projection; that is, $P^2 = P$. To show this it clearly suffices to prove that $PX = cl\{\lambda d, d \text{ differential of } v \text{ at a nonzero point of } C, \lambda \geq 0\} \equiv D$.

If $d \in D$, then for some sequence $\lambda_i \geq 0$, d_i differentials of \vee at $C \setminus \{0\}$, $\lim \lambda_i d_i = d$. Then $Pd = P(\lim \lambda_i d_i) = \lim \lambda_i d_i = d$, so $D \subset PX^*$. If $x^* = Tc^*$, $c^* \in C^*$, then Lemma 2 used for C gives the existence of differentials d_i of \vee at the points of $C \setminus \{0\}$ and $\lambda_i \geq 0$ such that $\lim \lambda_i Rd_i = c^*$, where Rd_i is the restriction of d_i to C. So, $Tc^* = T(\lim \lambda_i Rd_i) = \lim TR(\lambda_i d_i) = \lim \lambda_i d_i$, showing that $PX^* \subset D$.

Now we show that the restriction $R: PX^* \to C^*$ is an isometry onto. For if $c^* \in C$, $|c^*| = 1$, $\varepsilon > 0$, then there is a $c \in C$, |c| = 1, such that $|c^*(c)-1| < \varepsilon$. So if $x^* \in X^*$, $c^* = Rx^*$, then $Px^* = Tc^*$ and $(Px^*)(c) = c^*(P^*c) = c^*(c)$. From the last fact and from |P| = 1easily follows that R is an isometry. Furthermore $RPX^* \supset RD$, so R is onto C^* by use of Lemma 2. If the lemma holds for all cardinals less than \aleph and μ is the first ordinal of $\overline{\mu} = \aleph$, then obviously there are subspaces $Z_{\alpha} \subseteq Z$, $W_{\alpha} \subseteq W$, $\alpha < \mu$ such that $Z_{\alpha} \subseteq Z_{\beta}$, $W_{\alpha} \subseteq W_{\beta}$ if $\alpha < \beta$ with dens Z_{α} , dens $W_{\alpha} \leq \overline{\alpha}$ and $Z = cl \cup Z_{\alpha}$, $W = cl \cup W_{\alpha}$. By the induction hypothesis, we construct for every $\alpha < \mu$, a subspace $C_{\alpha} \subseteq X$ with dens $C_{\alpha} \leq \overline{\alpha}$ and such that $P = \tilde{T}_{\alpha}$ satisfies $|P_{\alpha}| = 1$, $P_{\alpha}^*x = x$ for $x \in C_{\alpha}$, $P_{\alpha}f = f$ for $f \in W_{\alpha}$,

$$\begin{split} P_{\alpha}X^{\star} &= \mathrm{cl}\left\{\lambda d, \ \lambda \geq 0, \ d \ \text{ differentials of } \nu \ \text{ at the points of } C_{\alpha} \setminus \{0\}\right\} \ . \end{split}$$
We put $C = \mathrm{cl} \ \cup \ C_{\alpha}$ and consider the extensions of T_{α} , $\tilde{T}_{\alpha} : C^{\star} \rightarrow X^{\star}$. Again for T we take a limit point in the X-operator topology of \tilde{T}_{α} , $\alpha < \mu$ and see that

 $TX^* = \{\lambda d, d \text{ differentials of } \nu \text{ at nonzero points of } C, \lambda \ge 0\}$ and $P = \tilde{T}$ satisfies our requirements.

Proof of Theorem. From Lemma 5 and the arguments developed in [1], [4], the theorem follows.

Proof of Corollary. It is the same as the proof of Theorem 1 and its corollary in [4].

References

- [1] D. Amir and J. Lindenstrauss, "The structure of weakly compact sets in Banach spaces", Ann. of Math. (2) 88 (1968), 35-46.
- [2] Michel Leduc, "Jauges différentiables et partitions de l'unité", Séminaire Choquet, Initiation à l'analyse, 4e année, 1964/65, 12-01 - 12-10 (Mathematica Seminosa, 1. Secrétariat Mathématique, Paris, 1965).
- [3] Michel Leduc, "Densité de certaines familles d'hyperplans tangents", C.R. Acad. Sci. Paris Sér. A 270 (1970), 326-328.
- [4] D.C. Tacon, "The conjugate of a smooth Banach space", Bull. Austral. Math. Soc. 2 (1970), 415-425.

Mathematical Institute, Czechoslovak Academy of Sciences, Praha; Department of Mathematics, Charles University, Praha, Czechoslovakia.