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Sentential Logic

1.1. Deductive Reasoning and Logical Connectives

As we saw in the introduction, proofs play a central role in mathematics, and
deductive reasoning is the foundation on which proofs are based. Therefore,
we begin our study of mathematical reasoning and proofs by examining how
deductive reasoning works.

Example 1.1.1. Here are three examples of deductive reasoning:

1. It will either rain or snow tomorrow.
It’s too warm for snow.
Therefore, it will rain.

2. If today is Sunday, then I don’t have to go to work today.
Today is Sunday.
Therefore, I don’t have to go to work today.

3. I will go to work either tomorrow or today.
I’m going to stay home today.
Therefore, I will go to work tomorrow.

In each case, we have arrived at a conclusion from the assumption that
some other statements, called premises, are true. For example, the premises in
argument 3 are the statements “I will go to work either tomorrow or today”
and “I’m going to stay home today.” The conclusion is “I will go to work
tomorrow,” and it seems to be forced on us somehow by the premises.

But is this conclusion really correct? After all, isn’t it possible that I’ll stay
home today, and then wake up sick tomorrow and end up staying home again?
If that happened, the conclusion would turn out to be false. But notice that in
that case the first premise, which said that I would go to work either tomorrow
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Deductive Reasoning and Logical Connectives 9

or today, would be false as well! Although we have no guarantee that the
conclusion is true, it can only be false if at least one of the premises is also
false. If both premises are true, we can be sure that the conclusion is also true.
This is the sense in which the conclusion is forced on us by the premises, and
this is the standard we will use to judge the correctness of deductive reasoning.
We will say that an argument is valid if the premises cannot all be true without
the conclusion being true as well. All three of the arguments in our example
are valid arguments.

Here’s an example of an invalid deductive argument:

Either the butler is guilty or the maid is guilty.
Either the maid is guilty or the cook is guilty.
Therefore, either the butler is guilty or the cook is guilty.

The argument is invalid because the conclusion could be false even if both
premises are true. For example, if the maid were guilty, but the butler and the
cook were both innocent, then both premises would be true and the conclusion
would be false.

We can learn something about what makes an argument valid by compar-
ing the three arguments in Example 1.1.1. On the surface it might seem that
arguments 2 and 3 have the most in common, because they’re both about
the same subject: attendance at work. But in terms of the reasoning used,
arguments 1 and 3 are the most similar. They both introduce two possibili-
ties in the first premise, rule out the second one with the second premise, and
then conclude that the first possibility must be the case. In other words, both
arguments have the form:

P or Q.
not Q.
Therefore, P.

It is this form, and not the subject matter, that makes these arguments valid.
You can see that argument 1 has this form by thinking of the letter P as standing
for the statement “It will rain tomorrow,” and Q as standing for “It will snow
tomorrow.” For argument 3, P would be “I will go to work tomorrow,” and Q
would be “I will go to work today.”

Replacing certain statements in each argument with letters, as we have in
stating the form of arguments 1 and 3, has two advantages. First, it keeps us
from being distracted by aspects of the arguments that don’t affect their validity.
You don’t need to know anything about weather forecasting or work habits to
recognize that arguments 1 and 3 are valid. That’s because both arguments have
the form shown earlier, and you can tell that this argument form is valid without
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10 Sentential Logic

even knowing what P and Q stand for. If you don’t believe this, consider the
following argument:

Either the framger widget is misfiring, or the wrompal mechanism is out of
alignment.
I’ve checked the alignment of the wrompal mechanism, and it’s fine.
Therefore, the framger widget is misfiring.

If a mechanic gave this explanation after examining your car, you might still
be mystified about why the car won’t start, but you’d have no trouble following
his logic!

Perhaps more important, our analysis of the forms of arguments 1 and 3
makes clear what is important in determining their validity: the words or and
not. In most deductive reasoning, and in particular in mathematical reasoning,
the meanings of just a few words give us the key to understanding what makes
a piece of reasoning valid or invalid. (Which are the important words in ar-
gument 2 in Example 1.1.1?) The first few chapters of this book are devoted
to studying those words and how they are used in mathematical writing and
reasoning.

In this chapter, we’ll concentrate on words used to combine statements to
form more complex statements. We’ll continue to use letters to stand for state-
ments, but only for unambiguous statements that are either true or false. Ques-
tions, exclamations, and vague statements will not be allowed. It will also be
useful to use symbols, sometimes called connective symbols, to stand for some
of the words used to combine statements. Here are our first three connective
symbols and the words they stand for:

Symbol Meaning

∨ or
∧ and
¬ not

Thus, if P and Q stand for two statements, then we’ll write P ∨ Q to stand
for the statement “P or Q,” P ∧ Q for “P and Q,” and ¬P for “not P” or
“P is false.” The statement P ∨ Q is sometimes called the disjunction of P
and Q, P ∧ Q is called the conjunction of P and Q, and ¬P is called the
negation of P.

Example 1.1.2. Analyze the logical forms of the following statements:

1. Either John went to the store, or we’re out of eggs.
2. Joe is going to leave home and not come back.
3. Either Bill is at work and Jane isn’t, or Jane is at work and Bill isn’t.
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Deductive Reasoning and Logical Connectives 11

Solutions

1. If we let P stand for the statement “John went to the store” and Q stand for
“We’re out of eggs,” then this statement could be represented symbolically
as P ∨ Q.

2. If we let P stand for the statement “Joe is going to leave home” and Q stand
for “Joe is not going to come back,” then we could represent this statement
symbolically as P ∧ Q. But this analysis misses an important feature of the
statement, because it doesn’t indicate that Q is a negative statement. We
could get a better analysis by letting R stand for the statement “Joe is going
to come back” and then writing the statement Q as ¬R. Plugging this into
our first analysis of the original statement, we get the improved analysis
P ∧ ¬R.

3. Let B stand for the statement “Bill is at work” and J for the statement “Jane is
at work.” Then the first half of the statement, “Bill is at work and Jane isn’t,”
can be represented as B ∧ ¬J . Similarly, the second half is J ∧ ¬B. To
represent the entire statement, we must combine these two with or, forming
their disjunction, so the solution is (B ∧ ¬J ) ∨ (J ∧ ¬B).

Notice that in analyzing the third statement in the preceding example, we
added parentheses when we formed the disjunction of B ∧ ¬J and J ∧ ¬B
to indicate unambiguously which statements were being combined. This is
like the use of parentheses in algebra, in which, for example, the product
of a + b and a − b would be written (a + b) · (a − b), with the parentheses
serving to indicate unambiguously which quantities are to be multiplied. As
in algebra, it is convenient in logic to omit some parentheses to make our
expressions shorter and easier to read. However, we must agree on some con-
ventions about how to read such expressions so that they are still unambigu-
ous. One convention is that the symbol ¬ always applies only to the state-
ment that comes immediately after it. For example, ¬P ∧ Q means (¬P) ∧ Q
rather than ¬(P ∧ Q). We’ll see some other conventions about parentheses
later.

Example 1.1.3. What English sentences are represented by the following
expressions?

1. (¬S ∧ L) ∨ S, where S stands for “John is stupid” and L stands for “John is
lazy.”

2. ¬S ∧ (L ∨ S), where S and L have the same meanings as before.
3. ¬(S ∧ L) ∨ S, with S and L still as before.
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12 Sentential Logic

Solutions

1. Either John isn’t stupid and he is lazy, or he’s stupid.
2. John isn’t stupid, and either he’s lazy or he’s stupid. Notice how the place-

ment of the word either in English changes according to where the paren-
theses are.

3. Either John isn’t both stupid and lazy, or John is stupid. The word
both in English also helps distinguish the different possible positions of
parentheses.

It is important to keep in mind that the symbols ∧, ∨, and ¬ don’t really
correspond to all uses of the words and, or, and not in English. For example,
the symbol ∧ could not be used to represent the use of the word and in the
sentence “John and Bill are friends,” because in this sentence the word and is
not being used to combine two statements. The symbols ∧ and ∨ can only be
used between two statements, to form their conjunction or disjunction, and the
symbol ¬ can only be used before a statement, to negate it. This means that
certain strings of letters and symbols are simply meaningless. For example,
P¬ ∧ Q, P ∧/∨ Q, and P¬Q are all “ungrammatical” expressions in the
language of logic. “Grammatical” expressions, such as those in Examples 1.1.2
and 1.1.3, are sometimes called well-formed formulas or just formulas. Once
again, it may be helpful to think of an analogy with algebra, in which the
symbols +, −, ·, and ÷ can be used between two numbers, as operators, and
the symbol − can also be used before a number, to negate it. These are the
only ways that these symbols can be used in algebra, so expressions such as
x − ÷y are meaningless.

Sometimes, words other than and, or, and not are used to express the mean-
ings represented by ∧, ∨, and ¬. For example, consider the first statement in
Example 1.1.3. Although we gave the English translation “Either John isn’t
stupid and he is lazy, or he’s stupid,” an alternative way of conveying the same
information would be to say “Either John isn’t stupid but he is lazy, or he’s
stupid.” Often, the word but is used in English to mean and, especially when
there is some contrast or conflict between the statements being combined. For
a more striking example, imagine a weather forecaster ending his forecast with
the statement “Rain and snow are the only two possibilities for tomorrow’s
weather.” This is just a roundabout way of saying that it will either rain or
snow tomorrow. Thus, even though the forecaster has used the word and, the
meaning expressed by his statement is a disjunction. The lesson of these ex-
amples is that to determine the logical form of a statement you must think
about what the statement means, rather than just translating word by word into
symbols.
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Deductive Reasoning and Logical Connectives 13

Sometimes logical words are hidden within mathematical notation. For ex-
ample, consider the statement 3 ≤ π . Although it appears to be a simple
statement that contains no words of logic, if you read it out loud you will
hear the word or. If we let P stand for the statement 3 < π and Q for the
statement 3 = π , then the statement 3 ≤ π would be written P ∨ Q. In this
example the statements represented by the letters P and Q are so short that it
hardly seems worthwhile to abbreviate them with single letters. In cases like
this we will sometimes not bother to replace the statements with letters, so we
might also write this statement as (3 < π ) ∨ (3 = π ).

For a slightly more complicated example, consider the statement 3 ≤ π < 4.
This statement means 3 ≤ π and π < 4, so once again a word of logic has
been hidden in mathematical notation. Filling in the meaning that we just
worked out for 3 ≤ π , we can write the whole statement as [(3 < π ) ∨ (3 =
π )] ∧ (π < 4). Knowing that the statement has this logical form might be
important in understanding a piece of mathematical reasoning involving this
statement.

Exercises

∗1. Analyze the logical forms of the following statements:
(a) We’ll have either a reading assignment or homework problems, but we

won’t have both homework problems and a test.
(b) You won’t go skiing, or you will and there won’t be any snow.
(c)

√
7 �≤ 2.

2. Analyze the logical forms of the following statements:
(a) Either John and Bill are both telling the truth, or neither of them is.
(b) I’ll have either fish or chicken, but I won’t have both fish and mashed

potatoes.
(c) 3 is a common divisor of 6, 9, and 15.

3. Analyze the logical forms of the following statements:
(a) Alice and Bob are not both in the room.
(b) Alice and Bob are both not in the room.
(c) Either Alice or Bob is not in the room.
(d) Neither Alice nor Bob is in the room.

4. Which of the following expressions are well-formed formulas?
(a) ¬(¬P ∨ ¬¬R).
(b) ¬(P, Q, ∧R).
(c) P ∧ ¬P .
(d) (P ∧ Q)(P ∨ R).
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14 Sentential Logic
∗5. Let P stand for the statement “I will buy the pants” and S for the statement

“I will buy the shirt.” What English sentences are represented by the fol-
lowing expressions?
(a) ¬(P ∧ ¬S).
(b) ¬P ∧ ¬S.
(c) ¬P ∨ ¬S.

6. Let S stand for the statement “Steve is happy” and G for “George is happy.”
What English sentences are represented by the following expressions?
(a) (S ∨ G) ∧ (¬S ∨ ¬G).
(b) [S ∨ (G ∧ ¬S)] ∨ ¬G.
(c) S ∨ [G ∧ (¬S ∨ ¬G)].

7. Identify the premises and conclusions of the following deductive argu-
ments and analyze their logical forms. Do you think the reasoning is valid?
(Although you will have only your intuition to guide you in answering
this last question, in the next section we will develop some techniques for
determining the validity of arguments.)
(a) Jane and Pete won’t both win the math prize. Pete will win either

the math prize or the chemistry prize. Jane will win the math prize.
Therefore, Pete will win the chemistry prize.

(b) The main course will be either beef or fish. The vegetable will be either
peas or corn. We will not have both fish as a main course and corn as a
vegetable. Therefore, we will not have both beef as a main course and
peas as a vegetable.

(c) Either John or Bill is telling the truth. Either Sam or Bill is lying.
Therefore, either John is telling the truth or Sam is lying.

(d) Either sales will go up and the boss will be happy, or expenses will go
up and the boss won’t be happy. Therefore, sales and expenses will not
both go up.

1.2. Truth Tables

We saw in Section 1.1 that an argument is valid if the premises cannot all be
true without the conclusion being true as well. Thus, to understand how words
such as and, or, and not affect the validity of arguments, we must see how they
contribute to the truth or falsity of statements containing them.

When we evaluate the truth or falsity of a statement, we assign to it one of
the labels true or false, and this label is called its truth value. It is clear how the
word and contributes to the truth value of a statement containing it. A statement
of the form P ∧ Q can only be true if both P and Q are true; if either P or Q
is false, then P ∧ Q will be false too. Because we have assumed that P and
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Figure 1

Q both stand for statements that are either true or false, we can summarize all
the possibilities with the table shown in Figure 1. This is called a truth table
for the formula P ∧ Q. Each row in the truth table represents one of the four
possible combinations of truth values for the statements P and Q. Although
these four possibilities can appear in the table in any order, it is best to list them
systematically so we can be sure that no possibilities have been skipped. The
truth table for ¬P is also quite easy to construct because for ¬P to be true,
P must be false. The table is shown in Figure 2.

Figure 2

The truth table for P ∨ Q is a little trickier. The first three lines should
certainly be filled in as shown in Figure 3, but there may be some question
about the last line. Should P ∨ Q be true or false in the case in which P and Q
are both true? In other words, does P ∨ Q mean “P or Q, or both” or does it
mean “P or Q but not both”? The first way of interpreting the word or is called
the inclusive or (because it includes the possibility of both statements being
true), and the second is called the exclusive or. In mathematics, or always means
inclusive or, unless specified otherwise, so we will interpret ∨ as inclusive or.
We therefore complete the truth table for P ∨ Q as shown in Figure 4. See
exercise 3 for more about the exclusive or.

Figure 3 Figure 4

Using the rules summarized in these truth tables, we can now work out truth
tables for more complex formulas. All we have to do is work out the truth
values of the component parts of a formula, starting with the individual letters
and working up to more complex formulas a step at a time.
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16 Sentential Logic

Example 1.2.1. Make a truth table for the formula ¬(P ∨ ¬Q).

Solution

P Q ¬Q P ∨ ¬Q ¬(P ∨ ¬Q)

F F T T F
F T F F T
T F T T F
T T F T F

The first two columns of this table list the four possible combinations of
truth values of P and Q. The third column, listing truth values for the formula
¬Q, is found by simply negating the truth values for Q in the second column.
The fourth column, for the formula P ∨ ¬Q, is found by combining the truth
values for P and ¬Q listed in the first and third columns, according to the
truth value rule for ∨ summarized in Figure 4. According to this rule, P ∨ ¬Q
will be false only if both P and ¬Q are false. Looking in the first and third
columns, we see that this happens only in row two of the table, so the fourth
column contains an F in the second row and T’s in all other rows. Finally, the
truth values for the formula ¬(P ∨ ¬Q) are listed in the fifth column, which
is found by negating the truth values in the fourth column. (Note that these
columns had to be worked out in order, because each was used in computing
the next.)

Example 1.2.2. Make a truth table for the formula ¬(P ∧ Q) ∨ ¬R.

Solution

P Q R P ∧ Q ¬(P ∧ Q) ¬R ¬(P ∧ Q) ∨ ¬R

F F F F T T T
F F T F T F T
F T F F T T T
F T T F T F T
T F F F T T T
T F T F T F T
T T F T F T T
T T T T F F F

Note that because this formula contains three letters, it takes eight lines to
list all possible combinations of truth values for these letters. (If a formula
contains n different letters, how many lines will its truth table have?)

Here’s a way of making truth tables more compactly. Instead of using separate
columns to list the truth values for the component parts of a formula, just list
those truth values below the corresponding connective symbol in the original
formula. This is illustrated in Figure 5, for the formula from Example 1.2.1.
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In the first step, we have listed the truth values for P and Q below these letters
where they appear in the formula. In step two, the truth values for ¬Q have
been added under the ¬ symbol for ¬Q. In the third step, we have combined the
truth values for P and ¬Q to get the truth values for P ∨ ¬Q, which are listed
under the ∨ symbol. Finally, in the last step, these truth values are negated and
listed under the initial ¬ symbol. The truth values added in the last step give the
truth value for the entire formula, so we will call the symbol under which they
are listed (the first ¬ symbol in this case) the main connective of the formula.
Notice that the truth values listed under the main connective in this case agree
with the values we found in Example 1.2.1.

Figure 5

Now that we know how to make truth tables for complex formulas, we’re
ready to return to the analysis of the validity of arguments. Consider again our
first example of a deductive argument:

It will either rain or snow tomorrow.
It’s too warm for snow.
Therefore, it will rain.

As we have seen, if we let P stand for the statement “It will rain tomorrow”
and Q for the statement “It will snow tomorrow,” then we can represent the
argument symbolically as follows:

P ∨ Q

¬Q

∴ P (The symbol ∴ means therefore.)

We can now see how truth tables can be used to verify the validity of this
argument. Figure 6 shows a truth table for both premises and the conclusion
of the argument. Recall that we decided to call an argument valid if the
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premises cannot all be true without the conclusion being true as well. Looking at
Figure 6 we see that the only row of the table in which both premises come
out true is row three, and in this row the conclusion is also true. Thus, the truth
table confirms that if the premises are all true, the conclusion must also be true,
so the argument is valid.

Figure 6

Example 1.2.3. Determine whether the following arguments are valid.

1. Either John isn’t stupid and he is lazy, or he’s stupid.
John is stupid.
Therefore, John isn’t lazy.

2. The butler and the cook are not both innocent.
Either the butler is lying or the cook is innocent.
Therefore, the butler is either lying or guilty.

Solutions

1. As in Example 1.1.3, we let S stand for the statement “John is stupid” and
L stand for “John is lazy.” Then the argument has the form:

(¬S ∧ L) ∨ S

S

∴ ¬ L

Now we make a truth table for both premises and the conclusion. (You
should work out the intermediate steps in deriving column three of this table
to confirm that it is correct.)

Premises Conclusion
S L (¬S ∧ L) ∨ S S ¬L

F F F F T
F T T F F
T F T T T
T T T T F

Both premises are true in lines three and four of this table. The conclusion
is also true in line three, but it is false in line four. Thus, it is possible for
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both premises to be true and the conclusion false, so the argument is invalid.
In fact, the table shows us exactly why the argument is invalid. The problem
occurs in the fourth line of the table, in which S and L are both true – in other
words, John is both stupid and lazy. Thus, if John is both stupid and lazy,
then both premises will be true but the conclusion will be false, so it would
be a mistake to infer that the conclusion must be true from the assumption
that the premises are true.

2. Let B stand for the statement “The butler is innocent,” C for the statement
“The cook is innocent,” and L for the statement “The butler is lying.” Then
the argument has the form:

¬(B ∧ C)

L ∨ C

∴ L ∨ ¬B

Here is the truth table for the premises and conclusion:

Premises Conclusion
B C L ¬(B ∧ C) L ∨ C L ∨ ¬B

F F F T F T
F F T T T T
F T F T T T
F T T T T T
T F F T F F
T F T T T T
T T F F T F
T T T F T T

The premises are both true only in lines two, three, four, and six, and in
each of these cases the conclusion is true as well. Therefore, the argument
is valid.

If you expected the first argument in Example 1.2.3 to turn out to be valid,
it’s probably because the first premise confused you. It’s a rather complicated
statement, which we represented symbolically with the formula (¬S ∧ L) ∨ S.
According to our truth table, this formula is false if S and L are both false, and
true otherwise. But notice that this is exactly the same as the truth table for the
simpler formula L ∨ S! Because of this, we say that the formulas (¬S ∧ L) ∨ S
and L ∨ S are equivalent. Equivalent formulas always have the same truth
value no matter what statements the letters in them stand for and no matter
what the truth values of those statements are. The equivalence of the premise
(¬S ∧ L) ∨ S and the simpler formula L ∨ S may help you understand why
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the argument is invalid. Translating the formula L ∨ S back into English, we
see that the first premise could have been stated more simply as “John is either
lazy or stupid (or both).” But from this premise and the second premise (that
John is stupid), it clearly doesn’t follow that he’s not lazy, because he might be
both stupid and lazy.

Example 1.2.4. Which of these formulas are equivalent?

¬(P ∧ Q), ¬P ∧ ¬Q, ¬P ∨ ¬Q.

Solution
Here’s a truth table for all three statements. (You should check it yourself!)

P Q ¬(P ∧ Q) ¬P ∧ ¬Q ¬P ∨ ¬Q
F F T T T
F T T F T
T F T F T
T T F F F

The third and fifth columns in this table are identical, but they are different
from the fourth column. Therefore, the formulas ¬(P ∧ Q) and ¬P ∨ ¬Q
are equivalent, but neither is equivalent to the formula ¬P ∧ ¬Q. This should
make sense if you think about what all the symbols mean. For example, suppose
P stands for the statement “The Yankees won last night” and Q stands for
“The Red Sox won last night.” Then ¬(P ∧ Q) would mean “The Yankees
and the Red Sox did not both win last night,” and ¬P ∨ ¬Q would mean
“Either the Yankees or the Red Sox lost last night”; these statements clearly
convey the same information. On the other hand, ¬P ∧ ¬Q would mean “The
Yankees and the Red Sox both lost last night,” which is an entirely different
statement.

You can check for yourself by making a truth table that the formula¬P ∧ ¬Q
from Example 1.2.4 is equivalent to the formula ¬(P ∨ Q). (To see that this
equivalence makes sense, notice that the statements “Both the Yankees and
the Red Sox lost last night” and “Neither the Yankees nor the Red Sox won
last night” mean the same thing.) This equivalence and the one discovered in
Example 1.2.4 are called DeMorgan’s laws.

In analyzing deductive arguments and the statements that occur in them it
is helpful to be familiar with a number of equivalences that come up often.
Verify the equivalences in the following list yourself by making truth tables,
and check that they make sense by translating the formulas into English, as we
did in Example 1.2.4.
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DeMorgan’s laws

¬(P ∧ Q) is equivalent to ¬P ∨ ¬Q.

¬(P ∨ Q) is equivalent to ¬P ∧ ¬Q.

Commutative laws

P ∧ Q is equivalent to Q ∧ P.

P ∨ Q is equivalent to Q ∨ P.

Associative laws

P ∧ (Q ∧ R) is equivalent to (P ∧ Q) ∧ R.

P ∨ (Q ∨ R) is equivalent to (P ∨ Q) ∨ R.

Idempotent laws

P ∧ P is equivalent to P.

P ∨ P is equivalent to P.

Distributive laws

P ∧ (Q ∨ R) is equivalent to (P ∧ Q) ∨ (P ∧ R).

P ∨ (Q ∧ R) is equivalent to (P ∨ Q) ∧ (P ∨ R).

Absorption laws

P ∨ (P ∧ Q) is equivalent to P.

P ∧ (P ∨ Q) is equivalent to P.

Double Negation law

¬¬P is equivalent to P.

Notice that because of the associative laws we can leave out parentheses in
formulas of the forms P ∧ Q ∧ R and P ∨ Q ∨ R without worrying that the
resulting formula will be ambiguous, because the two possible ways of filling
in the parentheses lead to equivalent formulas.

Many of the equivalences in the list should remind you of similar rules in-
volving +, ·, and − in algebra. As in algebra, these rules can be applied to more
complex formulas, and they can be combined to work out more complicated
equivalences. Any of the letters in these equivalences can be replaced by more
complicated formulas, and the resulting equivalence will still be true. For ex-
ample, by replacing P in the double negation law with the formula Q ∨ ¬R,
you can see that ¬¬(Q ∨ ¬R) is equivalent to Q ∨ ¬R. Also, if two formulas
are equivalent, you can always substitute one for the other in any expression
and the results will be equivalent. For example, since ¬¬P is equivalent to
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P, if ¬¬P occurs in any formula, you can always replace it with P and the
resulting formula will be equivalent to the original.

Example 1.2.5. Find simpler formulas equivalent to these formulas:

1. ¬(P ∨ ¬Q).
2. ¬(Q ∧ ¬P) ∨ P .

Solutions

1. ¬(P ∨ ¬Q)
is equivalent to ¬P ∧ ¬¬Q (DeMorgan’s law),

which is equivalent to ¬P ∧ Q (double negation law).

You can check that this equivalence is right by making a truth table for
¬P ∧ Q and seeing that it is the same as the truth table for ¬(P ∨ ¬Q)
found in Example 1.2.1.

2. ¬(Q ∧ ¬P) ∨ P
is equivalent to (¬Q ∨ ¬¬P) ∨ P (DeMorgan’s law),

which is equivalent to (¬Q ∨ P) ∨ P (double negation law),
which is equivalent to ¬Q ∨ (P ∨ P) (associative law),
which is equivalent to ¬Q ∨ P (idempotent law).

Some equivalences are based on the fact that certain formulas are either
always true or always false. For example, you can verify by making a truth
table that the formula Q ∧ (P ∨ ¬P) is equivalent to just Q. But even before
you make the truth table, you can probably see why they are equivalent. In every
line of the truth table, P ∨ ¬P will come out true, and therefore Q ∧ (P ∨ ¬P)
will come out true when Q is also true, and false when Q is false. Formulas that
are always true, such as P ∨ ¬P , are called tautologies. Similarly, formulas
that are always false are called contradictions. For example, P ∧ ¬P is a
contradiction.

Example 1.2.6. Are these statements tautologies, contradictions, or neither?

P ∨ (Q ∨ ¬P), P ∧ ¬(Q ∨ ¬Q), P ∨ ¬(Q ∨ ¬Q).

Solution
First we make a truth table for all three statements.

P Q P ∨ (Q ∨ ¬P) P ∧ ¬(Q ∨ ¬Q) P ∨ ¬(Q ∨ ¬Q)
F F T F F
F T T F F
T F T F T
T T T F T
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From the truth table it is clear that the first formula is a tautology, the second
a contradiction, and the third neither. In fact, since the last column is identical
to the first, the third formula is equivalent to P.

We can now state a few more useful laws involving tautologies and contradic-
tions. You should be able to convince yourself that all of these laws are correct by
thinking about what the truth tables for the statements involved would look like.

Tautology laws

P ∧ (a tautology) is equivalent to P .

P ∨ (a tautology) is a tautology.

¬(a tautology) is a contradiction.

Contradiction laws

P ∧ (a contradiction) is a contradiction.

P ∨ (a contradiction) is equivalent to P .

¬(a contradiction) is a tautology.

Example 1.2.7. Find simpler formulas equivalent to these formulas:

1. P ∨ (Q ∧ ¬P).
2. ¬(P ∨ (Q ∧ ¬R)) ∧ Q.

Solutions

1. P ∨ (Q ∧ ¬P)
is equivalent to (P ∨ Q) ∧ (P ∨ ¬P) (distributive law),

which is equivalent to P ∨ Q (tautology law).
The last step uses the fact that P ∨ ¬P is a tautology.

2. ¬(P ∨ (Q ∧ ¬R)) ∧ Q
is equivalent to (¬P ∧ ¬(Q ∧ ¬R)) ∧ Q (DeMorgan’s law),

which is equivalent to (¬P ∧ (¬Q ∨ ¬¬R)) ∧ Q (DeMorgan’s law),
which is equivalent to (¬P ∧ (¬Q ∨ R)) ∧ Q (double negation law),
which is equivalent to ¬P ∧ ((¬Q ∨ R) ∧ Q) (associative law),
which is equivalent to ¬P ∧ (Q ∧ (¬Q ∨ R)) (commutative law),
which is equivalent to ¬P ∧ ((Q ∧ ¬Q) ∨ (Q ∧ R))

(distributive law),
which is equivalent to ¬P ∧ (Q ∧ R) (contradiction law).

The last step uses the fact that Q ∧ ¬Q is a contradiction. Finally, by the
associative law for ∧ we can remove the parentheses without making the
formula ambiguous, so the original formula is equivalent to the formula
¬P ∧ Q ∧ R.
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Exercises

∗1. Make truth tables for the following formulas:
(a) ¬P ∨ Q.
(b) (S ∨ G) ∧ (¬S ∨ ¬G).

2. Make truth tables for the following formulas:
(a) ¬[P ∧ (Q ∨ ¬P)].
(b) (P ∨ Q) ∧ (¬P ∨ R).

3. In this exercise we will use the symbol + to mean exclusive or. In other
words, P + Q means “P or Q, but not both.”
(a) Make a truth table for P + Q.
(b) Find a formula using only the connectives ∧, ∨, and ¬ that is equiv-

alent to P + Q. Justify your answer with a truth table.
4. Find a formula using only the connectives ∧ and ¬ that is equivalent to

P ∨ Q. Justify your answer with a truth table.
∗5. Some mathematicians use the symbol ↓ to mean nor. In other words,

P ↓ Q means “neither P nor Q.”
(a) Make a truth table for P ↓ Q.
(b) Find a formula using only the connectives ∧, ∨, and ¬ that is equiv-

alent to P ↓ Q.
(c) Find formulas using only the connective ↓ that are equivalent to ¬P ,

P ∨ Q, and P ∧ Q.
6. Some mathematicians write P | Q to mean “P and Q are not both true.”

(This connective is called nand, and is used in the study of circuits in
computer science.)
(a) Make a truth table for P | Q.
(b) Find a formula using only the connectives ∧, ∨, and ¬ that is equiv-

alent to P | Q.
(c) Find formulas using only the connective | that are equivalent to ¬P ,

P ∨ Q, and P ∧ Q.
∗7. Use truth tables to determine whether or not the arguments in exercise 7

of Section 1.1 are valid.
8. Use truth tables to determine which of the following formulas are equiv-

alent to each other:
(a) (P ∧ Q) ∨ (¬P ∧ ¬Q).
(b) ¬P ∨ Q.
(c) (P ∨ ¬Q) ∧ (Q ∨ ¬P).
(d) ¬(P ∨ Q).
(e) (Q ∧ P) ∨ ¬P .

∗9. Use truth tables to determine which of these statements are tautologies,
which are contradictions, and which are neither:
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(a) (P ∨ Q) ∧ (¬P ∨ ¬Q).
(b) (P ∨ Q) ∧ (¬P ∧ ¬Q).
(c) (P ∨ Q) ∨ (¬P ∨ ¬Q).
(d) [P ∧ (Q ∨ ¬R)] ∨ (¬P ∨ R).

10. Use truth tables to check these laws:
(a) The second DeMorgan’s law. (The first was checked in the text.)
(b) The distributive laws.

∗11. Use the laws stated in the text to find simpler formulas equivalent to these
formulas. (See Examples 1.2.5 and 1.2.7.)
(a) ¬(¬P ∧ ¬Q).
(b) (P ∧ Q) ∨ (P ∧ ¬Q).
(c) ¬(P ∧ ¬Q) ∨ (¬P ∧ Q).

12. Use the laws stated in the text to find simpler formulas equivalent to these
formulas. (See Examples 1.2.5 and 1.2.7.)
(a) ¬(¬P ∨ Q) ∨ (P ∧ ¬R).
(b) ¬(¬P ∧ Q) ∨ (P ∧ ¬R).
(c) (P ∧ R) ∨ [¬R ∧ (P ∨ Q)].

13. Use the first DeMorgan’s law and the double negation law to derive the
second DeMorgan’s law.

∗14. Note that the associative laws say only that parentheses are unnecessary
when combining three statements with ∧ or ∨. In fact, these laws can be
used to justify leaving parentheses out when more than three statements
are combined. Use associative laws to show that [P ∧ (Q ∧ R)] ∧ S is
equivalent to (P ∧ Q) ∧ (R ∧ S).

15. How many lines will there be in the truth table for a statement containing
n letters?

∗16. Find a formula involving the connectives ∧, ∨, and ¬ that has the follow-
ing truth table:

P Q ???

F F T
F T F
T F T
T T T

17. Find a formula involving the connectives ∧, ∨, and ¬ that has the follow-
ing truth table:

P Q ???

F F F
F T T
T F T
T T F
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18. Suppose the conclusion of an argument is a tautology. What can you
conclude about the validity of the argument? What if the conclusion is
a contradiction? What if one of the premises is either a tautology or a
contradiction?

1.3. Variables and Sets

In mathematical reasoning it is often necessary to make statements about objects
that are represented by letters called variables. For example, if the variable x
is used to stand for a number in some problem, we might be interested in the
statement “x is a prime number.” Although we may sometimes use a single
letter, say P, to stand for this statement, at other times we will revise this
notation slightly and write P(x), to stress that this is a statement about x.
The latter notation makes it easy to talk about substituting some number for
x in the statement. For example, P(7) would represent the statement “7 is a
prime number,” and P(a + b) would mean “a + b is a prime number.” If a
statement contains more than one variable, our abbreviation for the statement
will include a list of all the variables involved. For example, we might represent
the statement “p is divisible by q” by D(p, q). In this case, D(12, 4) would
mean “12 is divisible by 4.”

Although you have probably seen variables used most often to stand for
numbers, they can stand for anything at all. For example, we could let M(x)
stand for the statement “x is a man,” and W (x) for “x is a woman.” In this
case, we are using the variable x to stand for a person. A statement might even
contain several variables that stand for different kinds of objects. For example,
in the statement “x has y children,” the variable x stands for a person, and y
stands for a number.

Statements involving variables can be combined using connectives, just like
statements without variables.

Example 1.3.1. Analyze the logical forms of the following statements:

1. x is a prime number, and either y or z is divisible by x.
2. x is a man and y is a woman and x likes y, but y doesn’t like x.

Solutions

1. We could let P stand for the statement “x is a prime number,” D for “y
is divisible by x,” and E for “z is divisible by x.” The entire statement
would then be represented by the formula P ∧ (D ∨ E). But this analysis,
though not incorrect, fails to capture the relationship between the statements
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D and E. A better analysis would be to let P(x) stand for “x is a prime
number” and D(y, x) for “y is divisible by x.” Then D(z, x) would mean “z is
divisible by x,” so the entire statement would be P(x) ∧ (D(y, x) ∨ D(z, x)).

2. Let M(x) stand for “x is a man,” W (y) for “y is a woman,” and L(x, y) for
“x likes y.” Then L(y, x) would mean “y likes x.” (Notice that the order of
the variables after the L makes a difference!) The entire statement would
then be represented by the formula M(x) ∧ W (y) ∧ L(x, y) ∧ ¬L(y, x).

When studying statements that do not contain variables, we can easily talk
about their truth values, since each statement is either true or false. But if a
statement contains variables, we can no longer describe the statement as being
simply true or false. Its truth value might depend on the values of the variables
involved. For example, if P(x) stands for the statement “x is a prime number,”
then P(x) would be true if x = 23, but false if x = 22. To solve this problem,
we will define truth sets for statements containing variables. Before giving this
definition, though, it might be helpful to review some basic definitions from
set theory.

A set is a collection of objects. The objects in the collection are called the
elements of the set. The simplest way to specify a particular set is to list its
elements between braces. For example, {3, 7, 14} is the set whose elements
are the three numbers 3, 7, and 14. We use the symbol ∈ to mean is an element
of. For example, if we let A stand for the set {3, 7, 14}, then we could write
7 ∈ A to say that 7 is an element of A. To say that 11 is not an element of A,
we write 11 �∈ A.

A set is completely determined once its elements have been specified. Thus,
two sets that have exactly the same elements are always equal. Also, when
a set is defined by listing its elements, all that matters is which objects are
in the list of elements, not the order in which they are listed. An element
can even appear more than once in the list. Thus, {3, 7, 14}, {14, 3, 7}, and
{3, 7, 14, 7} are three different names for the same set.

It may be impractical to define a set that contains a very large number of
elements by listing all of its elements, and it would be impossible to give such
a definition for a set that contains infinitely many elements. Often this problem
can be overcome by listing a few elements with an ellipsis (. . .) after them, if it
is clear how the list should be continued. For example, suppose we define a set
B by saying that B = {2, 3, 5, 7, 11, 13, 17, . . .}. Once you recognize that the
numbers listed in the definition of B are the prime numbers, then you know that,
for example, 23 ∈ B, even though it wasn’t listed explicitly when we defined
B. But this method requires recognition of the pattern in the list of numbers in
the definition of B, and this requirement introduces an element of ambiguity
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and subjectivity into our notation that is best avoided in mathematical writing.
It is therefore usually better to define such a set by spelling out the pattern that
determines the elements of the set.

In this case we could be explicit by defining B as follows:

B = {x | x is a prime number}.
This is read “B = the set of all x such that x is a prime number,” and it means
that the elements of B are the values of x that make the statement “x is a prime
number” come out true. You should think of the statement “x is a prime number”
as an elementhood test for the set. Any value of x that makes this statement
come out true passes the test and is an element of the set. Anything else fails
the test and is not an element. Of course, in this case the values of x that make
the statement true are precisely the prime numbers, so this definition says that
B is the set whose elements are the prime numbers, exactly as before.

Example 1.3.2. Rewrite these set definitions using elementhood tests:

1. E = {2, 4, 6, 8, . . .}.
2. P = {George Washington, John Adams, Thomas Jefferson, James

Madison, . . . }.

Solutions

Although there might be other ways of continuing these lists of elements,
probably the most natural ones are given by the following definitions:

1. E = {n | n is a positive even integer}.
2. P = {z | z was a president of the United States}.

If a set has been defined using an elementhood test, then that test can be used
to determine whether or not something is an element of the set. For example,
consider the set {x | x2 < 9}. If we want to know if 5 is an element of this set,
we simply apply the elementhood test in the definition of the set – in other
words, we check whether or not 52 < 9. Since 52 = 25 > 9, it fails the test,
so 5 �∈ {x | x2 < 9}. On the other hand, (−2)2 = 4 < 9, so −2 ∈ {x | x2 < 9}.
The same reasoning would apply to any other number. For any number y, to
determine whether or not y ∈ {x | x2 < 9}, we just check whether or not y2 < 9.
In fact, we could think of the statement y ∈ {x | x2 < 9} as just a roundabout
way of saying y2 < 9.

Notice that because the statement y ∈ {x | x2 < 9} means the same thing as
y2 < 9, it is a statement about y, but not x! To determine whether or not y ∈
{x | x2 < 9} you need to know what y is (so you can compare its square to 9), but
not what x is. We say that in the statement y ∈ {x | x2 < 9}, y is a free variable,
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whereas x is a bound variable (or a dummy variable). The free variables in a
statement stand for objects that the statement says something about. Plugging
in different values for a free variable affects the meaning of a statement and
may change its truth value. The fact that you can plug in different values for
a free variable means that it is free to stand for anything. Bound variables, on
the other hand, are simply letters that are used as a convenience to help express
an idea and should not be thought of as standing for any particular object. A
bound variable can always be replaced by a new variable without changing
the meaning of the statement, and often the statement can be rephrased so
that the bound variables are eliminated altogether. For example, the statements
y ∈ {x | x2 < 9} and y ∈ {w |w 2 < 9} mean the same thing, because they both
mean “y is an element of the set of all numbers whose squares are less than 9.”
In this last statement, all bound variables have been eliminated, and the only
variable mentioned is the free variable y.

Note that x is a bound variable in the statement y ∈ {x | x2 < 9} even though
it is a free variable in the statement x2 < 9. This last statement is a statement
about x that would be true for some values of x and false for others. It is only
when this statement is used inside the elementhood test notation that x becomes
a bound variable. We could say that the notation {x | . . .} binds the variable x.

Everything we have said about the set {x | x2 < 9} would apply to any set
defined by an elementhood test. In general, the statement y ∈ {x | P(x)} means
the same thing as P(y), which is a statement about y but not x. Similarly,
y /∈ {x | P(x)} means the same thing as ¬P(y). Of course, the expression
{x | P(x)} is not a statement at all; it is a name for a set. As you learn more
mathematical notation, it will become increasingly important to make sure you
are careful to distinguish between expressions that are mathematical statements
and expressions that are names for mathematical objects.

Example 1.3.3. What do these statements mean? What are the free variables
in each statement?

1. a + b �∈ {x | x is an even number}.
2. y ∈ {x | x is divisible by w}.
3. 2 ∈ {w | 6 /∈ {x | x is divisible by w}}.

Solutions

1. This statement says that a + b is not an element of the set of all even
numbers, or in other words, a + b is not an even number. Both a and b are
free variables, but x is a bound variable. The statement will be true for some
values of a and b and false for others.
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2. This statement says that y is divisible by w . Both y and w are free variables,
but x is a bound variable. The statement is true for some values of y and w
and false for others.

3. This looks quite complicated, but if we go a step at a time, we can decipher
it. First, note that the statement 6 �∈ {x | x is divisible by w}, which appears
inside the given statement, means the same thing as “6 is not divisible by w .”
Substituting this into the given statement, we find that the original statement
is equivalent to the simpler statement 2 ∈ {w | 6 is not divisible by w}. But
this just means the same thing as “6 is not divisible by 2.” Thus, the statement
has no free variables, and both x and w are bound variables. Because there
are no free variables, the truth value of the statement doesn’t depend on the
values of any variables. In fact, since 6 is divisible by 2, the statement is
false.

Perhaps you have guessed by now how we can use set theory to help us
understand truth values of statements containing free variables. As we have
seen, a statement, say P(x), containing a free variable x, may be true for some
values of x and false for others. To distinguish the values of x that make P(x)
true from those that make it false, we could form the set of values of x for which
P(x) is true. We will call this set the truth set of P(x).

Definition 1.3.4. The truth set of a statement P(x) is the set of all values of x
that make the statement P(x) true. In other words, it is the set defined by using
the statement P(x) as an elementhood test:

Truth set of P(x) = {x | P(x)}.
Note that we have defined truth sets only for statements containing one free
variable. We will discuss truth sets for statements with more than one free
variable in Chapter 4.

Example 1.3.5. What are the truth sets of the following statements?

1. Shakespeare wrote x.
2. n is an even prime number.

Solutions

1. {x | Shakespeare wrote x} = {Hamlet, Macbeth, Twelfth Night, . . .}.
2. {n | n is an even prime number}. Because the only even prime number is 2,

this is the set {2}. Note that 2 and {2} are not the same thing! The first is
a number, and the second is a set whose only element is a number. Thus,
2 ∈ {2}, but 2 �= {2}.
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Suppose A is the truth set of a statement P(x). According to the definition of
truth set, this means that A = {x | P(x)}. We’ve already seen that for any object
y, the statement y ∈ {x | P(x)} means the same thing as P(y). Substituting in
A for {x | P(x)}, it follows that y ∈ A means the same thing as P(y). Thus, we
see that in general, if A is the truth set of P(x), then to say that y ∈ A means
the same thing as saying P(y).

When a statement contains free variables, it is often clear from context that
these variables stand for objects of a particular kind. The set of all objects of
this kind – in other words, the set of all possible values for the variables – is
called the universe of discourse for the statement, and we say that the variables
range over this universe. For example, in most contexts the universe for the
statement x2 < 9 would be the set of all real numbers; the universe for the
statement “x is a man” might be the set of all people.

Certain sets come up often in mathematics as universes of discourse, and it is
convenient to have fixed names for them. Here are a few of the most important
ones:

R = {x | x is a real number}.
Q = {x | x is a rational number}.
(Recall that a real number is any number on the number line, and a
rational number is a number that can be written as a fraction p/q,
where p and q are integers.)
Z = {x | x is an integer} = {. . . , −3, −2, −1, 0, 1, 2, 3, . . .}.
N = {x | x is a natural number} = {0, 1, 2, 3, . . .}.
(Some books include 0 as a natural number and some don’t. In this
book, we consider 0 to be a natural number.)

The letters R, Q, and Z can be followed by a superscript + or − to indicate that
only positive or negative numbers are to be included in the set. For example,
R+ = {x | x is a positive real number}, and Z− = {x | x is a negative integer}.

Although the universe of discourse can usually be determined from context,
it is sometimes useful to identify it explicitly. Consider a statement P(x) with a
free variable x that ranges over a universe U. Although we have written the truth
set of P(x) as {x | P(x)}, if there were any possibility of confusion about what
the universe was, we could specify it explicitly by writing {x ∈ U | P(x)}; this
is read “the set of all x in U such that P(x).” This notation indicates that only
elements of U are to be considered for elementhood in this truth set, and among
elements of U, only those that pass the elementhood test P(x) will actually be in
the truth set. For example, consider again the statement x2 < 9. If the universe
of discourse for this statement were the set of all real numbers, then its truth
set would be {x ∈ R | x2 < 9}, or in other words, the set of all real numbers
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between −3 and 3. But if the universe were the set of all integers, then the
truth set would be {x ∈ Z | x2 < 9} = {−2, −1, 0, 1, 2}. Thus, for example,
1.58 ∈ {x ∈ R | x2 < 9} but 1.58 /∈ {x ∈ Z | x2 < 9}. Clearly, the choice of
universe can sometimes make a difference!

Sometimes this explicit notation is used not to specify the universe of dis-
course but to restrict attention to just a part of the universe. For example, in
the case of the statement x2 < 9, we might want to consider the universe
of discourse to be the set of all real numbers, but in the course of some
reasoning involving this statement we might want to temporarily restrict our
attention to only positive real numbers. We might then be interested in the
set {x ∈ R+ | x2 < 9}. As before, this notation indicates that only positive real
numbers will be considered for elementhood in this set, and among positive
real numbers, only those whose square is less than 9 will be in the set. Thus,
for a number to be an element of this set, it must pass two tests: it must be a
positive real number, and its square must be less than 9. In other words, the
statement y ∈ {x ∈ R+ | x2 < 9} means the same thing as y ∈ R+ ∧ y2 < 9.
In general, y ∈ {x ∈ A | P(x)} means the same thing as y ∈ A ∧ P(y).

When a new mathematical concept has been defined, mathematicians are
usually interested in studying any possible extremes of this concept. For
example, when we discussed truth tables, the extremes we studied were
statements whose truth tables contained only T’s (tautologies) or only F’s
(contradictions). For the concept of the truth set of a statement containing a
free variable, the corresponding extremes would be the truth sets of statements
that are always true or always false. Suppose P(x) is a statement containing
a free variable x that ranges over a universe U. It should be clear that if P(x)
comes out true for every value of x ∈ U , then the truth set of P(x) will be
the whole universe U. For example, since the statement x2 ≥ 0 is true for
every real number x, the truth set of this statement is {x ∈ R | x2 ≥ 0} = R.
Of course, this is not unrelated to the concept of a tautology. For exam-
ple, since P ∨ ¬P is a tautology, the statement P(x) ∨ ¬P(x) will be true
for every x ∈ U , no matter what statement P(x) stands for or what the
universe U is, and therefore the truth set of the statement P(x) ∨ ¬P(x)
will be U.

For a statement P(x) that is false for every possible value of x, nothing in
the universe can pass the elementhood test for the truth set of P(x), and so this
truth set must have no elements. The idea of a set with no elements may sound
strange, but it arises naturally when we consider truth sets for statements that
are always false. Because a set is completely determined once its elements have
been specified, there is only one set that has no elements. It is called the empty
set, or the null set, and is often denoted ∅. For example, {x ∈ Z | x �= x} = ∅.
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Since the empty set has no elements, the statement x ∈ ∅ is an example of a
statement that is always false, no matter what x is.

Another common notation for the empty set is based on the fact that any set
can be named by listing its elements between braces. Since the empty set has
no elements, we write nothing between the braces, like this: ∅= { }. Note that
{∅} is not correct notation for the empty set. Just as we saw earlier that 2 and
{2} are not the same thing, ∅ is not the same as {∅}. The first is a set with no
elements, whereas the second is a set with one element, that one element being
∅, the empty set.

Exercises

∗1. Analyze the logical forms of the following statements:
(a) 3 is a common divisor of 6, 9, and 15. (Note: You did this in exercise

2 of Section 1.1, but you should be able to give a better answer now.)
(b) x is divisible by both 2 and 3 but not 4.
(c) x and y are natural numbers, and exactly one of them is prime.

2. Analyze the logical forms of the following statements:
(a) x and y are men, and either x is taller than y or y is taller than x .
(b) Either x or y has brown eyes, and either x or y has red hair.
(c) Either x or y has both brown eyes and red hair.

∗3. Write definitions using elementhood tests for the following sets:
(a) {Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune,

Pluto}.
(b) {Brown, Columbia, Cornell, Dartmouth, Harvard, Princeton, Univer-

sity of Pennsylvania, Yale}.
(c) {Alabama, Alaska, Arizona, . . . , Wisconsin, Wyoming}.
(d) {Alberta, British Columbia, Manitoba, New Brunswick, Newfound-

land and Labrador, Northwest Territories, Nova Scotia, Nunavut, On-
tario, Prince Edward Island, Quebec, Saskatchewan, Yukon}.

4. Write definitions using elementhood tests for the following sets:
(a) {1, 4, 9, 16, 25, 36, 49, . . .}.
(b) {1, 2, 4, 8, 16, 32, 64, . . .}.
(c) {10, 11, 12, 13, 14, 15, 16, 17, 18, 19}.

∗5. Simplify the following statements. Which variables are free and which are
bound? If the statement has no free variables, say whether it is true or
false.
(a) −3 ∈ {x ∈ R | 13 − 2x > 1}.
(b) 4 ∈ {x ∈ R− | 13 − 2x > 1}.
(c) 5 /∈ {x ∈ R | 13 − 2x > c}.
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6. Simplify the following statements. Which variables are free and which are
bound? If the statement has no free variables, say whether it is true or
false.
(a) w ∈ {x ∈ R | 13 − 2x > c}.
(b) 4 ∈ {x ∈ R | 13 − 2x ∈ {y | y is a prime number}}. (It might make

this statement easier to read if we let P = {y | y is a prime number};
using this notation, we could rewrite the statement as 4 ∈ {x ∈ R |
13 − 2x ∈ P}.)

(c) 4 ∈ {x ∈{y | y is a prime number} |13 − 2x > 1}. (Using the same no-
tation as in part (b), we could write this as 4 ∈ {x ∈ P | 13 − 2x > 1}.)

∗7. What are the truth sets of the following statements? List a few elements of
the truth set if you can.
(a) Elizabeth Taylor was once married to x .
(b) x is a logical connective studied in Section 1.1.
(c) x is the author of this book.

8. What are the truth sets of the following statements? List a few elements of
the truth set if you can.
(a) x is a real number and x2 − 4x + 3 = 0.
(b) x is a real number and x2 − 2x + 3 = 0.
(c) x is a real number and 5 ∈ {y ∈ R | x2 + y2 < 50}.

1.4. Operations on Sets

Suppose A is the truth set of a statement P(x) and B is the truth set of Q(x).
What are the truth sets of the statements P(x) ∧ Q(x), P(x) ∨ Q(x),
and ¬P(x)? To answer these questions, we introduce some basic operations
on sets.

Definition 1.4.1. The intersection of two sets A and B is the set A ∩ B defined
as follows:

A ∩ B = {x | x ∈ A and x ∈ B}.
The union of A and B is the set A ∪ B defined as follows:

A ∪ B = {x | x ∈ A or x ∈ B}.
The difference of A and B is the set A \ B defined as follows:

A \ B = {x | x ∈ A and x �∈ B}.
Remember that the statements that appear in these definitions are element-

hood tests. Thus, for example, the definition of A ∩ B says that for an object to
be an element of A ∩ B, it must be an element of both A and B. In other words,
A ∩ B is the set consisting of the elements that A and B have in common.
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Because the word or is always interpreted as inclusive or in mathematics,
anything that is an element of either A or B, or both, will be an element of
A ∪ B. Thus, we can think of A ∪ B as the set resulting from throwing all the
elements of A and B together into one set. A \ B is the set you would get if you
started with the set A and removed from it any elements that were also in B.

Example 1.4.2. Suppose A = {1, 2, 3, 4, 5} and B = {2, 4, 6, 8, 10}. List the
elements of the following sets:

1. A ∩ B.
2. A ∪ B.
3. A \ B.

4. (A ∪ B) \ (A ∩ B).
5. (A \ B) ∪ (B \ A).

Solutions

1. A ∩ B = {2, 4}.
2. A ∪ B = {1, 2, 3, 4, 5, 6, 8, 10}.
3. A \ B = {1, 3, 5}.
4. We have just computed A ∪ B and A ∩ B in solutions 1 and 2, so all we

need to do is start with the set A ∪ B from solution 2 and remove from it
any elements that are also in A ∩ B. The answer is (A ∪ B) \ (A ∩ B) =
{1, 3, 5, 6, 8, 10}.

5. We already have the elements of A \ B listed in solution 3, and B \ A =
{6, 8, 10}. Thus, their union is (A \ B) ∪ (B \ A) = {1, 3, 5, 6, 8, 10}. Is it
just a coincidence that this is the same as the answer to part 4?

Example 1.4.3. Suppose A = {x | x is a man} and B = {x | x has brown hair}.
What are A ∩ B, A ∪ B, and A \ B?

Solution

By definition, A ∩ B = {x | x ∈ A and x ∈ B}. As we saw in the last section,
the definitions of A and B tell us that x ∈ A means the same thing as “x is a
man,” and x ∈ B means the same thing as “x has brown hair.” Plugging this
into the definition of A ∩ B, we find that

A ∩ B = {x | x is a man and x has brown hair}.
Similar reasoning shows that

A ∪ B = {x | either x is a man or x has brown hair}
and

A \ B = {x | x is a man and x does not have brown hair}.
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Sometimes it is helpful when working with operations on sets to draw pic-
tures of the results of these operations. One way to do this is with diagrams
like that in Figure 1. This is called a Venn diagram. The interior of the rect-
angle enclosing the diagram represents the universe of discourse U, and the
interiors of the two circles represent the two sets A and B. Other sets formed by
combining these sets would be represented by different regions in the diagram.
For example, the shaded region in Figure 2 is the region common to the circles
representing A and B, and so it represents the set A ∩ B. Figures 3 and 4 show
the regions representing A ∪ B and A \ B, respectively.

Figure 1
Figure 2

Figure 3 Figure 4

Here’s an example of how Venn diagrams can help us understand operations
on sets. In Example 1.4.2 the sets (A ∪ B) \ (A ∩ B) and (A \ B) ∪ (B \ A)
turned out to be equal, for a particular choice of A and B. You can see by
making Venn diagrams for both sets that this was not a coincidence. You’ll
find that both Venn diagrams look like Figure 5. Thus, these sets will always
be equal, no matter what the sets A and B are, because both sets will always
be the set of objects that are elements of either A or B but not both. This set
is called the symmetric difference of A and B and is written A�B. In other
words, A�B = (A \ B) ∪ (B \ A) = (A ∪ B) \ (A ∩ B). Later in this section
we’ll see another explanation of why these sets are always equal.
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Figure 5

Let’s return now to the question with which we began this section. If A is
the truth set of a statement P(x) and B is the truth set of Q(x), then, as we saw
in the last section, x ∈ A means the same thing as P(x) and x ∈ B means the
same thing as Q(x). Thus, the truth set of P(x) ∧ Q(x) is {x | P(x) ∧ Q(x)} =
{x | x ∈ A ∧ x ∈ B} = A ∩ B. This should make sense. It just says that the
truth set of P(x) ∧ Q(x) consists of those elements that the truth sets of P(x)
and Q(x) have in common – in other words, the values of x that make both
P(x) and Q(x) come out true. We have already seen an example of this. In
Example 1.4.3 the sets A and B were the truth sets of the statements “x is a
man” and “x has brown hair,” and A ∩ B turned out to be the truth set of “x is
a man and x has brown hair.”

Similar reasoning shows that the truth set of P(x) ∨ Q(x) is A ∪ B. To find
the truth set of ¬P(x), we need to talk about the universe of discourse U. The
truth set of ¬P(x) will consist of those elements of the universe for which P(x)
is false, and we can find this set by starting with U and removing from it those
elements for which P(x) is true. Thus, the truth set of ¬P(x) is U \ A.

These observations about truth sets illustrate the fact that the set theory
operations ∩, ∪, and \ are related to the logical connectives ∧, ∨, and ¬. This
shouldn’t be surprising, since after all the words and, or, and not appear in
their definitions. (The word not doesn’t appear explicitly, but it’s there, hidden
in the mathematical symbol �∈ in the definition of the difference of two sets.)
It is important to remember, though, that although the set theory operations
and logical connectives are related, they are not interchangeable. The logical
connectives can only be used to combine statements, whereas the set theory
operations must be used to combine sets. For example, if A is the truth set of
P(x) and B is the truth set of Q(x), then we can say that A ∩ B is the truth set of
P(x) ∧ Q(x), but expressions such as A ∧ B or P(x) ∩ Q(x) are completely
meaningless and should never be used.

The relationship between set theory operations and logical connectives also
becomes apparent when we analyze the logical forms of statements about
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intersections, unions, and differences of sets. For example, according to the
definition of intersection, to say that x ∈ A ∩ B means that x ∈ A ∧ x ∈ B.
Similarly, to say that x ∈ A ∪ B means that x ∈ A ∨ x ∈ B, and x ∈ A \ B
means x ∈ A ∧ x �∈ B, or in other words x ∈ A ∧ ¬(x ∈ B). We can combine
these rules when analyzing statements about more complex sets.

Example 1.4.4. Analyze the logical forms of the following statements:

1. x ∈ A ∩ (B ∪ C).
2. x ∈ A \ (B ∩ C).
3. x ∈ (A ∩ B) ∪ (A ∩ C).

Solutions

1. x ∈ A ∩ (B ∪ C)
is equivalent to x ∈ A ∧ x ∈ (B ∪ C) (definition of ∩),

which is equivalent to x ∈ A ∧ (x ∈ B ∨ x ∈ C) (definition of ∪).
2. x ∈ A \ (B ∩ C)

is equivalent to x ∈ A ∧ ¬(x ∈ B ∩ C) (definition of \),
which is equivalent to x ∈ A ∧ ¬(x ∈ B ∧ x ∈ C) (definition of ∩).

3. x ∈ (A ∩ B) ∪ (A ∩ C)
is equivalent to x ∈ (A ∩ B) ∨ x ∈ (A ∩ C) (definition of ∪),

which is equivalent to (x ∈ A ∧ x ∈ B) ∨ (x ∈ A ∧ x ∈ C)
(definition of ∩).

Look again at the solutions to parts 1 and 3 of Example 1.4.4. You should rec-
ognize that the statements we ended up with in these two parts are equivalent. (If
you don’t, look back at the distributive laws in Section 1.2.) This equivalence
means that the statements x ∈ A ∩ (B ∪ C) and x ∈ (A ∩ B) ∪ (A ∩ C) are
equivalent. In other words, the objects that are elements of the set A ∩ (B ∪ C)
will be precisely the same as the objects that are elements of (A ∩ B) ∪
(A ∩ C), no matter what the sets A, B, and C are. But recall that sets with
the same elements are equal, so it follows that for any sets A, B, and C, A ∩
(B ∪ C) = (A ∩ B) ∪ (A ∩ C). Another way to see this is with the Venn di-
agram in Figure 6. Our earlier Venn diagrams had two circles, because in
previous examples only two sets were being combined. This Venn diagram has
three circles, which represent the three sets A, B, and C that are being combined
in this case. Although it is possible to create Venn diagrams for more than three
sets, it is rarely done, because it cannot be done with overlapping circles. For
more on Venn diagrams for more than three sets, see exercise 10.

Thus, we see that a distributive law for logical connectives has led to a
distributive law for set theory operations. You might guess that because there
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Figure 6

were two distributive laws for the logical connectives, with ∧ and ∨ playing
opposite roles in the two laws, there might be two distributive laws for set
theory operations too. The second distributive law for sets should say that for
any sets A, B, and C, A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C). You can verify this
for yourself by writing out the statements x ∈ A ∪ (B ∩ C) and x ∈ (A ∪ B) ∩
(A ∪ C) using logical connectives and verifying that they are equivalent, using
the second distributive law for the logical connectives ∧ and ∨. Another way
to see it is to make a Venn diagram.

We can derive another set theory identity by finding a statement equivalent
to the statement we ended up with in part 2 of Example 1.4.4:

x ∈ A \ (B ∩ C)
is equivalent to x ∈ A ∧ ¬(x ∈ B ∧ x ∈ C) (Example 1.4.4),

which is equivalent to x ∈ A ∧ (x �∈ B ∨ x �∈ C) (DeMorgan’s law),
which is equivalent to (x ∈ A ∧ x �∈ B) ∨ (x ∈ A ∧ x �∈ C)

(distributive law),
which is equivalent to (x ∈ A \ B) ∨ (x ∈ A \ C) (definition of \),
which is equivalent to x ∈ (A \ B) ∪ (A \ C) (definition of ∪).

Thus, we have shown that for any sets A, B, and C , A \(B ∩ C) = (A \ B) ∪
(A \ C). Once again, you can verify this with a Venn diagram as well.

Earlier we promised an alternative way to check the identity (A ∪ B) \
(A ∩ B) = (A \ B) ∪ (B \ A). You should see now how this can be done. First,
we write out the logical forms of the statements x ∈ (A ∪ B) \ (A ∩ B) and
x ∈ (A \ B) ∪ (B \ A):

x ∈ (A ∪ B) \ (A ∩ B) means (x ∈ A ∨ x ∈ B) ∧ ¬(x ∈ A ∧ x ∈ B);

x ∈ (A \ B) ∪ (B \ A) means (x ∈ A ∧ x �∈ B) ∨ (x ∈ B ∧ x �∈ A).
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You can now check, using equivalences from Section 1.2, that these statements
are equivalent. An alternative way to check the equivalence is with a truth table.
To simplify the truth table, let’s use P and Q as abbreviations for the statements
x ∈ A and x ∈ B. Then we must check that the formulas (P ∨ Q) ∧ ¬(P ∧ Q)
and (P ∧ ¬Q) ∨ (Q ∧ ¬P) are equivalent. The truth table in Figure 7 shows
this.

Figure 7

Definition 1.4.5. Suppose A and B are sets. We will say that A is a subset of
B if every element of A is also an element of B. We write A ⊆ B to mean that
A is a subset of B. A and B are said to be disjoint if they have no elements in
common. Note that this is the same as saying that the set of elements they have
in common is the empty set, or in other words A ∩ B = ∅.

Example 1.4.6. Suppose A = {red, green}, B = {red, yellow, green, purple},
and C = {blue, purple}. Then the two elements of A, red and green, are both
also in B, and therefore A ⊆ B. Also, A ∩ C = ∅, so A and C are disjoint.

If we know that A ⊆ B, or that A and B are disjoint, then we might draw a
Venn diagram for A and B differently to reflect this. Figures 8 and 9 illustrate
this.

Figure 8 Figure 9

Just as we earlier derived identities showing that certain sets are always equal,
it is also sometimes possible to show that certain sets are always disjoint, or
that one set is always a subset of another. For example, you can see in a Venn
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diagram that the sets A ∩ B and A \ B do not overlap, and therefore they will
always be disjoint for any sets A and B. Another way to see this would be to
write out what it means to say that x ∈ (A ∩ B) ∩ (A \ B):

x ∈ (A ∩ B) ∩ (A \ B) means (x ∈ A ∧ x ∈ B) ∧ (x ∈ A ∧ x �∈ B),

which is equivalent to x ∈ A ∧ (x ∈ B ∧ x �∈ B).

But this last statement is clearly a contradiction, so the statement x ∈ (A ∩
B) ∩ (A \ B) will always be false, no matter what x is. In other words, nothing
can be an element of (A ∩ B) ∩ (A \ B), so it must be the case that (A ∩ B) ∩
(A \ B) = ∅. Therefore, A ∩ B and A \ B are disjoint.

The next theorem gives another example of a general fact about set oper-
ations. The proof of this theorem illustrates that the principles of deductive
reasoning we have been studying are actually used in mathematical proofs.

Theorem 1.4.7. For any sets A and B, (A ∪ B) \ B ⊆ A.
Proof. We must show that if something is an element of (A ∪ B) \ B, then it
must also be an element of A, so suppose that x ∈ (A ∪ B) \ B. This means
that x ∈ A ∪ B and x �∈ B, or in other words x ∈ A ∨ x ∈ B and x �∈ B. But
notice that these statements have the logical form P ∨ Q and ¬Q, and this
is precisely the form of the premises of our very first example of a deductive
argument in Section 1.1! As we saw in that example, from these premises we
can conclude that x ∈ A must be true. Thus, anything that is an element of
(A ∪ B) \ B must also be an element of A, so (A ∪ B) \ B ⊆ A. �

You might think that such a careful application of logical laws is not needed
to understand why Theorem 1.4.7 is correct. The set (A ∪ B) \ B could be
thought of as the result of starting with the set A, adding in the elements of
B, and then removing them again. Common sense suggests that the result will
just be the original set A; in other words, it appears that (A ∪ B) \ B = A.
However, as you are asked to show in exercise 9, this conclusion is incorrect.
This illustrates that in mathematics, you must not allow imprecise reasoning
to lead you to jump to conclusions. Applying laws of logic carefully, as we did
in our proof of Theorem 1.4.7, may help you to avoid jumping to unwarranted
conclusions.

Exercises

∗1. Let A = {1, 3, 12, 35}, B = {3, 7, 12, 20}, and C = {x | x is a prime
number}. List the elements of the following sets. Are any of the sets
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below disjoint from any of the others? Are any of the sets below subsets
of any others?
(a) A ∩ B.
(b) (A ∪ B) \ C .
(c) A ∪ (B \ C).

2. Let A = {United States, Germany, China, Australia}, B = {Germany,
France, India, Brazil}, and C = {x | x is a country in Europe}. List the
elements of the following sets. Are any of the sets below disjoint from
any of the others? Are any of the sets below subsets of any others?
(a) A ∪ B.
(b) (A ∩ B) \ C .
(c) (B ∩ C) \ A.

3. Verify that the Venn diagrams for (A ∪ B) \ (A ∩ B) and (A \ B) ∪
(B \ A) both look like Figure 5, as stated in this section.

∗4. Use Venn diagrams to verify the following identities:
(a) A \ (A ∩ B) = A \ B.
(b) A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C).

5. Verify the identities in exercise 4 by writing out (using logical symbols)
what it means for an object x to be an element of each set and then using
logical equivalences.

6. Use Venn diagrams to verify the following identities:
(a) (A ∪ B) \ C = (A \ C) ∪ (B \ C).
(b) A ∪ (B \ C) = (A ∪ B) \ (C \ A).

7. Verify the identities in exercise 6 by writing out (using logical symbols)
what it means for an object x to be an element of each set and then using
logical equivalences.

∗8. For each of the following sets, write out (using logical symbols) what it
means for an object x to be an element of the set. Then determine which
of these sets must be equal to each other by determining which statements
are equivalent.
(a) (A \ B) \ C .
(b) A \ (B \ C).
(c) (A \ B) ∪ (A ∩ C).
(d) (A \ B) ∩ (A \ C).
(e) A \ (B ∪ C).

9. It was shown in this section that for any sets A and B, (A ∪ B) \ B ⊆ A.
Give an example of two sets A and B for which (A ∪ B) \ B �= A.

∗10. It is claimed in this section that you cannot make a Venn diagram for four
sets using overlapping circles.
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(a) What’s wrong with the following diagram? (Hint: Where’s the set
(A ∩ D) \ (B ∪ C)?)

(b) Can you make a Venn diagram for four sets using shapes other than
circles?

11. (a) Make Venn diagrams for the sets (A ∪ B) \ C and A ∪ (B \ C). What
can you conclude about whether one of these sets is necessarily a
subset of the other?

(b) Give an example of sets A, B, and C for which (A ∪ B) \ C �= A ∪
(B \ C).

∗12. Use Venn diagrams to show that the associative law holds for symmetric
difference; that is, for any sets A, B, and C, A � (B�C) = (A � B) � C .

13. Use any method you wish to verify the following identities:
(a) (A � B) ∪ C = (A ∪ C) � (B \ C).
(b) (A � B) ∩ C = (A ∩ C) � (B ∩ C).
(c) (A � B) \ C = (A \ C) � (B \ C).

14. Use any method you wish to verify the following identities:
(a) (A ∪ B) � C = (A � C) � (B \ A).
(b) (A ∩ B) � C = (A � C) � (A \ B).
(c) (A \ B) � C = (A � C) � (A ∩ B).

15. Fill in the blanks to make true identities:
(a) (A � B) ∩ C = (C \ A) � .
(b) C \ (A � B) = (A ∩ C) � .
(c) (B \ A) � C = (A � C) � .

1.5. The Conditional and Biconditional Connectives

It is time now to return to a question we left unanswered in Section 1.1. We
have seen how the reasoning in the first and third arguments in Example 1.1.1
can be understood by analyzing the connectives ∨ and ¬. But what about the
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reasoning in the second argument? Recall that the argument went like this:

If today is Sunday, then I don’t have to go to work today.

Today is Sunday.
Therefore, I don’t have to go to work today.

What makes this reasoning valid?
It appears that the crucial words here are if and then, which occur in the

first premise. We therefore introduce a new logical connective, →, and write
P → Q to represent the statement “If P then Q” This statement is sometimes
called a conditional statement, with P as its antecedent and Q as its consequent.
If we let P stand for the statement “Today is Sunday” and Q for the statement “I
don’t have to go to work today,” then the logical form of the argument would be

P → Q

P

∴ Q

Our analysis of the new connective → should lead to the conclusion that this
argument is valid.

Example 1.5.1. Analyze the logical forms of the following statements:

1. If it’s raining and I don’t have my umbrella, then I’ll get wet.
2. If Mary did her homework, then the teacher won’t collect it, and if she didn’t,

then he’ll ask her to do it on the board.

Solutions

1. Let R stand for the statement “It’s raining,” U for “I have my umbrella,” and
W for “I’ll get wet.” Then statement 1 would be represented by the formula
(R ∧ ¬U ) → W .

2. Let H stand for “Mary did her homework,” C for “The teacher will collect
it,” and B for “The teacher will ask Mary to do the homework on the board.”
Then the given statement means (H → ¬C) ∧ (¬H → B).

To analyze arguments containing the connective → we must work out the
truth table for the formula P → Q. Because P → Q is supposed to mean that
if P is true then Q is also true, we certainly want to say that if P is true and
Q is false then P → Q is false. If P is true and Q is also true, then it seems
reasonable to say that P → Q is true. This gives us the last two lines of the
truth table in Figure 1. The remaining two lines of the truth table are harder
to fill in, although some people might say that if P and Q are both false then
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P → Q should be considered true. Thus, we can sum up our conclusions so
far with the table in Figure 1.

Figure 1

To help us fill in the undetermined lines in this truth table, let’s look at
an example. Consider the statement “If x > 2 then x2 > 4,” which we could
represent with the formula P(x) → Q(x), where P(x) stands for the statement
x > 2 and Q(x) stands for x2 > 4. Of course, the statements P(x) and Q(x)
contain x as a free variable, and each will be true for some values of x and false
for others. But surely, no matter what the value of x is, we would say it is true
that if x > 2 then x2 > 4, so the conditional statement P(x) → Q(x) should
be true. Thus, the truth table should be completed in such a way that no matter
what value we plug in for x, this conditional statement comes out true.

For example, suppose x = 3. In this case x > 2 and x2 = 9 > 4, so P(x)
and Q(x) are both true. This corresponds to line four of the truth table in
Figure 1, and we’ve already decided that the statement P(x) → Q(x) should
come out true in this case. But now consider the case x = 1. Then x < 2 and
x2 = 1 < 4, so P(x) and Q(x) are both false, corresponding to line one in the
truth table. We have tentatively placed a T in this line of the truth table, and
now we see that this tentative choice must be right. If we put an F there, then
the statement P(x) → Q(x) would come out false in the case x = 1, and we’ve
already decided that it should be true for all values of x.

Finally, consider the case x = −5. Then x < 2, so P(x) is false, but x2 =
25 > 4, so Q(x) is true. Thus, in this case we find ourselves in the second line
of the truth table, and once again, if the conditional statement P(x) → Q(x)
is to be true in this case, we must put a T in this line. So it appears that all the
questionable lines in the truth table in Figure 1 must be filled in with T’s, and
the completed truth table for the connective → must be as shown in Figure 2.

Figure 2
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Of course, there are many other values of x that could be plugged into our
statement “If x > 2 then x2 > 4”; but if you try them, you’ll find that they all
lead to line one, two, or four of the truth table, as our examples x = 1, −5,
and 3 did. No value of x will lead to line three, because you could never have
x > 2 but x2 ≤ 4. After all, that’s why we said that the statement “If x > 2
then x2 > 4” was always true, no matter what x was! The point of saying that
this conditional statement is always true is simply to say that you will never
find a value of x such that x > 2 and x2 ≤ 4 – in other words, there is no value
of x for which P(x) is true but Q(x) is false. Thus, it should make sense that
in the truth table for P → Q, the only line that is false is the line in which P
is true and Q is false.

As the truth table in Figure 3 shows, the formula ¬P ∨ Q is also true in
every case except when P is true and Q is false. Thus, if we accept the truth
table in Figure 2 as the correct truth table for the formula P → Q, then we
will be forced to accept the conclusion that the formulas P → Q and ¬P ∨ Q
are equivalent. Is this consistent with the way the words if and then are used
in ordinary language? It may not seem to be at first, but, at least for some uses
of the words if and then, it is.

Figure 3

For example, imagine a teacher saying to a class, in a threatening tone of
voice, “You won’t neglect your homework, or you’ll fail the course.” Grammat-
ically, this statement has the form ¬P ∨ Q, where P is the statement “You will
neglect your homework” and Q is “You’ll fail the course.” But what message is
the teacher trying to convey with this statement? Clearly the intended message
is “If you neglect your homework, then you’ll fail the course,” or in other words
P → Q. Thus, in this example, the statements ¬P ∨ Q and P → Q seem to
mean the same thing.

There is a similar idea at work in the first statement from Example 1.1.2,
“Either John went to the store, or we’re out of eggs.” In Section 1.1 we repre-
sented this statement by the formula P ∨ Q, with P standing for “John went to
the store” and Q for “We’re out of eggs.” But someone who made this statement
would probably be trying to express the idea that if John didn’t go to the store,
then we’re out of eggs, or in other words ¬P → Q. Thus, this example sug-
gests that ¬P → Q means the same thing as P ∨ Q. In fact, we can derive this
equivalence from the previous one by substituting ¬P for P. Because P → Q
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is equivalent to ¬P ∨ Q, it follows that ¬P → Q is equivalent to ¬¬P ∨ Q,
which is equivalent to P ∨ Q by the double negation law.

We can derive another useful equivalence as follows:

¬P ∨ Q is equivalent to ¬P ∨ ¬¬Q (double negation law),

which is equivalent to ¬(P ∧ ¬Q) (DeMorgan’s law).

Thus, P → Q is also equivalent to ¬(P ∧ ¬Q). In fact, this is precisely the
conclusion we reached earlier when discussing the statement “If x > 2 then
x2 > 4.” We decided then that the reason this statement is true for every value
of x is that there is no value of x for which x > 2 and x2 ≤ 4. In other words,
the statement P(x) ∧ ¬Q(x) is never true, where as before P(x) stands for
x > 2 and Q(x) for x2 > 4. But that’s the same as saying that the statement
¬(P(x) ∧ ¬Q(x)) is always true. Thus, to say that P(x) → Q(x) is always
true means the same thing as saying that ¬(P(x) ∧ ¬Q(x)) is always true.

For another example of this equivalence, consider the statement “If it’s going
to rain, then I’ll take my umbrella.” Of course, this statement has the form
P → Q, where P stands for the statement “It’s going to rain” and Q stands
for “I’ll take my umbrella.” But we could also think of this statement as a
declaration that I won’t be caught in the rain without my umbrella – in other
words, ¬(P ∧ ¬Q).

To summarize, so far we have discovered the following equivalences involv-
ing conditional statements:

Conditional laws

P → Q is equivalent to ¬P ∨ Q.

P → Q is equivalent to ¬(P ∧ ¬Q).

In case you’re still not convinced that the truth table in Figure 2 is right,
we give one more reason. We know that, using this truth table, we can now
analyze the validity of deductive arguments involving the words if and then.
We’ll find, when we analyze a few simple arguments, that the truth table in
Figure 2 leads to reasonable conclusions about the validity of these arguments.
But if we were to make any changes in the truth table, we would end up with
conclusions that are clearly incorrect. For example, let’s return to the argument
form with which we started this section:

P → Q

P

∴ Q

We have already decided that this form of argument should be valid, and the
truth table in Figure 4 confirms this. The premises are both true only in line
four of the table, and in this line the conclusion is true as well.
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Figure 4

You can also see from Figure 4 that both premises are needed to make this
argument valid. But if we were to change the truth table for the conditional
statement to make P → Q false in the first line of the table, then the second
premise of this argument would no longer be needed. We would end up with
the conclusion that, just from the single premise P → Q, we could infer that Q
must be true, since in the two lines of the truth table in which the premise P →
Q would still be true, lines two and four, the conclusion Q is true too. But this
doesn’t seem right. Just knowing that if P is true then Q is true, but not knowing
that P is true, it doesn’t seem reasonable that we should be able to conclude that
Q is true. For example, suppose we know that the statement “If John didn’t go
to the store then we’re out of eggs” is true. Unless we also know whether or not
John has gone to the store, we can’t reach any conclusion about whether or not
we’re out of eggs. Thus, changing the first line of the truth table for P → Q
would lead to an incorrect conclusion about the validity of an argument.

Changing the second line of the truth table would also lead to unacceptable
conclusions about the validity of arguments. To see this, consider the argument
form:

P → Q

Q

∴ P

This should not be considered a valid form of reasoning. For example, consider
the following argument, which has this form:

If Jones was convicted of murdering Smith, then he will go to jail.
Jones will go to jail.
Therefore, Jones was convicted of murdering Smith.

Even if the premises of this argument are true, the conclusion that Jones was
convicted of murdering Smith doesn’t follow. Maybe the reason he will go to
jail is that he robbed a bank or cheated on his income tax. Thus, the conclusion
of this argument could be false even if the premises were true, so the argument
isn’t valid.
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The truth table analysis in Figure 5 agrees with this conclusion. In line two of
the table, the conclusion P is false, but both premises are true, so the argument
is invalid. But notice that if we were to change the truth table for P → Q
and make it false in line two, then the truth table analysis would say that the
argument is valid. Thus, the analysis of this argument seems to support our
decision to put a T in the second line of the truth table for P → Q.

Figure 5

The last example shows that from the premises P → Q and Q it is incorrect
to infer P. But it would certainly be correct to infer P from the premises Q → P
and Q. This shows that the formulas P → Q and Q → P do not mean the same
thing. You can check this by making a truth table for both and verifying that
they are not equivalent. For example, a person might believe that, in general,
the statement “If you are a convicted murderer then you are untrustworthy” is
true, without believing that the statement “If you are untrustworthy then you
are a convicted murderer” is generally true. The formula Q → P is called the
converse of P → Q. It is very important to make sure you never confuse a
conditional statement with its converse.

The contrapositive of P → Q is the formula ¬Q → ¬P , and it is equivalent
to P → Q. This may not be obvious at first, but you can verify it with a truth
table. For example, the statements “If John cashed the check I wrote then my
bank account is overdrawn” and “If my bank account isn’t overdrawn then John
hasn’t cashed the check I wrote” are equivalent. Both would be true in exactly
the same circumstances – namely, if the check I wrote was for more money
than I had in my account. The equivalence of conditional statements and their
contrapositives is used often in mathematical reasoning. We add it to our list
of important equivalences:

Contrapositive law

P → Q is equivalent to ¬Q → ¬P.

Example 1.5.2. Which of the following statements are equivalent?

1. If it’s either raining or snowing, then the game has been canceled.
2. If the game hasn’t been canceled, then it’s not raining and it’s not snowing.
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3. If the game has been canceled, then it’s either raining or snowing.
4. If it’s raining then the game has been canceled, and if it’s snowing then the

game has been canceled.
5. If it’s neither raining nor snowing, then the game hasn’t been canceled.

Solution

We translate all of the statements into the notation of logic, using the follow-
ing abbreviations: R stands for the statement “It’s raining,” S stands for “It’s
snowing,” and C stands for “The game has been canceled.”

1. (R ∨ S) → C .
2. ¬C → (¬R ∧ ¬S). By one of DeMorgan’s laws, this is equivalent to

¬C → ¬(R ∨ S). This is the contrapositive of statement 1, so they are
equivalent.

3. C → (R ∨ S). This is the converse of statement 1, which is not equivalent
to it. You can verify this with a truth table, or just think about what the state-
ments mean. Statement 1 says that rain or snow would result in cancelation
of the game. Statement 3 says that these are the only circumstances in which
the game will be canceled.

4. (R → C) ∧ (S → C). This is also equivalent to statement 1, as the following
reasoning shows:

(R → C) ∧ (S → C)
is equivalent to (¬R ∨ C) ∧ (¬S ∨ C) (conditional law),

which is equivalent to (¬R ∧ ¬S) ∨ C (distributive law),
which is equivalent to ¬(R ∨ S) ∨ C (DeMorgan’s law),
which is equivalent to (R ∨ S) → C (conditional law).

You should read statements 1 and 4 again and see if it makes sense to you
that they’re equivalent.

5. ¬(R ∨ S) → ¬C . This is the contrapositive of statement 3, so they are
equivalent. It is not equivalent to statements 1, 2, and 4.

Statements that mean P → Q come up very often in mathematics, but
sometimes they are not written in the form “If P then Q.” Here are a few other
ways of expressing the idea P → Q that are used often in mathematics:

P implies Q.
Q, if P.
P only if Q.
P is a sufficient condition for Q.
Q is a necessary condition for P.
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Some of these may require further explanation. The second expression,
“Q, if P,” is just a slight rearrangement of the statement “If P then Q,” so
it should make sense that it means P → Q. As an example of a statement of
the form “P only if Q,” consider the sentence “You can run for president only if
you are a citizen.” In this case, P is “You can run for president” and Q is “You
are a citizen.” What the statement means is that if you’re not a citizen, then you
can’t run for president, or in other words ¬Q → ¬P . But by the contrapositive
law, this is equivalent to P → Q.

Think of “P is a sufficient condition for Q” as meaning “The truth of P
suffices to guarantee the truth of Q,” and it should make sense that this should
be represented by P → Q. Finally, “Q is a necessary condition for P” means
that in order for P to be true, it is necessary for Q to be true also. This means
that if Q isn’t true, then P can’t be true either, or in other words, ¬Q → ¬P .
Once again, by the contrapositive law we get P → Q.

Example 1.5.3. Analyze the logical forms of the following statements:

1. If at least ten people are there, then the lecture will be given.
2. The lecture will be given only if at least ten people are there.
3. The lecture will be given if at least ten people are there.
4. Having at least ten people there is a sufficient condition for the lecture being

given.
5. Having at least ten people there is a necessary condition for the lecture being

given.

Solutions

Let T stand for the statement “At least ten people are there” and L for “The
lecture will be given.”

1. T → L .
2. L → T . The given statement means that if there are not at least ten people

there, then the lecture will not be given, or in other words ¬T → ¬L . By
the contrapositive law, this is equivalent to L → T .

3. T → L . This is just a rephrasing of statement 1.
4. T → L . The statement says that having at least ten people there suffices to

guarantee that the lecture will be given, and this means that if there are at
least ten people there, then the lecture will be given.

5. L → T . This statement means the same thing as statement 2: If there are
not at least ten people there, then the lecture will not be given.
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We have already seen that a conditional statement P → Q and its converse
Q → P are not equivalent. Often in mathematics we want to say that both
P → Q and Q → P are true, and it is therefore convenient to introduce a
new connective symbol, ↔, to express this. You can think of P ↔ Q as just
an abbreviation for the formula (P → Q) ∧ (Q → P). A statement of the
form P ↔ Q is called a biconditional statement, because it represents two
conditional statements. By making a truth table for (P → Q) ∧ (Q → P) you
can verify that the truth table for P ↔ Q is as shown in Figure 6. Note that, by
the contrapositive law, P ↔ Q is also equivalent to (P → Q) ∧ (¬P → ¬Q).

Figure 6

Because Q → P can be written “P if Q” and P → Q can be written “P only
if Q,” P ↔ Q means “P if Q and P only if Q,” and this is often written “P if
and only if Q.” The phrase if and only if occurs so often in mathematics that
there is a common abbreviation for it, iff. Thus, P ↔ Q is usually written “P
iff Q.” Another statement that means P ↔ Q is “P is a necessary and sufficient
condition for Q.”

Example 1.5.4. Analyze the logical forms of the following statements:

1. The game will be canceled iff it’s either raining or snowing.
2. Having at least ten people there is a necessary and sufficient condition for

the lecture being given.
3. If John went to the store then we have some eggs, and if he didn’t then we

don’t.

Solutions

1. Let C stand for “The game will be canceled,” R for “It’s raining,” and S
for “It’s snowing.” Then the statement would be represented by the formula
C ↔ (R ∨ S).

2. Let T stand for “There are at least ten people there” and L for “The lecture
will be given.” Then the statement means T ↔ L .

3. Let S stand for “John went to the store” and E for “We have some eggs.”
Then a literal translation of the given statement would be (S → E) ∧
(¬S → ¬E). This is equivalent to S ↔ E .
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One of the reasons it’s so easy to confuse a conditional statement with its
converse is that in everyday speech we sometimes use a conditional statement
when what we mean to convey is actually a biconditional. For example, you
probably wouldn’t say “The lecture will be given if at least ten people are there”
unless it was also the case that if there were fewer than ten people, the lecture
wouldn’t be given. After all, why mention the number ten at all if it’s not the
minimum number of people required? Thus, the statement actually suggests
that the lecture will be given iff there are at least ten people there. For another
example, suppose a child is told by his parents, “If you don’t eat your dinner,
you won’t get any dessert.” The child certainly expects that if he does eat his
dinner, he will get dessert, although that’s not literally what his parents said. In
other words, the child interprets the statement as meaning “Eating your dinner
is a necessary and sufficient condition for getting dessert.”

Such a blurring of the distinction between if and iff is never acceptable in
mathematics. Mathematicians always use a phrase such as iff or necessary and
sufficient condition when they want to express a biconditional statement. You
should never interpret an if-then statement in mathematics as a biconditional
statement, the way you might in everyday speech.

Exercises

∗1. Analyze the logical forms of the following statements:
(a) If this gas either has an unpleasant smell or is not explosive, then it

isn’t hydrogen.
(b) Having both a fever and a headache is a sufficient condition for George

to go to the doctor.
(c) Both having a fever and having a headache are sufficient conditions

for George to go to the doctor.
(d) If x �= 2, then a necessary condition for x to be prime is that x be odd.

2. Analyze the logical forms of the following statements:
(a) Mary will sell her house only if she can get a good price and find a

nice apartment.
(b) Having both a good credit history and an adequate down payment is a

necessary condition for getting a mortgage.
(c) John will kill himself, unless someone stops him. (Hint: First try to

rephrase this using the words if and then instead of unless.)
(d) If x is divisible by either 4 or 6, then it isn’t prime.

3. Analyze the logical form of the following statement:
(a) If it is raining, then it is windy and the sun is not shining.
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Now analyze the following statements. Also, for each statement determine
whether the statement is equivalent to either statement (a) or its converse.
(b) It is windy and not sunny only if it is raining.
(c) Rain is a sufficient condition for wind with no sunshine.
(d) Rain is a necessary condition for wind with no sunshine.
(e) It’s not raining, if either the sun is shining or it’s not windy.
(f) Wind is a necessary condition for it to be rainy, and so is a lack of

sunshine.
(g) Either it is windy only if it is raining, or it is not sunny only if it is

raining.
∗4. Use truth tables to determine whether or not the following arguments are

valid:
(a) Either sales or expenses will go up. If sales go up, then the boss will

be happy. If expenses go up, then the boss will be unhappy. Therefore,
sales and expenses will not both go up.

(b) If the tax rate and the unemployment rate both go up, then there will
be a recession. If the GNP goes up, then there will not be a recession.
The GNP and taxes are both going up. Therefore, the unemployment
rate is not going up.

(c) The warning light will come on if and only if the pressure is too high and
the relief valve is clogged. The relief valve is not clogged. Therefore,
the warning light will come on if and only if the pressure is too high.

5. (a) Show that P ↔ Q is equivalent to (P ∧ Q) ∨ (¬P ∧ ¬Q).
(b) Show that (P → Q) ∨ (P → R) is equivalent to P → (Q ∨ R).

∗6. (a) Show that (P → R) ∧ (Q → R) is equivalent to (P ∨ Q) → R.
(b) Formulate and verify a similar equivalence involving (P → R) ∨

(Q → R).
7. (a) Show that (P → Q) ∧ (Q → R) is equivalent to (P → R) ∧

[(P ↔ Q) ∨ (R ↔ Q)].
(b) Show that (P → Q) ∨ (Q → R) is a tautology.

∗8. Find a formula involving only the connectives ¬ and → that is equivalent
to P ∧ Q.

9. Find a formula involving only the connectives ¬ and → that is equivalent
to P ↔ Q.

10. Which of the following formulas are equivalent?
(a) P → (Q → R).
(b) Q → (P → R).
(c) (P → Q) ∧ (P → R).
(d) (P ∧ Q) → R.
(e) P → (Q ∧ R).
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