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Given a group G and a positive integer k, let vk(G) denote the number of conjugacy
classes of subgroups of G which are not subnormal of defect at most k. Groups G such
that vA(G)<ce for some k are considered in Section 2 of [1], and Theorem 2.4 of that
paper states that an infinite group G for which vk(G)<<* (for some k) is nilpotent
provided only that all chief factors of G are locally (soluble or finite). Now it is easy to see
that a group G whose chief factors are of this type is locally graded, that is, every
nontrivial, finitely generated subgroup F of G has a nontrivial finite image (since there is a
chief factor H/K of G such that F is contained in H but not in K). On the other hand,
every (locally) free group is locally graded and so there is in general no restriction on the
chief factors of such groups. The class of locally graded groups is a suitable class to
consider if one wishes to do no more than exclude the occurrence of finitely generated,
infinite simple groups and, in particular, Tarski p -groups. As pointed out in [1], Ivanov
and Ol'shansku have constructed (finitely generated) infinite simple groups all of whose
proper nontrivial subgroups are conjugate; clearly a group G with this property satisfies
v,(G) = l. The purpose of this note is to provide the following generalization of the
above-mentioned theorem from [1].

THEOREM. Let G be an infinite, locally graded group satisfying vk(G) < °°, for some
positive integer k. Then G is nilpotent.

Most of the proof is based on that in [1]. Indeed, the main objective will be to show
that our group G satisfies the stated hypothesis on chief factors. (For the standard results
on infinite groups which are used in our proof, the reader is referred to [2].) The following
elementary results are a little stronger than required but are easy to prove.

LEMMA 1. Let G be a group such that all rank 1 abelian subgroups of G fall into
finitely many conjugacy classes. Then G has finite exponent.

Proof. If G is periodic then the result is clear, since the order of any cyclic subgroup
is bounded. So assume, for a contradiction, that G contains an element x of infinite order.
Let p be an arbitrary prime. The subgroups (x), (xp), (xp2),... fall into finitely many
conjugacy classes and so there exist integers m, n with m<n such that (xpm) is conjugate
to (xp"). Let y=xpm, t = n-m. Then there exists g in G such that (yp'f =y± 1 and we
have (y) < (ys) < (y*2) < Clearly the union Y of these subgroups is isomorphic to the
additive group of p-adic rationals. Since p was arbitrary, we see that G contains a copy of
the p-adic rationals for all primes p. But these subgroups are of course locally cyclic (that
is, of rank one) and pairwise nonisomorphic. Thus we have a contradiction and the result
follows.

LEMMA 2. Let G be a group whose nonsubnormal, rank 1 abelian subgroups fall into
finitely many conjugacy classes. Let B denote the Baer radical of G and suppose that the
element x of G has finite order >1 mod B. Then x has finite order.
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Proof. Suppose x has order r > 1 mod B and let p be a prime not dividing r. Then
none of the subgroups (x), {xp), (xp2),... is subnormal in G and so, as in the proof of
Lemma 1, if x has infinite order then there is an integer m such that xpm is contained in a
subgroup P of G which is isomorphic to the additive group of p-adic rationals. But P is
not subnormal in G and, since there are infinitely many such primes p, we obtain the
required contradiction.

Our final requirement is as follows.

LEMMA 3. Let G be a locally graded group of finite exponent. Then G is locally finite.

Proof. Assuming the result false, we may suppose that G is finitely generated and
infinite. By Zel'manov's solution to the restricted Burnside problem ([4], [5]), every finite
image of G has bounded order and so the finite residual R of G has finite index. But then
R is finitely generated and nontrivial and therefore contains a proper G-invariant
subgroup of finite index. This contradiction completes the proof.

We note that the use of such a deep result as that of Zel'manov is not very
satisfactory in the context of our discussion. It seems reasonable to hope that it could be
avoided here, given that the group to which we shall be applying Lemma 3 has the
additional hypothesis on conjugacy classes.

Proof of the theorem. Let G be as stated and suppose that vk(G) = m. Let B denote
the Baer radical of G and suppose that B is not nilpotent. Then, by the well-known
theorem of Roseblade [3], there is a finitely generated subgroup F of B whose subnormal
defect / in G is at least k + m +1. For each / = 0 , 1 , . . . , / , let Ft denote the ith term of the
normal closure series of F in G (thus, in particular, Fo = G and F = Ft< /•}_,). Then the
subgroups Fk+i,...,F, are more than m in number and so there exist i, ; with
k + 1 ^ / < j ^ l such that Ff = Fj, for some g in G. But the subnormal defects in G of /v
and Fj are / and / respectively, and a contradiction ensues. Thus B is nilpotent. Now all
cyclic subgroups of GIB fall into finitely many conjugacy classes and so GIB has only
finitely many normal subgroups. In particular, G has a maximal normal soluble subgroup
S, say. As above, we see that the Baer radical of G/S is nilpotent and hence trivial, and
we deduce from Lemma 1 that G/S has finite exponent. Next, suppose that x is an
element of G\S and assume that x has infinite order. Then there exist normal subgroups
U, V of G, with U < V, such that V/U is the Baer radical of G/U and x has finite order
>1 mod V but infinite order mod U. Using bars to denote factor groups mod U, we have
that (x) is not contained in the Baer radical V of G but has finite order mod V. Lemma 2
now applies to give a contradiction. It follows that every element of G\S has finite order.

We now proceed to show that G/S is locally graded. Suppose, for a contradiction
once more, that F is a finitely generated subgroup of G such that FS/S is nontrivial but
has no nontrivial finite images. Since F contains an element of G\S we see that F has a
finite generating set consisting of elements of finite order. If X is any subgroup of G with
such a generating set then of course X/X' is finite and X' is finitely generated. Since no
term of the derived series of F is contained in 5, repeated application of the above allows
us to deduce that F/F(d) is finite and F(d) is finitely generated, where d is the derived
length of S. Since G is locally graded, there is a normal subgroup N of F, properly
contained in F(d\ such that F/N is finite. By hypothesis, we have F = N(F n S). This gives
the contradiction F(d)=sN and so G/S is locally graded. By Lemma 3, G/S is therefore
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locally finite. Since 5 is soluble, all chief factors of G are abelian or locally finite. The
result now follows by Theorem 2.4 of [1].
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