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ABSTRACT 
The presented research aims at modelling and formalising the process of team design activity as an 
interplay between the evolution of design problems and solutions. The motivation founds primarily on 
a presumption that there exist regularities in designing which can be captured and formalised using the 
appropriate models. The study thus investigates whether the identified design operation proportions 
and sequence probabilities are consistent throughout the different parts of team conceptual design 
activities. It does so by exploring the utility of mathematical models built based on the correlations 
and statistically significant sequences underlying the previously identified designing patterns. The 
developed mathematical model was tested by replicating moving-average analyses of design operation 
proportions and sequences, which were originally observed in the protocol analysis study. A close fit 
was found between the simulated and the observed data, particularly in providing insights regarding 
operation patterns and proportion trends. The presented models and modelling methodology are 
potentially an appropriate means for the next steps in describing, and consequently predicting and 
supporting team design activity dynamics. 
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1 INTRODUCTION 

In engineering design, team collaboration becomes essential when no single actor has all the time, 

knowledge, skills, or inspiration needed to realise a particular design task. As such, design teamwork 

can provide numerous advantages over individual designing and has thus far been related to different 

desirable outcomes such as improved problem solving and product quality, and the reduction of 

development time and costs (Crowder et al., 2012; Hsu, 2017). Therefore, being able to work in a team 

has been perceived as one of the core design competencies (Robinson et al., 2005), whereas the 

engineering design education increasingly encompasses learning outcomes related to communication 

and teamwork, in order to prepare design students for the design tasks that emerge in the real-world, 

professional product development context (Han et al., 2018; Hultén et al., 2018). 

Despite the increasing research interest, there remain aspects of designing in teams that lack adequate 

support, especially when it comes in the form of computational tools. This has been particularly evident 

in the conceptual design stage of product development (Maarten Bonnema and van Houten, 2006), 

during the critical activities such as ideation (Shah et al., 2000) and design review (Vuletic et al., 2018). 

Namely, the tools for collaborative design may often fail in supporting effective communication of ideas 

and information, which is largely due to the insufficiently understood information flows in design teams 

(Ostergaard and Summers, 2009). Modelling of the actual design processes has thus become essential for 

understanding the dynamics of designing in teams, as well as developing tools that could assist 

collaborative designing (Goldschmidt, 2014; Ostergaard and Summers, 2009), that is support design 

teams in formulating design problems and providing solutions to these problems. 

In order to better predict these team dynamics and support designing in teams, here presented research 

aims at modelling and formalising the process of team design activity as an interplay between the 

evolution of design problems and solutions. The motivation founds primarily on a presumption that 

there exist regularities in designing that transcend any individuals involved in the process (Gero and 

Kan, 2016; Gero and Kannengiesser, 2014), and that these regularities can be captured and modelled.  

The authors’ initial efforts of modelling team conceptual design activity (Martinec et al., 2019) have 

resulted in theoretical developments of a state-transition model and initial empirical evidence of 

designing patterns that can be identified using the model. The follow-up study (Martinec et al., 2020) 

delved deeper into the data and found correlations between proportions of different types of design 

operations as well as the most probable sequences of design operation pairs during team design 

activities. Here presented study builds on these qualitative and quantitative insights, primarily by 

adding the temporal aspect into modelling of proportions and sequences of design operations across 

the problem and the solution space. More precisely, it addresses the following research question: Are 

the identified design operation proportions and sequence probabilities consistent throughout the 

different parts of team conceptual design activities? It does so by exploring the utility of mathematical 

models built based on the correlations and statistically significant sequences underlying the previously 

identified designing patterns. As such, the presented study represents a research step towards the 

ultimate goal of simulating team activity and identifying the sequences of design operations that are 

more likely to stimulate the desirable problem-solution co-evolution patterns. Design practitioners 

could utilise the identified sequences as guidelines for steering the design process and improve 

problem-solving efficiency.  

2 BACKGROUND 

The here presented investigation of team conceptual design activity has been based on a state-

transition model which captures sequences of design operations performed to explore the design space 

(Martinec et al., 2019). The model combines three perspectives on the design process: 

 Designing is modelled as a state-transition process (Reymen et al., 2006). Design space evolution is 

represented by a set of states, whereas design operations describe transformations of one state to 

another. Designing thus involves both the change of the states of the product being designed 

(design space evolution), and the change in the state of the design process (design operation 

sequences). 

 Design space evolution implies the co-evolution of the design problem and the design solution, that 

is the co-evolution of the problem and the solution space (see, e.g. Dorst and Cross, 2001). The first 

consists of problem entities, such as requirements, constraints and needs and the latter consists of 
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solution entities, such as solution ideas, concepts and working principles. Designers and design 

teams explore both spaces and keep switching between them throughout the design process. 

 Three fundamental types of design operations are performed within both the problem and the 

solution space - analysis, synthesis, and evaluation (ASE). These operations can be found across 

various prescriptive and descriptive models of design (examples include Fiorineschi et al., 2016; 

Gero and Jiang, 2015; Mc Neill et al., 1998; Stempfle and Badke-Schaub, 2002; Wodehouse and 

Ion, 2010). Within the state-transition model, analysis has been defined as a state transition 

resulting in a change in the level of understanding of a particular design entity within the explored 

design space (problem or solution). Synthesis has been defined as a state transition resulting in the 

appearance of a new design entity within the explored design space. Finally, evaluation has been 

defined as a state transition resulting in the assessed appropriacy of a particular design entity within 

the explored design space. Please consult Martinec et al. (2020) for more detailed definitions. 

The developed state-transition model thus enables capturing of various sequences of ASE design 

operations performed within and in-between the problem and the solution space during design activities. 

The model was first used to explore patterns of ASE and their role in problem-solution co-evolution 

(Martinec et al., 2019). The study identified three patterns specific for team ideation and concept review 

activities: the alternation of solution synthesis and analysis, the sequences of synthesis, analysis and 

evaluation within solution space, and the potential co-evolution episodes characterised by switching 

spaces to synthesise new design entities. In addition, the use of the state-transition model enabled 

identification of significant differences in proportions of design operations when comparing team 

ideation and concept review activities. Ideation was characterised as a divergent activity, due to higher 

proportions of problem-related design operations and solution synthesis, in contrast to the convergent 

concept review activity, which exhibited higher proportions of solution analysis and evaluation. 

The follow-up study (Martinec et al., 2020) utilised the model to revisit some of the literature-drawn 

assumptions regarding modelling of ASE and problem-solution co-evolution. Firstly, it investigated the 

relationship between ASE and problem/solution-related design operations. A strong negative correlation 

was found between proportions of analysis and problem-related design operations, in addition to the 

strong negative correlation between proportions of synthesis and solution-related design operations, and 

a strong positive correlation between proportions of evaluation and solution-related design operations. 

Secondly, it identified the dominant sequences of ASE in team design activity, with synthesis being the 

most probable design operation to follow analysis and analysis being the most probable design operation 

to follow synthesis. Thirdly, the model was used to analyse the nature of transitions in-between the 

problem and the solution space. It showed that both the new problem entities and solution entities are 

most likely to be synthesised following solution space exploration. 

Besides revealing inconsistencies in how ASE are defined and interpreted across the literature, the two 

studies demonstrated patterns which cannot be described by some of the well-accepted design models. 

Here presented study builds on these insights by formalising the relationships between design 

operation proportions and sequences using regression modelling and investigating pattern consistency 

given the temporal aspect of team conceptual design activities.  

3 EMPIRICAL DATASET AND ANALYSIS 

The study employs an empirical dataset comprised of protocol strings of eight team design sessions. 

The dataset originates from the experiments designed and conducted by Cash et al. (2013). The eight 

experiment sessions correspond to four teams performing two types of conceptual design activities. 

The first activity was ideation, with a goal of devising as many concept ideas for mounting a camera 

on a remotely operated balloon as possible. In the second activity, the teams would meet again to 

review the elaborated concepts, select a single concept or combination of concepts, and refine them 

into a final concept solution. Each team consisted of three mechanical engineering students selected 

from a final year product design and development course and was given 50 minutes for both sessions. 

The recordings were segmented and coded using a coding scheme that combines ASE and problem-

solution spaces (Martinec et al. 2019). Six types of design operations have been coded: problem 

analysis (PA), problem synthesis (PS), problem evaluation (PE), solution analysis (SA), solution 

synthesis (SS) and solution evaluation (SE). The resulting protocols represent strings of segments 

(instances) where design teams either analysed, synthesised, or evaluated problem and solution entities 

(on average 293 segments for ideation and 280 for concept review activity). The previous protocol 
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studies have utilised two main analysis measures, each of which can be applied to the entire protocol 

or to protocol fragments, whose size depends on the type of the analysis: 

 Proportions of design operations - instances of a particular type of design operation are counted 

and divided by the total number of segments within the analysed fragment of the activity 

protocol. Symbol: px (proportion of design operation x), measured in %. 

 Proportions of design operation sequences - all combinations of instances of two consecutive 

design operations are counted and divided by the total number of transitions between design 

operations within the analysed fragment of the activity protocol. Symbol: px,y (proportion of 

transitions from design operation x to design operation y), measured in %. 

Given the regularities which have thus far been identified in the data, the main motivation was to 

formalise the relationships between proportions and sequences of different types of design operations. 

The formalised relationships would then form a mathematical model underlying the potential 

simulation and support tools. A regression analysis was conducted to quantify the relationships 

(Teetor, 2011) between the measured proportions. More precisely, linear and polynomial regression 

analysis were performed to investigate the relationships between proportions and sequences of design 

operations. The linear regression approach is simple to apply but assumes that the variables in the 

regression are linear and that the effect of independent variables is constant throughout the entire range 

of the response variable (Chan et al., 2011). Polynomial regression is (from here on) considered a 

special case of multiple linear regression. A total of three fundamental independent variables have 

been identified: one variable which defines the ratio of proportions of problem- and solution-related 

design operations, and two variables which define the distribution of ASE, e.g., the proportion of 

analysis and synthesis (in that case the proportion of evaluation can be deducted). These three 

independent variables thus represent the input parameters needed for calculating (predicting) the 

dependent variables, that is the proportions and probabilities of sequences of ASE design operation 

within and in-between the problem and the solution space (e.g. using computational simulation tools). 

For the sake of simplicity, the regression has been performed using the proportions of analysis, 

synthesis, and evaluation (pA + pS + pE =1), and the proportions of problem- and solution-related 

design operations (pPRO + pSOL =1). 

Since the effects of intercepts have not been found significant, they were excluded from the regression 

analysis. In this way, only one coefficient is sufficient to describe a particular relationship. Moreover, the 

regression models include only interactions terms or squared terms (without including the main effects). 

There are two reasons for this. First, the main effects have in general not been found significant. Second, 

the modelling purpose is solely to predict proportions of design operations and their sequences, rather 

than statistical inference about each of the effects. The normality of the error distribution in the 

regression models was tested using the Shapiro-Wilk test. Other linear regression diagnostics have been 

performed by plotting diagnostic plots (observed vs. predicted values, residuals vs. predicted values). 

4 REGRESSION MODELLING 

The presented analysis approach samples different fragments of the activity protocols and analyses if 

regularities can be identified and modelled across different points in team design activity (the temporal 

aspect). The initial number of data points was relatively small (one point per observed experiment 

session) and corresponded only to the average proportions of design operations during an activity. The 

number of data points was increased by splitting every protocol string into three equal fragments (the 

beginning, the middle and the end of the activity), each representing an individual string for the 

analysis. The rationale for splitting the protocol strings lies in the assumption that the hypothesised 

regularities should be consistent for different fragments of the activity. The splitting resulted in a total 

of 24 data points that were used for regression modelling. The fragmented protocol strings vary in 

length from 73 to 114 segments, which is sufficient for calculating the proportions of design 

operations and their sequences. Nevertheless, the regression modelling was performed for both the 

initial 8 and the fragmented 24 data points, in order to check the consistency of the results. The 

relationship between proportions was consistent regardless of the data point number. In fact, the higher 

the number of instances of a particular design operation in a protocol fragment, the less significant 

difference exists between the two cases of linear regression (8 vs. 24 data points). For example, 

solution analysis, synthesis, and evaluation design operations, which were the most frequent instances 

on average, exhibit only 0.1%, 0.2% and 0.2% difference respectively, whereas problem evaluation as 
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the least frequent instance manifests 5.2% difference. Hence, increasing the number of data points by 

splitting the initial protocol strings into smaller fragments can be performed as long as a sufficient 

number of instances of each design operation is present within the fragments to calculate the 

introduced measures. 

The regression modelling is reported in two parts. First, the proportions of six types of design 

operations (pPA, pPS, pPE, pSA, pSS and pSE) are formulated as functions of ASE proportions (pA, pS, pE) 

and the proportions of the problem- (pPRO) and solution-related (pSOL) design operations. Second, the 

proportions of sequences of two design operations are formulated as functions of design operation 

proportions (both aggregated – e.g. pA,A, pA,S, pPRO,PRO, etc. – and unaggregated – e.g. pPA,PA, pPA,PS, etc.). 

4.1 Modelling proportions of design operations 

Several iterations of linear regression modelling were conducted on the protocol data. The best fit was 

reached for the following hypothesised relationship: The proportion of either one of ASE design 

operations within the problem or the solution space is proportional to the product of the 

corresponding proportions of ASE and problem/solution-related design operations. Symbolically, the 

formulated relationship can be written as shown in Equation 1. 

 (1) 

Multiple linear regressions were calculated to predict the proportions of the six design operation types 

based on the interaction of ASE and problem/solution proportions (see Figure 1). Significant 

regression equations were found (p-value of at least p<0.001) with R
2
 ranging from 0.906 to 0.996. 

This means that, for example, the interaction of proportions of analysis and problem-related design 

operations significantly predicted the proportion of problem analysis. Shapiro-Wilk test failed to reject 

the normality assumption for any of the models at the significance level of 0.05. 

The equations listed in Figure 1 enable modelling of proportions of six ASE design operations in 

problem and solution space based on the three independent variables. 

                     

                     

Figure 1. Proportions of six design operations types (top: pPA, pPS, pPE; bottom: pSA, pSS, pSE) 
as functions of corresponding proportions of ASE and problem/solution proportions 

4.2 Modelling sequences of design operations 

The modelling of sequence proportions was conducted in a similar manner as modelling proportions of 

design operations. The hypothesised relationship was that the proportions of moves between two 

design operations are proportional to the product of proportions of these two design operations. 

4.2.1 Sequences of analysis, synthesis, and evaluation design operations 

The modelling was first conducted for the proportions of moves between analysis, synthesis, and 

evaluation (design operations aggregated into ASE). The following relationship has been hypothesised 

based on the regression modelling best fit: The proportion of moves between two ASE design 

operations is proportional to the product of the corresponding proportions of ASE design operations. 

Symbolically, this relationship can be written as shown in Equation 2. 

 (2) 

Simple linear regressions were calculated to predict the proportions of sequences of two ASE design 

operations based on the squared proportion of the corresponding ASE proportions (see Figure 2). 

Significant regression equations were found (p-value of at least p<0.001) with R
2
 ranging from 0.824 

to 0.984. This means that, for example, the interaction of proportions of analysis and synthesis design 
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operations significantly predicted the proportion of analysis to synthesis, as well as synthesis to 

analysis sequences. Shapiro-Wilk test failed to reject the normality assumption for all models at the 

significance level of 0.05, except for the analysis to analysis and evaluation to evaluation sequences. 

                     

Figure 2. Proportions of ASE sequences as functions of corresponding proportions of ASE 

The equations in Figure 2 enable modelling of proportions of nine possible sequences of two ASE 

design operations based on the three independent variables. Nevertheless, the normality of residuals 

assumption has been violated for two regression models; hence the corresponding sequence 

proportions must be deducted from the models for which the normality assumption was not rejected. 

4.2.2 Sequences of problem- and solution-related design operations 

The subsequent regression analysis considered sequences of two design operations aggregated into 

problem- and solution-related design operations. The following relationship has been hypothesised 

based on the regression modelling best fit: The proportion of moves in the problem or the solution 

space is proportional to the squared proportions of the corresponding problem- or solution-related 

design operations.  Symbolically, this relationship can be written as shown in Equations 3 and 4. 

 (3) 

  (4) 

Simple and multiple linear regressions were calculated to predict the proportions of sequences of 

moves within and in-between the problem and the solution space based on the squared proportion of 

the corresponding proportions (see Figure 3). Significant regression equations were found (p-value of 

at least p<0.001) with R
2
 ranging from 0.947 to 0.988. This means that, for example, the squared 

proportion of problem-related design operations significantly predicted the proportion of sequences 

within the problem space. Shapiro-Wilk test failed to reject the normality assumption for any of the 

models at the significance level of 0.05. 

The equations in Figure 3 enable modelling of proportions of four possible sequences of problem- and 

solution-related design operations based on the three independent variables. 

    

Figure 3. Proportions of design operation sequences within and in-between problem and 
solution space as functions of corresponding problem/solution proportions 

4.2.3 Sequences of ASE design operations within problem and solution space 

Finally, regression analysis has also been conducted to model sequences of ASE design operations 

within and in-between the problem and the solution space. In this step, the previously reported 

regression models of sequences of design operations aggregated into ASE and problem/solution-

related are utilised as independent variables. At the core, this procedure is identical to formulating the 

relationships of proportions of ASE design operations in the problem and the solution space and the 

proportions of ASE and problem/solution-related design operations. 
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Hence, a hypothesised relationship is formulated as follows: Proportions of moves between two ASE 

design operations within and in-between the problem and the solution space are proportional to the 

product of the corresponding proportions of moves between ASE and the proportions of moves 

between the problem/solution-related design operations. Symbolically, this relationship can be written 

as shown in Equation 5. 

 (5) 

Due to a relatively large number of possible sequences, the results of the linear regression modelling 

have not been presented as part of this paper. Unlike the case with previously reported models, linear 

regression modelling has been conducted using only 8 data points, that is without splitting the initial 

protocol strings. The reason for this is that due to the smaller number of sequences, the shorter 

fragments of protocol strings do not contain all possible instances of sequences of two design 

operations, making the results unreliable. 

The effect of the lower number of particular instances of design operations sequences (e.g., instances 

where teams moved from solution space to problem evaluation) is reflected in lower R
2
 values of the 

resulting regression equations. For example, no significant equations were found for the problem 

synthesis - solution evaluation, solution synthesis - problem evaluation and solution evaluation - 

problem evaluation moves (p-value > 0.05). In addition, the Shapiro-Wilk test rejected the assumption 

of normality for a total of eight design operations sequences (pPA,SA, pPA,SS, pPS,PS, pPE,PS, pPE,PE, pSS,PE, 

pSE,PS, pSE,PE), so again the corresponding sequence proportions must be deducted from the models for 

which the normality assumption was not rejected. 

The 36 regression equations enable myriads of investigations to be performed and are, as such, 

particularly valuable addition to the mathematical model. Among other things, the response provided 

by the equations can be used to perform moving average analysis of ASE design operations sequences 

within and in-between the problem and the solution space, as shown in the following section.  

5 MODEL TESTING 

The formulated linear regression equations enable prediction of average proportions of design operations 

and their sequences within a design activity or its fragments. The integration of these equations within 

the existing theoretical framework allows formulation of a mathematical model for calculating 

proportions of design operations and their sequences based on three input parameters (two to define 

proportions of ASE and one to define proportions of problem/solution-related design operations). 

The proposed mathematical model relies both on the regression equations with a high goodness of fit 

(high R
2
 values), which do not violate the normality of residuals assumption (based on the Shapiro-

Wilk test), as well as the theoretical foundations of state-transitions proportions and sequences. For 

example, the individual models regarding the proportions of solution analysis, synthesis, and 

evaluation exhibit higher R
2
 values when compared to problem analysis, synthesis, and evaluation. 

Hence, the latter can be calculated as shown in Equation 6. 

  (6) 

Similar procedure can be applied for all the remaining equations with relatively lower R
2
 values or 

violation of the residual normality assumption. For example, given enough design operation instances, 

the sum of sequence proportions that either start or end with analysis can be formulated as equal to the 

overall proportion of the analysis design operation. Such argumentation is vital as it allows taking 

advantage of only the regression equations with the highest prediction ability. 

Hence, the resulting set of equations encompassed within the mathematical model results either from 

regression modelling or from the theoretical assumptions. The mathematical model developed in such a 

way was first employed to compute moving average proportions of design operations and sequences of 

design operations for a given average ASE and problem/solution proportions. Namely, to test the 

prediction ability of the developed mathematical model, the input parameters have been sampled from 

the moving average proportions of ASE and problem/solution-related design operations obtained from 

the protocol analysis study of team conceptual design activities. The width of the moving average sample 

window was set to 15% of the total number of segments. Only three predicated independent variables 

have been sampled from the original dataset (proportions of analysis, synthesis, and problem-related 

design operations). The mathematical model uses the three independent variables to compute (predict) 

proportions of design operations and their sequences for a particular moving window.  
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Examples of the investigation of the mathematical model’s predictive power are displayed across Figures 

4-7. The figures provide qualitative comparison of patterns and trends related to the observed and 

computed proportions and sequences of design operations for the same time frame. Due to the limited 

space available, only one example for each of the proportion and sequence aspects has been shown. 

                

 

Figure 4. Team 1 performing ideation activity: Moving-average analysis of design operation 
proportions based on observed (left) and predicted data (right) 

                

 

Figure 5. Team 2 performing concept review activity: Moving-average analysis of ASE 
sequence proportions based on observed (left) and predicted data (right) 

                

        

Figure 6. Team 3 performing ideation activity: Moving-average analysis of problem-solution 
sequence proportions based on observed (left) and predicted data (right) 

                

Figure 7. Teams 1 (upper) and 2 (lower) performing ideation (left) and concept review (right) 
activities: Moving-average analysis of design operation sequence proportions 

based on observed (full line) and predicted data (dotted line) 
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6 DISCUSSION AND CONCLUSION 

The changes in proportions of observed design operations and their sequences have to a large degree 

been satisfactorily replicated using the mathematical model (qualitative assessment based on the graphs 

shown across Figures 4-7). It can be argued that the predicted proportions coincide with the teams’ 

processes measured via protocol analysis, particularly in the case of predicting the proportions of the six 

types of design operations (Figure 4), as well as for computing the proportions of sequences of design 

operations aggregated to ASE (Figure 5) and problem/solution-related (Figure 6). The correspondence 

between the observed and predicted data is less satisfactory for the sequences of design operations within 

and in-between the problem and the solution space (Figure 7). Namely, some of the regression models 

fail to precisely reflect the moving average spikes, that is the major changes in moving average 

proportions of certain design operation sequences appearing in-between a relatively small number of 

protocol segments. It can be argued that the lower fit of the last group of regression models is due to the 

smaller number of data points (8 vs. 24 used for the first three groups). Also, the lower fit is even more 

noticeable for the sequences which have rarely appeared during the protocol analysis study. It must be 

noted that the conceptualisation of the mathematical model as a support tool is to provide insights 

regarding the patterns and trends (formulated by means of regression equations) in performing different 

design operations, rather than precise percentages. As such, the presented models, as well as the “from 

observation to modelling” methodology are potentially the appropriate means for the next steps in 

describing, and consequently predicting and supporting team design activity dynamics. 

Previous attempts aimed at formalising design activity patterns were focused solely on modelling 

relationships between the activity progress and the proportions or sequences of design moves. For 

example, Gero and Jiang (2015) used a simple linear regression model to depict the increasing or 

decreasing trend of designers’ cognitive focus on problem/solution reasoning. Mc Neill et al. (1998) 

employed linear regression to test the slope of function-behaviour-structure and analysis-synthesis-

evaluation proportions and sequences given the activity progress. Models shown in both examples 

exhibit relatively fit and are as such used solely as means of process comparison, rather than a process 

prediction (simulation) tool. On the other hand, models aimed specifically at simulating design 

processes, such as Markov Chain, agent-based or deep learning models (see, e.g. McComb et al., 

2017; Raina et al., 2019) show better flexibility when it comes to predicting or imitating sequences of 

design operations, but are typically context dependent or trained for a specific types of design tasks. 

Here proposed modelling approach can be used as an adaptation layer for the existing design operation 

models, as it formalises the sequence probabilities regardless of the activity progress or task type. For 

example, rather than using a fixed transition matrix when simulating designing as a Markov process, the 

mathematical model can be used to adjust the matrix given the ASE and problem/solution proportions in 

the given activity fragment. Moreover, the approach can be utilised to identify the most favourable 

sequences of design operations in a given situation (e.g., to maximise problem-solution co-evolution 

during ideation, or convergence during concept review) and thus help readjusting, or sort of steering the 

design process. Thus, rather than simulating human designers, the tool would follow their progress and 

adapt the support based on the theoretical models and observed data. In addition, the mathematical 

models based on observational data can be used as means of simulating proportions and sequences of 

design operations for any predefined setup of team conceptual design process. It is hence hypothesised 

that the proposed approach (theoretical state-transition model and the mathematical modelling 

procedure) can be utilised to capture design operation regularities in team design activities and support 

design teams in planning their steps by proposing the optimised design patterns for a given situation. 

Of course, the predictive power of the underlying regression models would rely primarily on high quality 

data. Given that here presented models result from a relatively small sample, it must be emphasised that 

the formalised proportions and probabilities are not applicable to different team compositions, different 

types of products being designed or different types of design activities. Nevertheless, the presented 

modelling approach, which is also the main contribution of the paper, can be applied to a variety of other 

design activity contexts. Hence, a number of context-specific models could be created and calibrated to 

describe and predict the behaviour across different development environments. 
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