Duals of Banach spaces which admit nontrivial smooth functions

K. John and V. Zizler

Abstract

If a Banach space X admits a continuously Fréchet differentiable function with bounded nonempty support, then X^{*} admits a projectional resolution of identity and a continuous linear one-to-one map into $c_{0}(\Gamma)$.

1. Introduction

There are two difficulties in building up the projectional resolution of identity in nonseparable Banach spaces; such a resolution was originally constructed by Amir and Lindenstrauss ([1]) for spaces which are generated by a weakly compact set. First we need a compactness argument to ensure the existence of limit points for certain nets of operators and second we need to be able to ensure that the limit point is a projection. The first one can be overcome in any dual space. Tacon showed.in ([4]) that also the second difficulty can be overcome in duals of spaces with Fréchet smooth norm. His argument relies on the uniqueness of Hahn-Banach extensions. Here we show that the projectional resolution of identity in X^{*} exists under the hypotheses in the abstract. This is done by basing the proof on the existence of differentials of certain functions constructed by Leduc ([2], [3]).

2. Notations and definitions

We will work in real Banach spaces. The norm $|\cdot|$ of a Banach space X is rotund if whenever $|x+y|=2,|x|=|y|=1$, then $x=y$. If X

Received 17 April 1974.
is a Banach space, then, following [4], X^{α} is the Banach space of all bounded homogeneous functionals on X with the sup-norm over the unit ball of X. If C is a subspace of X and $T: C^{*} \rightarrow X^{*}$ is a bounded linear map, then $\tilde{T}: X^{*} \rightarrow X^{*}$ is defined as $\tilde{T} f=T R f$, where R means the restriction-map to C^{*}. dens X is the smallest cardinality of a dense subset of a Banach space X. The symbol clM denotes the norm closure of M in X.

3. Main result

THEOREM 1. Let X be a Banach space which admits a continuously Fréchet differentiable function with bounded nonempty support. Let μ be the first ordinal of cardinality dens X. Then for every $0 \leq \alpha \leq \mu$ there is a subspace X_{α} of X and a linear operator $T: X_{\alpha}^{*} \rightarrow . X^{*}$ such that $P=\tilde{T}_{\alpha}$ is a linear projection with $X_{\alpha} \subset X_{\beta}$ if $\alpha<\beta$ and $X_{\mu}=X$, and

1. $\left|P_{\alpha}\right|=1$ for $\alpha>0, P_{0}=0$,
2. $P_{\alpha} X^{*}$ is Iinearly isometric to X_{α}^{*}, $\operatorname{dens} X_{\alpha}\left(=\operatorname{dens} X_{\alpha}^{*}\right) \leq \bar{\alpha}$ for infinite α,
3. $P_{\alpha} P_{\beta}=P_{\beta} P_{\alpha}=P_{\beta}$, where $\beta<\alpha$,
4. $\underset{\beta<\gamma}{\cup} P_{\beta+1} X^{*}$ is norm dense in $P_{\gamma} X^{*}$, or equivalently
5. for every $x^{*} \in X^{*}, P_{\alpha} x^{*}$ is norm continuous on ordinals.

COROLLARY. If a Banach space X admits a continuously Fréchet differentiable function with bounded nonempty support, then X^{*} admits a bounded linear one-to-one map into $c_{0}(\Gamma)$. Thus X^{*} has an equivalent rotund norm.

4. Proof of the main result

We need the following result of Amir and Lindenstrauss.
LEMMA 1 (see [1], Lemma 2). Assume X is a normed linear space. Then given $\varepsilon>0$, an integer $n>0, m$ elements f_{1}, \ldots, f_{m} of X^{*} and any finite dimensional subspace $B \subset X$, there is an N_{0}-dimensional
subspace $C \subset X$ containing B such that, for every subspace Z of X with $Z \supset B$ and $\operatorname{dimZ} / B=n$, there is a linear operator $T: Z \rightarrow C$ with $|T| \leq 1+\varepsilon, T b=b$ for every $b \in B$ and $\left|f_{k}(z)-f_{k}(T z)\right| \leq \varepsilon|z|$ for every $z \in Z$ and $k=1,2, \ldots, m$.

Also we need the following result of Leduc.
LEMMA 2 (see [2], Theorem 3 and [3], Corollary 1). If f is a continuously Fréchet differentiable real valued function on a Banach space x with bounded nonempty support (we may assume $f(0)>0$ and $0 \leq f \leq 1$), then the gauge of f defined by the formula

$$
v(x)=\left(\int_{-\infty}^{+\infty} f(t x) d t\right)^{-1}, \quad x \neq 0,
$$

is continuously Eréchet differentiable, $v^{\prime}(x) \neq 0$ and

$$
\operatorname{cl}\left\{\nu^{\prime}(x) \cdot\left|\nu^{\prime}(x)\right|^{-1},|x|=1\right\}=\left\{f \in X^{*},|f|=1\right\} .
$$

LEMMA 3. Let X be a Banach space, B a finite dimensional subspace of $X, f_{1}, \ldots, f_{m} \in X^{*}$. Then there is a separable subspace C of X and a linear operator $T: C^{*} \rightarrow X^{*}$ such that $|T|=1$ and $\tilde{T}^{*} x=x$ for all $x \in B, \quad \tilde{T} f_{i}=f_{i}, i=1,2, \ldots, m$.

Proof. Let $C_{n} \supset B, n=1,2, \ldots$, be the ${ }_{K_{0}}$-dimensional subspaces of X given by Lemma 1 for $\varepsilon=1 / n$, and let $C=\overline{\operatorname{sp}}\left(U_{n} C_{n}\right)$. If E is a subspace of $X, E \supset B, \operatorname{dim} E / B=n$, then there is a linear operator $T_{E}: E \rightarrow C$ such that $\left|T_{E}\right| \leq 1+1 / n, T_{E} x=x$ for $x \in B$, $\left|f_{k}\left(T_{E}\right)-f_{k}(z)\right| \leq \varepsilon|z|, \quad z \in E, k=1,2, \ldots, m$. We extend T_{E} to a homogeneous map $T_{E}^{\prime}: X \rightarrow C$ by $T_{E}^{\prime} x=0$ if $x \in X \backslash E$. We consider $T^{\prime *}: C^{*} \rightarrow X^{\alpha}$ where in the space of bounded linear maps $C^{*} \rightarrow X^{\alpha}$ we consider the pointwise topology and on X^{α} the X-topology. By the Tychonoff Theorem, the net T_{E}^{\prime} has a limit point $T: C^{*} \rightarrow X^{*}$ and if $x \in X$, then

$$
\begin{aligned}
\left(\tilde{T} f_{j}\right)(x)=(T R) f_{j}(x) & = \\
& =\lim \left(T_{E}^{\prime} R f_{j}\right)(x)=\lim \left(T_{E}^{*} R f_{j}\right)(x)=\lim \left(R f_{j}\right) T_{E} x=f_{j}(x)
\end{aligned}
$$

Similarly $\tilde{T}^{*} x=x$ for $x \in B$.
LEMMA 4. Let X be a Banach space, f a continuously Fréchet differentiable function on X with bounded support such that $0 \leq f \leq 1$ and $f(0)>0$. Let v be the gauge of f defined in Lemma 2, $א$ an infinite cardinal number. Assume $2, W$ are subspaces of X, X^{*} respectively, dens Z, dens $W \leq \kappa$. Then there is a subspace ${ }^{C} \subset \subset X$, dens $C \leq K, C \supset Z$, and a Iinear operator $T: C^{*} \rightarrow X^{*}$ with $|T|=1$, $T R g=g$ for $g \in W, \quad T R d=d$ for all differentials d of v at all points of $C \backslash\{0\}$ and $(T R)^{*} x=x$ for $x \in C$ and such that
$T C^{*}=\operatorname{cl}\{\lambda d, \lambda \geq 0, d$ differentials of v at all points of $C \backslash\{0\}\}$. Then $P=T R$ is a projection on $X^{*}, \quad|P|=1$ such that $P g=g$ for $g \in W, P^{*} x=x$ for $x \in C$. Furthermore, $R: P X^{*} \rightarrow C^{*}$ is an isometry onto C^{*}.

Proof. By transfinite induction on κ. If $\kappa=\aleph_{0}$ and x_{j}, f_{j}, $j=1,2, \ldots$, are dense $i n \quad 2, W$ respectively, then there exist, by Lemma 3, separable subspaces $C_{n} \subset X, n=1,2, \ldots$, and linear operators $T_{n}: C_{n}^{*} \rightarrow X^{*}$ with $\left|T_{n}\right|=1, \tilde{T}_{n}^{*} x_{i}=x_{i}, i=1,2, \ldots, n$, and $\tilde{T}_{n}^{*} x_{i}^{k}=x_{i}^{k}, 1 \leq i \leq n, 1 \leq k \leq n-1$, where $0 \neq x_{i}^{k}$, $i=1,2, \ldots$, is dense in $C_{k}, T_{n} f_{i}=f_{i}, i=1,2, \ldots, n, T_{n} d=d$ for all differentials d of v at $x_{i}^{k}, 1 \leq i \leq n, 1 \leq k \leq n-1$. Let us put $C=\operatorname{cl} U_{n} C_{n}$. If R_{n} is the restriction map of C^{*} to C_{n}^{*}, then the limit point T in the X-operator topology of the net $\left\{T_{n} R_{n}\right\}_{n}$ is seen by the arguments used in Lemma 3 to satisfy that if $P=\tilde{T}$, then $|P|=1, \quad P$ is linear, $P^{*} x_{i}^{k}=x_{i}^{k}$ for $i, k=1,2, \ldots$, so that $P^{*} x=x$ for all $x \in C$ and similarly $P f=f$ for all $f \in W, P d=d$ for all differentials d of v at all $x \in C, x \neq 0$. Here we use the continuous Fréchet differentiability of v on $X \backslash\{0\}$. It remains to prove that P is a projection; that is, $P^{2}=P$. To show this it clearly suffices to prove that
$P X=\operatorname{cl}\{\lambda d, d$ differential of v at a nonzero point of $C, \lambda \geq 0\} \equiv D$.

If $d \in D$, then for some sequence $\lambda_{i} \geq 0, d_{i}$ differentials of v at $c \backslash\{0\}, \lim \lambda_{i} d_{i}=d$. Then $P d=P\left(\lim \lambda_{i} d_{i}\right)=\lim \lambda_{i} d_{i}=d$, so $D \subset P X^{*}$. If $x^{*}=T c^{*}, o^{*} \in C^{*}$, then Lemma 2 used for C gives the existence of differentials d_{i} of v at the points of $C \backslash\{0\}$ and $\lambda_{i} \geq 0$ such that $\lim \lambda_{i} R d_{i}=c^{*}$, where $R d_{i}$ is the restriction of d_{i} to C. So, $T c^{*}=T\left(\lim \lambda_{i} R d_{i}\right)=\operatorname{limPR}\left(\lambda_{i} d_{i}\right)=\lim \lambda_{i} d_{i}$, showing that $P X^{*} \subset D$.

Now we show that the restriction $R: P X^{*} \rightarrow C^{*}$ is an isometry onto. For if $c^{*} \in C,\left|c^{*}\right|=1, \varepsilon>0$, then there is a $c \in C,|c|=1$, such that $\left|c^{*}(c)-1\right|<\varepsilon$. So if $x^{*} \in X^{*}, c^{*}=R x^{*}$, then $P x^{*}=T c^{*}$ and $\left(P x^{*}\right)(c)=c^{*}\left(P^{*} c\right)=c^{*}(c)$. From the last fact and from $|P|=1$ easily follows that R is an isometry. Furthermore $R P X^{*} \supset R D$, so R is onto C^{*} by use of Lemma 2. If the lemma holds for all cardinals less than N and μ is the first ordinal of $\overline{\bar{\mu}}=\kappa$, then obviously there are subspaces $Z_{\alpha} \subset Z, W_{\alpha} \subset W, \alpha<\mu$ such that $Z_{\alpha} \subset Z_{\beta}, W_{\alpha} \subset W_{\beta}$ if $\alpha<\beta$ with $\operatorname{dens} Z_{\alpha}, \operatorname{dens} W_{\alpha} \leq \overline{\bar{\alpha}}$ and $Z=\operatorname{cl} \underset{\alpha<\mu}{U} Z_{\alpha}, W=c l \underset{\alpha<\mu}{U} W_{\alpha} \cdot B y$ the induction hypothesis, we construct for every $\alpha<\mu$, a subspace $C_{\alpha} \subset X$ with dens $C_{\alpha} \leq \overline{\bar{\alpha}}$ and such that $C_{\alpha} \supset Z_{\alpha} \cup \underset{\beta<\alpha}{U} C_{\beta}$ together with a linear operator $T_{\alpha}: C_{\alpha}^{*} \rightarrow X^{*}$ such that $P=\tilde{T}_{\alpha}$ satisfies $\left|P_{\alpha}\right|=1$, $P_{\alpha}^{*} x=x$ for $x \in C_{\alpha}, P_{\alpha} f=f$ for $f \in W_{\alpha}$,

$$
P_{\alpha} X^{*}=\operatorname{cl}\left\{\lambda d, \lambda \geq 0, d \text { differentials of } v \text { at the points of } C_{\alpha} \backslash\{0\}\right\}
$$

We put $C=\operatorname{cl} U_{\alpha<\mu} C_{\alpha}$ and consider the extensions of $T_{\alpha}, \tilde{T}_{\alpha}: C^{*} \rightarrow X^{*}$. Again for T we take a limit point in the X-operator topology of \tilde{T}_{α}, $\alpha<\mu$ and see that

$$
T X^{*}=\{\lambda d, d \text { differentials of } v \text { at nonzero points of } C, \lambda \geq 0\}
$$

and $P=\tilde{T}$ satisfies our requirements.
Proof of Theorem. From Lemma 5 and the arguments developed in [1], [4], the theorem follows.

Proof of Corollary. It is the same as the proof of Theorem 1 and its corollary in [4].

References

[1] D. Amir and J. Lindenstrauss, "The structure of weakly compact sets in Banach spaces", Arn. of Math. (2) 88 (1968), 35-46.
[2] Michel Leduc, "Jauges différentiables et partitions de I'unité", Séminaire Choquet, Initiation à Z'analyse, 4e année, 1964/65, 12-01 - 12-10 (Mathematica Seminosa, 1. Secrétariat Mathématique, Paris, 1965).
[3] Michel Leduc, "Densité de certaines familles d'hyperplans tangents", C.R. Acad. Sci. Paris Sér. A 270 (1970), 326-328.
[4] D.C. Tacon, "The conjugate of a smooth Banach space", Bull. Austral. Math. Soc. 2 (1970), 415-425.

```
Mathematical Institute,
Czechoslovak Academy of Sciences,
Praha;
Department of Mathematics,
Charles University,
Praha,
Czechoslovakia.
```

