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On the Quasi-periodic Solutions of Mathieu's
Differential Equation.

By Axprew W. Younag, Research Student in the Mathematical
Laboratory, University of Edinburgh.

(Read 13th February 1914. Received 10th June 1914).

Mathieu’s differential equation

Ty + (3 + Keos’z)y=0.......cooveiiinnnn 1)
dz

is the equation which arises out of those two-dimensional problems
in Mathematical Physics in which the boundary is an ellipse,
such problems, for example, as the vibrations of an elliptic
membrane, which was first discussed by Mathieu,* and the scattering
of electromagnetic waves by a wire of elliptic cross-section. A
different use of the same equation is found in Celestial Mechanics
in the treatment of perturbations and oscillations about periodic
orbits,+ and, in & more mundane connection, it has been shown to
be the differential equation of the variety artiste who holds an
assistant poised on a pole above his head while he himself is
standing on a spherical ball rolling on the ground !

The coetticient a + A°cos®2 is 4 periodic function of z, and hence
the equation (1) belongs to the class of differential equations with
periodic coefficients, a class which has been discussed by Floquet,}
who gave what may be termed the Fuchsian theory, and, recently,
by Hamel,§ who has investigated certain properties affecting the
« gtability ” of the solutions.

* Mathieu : Liouville’s Journal (2), XIIL., p. 137-203, 1868.
+ Bruns: Ast. Nach. No. 2533, S. 193-204, 1883, and No. 2553, S. 129-132,
1884.

1 Floquet : Annales de 'Ecole Normale Supérieure (2), T. 12, p. 47-88,
1883.
§ Hamel : Mathematische Annalen, B. 73, 8. 371-412, 1913.
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From Floquet’s theory we know that the general solution of
equation (1) is of the form

y=Ae"p(2) + Be™py(z) oo (2)

where p,(z) and p,(z) are periodic functions having the same period
as the coefficient of (1),
¢ is a constant depending on the constants of the original
differential equation,
and A and B are the arbitrary constants of the solution.
Such a solution as (2) is called quasi-periodic, inasmuch as after
the lapse of a period it does not repeat itself exactly but contains
multiplying factors, thus

y(z+27) = 2“Aeczp,(z)+e'2’che-czp2(z).

When the constants a and & of the original differential equation
are such that c¢=0, the above existence theorem fails to give the
general solution. In this case one solution is purely-periodic, and
the other solution is related to it in a way analogous to that in
which, for example, the Bessel’s functions of the first and second
kinds are connected. These periodic solutions, which in Professor
Whittaker’s * notation, are written

cey(2), c6(z), cey(2), ...
se,(2), sex(2), ...
are infinite in number, and as Hilbert t has shown that they may
be regarded as the eigenfunktionen (or autofunctions) of a certain
integral equation, of which the corresponding eigenwerte (or auto-
values) are the values of a concerned, we may agree to call these
solutions eigenfunktionen, and these values of a, eigenwerte of the
differential equation.

For values of a other than these eigenwerte the solution is quasi-
periodic, and it is the main object of this paper to show how these
quasi-periodic solutions change their nature as a is varied (£ being
regarded as a constant parameter), and how the quasi-periodicity

* Whittaker : Cambridge International Congress, Vol. 1., 1912,
1 Hilbert: Gottingen Nachrichten, 1904, 8. 213-234, The Hilbert
integral equation is essentially different from that given by Whittaker (Joc.

cit.). Whittaker’s has a continuous kern, whereas Hilbert's kern has a
discontinuity.
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merges into pure periodicity in the neighbourhood of the eigenwerte.
With this in view we cannot make much progress by means of the
method, used by Lindemann* and Maclaurin, 1 of transforming the
equation into an algebraic equation by the substitution of =cosz
and then expanding in Taylor’s series round certain points in the
xz-plane. Accordingly we shall confine ourselves to solutions of the
form (2).

§1. Convenient Form of the differential equation.
If we write k*=32¢ in (1), with a view to saving repeated
powers of 2 in the expansions, we obtain for our differential

equation
dly 9 2
227 (a + 32gcosz)y =0
or ‘2’2 +(a+16g +16gcos22)y =0 ....o..ooonn..... (3)

§2. Expresston of the Quasi-periodic Solution in a Form which
reduces to the ceyfunction.

We know that the elliptic-cylinder function (or periodic solution)
of zero order, ce,(2), is given by

4
y =cey(2) = 1 + 4gcos2z + 2¢g°cosdz + q"’(?cost - '2800s2z) + ...

29696
—9 ¢

when a+167= - 329"+ 224¢* - N

Let us try to get a solution
y=Ae*(} + a periodic function) + Be™* (} 4 a periodic function)
which will reduce to ce,(z) when ¢=0 and A=B=1.
The process used is as follows:
Assume a=a,+a,g+a0°+a0°+ ...
and y=Ae"(} + b,(2)g + b (2)g* + by(2)g° + ...)
+ Be™(% + d(2)q + dy(2)g* + da(2)g° + ....).
Substituting in the equation (3), and equating to zero the terms
not containing ¢ as a factor, we have
4+ 1a,=0,

and Seoay= — ¢t

* Liodemann : Mathematische Annalen, B, 22, 8. 117-123, 1883.
t Maclaurin : Trans, Camb. Phil. Soc., Vol. XVIL, p. 41-108, 1899
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Equating to zero the terms with the first power of g as a factor,
we obtain
b,"(2) + 2b,(z)c + bi(z)c* — b,(z)c® + Ea, + 8 + 8cos22 =0,
d,"(2) - 2, (z)c + d,(z)c* — d,(z)c* + §a, + 8 + Bcos2z=0.
In order that &,(z) and d,(z), the integrals of these equations
may have only periodic terms, we must make
$a,+8=0
and ooy = - 16,
and we then have
2c0s22 — 2¢8in2z
14¢
2¢0822 + 2¢sin2z
1+¢*

by(z) =

di(z) =

In this way we proceed to determine in succession a, aj, ...,
by(2), b(2), ...s da(2), dy(2), ..., and thus obtain

- Aee 2c0s2z - 2csin2z (4 — 2c°)cosdz — besindz
y=ae [%+ 14¢ gt (1 +c2)(4 +¢%)
( _%(_16(1—02) _ 8(1-2¢") . ( 3% 4e(5-¢)
T T T r ey (1+c2)2(4+c=))+sm2" A+dF  (A+0yGE+a) -
8(1-¢%) . 4c(11 - ¢%) s
teosbr T s T adr et T

+ Be— [the same function of —c]
(1-¢ (1-2¢)
1+¢%  (L+c)(d+c)

; 3
when a+16q=—c‘=—l—'}207.q+128[z i

It will be seen that these expansions contain as denominators
(1+¢*), (4+¢%), etc, so that they are not convergent near
¢=t, 2¢, .... Now these are the values of ¢ which, when sub-
stituted in

y = Ae” (periodic function) + Be™ (periodic function)

would give periodic solutions, and hence this expansion for the quasi-
periodic solution cannot be used practically for those values of a
which are in the neighbourhood of the eigenwerte corresponding to
the ce,, ce...., 8¢, se, ... functions. We shall afterwards show that
in these neighbourhoods the nature of the quasi-periodicity under-
goes changes, and it is interesting to note how these changes take
place under cover of the divergence of the expression, a circum-
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stance in many ways analogous to the well-known property, which
the constants of an asymptotic expansion have, of changing their
character in the ‘‘haziness” that arises in certain regions of the
argument.

§3. Expression of the Quasi-periodic Solution in Forms which
reduce to the Elliptic-cylinder Functions other than the cegfunction.

The method of the last section was used to obtain an expression
which would reduce to cey(z) for c=0. It is natural to try to get
an expansion on similar lines which would reduce to ¢¢,(z) or to any
of the other periodic solutions, and Professor Whittaker has pointed
out to me an elegant method by which we deduce an expansion
reducing to ce, and se;, and which can be easily extended to provide
expansions reducing to any required periodic solution.*

The ce, solution is

ce,(2) = cosz + gcosdz + ¢*( ~ cos3z + Lcosbz) + ...
when a+16g=1-8g-8¢*+8¢"— ...
and the se, solution is

se,(?) =sinz + ¢sin3z + ¢*(sin3z + lsind2) + ...
when a+16g=1+8g-8¢*-8¢°~...;
and Professor Whittaker’s solution shows that these are simply
particular cases (corresponding to o= - —;)1: and to ¢=0) of the
theorem that a quasi-periodic solution is
y= e4’15“i"2"[sin(z - o) +¢sin(3z — o) + ¢*(3sin2¢cos(3z - o)
+ cos2esin(3z — o) + Isin(Bz ~ o) ) +...]

when a+16¢g=1+8cos20.qg - 8(1 + 2sin*20)¢* + ...

This expansion is obtained by assuming the solution

y= eNqZSin%[sin(z =)+ gb,(2) +¢°bs(o) + ...]

along with a+16g=1+9a,(0) + g°au(c) + ...,
and finding a,, a,, ... in succession such that b,, by, b, ... are periodic
functions. It is found in this case that N =4,

* An account of this method is given in a note by Professor Whittaker
in the present volume.
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It is clear that the general solution of the equation may be

written
y = At gin (5 _ o) + gsin(3z - o) + ...]
+Be ™ 4020 6in (2 + o) +gsin(3z + o) + ...
when a+16¢ =1+ 8cos2e. g — 8(1 + 25in*20) . g°+ ...

When we aim at getting a solution which will reduce to, say,

ce, and se,, we assume as solution
y= eNq%Sinz"[sin (nz — o) + gby(2) + ¢%bs(2) + ... ],

along with a+ 16q =n%+gay(ad) + ¢%ay(0) + ...,
the only change being the substitution of ¢» for ¢ in the exponential
factor and in taking sin(nz - o) as the solution when ¢=0.

The case n=2 gives
y=Ae 4051020 6in(9, _ ¢) + (2sino+ 2sin(4z — o) )g+Isin(6z - ) . ¢°

+ {&sino — 16sin’e - 1 fsin20cos(4z - o)
+ (- & +X2sin’0)sin(4z — o) + J4sin(8z - o) }g* + ... ]

+ B t49"ssin20 [the same function of — o],
when a +16¢ =4 — (4% — 32sin’e)g* + ...

This solution reduces to cex(z) for o= — —;—,
and to - se,(z) for o =0.

The case n =23 gives similarly
y = A} S0 gin (3 ~ o) + (- sin(z - o) + Jsin(5z - o) )g
+( ~sin(z +0) + &sin(7z - o) )¢*
+ (= 3sin(z — ) + 74sin(6z — o) + sin(9z - o) )g* + ... ]
+Be #2102 (416 same function of - o]

when a+16q=9+4q2+8c0s20.q +....

This solution reduces to cey(z) for o= ~ %
and to sey(z) for a=0.

With these solutions we can explore beyond ¢=0 and
o= % by using imaginary values of o, but from later considerations

it will be evident that any one of these solutions cannot provide
an expansion for all values of the parameter a, and use will
accordingly be made of these solutions only in the vicinity of the
etgenwerte of the periodic solutions to which they naturally reduce.
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$4. Discussion of the variation of c.

We shall return now to a consideration of the Floquet form of
solution y = Ae“p,(2) + Be~p,(z), and proceed to discuss the
variation of the parameter a.

When ¢ is small—as usually happens in astronomical applica-
tions—it is evident that a first approximation to the solution of
(1) is

y= AV T By "V
so that a first approximation to the value of ¢ is 7 ,/a.

Also if y= Ae”p\(z) + Be~“py(») is a solution, we have solutions

of the form
= Ae(ci"'i)zpl’(z) + Be"(cim)ng'(z),
where =1, 2, 3, ....

Thus ¢ is not a single-valued quantity, since ¢ £ ni would act
equally well, but it will be convenient to select that value of ¢
which would reduce to i ,/a if ¢ were taken to be zero. With
this convention ¢=0, 1, 2, ..., n, ... will correspond to the periodic
solutions

cey €&\ Ce) ce,,}
se S se,) sed

In §2 it is shown that, when the parameter a is not in the
neighbourhood of any of the eigenwerte other than that of the
ce-function, the relation between ¢ and a is

32, /286(1-¢)  128(1-2¢%) \ ,
14¢*° ( (I+ep (1 +c2)2(4+02)‘>9
When the denominators are expanded, this becomes
a+16g=—c*-32(1 —-c*+c* - c®+...)¢

+ (224 - 888¢® + 2046¢* ~ 3712:5¢% + ... )¢*

29696\

or a+16q=<—32q2+224q‘—¥9—§q“+ >

- (1 - 32¢° +888¢° - ...)
+c'(-32¢° +2046¢" - ...)
—c%(—32¢* +3712:5¢* - ...).
For any particular value of ¢ (sufficiently small to make the
series in the brackets convergent), this formula gives a for any

a+16g= —c*-

.......
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value of ¢, and by a simple reversion of this equation we can derive
a formula for ¢ in terms of a.

Since general formulae have not been obtained, we must have
resort to numerical calculation for further knowledge, and the
result is, that when we substitute real values of ¢ in the formula,
values of a are obtained which are less than the eigenwerte of the
ce,function, and, when we substitute imaginary values of ¢, the
corresponding values of a are all found to be greater than the
eigenwerte of ce,.

As we noted above, this formula cannot be used near the
etgenwerte of the other periodic solutions, and in their vicinity we
must have recourse to the results of § 3.

§$5. Note on the Application of G. W. Hill's Method.

In his celebrated memoir “On the Mean Motion of the Lunar
Perigee,” Hill* reduced the problem to the discussion of the
equation

d'y

d2
and when 0,0;... are taken to be zero, the equation becomes the
Mathieu equation. We may thus make use of Hill’s results, but
the formula which he arrived at for ¢ in terms of the ©’s suffers
from the same disability as the formula of the last section, in that
it cannot be used in the regions near any of the eigenwerte, and
therefore does not give any extra information.

+ (69 + 20,c082z + 20,c0s4z2 4+ ... )z =0

§6. The value of ¢ near the eigenwerte.

The results of §3 are shown in the table annexed, in which are
arranged the values of @ + 16¢ and of ¢ corresponding to the region
of ce, and se,, of ce, and se,, ...

In the neigh-
bourhood of

the cigenwerte ¢ a+16g
of
ce, and se, 4¢sin2o 1+ 8cos20 . ¢ — 8(1 + 2sin*2a)g* + ...
ce, and se, - 4¢*sin2o 4 - (& - 32sin'e)g? + ...
ce; and se, 44%in2c 94 49>+ 8cos20.¢° + ...

* Hill : Acta Mathematica, Vol. VIIL, pp. 1-36, 1886.
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It will be seen that a + 16g is real for real and imaginary values
of o, but that ¢ is real or imaginary according as o is real or
imaginary.

Now for the real values o, a + 16¢ lies between the eigenwerte

. T .
corresponding to ¢ =0 and ¢ = - ) and hence we see that ¢ is real
Jor values of a intermediate between eigenwerte of any pair of the
periodic functions which are of the same order, e.g. ce, and se,
ce, and se,, elc.

§7. Variation of ¢ over whole region of the parameter a.
Combining the results of §§4 and 6 we have the following
theorem : —

The values of a corresponding to the periodic solutions (or elliptic
cylinder functions) zerve to mark out regions in the whole range of
values of q, in which the corresponding value of ¢ is either always
real or always imaginary. In particular
from a = - o to the eigenwerte of ce, ¢ is real;

from the eigenwerte of ce, to the eigenwerte of ce), ¢ is imaginary ;

T » ” 5 €€ 2 I 5 86, C 18 I'ea/l;
1 39 ) 3 86 ) 9 3y 86y C 18 imaginary;
3 39 » »n S€ 1 3y »» €€y ¢ is real;

and so on.

It will be noticed from the last column in the table of §6
that, since the earliest term of the series containing a function
of o is that in ¢", the interval between the eigenwerte belonging to
the ce,-function, and that belonging to the se,-function depends on
¢*, and hence, if ¢ be small, decreases rapidly with increasing
values of the order n of the periodic solutions. From the second
column ¢ is likewise seen to depend on ¢~

§8. Stability and Instability of the Solutions.

In most of the physical applications of Mathieu’s differential
equation it is the periodic solution that is wanted, but in the
astronomical questions it is the quasi-periodic, and, more especially,
it is the factor of quasi-periodicity, ¢, that is of importance.

7 Vol. 32
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The equation
327:;/ + (@ + 16g + 16gcos22)y =0
may be regarded as specifying the effect of perturbative forces on
a system which is moving in a periodic orbit,  being the variable
expressing the variation from the periodic trajectory and z being
the measure of the time. To each pair of values of a and ¢ there
will be an orbit from which the differential equation expresses the
variation, and from the nature of the solution

y=Aepy(z) + Bepy(z)
we see that the periodic orbit corresponding to any pair of values
of a and ¢ will be stable or unstable according as ¢ is imaginary or
real. Confining our attention to one fixed value of ¢, we have an
infinite family of periodic orbits corresponding to all possible
values of a, and the results of last paragraph show how the
instability or stability can be determined and how the property
changes at each periodic solution of the equation of perturbation.
The constant ¢ may be regarded as giving the period of the small
oscillation from the periodic orbit which is caused by the dis-
turbing force; this period of small oscillation will gradually
change as we proceed from one periodic orbit to another until we
come to one for which the period of small oscillation is an aliquot
part of the period of the orbit. Beyond this particular orbit there
is instability until we arrive at another coincidence of the periods
of the small oscillations and the ordinary orbit.
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