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Abstract

Collections of functions forming a partition of unity play an important role in analysis. In this
paper we characterise for any N ∈ N the entire functions P for which the partition of unity condition∑

n∈Zd P(x + n)χ[0,N]d (x + n) = 1 holds for all x ∈ Rd . The general characterisation leads to various easy
ways of constructing such entire functions as well. We demonstrate the flexibility of the approach by
showing that additional properties like continuity or differentiability of the functions (Pχ[0,N]d )(· + n)
can be controlled. In particular, this leads to easy ways of constructing entire functions P such that the
functions in the partition of unity belong to the Feichtinger algebra.
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1. Introduction

In its most basic form a collection of functions gn : X→ C, indexed by a countable set
I, forms a partition of unity if

∑
n∈I gn(x) = 1 for all x ∈ X. Often, additional constraints

restrict the class of partitions of unity being considered. For example, it might be
assumed that the functions gn are bounded or that there are only a finite number
of nonzero contributions in the sum for each x ∈ X. The second type of constraint
removes the question of how to interpret the convergence.

In this paper we consider the set X = Rd and assume that the functions gn are
translates of a fixed function g. Basically we are interested in the case where g is
an entire function. Unfortunately this excludes the possibility that g is compactly
supported, a property that is highly desirable in many applications. Motivated by this,
we consider functions g that are formed by the product of an entire function P : Cd → C
and a characteristic function χ[0,N]d for some N ∈ N and such that∑

n∈Zd

P(x + n)χ[0,N]d (x + n) = 1 for all x ∈ Rd. (1.1)
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The main new contribution of the paper is a characterisation of the entire functions
P which satisfy (1.1) for a given and fixed N ∈ N. In order to give a clear impression
about the flow of the paper, we will state the result now; we will later formulate it in a
more elegant notation that will be introduced in Section 3.

Theorem 1.1. Consider an entire function P : Cd → C and let N ∈ N. Then the
following are equivalent:

(a) P satisfies (1.1);
(b) P has the form P(x1, . . . , xd) = N−d +

∑d
j=1 P j(x1, . . . , xd) for some functions

P j(x1, . . . , xd) =
∑

k∈Z\NZ r j
k(x1, . . . , x j−1, x j+1, . . . , xd)e2πikx j/N with entire coefficient

functions r j
k : Cd−1 → C.

The hard part in Theorem 1.1 is the proof of (a)⇒ (b). The characterisation leads
to a number of ways of constructing appropriate entire functions P explicitly. The
flexibility of the approach is demonstrated by showing that additional properties like
continuity or differentiability of the functions (Pχ[0,N]d )(· + n) can be controlled as
well. In particular, this leads to easy ways of constructing entire functions P such that
the functions in the partition of unity belong to the Feichtinger algebra.

The paper is a sequel to [1, 2]. In [1] we considered the case d = 1 and proved that
an entire function P satisfying (1.1) must be N-periodic. In [2] the higher-dimensional
case was analysed for entire functions having the additional property of being periodic,
but the general case was not considered. In Section 2 we will provide an alternative
characterisation of the entire functions P satisfying (1.1) in the special case d = 1; this
turns out to be the key to the higher-dimensional case treated in Section 3.

Partition of unity conditions appear in many areas of mathematics. For example, the
proof of Riesz’ representation theorem in Rudin’s book [8] is based on a construction
of a partition of unity with certain additional properties. Partitions of unity also
play key roles in the analysis of the Feichtinger algebra [3, 4] and, in the context
of multiresolution analysis, it is well known that the integer-translates of the scaling
function yield a partition of unity. Finally, the duality conditions for Gabor frames
and wavelet frames (or even generalised shift-invariant systems) in L2(R) involve a
partition of unity. In the special case of a Gabor system the partition of unity is formed
by the integer-translates of a fixed function as considered in the current paper (see
[6, 7]).

2. Partition of unity for entire functions P : C→ C

Our starting point is to derive a characterisation of the entire functions P : C→ C
satisfying (1.1). This will pave the way to the higher-dimensional case considered in
Section 3. For reasons that will become clear in the proof of Theorem 2.2, we will first
characterise the entire functions R : C→ C satisfying the equation

N−1∑
`=0

R(x + `) = 0 for all x ∈ [0, 1]. (2.1)
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Lemma 2.1. Let N ∈ N and consider an entire function R : C→ C. Then the following
are equivalent:

(a) R satisfies (2.1);
(b) R(x) =

∑
k∈Z\NZ ake2πikx/N for x ∈ R and, for any α > 0, there exists a constant Cα

such that |ak| ≤ Cαe−α|k| for all k ∈ Z;
(c) R(x) = G(e2πix/N) for x ∈ R and a function G(z) =

∑
k∈Z\NZ akzk which is

holomorphic in C \ {0}.

Proof. (a) ⇒ (b). Applying Lemma 2.1 in [1] with R(x) := P(x) − 1/N, we see that
(2.1) holds if and only if the restriction of R to R is N-periodic and the Fourier
coefficients ak in the expansion R(x) =

∑
k∈Z ake2πikx/N , x ∈ R, satisfy ak = 0 for k ∈ NZ;

thus, R has the form in (b). For k ≤ 0 and any α > 0, Cauchy’s theorem implies that

|ak|=

∣∣∣∣∣ 1
N

∫ N

0
R(x)e−2πikx/N dx

∣∣∣∣∣ =
1
N

∣∣∣∣∣∫ N

0
R(x + iNα)e−2πik(x+iNα)/N dx

∣∣∣∣∣
≤

1
N

e2παk
∫ N

0
|R(x + iNα)| dx = Cαe−2πα|k|,

where Cα := N−1
∫ N

0 |R(x + iNα)| dx; a similar proof holds for k > 0.

(b) ⇒ (c). Define G(z) =
∑

k∈Z\NZ akzk. From (b), G is holomorphic in C \ {0} and
R(x) = G(e2πix/N).

(c)⇒ (a). Note that
∑N−1
`=0 e2πik`/N = 0, k < NZ. Hence,

N−1∑
`=0

R(z + `) =

N−1∑
`=0

G(e2πi(z+`)/N) =
∑

k∈Z\NZ

ake2πikz/N
(N−1∑

n=0

e2πikn/N
)

= 0. �

Via Lemma 2.1, we now arrive at a characterisation of the entire functions satisfying
the partition of unity property.

Theorem 2.2. Let N ∈ N and consider an entire function P : C→ C. Then the following
are equivalent:

(a) P satisfies (1.1);
(b) P(x) = N−1 +

∑
k∈Z\NZ ake2πikx/N for x ∈ R and, for any α > 0, there exists a

constant Cα such that |ak| ≤ Cαe−α|k| for all k ∈ Z;
(c) P(x) = N−1 + G(e2πix/N) for x ∈ R and a function G(z) =

∑
k∈Z\NZ akzk which is

holomorphic in C \ {0}.

Proof. Note that the expression in (1.1) is 1-periodic; thus, (1.1) holds if and only
if

∑N−1
`=0 P(x + `) = 1 for all x ∈ [0, 1] or, since P is entire,

∑N−1
`=0 P(x + `) = 1 for all

x ∈ R. Writing R(x) := P(x) − 1/N, it is clear that P satisfies (1.1) if and only if R
satisfies (2.1); thus, the result follows from Lemma 2.1. �
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3. Partition of unity for entire functions P : Cd → C

We will now consider the partition of unity property in dimension d. Given N ∈ N
and any j ∈ {1, . . . , d}, let us denote the sum over the n = (n1, . . . , n j) ∈ Z j for which all
coordinates are between 0 and N − 1 by

∑
n∈Z j

N
:=

∑N−1
n1=0 · · ·

∑N−1
n j=0 . Repeating the first

steps in the proof of Theorem 2.2, we see that the partition of unity condition (1.1) is
equivalent to ∑

n∈Zd
N

P(x + n) = 1 for all x ∈ Rd. (3.1)

Again, we will first characterise the entire functions for which the sum on the left-hand
side of (3.1) vanishes.

We will need a classical result about pointwise convergence of Fourier series. Recall
that a (possibly noncontinuous) function f : [0, N]→ C is piecewise continuously
differentiable if there exist finitely many x0 = 0 < x1 < · · · < xn = N such that:

(1) f is continuously differentiable on ] − xi−1, xi[ for every i ∈ {1, . . . , n};
(2) the one-sided limits f (x+

i−1) := limx→x+
i−1

f (x) and f (x−i ) := limx→x−i f (x) exist for
every i ∈ {1, . . . , n};

(3) the one-sided limits limx→x+
i−1

f ′(x) and limx→x−i f ′(x) exist for every i ∈ {1, . . . , n}.

Define the function PN f on [0,N[ by

PN f (x) :=


f (x), x , xi, i = 0, 1, . . . , n − 1,
1
2 ( f (x+

i ) + f (x−i )), x = xi, i = 1, 2, . . . , n − 1,
1
2 ( f (x+

0 ) + f (x−n )), x = 0

(3.2)

and extend it to be N-periodic in R. Under the stated conditions, it is known that

PN f (x) =

∞∑
k=−∞

( 1
N

∫ N

0
f (t)e−2πikt/N dt

)
e2πikx/N , x ∈ R, (3.3)

where the infinite sum should be interpreted as a limit of the symmetric partial sums,
that is,

∑∞
k=−∞ = limn→∞

∑n
k=−n.

Lemma 3.1. Let N ∈ N. Assume that g : [0, N] → C is piecewise continuously
differentiable. Define gσ : [0, 1] → C by gσ(x) := N−1 ∑N−1

`=0 g(x + `). Then the
following hold:

(a) P1gσ(x) =
∑

k∈NZ(N−1
∫ N

0 g(t)e−2πikt/N dt)e2πikx/N , x ∈ R;

(b) PNg(x) − P1gσ(x) =
∑

k∈Z\NZ(N−1
∫ N

0 g(t)e−2πikt/N dt)e2πikx/N , x ∈ R.
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Proof. (a) Applying (3.3) to the 1-periodic piecewise continuously differentiable
function P1gσ,

P1gσ(x) =

∞∑
k=−∞

(∫ 1

0

( 1
N

N−1∑
`=0

g(t + `)
)
e−2πikt dt

)
e2πikx

=

∞∑
k=−∞

( 1
N

∫ N

0
g(t)e−2πikt dt

)
e2πikx =

∑
k∈NZ

( 1
N

∫ N

0
g(t)e−2πikt/N dt

)
e2πikx/N .

(b) This follows from (a) and (3.3). �

Lemma 3.2. Let N ∈ N and j ≥ 2. Consider an entire function R : C j → C for which∑
n∈Z j

N

R(x + n) = 0 for all x ∈ R j. (3.4)

Then there exist a function Rp : R j → C of the form

Rp(y, x) =
∑

k∈Z\NZ

rk(y)e2πikx/N for all (y, x) ∈ R j−1 × R,

with an entire function rk : C j−1 → C, and a function Rh : R j → C such that

R(y, x) = Rp(y, x) + Rh(y, x) for all (y, x) ∈ R j−1 × R

and ∑
n∈Z j−1

N

Rh(y + n, x) = 0 for all (y, x) ∈ R j−1 × R. (3.5)

Moreover, fixing the jth coordinate x ∈ R, the functions Rp(·, x),Rh(·, x) : C j−1→ C are
entire.

Proof. Consider the entire function

Q : R j → C, Q(y, x) :=
∑

n∈Z j−1
N

R(y + n, x) for all (y, x) ∈ R j−1 × R.

Fix y ∈ R j−1. Then (3.4) takes the form
∑N−1

n=0 Q(y, x + n) = 0 for all x ∈ R. Applying
Lemma 2.1 to Q(y, ·) in the place of R,

Q(y, x) =
∑

k∈Z\NZ

( 1
N

∫ N

0
Q(y, t)e−2πikt/N dt

)
e2πikx/N for all x ∈ R.

Define Ry(x) := R(y, x) and Rp(y, x) := PNRy(x) − P1Rσ
y (x). By Lemma 3.1(b),

we have the representation Rp(y, x) =
∑

k∈Z\NZ rk(y)e2πikx/N for all x ∈ R, where
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rk(y) := N−1
∫ N

0 R(y, t)e−2πikt/N dt. Note that rk : C j−1 → C is an entire function and,
for x ∈ R,

Q(y, x) =
∑

k∈Z\NZ

( 1
N

∫ N

0

∑
n∈Z j−1

N

R(y + n, t)e−2πikt/N dt
)
e2πikx j/N

=
∑

k∈Z\NZ

( 1
N

∫ N

0

∑
n∈Z j−1

N

R(y + n, t)e−2πikt/N dt
)
e2πikx j/N

=
∑

n∈Z j−1
N

∑
k∈Z\NZ

rk(y + n)e2πikx j/N =
∑

n∈Z j−1
N

Rp(y + n, x).

Thus, the function Rp gives a particular solution of the inhomogeneous equation∑
n∈Z j−1

N
R(y + n, x) = Q(y, x). The general solution R(x) of this equation has the form

R(y, x) = Rp(y, x) + Rh(y, x),

where Rh satisfies the homogeneous equation (3.5). We now fix the jth coordinate x.
Note that Rp(·, x) : C j−1 → C is an entire function; hence also Rh(·, x) : C j−1 → C is an
entire function. This completes the proof. �

In order to simplify the description of the d-dimensional problem, we will use
the following notation. For x ∈ Cd and j ∈ {1, . . . , d}, we write x j := (x1, . . . , x j),
x̃ j := (x j+1, . . . , xd) and x̂ j = (x1, . . . , x j−1, x j+1, . . . , xd). Then x̂1 = x̃1, x̂d = xd−1 and
x = (x1, . . . , xd) = (x j, x̃ j) = (x j−1, x j, x̃ j). We first characterise the solutions to the
homogeneous equation associated with the partition of unity property.

Theorem 3.3. Consider an entire function R : Cd → C and let N ∈ N. Then the
following are equivalent:

(a)
∑

n∈Zd
N

R(x + n) = 0 for all x ∈ Rd;

(b) R has the form R(x) =
∑d

j=1 R j
p(x), where R j

p(x) =
∑

k∈Z\NZ r j
k(x̂ j)e2πikx j/N and the

functions r j
k : Cd−1 → C are entire.

Proof. (a) ⇒ (b). We use induction for j = 2, . . . , d in reverse order. Assume that
R j

h(·, x̃ j) : C j → C, j = 2, . . . , d, is an entire function such that
∑

n∈Z j
N

R j
h(x j + n, x̃ j) = 0

for x j ∈ R
j, with Rd

h(x) := R(x), x ∈ Cd. Applying Lemma 3.2 to R j
h(·, x̃ j) in place of

R(·) and x̃ j fixed,

R j
h(x j−1, x j, x̃ j) = R j

p(x j−1, x j, x̃ j) + R j−1
h (x j−1, x j, x̃ j), (x j−1, x j) ∈ R j−1 × R,

where R j
p has the form R j

p(x j−1, x j, x̃ j) =
∑

k∈Z\NZ r j
k(x̂ j)e2πikx j/N and R j−1

h satisfies∑
n∈Z j−1

N
R j−1

h (x j−1 + n, x j, x̃ j) = 0. Moreover, fixing (x j, x̃ j) ∈ R × Rd− j, the function

R j−1
h (·, x j, x̃ j) : C j−1 → C is entire. Thus, R(x) =

∑d
j=2 R j

p(x j−1, x j, x̃ j) + R1
h(x1, x̃1),

where R1
h satisfies

∑N−1
n=0 R1

h(x1 + n, x̃1) = 0. Let R1
p := R1

h. Fixing x̃1 ∈ R
d−1, by

Lemma 2.1, R1
p has the form R1

p(x1, x̃1) =
∑

k∈Z\NZ r1
k (x̂1)e2πikx1/N . Hence (b) holds.
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(b)⇒ (a). Under the assumption in (b), a similar argument as the one used in the proof
of Lemma 2.1 (c)⇒ (a) yields∑

n∈Zd
N

R(x + n) =

d∑
j=1

N−1∑
n j=0

∑
nd−1∈Z

d−1
N

∑
k∈Z\NZ

r j
k(x̂ j + nd−1)e2πik(x j+n j)/N

=

d∑
j=1

∑
nd−1∈Z

d−1
N

∑
k∈Z\NZ

r j
k(x̂ j + nd−1)

(N−1∑
n j=0

e2πikn j/N
)
e2πikx j/N = 0,

as desired. �

In Theorem 3.3(b), the functions R j
p may not be entire. As demonstrated by the

following example, they might not even be continuous.

Example 3.4. Let N = d = 2. Consider the entire function R(x1, x2) := x1eπix2 + x2eπix1 .
By Proposition 3.3, R satisfies

R(x1, x2) + R(x1, x2 + 1) + R(x1 + 1, x2) + R(x1 + 1, x2 + 1) = 0, (x1, x2) ∈ R.

As in the proof of Lemma 3.2, we write R(x1, x2) = Rp(x1, x2) + Rh(x1, x2). Fix x1.
Define Rp by

Rp(x1, x2) :=
∑

k∈Z\2Z

(1
2

∫ 2

0
R(x1, t)e−πiktdt

)
eπikx2 =

∑
k∈Z\2Z

(
x1δk,1 −

eπix1

πik

)
eπikx2 .

From (3.2),

P2R(x1, x2) =

x1eπix2 + x2eπix1 , x2 ∈ [0, 2] \ {0, 2},
x1 + eπix1 , x2 ∈ {0, 2},

P1Rσ(x1, x2) =

(x2 + 1
2 )eπix1 , x2 ∈ [0, 2] \ {0, 1, 2},

eπix1 , x2 ∈ {0, 1, 2}.

By Lemma 3.1(b) and (3.6),

Rp(x1, x2) =


x1eπix2 − 1

2 eπix1 , x2 ∈ [0, 1] \ {0, 1},

x1eπix2 + 1
2 eπix1 , x2 ∈ [1, 2] \ {1, 2},

x1, x2 ∈ {0, 2},
−x1, x2 = 1.

Thus, Rp(x1, ·) is not continuous, for example, in x2 = 0.

Applying Proposition 3.3 with R(x) := P(x) − 1/Nd, we immediately obtain the
desired characterisation of the partition of unity property.

Theorem 3.5. Consider an entire function P : Cd → C and let N ∈ N. Then the
following are equivalent:
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(a) P satisfies (1.1);
(b) P has the form P(x) = N−d +

∑d
j=1 P j(x) for some functions

P j(x) =
∑

k∈Z\NZ

r j
k(x̂ j)e2πikx j/N

with entire coefficient functions r j
k : Cd−1 → C.

As a consequence of Theorem 3.5, we immediately obtain the following easy way
of constructing entire functions having the partition of unity property.

Corollary 3.6. Consider a finite set K ⊂ Z \ NZ and a collection of entire functions
r j

k, k ∈ K , j ∈ {1, 2, . . . , d}. Define P : Cd → C by

P(x) =
1

Nd +

d∑
j=1

∑
k∈K

r j
k(x̂ j)e2πix jk/N , x ∈ Cd. (3.6)

Then P is an entire function and (1.1) holds.

Corollary 3.7. For a collection of entire functions r j
k, k ∈ Z \ NZ, j ∈ {1, . . . , d} such

that for each j,
∑

k∈Z\NZ r j
k(x̂ j) converges uniformly on compact subsetsA ⊂ Cd−1,

P(x) =
1

Nd +

d∑
j=1

∑
k∈Z\NZ

r j
k(x̂ j)e2πix jk/N , x ∈ Cd,

is an entire function and (1.1) holds.

As an illustration of Corollary 3.7, consider for k ∈ Z and j ∈ {1, . . . , d} some
monomials xα( j,k) = xα1

1 · · · x
αd−1
d−1 , where |α( j, k)| := α1 + · · · + αd−1 = |k|. Letting r j

k(x) :=
xα( j,k)/|k|!, the function

P(x) =
1

Nd +

d∑
j=1

∑
k∈Z\NZ

r j
k(x̂ j)e2πix jk/N , x ∈ Cd,

is an entire function and (1.1) holds.
We will now demonstrate the flexibility of the approach by constructing an entire

function which satisfies the partition of unity condition and vanishes on the boundary
of [0,N]d. We first observe that Pχ[0,N]d ∈ C(Rd) if and only if for j0 ∈ {1, . . . , d} and
α ∈ {0, N}, P(x1, . . . , x j0−1, α, x j0+1, . . . , xd) = 0. Thus, it is sufficient to search for a
function P of the form (3.6) for some entire functions r j

k : Cd−1 → C, k ∈ K , and such
that for j0 ∈ {1, . . . , d} and α ∈ {0,N},

0 =
1

Nd +

j0−1∑
j=1

∑
k∈K

r j
k(x j−1, (x j+1, . . . , x j0−1, α, x j0+1, . . . , xd))e2πix jk/N (3.7)

+

d∑
j= j0+1

∑
k∈K

r j
k((x1, . . . , x j0−1, α, x j0+1, . . . , x j−1), x̃ j)e2πix jk/N +

∑
k∈K

r j0
k (x̂ j0 ).

Let us consider a concrete example in R2.
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Example 3.8. Let d = 2, N = 2 and K = {1, 3}. Then (3.7) means that for α ∈ {0, 2},

1
4

+
∑
k∈K

r2
k (α)eπix2k +

∑
k∈K

r1
k (x2) = 0,

1
4

+
∑
k∈K

r1
k (α)eπix1k +

∑
k∈K

r2
k (x1) = 0. (3.8)

Consider entire functions r1
k , r2

k : C→ C, k = 1, 3, defined by

r1
k (x) =

− 1
4 , k = 1,

0, k = 3,
r2

k (x) =

−x(x − 2) − 1
4 + 1

4 eπix, k = 1,
x(x − 2), k = 3.

Then we have, for α ∈ {0, 2},

1
4

+
∑
k∈K

r2
k (α)eπix2k +

∑
k∈K

r1
k (x2) =

1
4

+ r1
1(x2) = 0,

1
4

+
∑
k∈K

r1
k (α)eπix1k +

∑
k∈K

r2
k (x1) =

1
4
−

1
4

eπix1 +
∑
k∈K

r2
k (x1) = 0.

Thus, (3.8) holds. Define P by

P(x1, x2) = 1
4 −

1
4 eπix1 + (−x1(x1 − 2) − 1

4 + 1
4 eπix1 )eπix2 + x1(x1 − 2)e3πix2 .

Then Pχ[0,2]2 ∈ C(R2) and
∑

n∈Z2
2

P(x + n) = 1 for all x ∈ R2.

Higher-order regularity of Pχ[0,N]d can be controlled in a similar fashion, just
involving a larger number of equations. For example, Pχ[0,N]d ∈ C1(Rd) if and only
if for j0, ` ∈ {1, . . . , d} and α ∈ {0,N},

P(x1, . . . , x j0−1, α, x j0+1, . . . , xd) = 0 =
∂P
∂x`

(x1, . . . , x j0−1, α, x j0+1, . . . , xd).

In particular, these criteria can be used to ensure that the functions Pχ[0,N]d (· + n) for
n ∈ Z in a partition of unity belong to certain function spaces arising in the literature.
For example, it is known that a function f ∈ L1(Rd) belongs to the Feichtinger algebra
[3] if also the Fourier transform f̂ ∈ L1(Rd). This is satisfied if f ∈ C1

c (Rd). Let us
illustrate this with a concrete construction in R2. For a recent and detailed description
of the Feichtinger algebra and its many applications, we refer to the paper [5].

Example 3.9. Let d = 2, N = 2 and K = {−3,−1, 1, 3}. Let

r1
1(x2) = r1

−1(x2) = 1
16 (eπix2 + e−πix2 − 2),

r1
3(x2) = r1

−3(x2) = 0,

r2
1(x1) = − 1

8 (3ix2
1(x1 − 2)2 + 1), r2

−1(x1) = 1
8 (3ix2

1(x1 − 2)2 − 1),

r2
3(x1) = −r2

−3(x1) =
i
8

x2
1(x1 − 2)2

and define P by

P(x1, x2) =
1
4

+
∑
k∈K

r1
k (x2)eπix1k +

∑
`∈K

r2
` (x1)eπix2`.
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A direct calculation shows that

P(x1, x2) = sin2(πx1/2) sin2(πx2/2) + x2
1(x1 − 2)2 sin3(πx2).

Then Pχ[0,2]2 ∈ C1
c (R2) and

∑
n∈Z2

2
P(x + n) = 1 for all x ∈ R2. In particular, the function

Pχ[0,2]2 and its translates belong to the Feichtinger algebra. �
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