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Coproducts of De Morgan algebras

William H. Cornish and Peter R. Fowler

The dual of the category of De Morgan algebras is described in

terms of compact totally ordered-disconnected ordered topological

spaces which possess an involutorial homeomorphism that is also a

dual order-isomorphism. This description is used to study the

coproduct of an arbitrary collection of De Morgan algebras and

also to represent the coproduct of two De Morgan algebras in

terms of the continuous order-preserving functions from the

Priestley space of one algebra to the other algebra, endowed with

the discrete topology. In addition, it is proved that the

coproduct of a family of Kleene algebras in the category of De

Morgan algebras is the same as the coproduct in the subcategory

of Kleene algebras if and only if at most one of the algebras is

not boolean.

1 . Preliminaries

A De Morgan algebra (M; v, A, ~, 0, 1) is an algebra of type

<2, 2, 1, 0, 0> such that (M; V, A, 0, l) is a distributive lattice with

largest element 1 and smallest element 0 and ~ is an involutorial

dual order-(lattice-isomorphism; that is, the equations ~~a: = x ,

~(x v y) = ~x A ~j/ , ~(x A y) = ~sc V ~y , ~0 = 1 , and ~1 = 0 are

identically satisfied. A Kleene algebra is a De Morgan algebra which

satisfies the identity associated with the inequality x A ~a; 2 y v ~j/ .

In this paper, a boolean algebra will be regarded as a De Morgan algebra

satisfying the identity x A ~x = 0 ; of course, a boolean algebra is a

Kleene algebra. The chain

V 2 ' 1 = 0 = xQ < xx < ... < xn_2 < xn_± = 1}
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with n elements possesses a unique involutorial dual order-isomorphism ~

such that i t becomes a KLeene (De Morgan) algebra; for i = 0, , «-l ,

~sc. = x . , and so if n is odd the element x. > , is fixed under
X- K—1*—X \YX-\-) I d.

the involution. We will denote the De Morgan algebra associated with the

chain possessing n elements by n . If a De Morgan algebra M is not

boolean then there exists x € M such that 0<a;A~a;£a;V~-a:<l and

so a De Morgan algebra is not boolean if and only if it possesses a

subalgebra isomorphic to either 3 or 4 . The category whose objects are

members of the variety of De Morgan algebras and whose morphisms are the

associated algebra-homomorphisms is denoted by M ; the subcategories

which correspond to the subvarieties of Kleene algebras and boolean

algebras are denoted by K and B , respectively. We will use D to

denote the category whose objects are distributive lattices

{L; V, A, 0, 1) with 0 and 1 , and whose morphisms are the associated

algebra-homomorphisms. For reasons of emphasis, it will sometimes be

convenient to describe the homomorphi sms, congruences, and subalgebras

associated with De Morgan algebras as ~-homomorphisms, ~-congruences, and

~-subalgebras, respectively. Let X be any one of the categories M, K, B

or D . Then the coproduct in the category X of a set {Y.} of objects

in X is the same as their free product in the variety X ([ 7, Theorem 7,

p. 3k]) and is denoted by J L Y . ; YJ L z is used to denote the

coproduct of two objects I, Z of X . Coproducts of an arbitrary set of

objects in D are described, in detail, in Gratzer [9, Section 12, pp.

128-137] and Balbes and Dwinger [7, Chapter 7, pp. 132-150], while

coproducts in M are described in [/, Section 11.4, pp. 216-218].

Representations of the coproduct of two objects L., £„ of D in terms of

all the continuous monotone (order-preserving) functions from the Priestley

space of L into L^ , endowed with the discrete topology, have been

given independently by the first author [7] and Davey [8]. One of the aims

of this paper is to extend the representations of [7], [S] to M .

Let C(X) be the family of all compact-open subsets of a topological

space X . Then the topological space X is called a spectral space if it

satisfies each of the following properties:

(Si) X is a compact 2\.-space;
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(52) C(X) is a ring of subsets of X and a base for the open

sets;

(53) if F is a closed set in X and C is any subfamily of

C(X) such that DF n F + 0 for any finite subfamily F

of C± then fl^ n f jf (I .

A function between topological spaces is called strongly continuous if

it is continuous and the inverse image of each compact-open subset is

itself compact-open. The category whose objects are spectral spaces and

whose morphisms are strongly continuous functions is denoted by Spec .

An ordered topologiaal space (X; -, T ) is a partially ordered set

[X; 5) and a topological space (X; x) ; when there is no possibility of

confusion, we will denote an ordered topological space (X; 5, T ) by means

of the underlying set X . An ordered topological space X is totally

order-disconnected if, whenever x ^ y (x, y € X) , there exist a clopen

increasing subset U and a clopen decreasing subset V such that

U n V = 0 and x € U , while y € V - a subset U of a partially ordered

set X is increasing (decreasing) if x 5 y and xi.ll (y € U) imply

y f U (x € U) . The set V{X) of all clopen increasing subsets of an

ordered topological space X is a bounded distributive lattice with

respect to set-union and set-intersection. In a compact totally order-

disconnected ordered topological space X , V(x) u {X\U : U 6 VU)} is a

sub-base for the open sets (cf. [6, Section 1]). The category whose

objects are compact totally order-disconnected ordered topological spaces

and whose morphisms are continuous monotone functions is denoted by Todc .

In [6, Theorem 2.3] it is shown that Spzc and Todc are isomorphic

categories. It is well known that Spexi is the dual of the category D

{cf. [9, Section 11, pp. 117-125], C , Chapter k, pp. 75-8U]) and hence, as

noted in [6], Todc is also the dual of D .

Let L be an object of D and let Z(L) be the set of all prime

ideals of L . When Z(L) is endowed with the so-called hull-kernel or

Stone topology, whose basic open sets are those sets of the form

{P € E(L) : a £ P} for some a € L , it is a spectral space and the map

a K { p { Z(L) : a $ P} is an isomorphism of L onto C[l(L)) . The

space Z(L) is called the Stone space of L . Order I(L) with that

https://doi.org/10.1017/S0004972700022966 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700022966


4 W i l l i a m H . C o r n i s h a n d P e t e r R. F o w l e r

p a r t i a l order which i s the converse of set-inclusion and endow Z(L) with

the topology whose sub-basic open sets are of the form {P (. Z{L) : a j: P}

or {P € Z(L) : a € P} , where a € L . That i s ,

)) u {x\V : V 6

is a sub-base for the new topology. Then Z(L) becomes an object in Todc

{.of. [63, [5, Corollary 1.5]). This ordered space is called the Priestley

space of L and is denoted by Pr(L) ; C[Z(L)) can be identified with

V[Pr(L)) and the map a *—*• {P € Pr(L) : a f P} is an isomorphism of L

onto Pr(L) .

2. Coproducts

Let P be a prime ideal in a De Morgan algebra M and let

g{P) = A f W , where for any subset A of M , ~4 = {~a : a E/l} . Then

g{P) is also a prime ideal and the map P •—»• g(P) is an involution on the

Stone space £(A7) . Since, for any a (. M ,

{P € T.(M) : ~a $ P} = Z(W)V({P (. Z(M) : a $ P}) ,

we see tha t for each V € C[Z(M)) , Z.{M)\g(V) € C[Z(M)) . In addition, i f

we define ~7 to be Z(M)\g(V) for any ^ ( C(Z(W)) then C[Z{M))

becomes a De Morgan algebra and the map a i—>- {P € £(M) : a ^ P} i s a

^-isomorphism of M onto C(E(M)) ; th is was f i r s t proved by Bia>ynicki-

Birula and Rasiowa [3] . Let g-Spec be the category whose objects are

spec t ra l spaces X possessing an involution g such that X\g(V) (. C(X)

for each V € C(X) and whose morphisms are strongly continuous functions

f : X± •* X2 {{X±, g±), {X2, g2) objects in g-5pec ) such that

<72 o / = f o g . Then Petrescu has extended the duali ty between D and

5pec to a duali ty between M and g-Spec .

LEMMA 2.1 (Petrescu [J2, Corollary 2 .5] ) . The category g-Spec is

isomorphie to the dual of M .

Let X be a spectral space and f be a morphism in SpejC . Then the

r e l a t i o n x 5 y (x, y € X) i f and only i f x i s in the closure of {j/} ,

i s a p a r t i a l order on X , and Q(X) = (X; S, T) , where x i s the

topology whose sub-basic open sets are the members of

C{X) u {X\V : V € C(X)} , i s an object in Todc . Let U{f) = / . Then
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is a morphism in Todc . On the other hand, if / is an object in

Todc and ¥(7) = {Y; a) is the set Y endowed with the topology a

whose basic open sets are the members of V(Y) then y(Y) is an object in

Spec . If ft is a morphism in Todc and V(h) = h then V{h) is a

morphism in SpeXL and we have

LEMMA 2.2 ([6, Theorem 2.3]). ft and V cjre mutually inverse

isomorphisms between the categories Spec and Todc .

Let g-Todc be the category whose objects are compact totally order-

disconnected ordered topological spaces X which possess an involution

g , which is both a homeomorphism and a dual order-isomorphism, and whose

morphisms are functions f : X -*• X2 {{x^, g-J , (*2> g2) objects in

g-Todc ) such that g2 ° f = f ° g .

THEOREM 2.3. The category g-Todc is isomorphic to the dual of the

category M .

Proof. If (X, g) is an object in g-Spec then both g{V) and

X\g(V) = g(X\V) are clopen in Sl(X) for any V in C{X) . Because the

topology T on tt{X) has C(X) u iX\V : V € C(X)} as a sub-base we see

that g is an open mapping on Sl(X) . But g = 1 , and so g is a
A

homeomorphism. In addition, if x, y € X and x S y , then x is in all

basic closed sets which contain y . Thus g(,y) - g(.x) , as otherwise

g(y) $ g\x)
x\w

and

and

l y

SO

SO

i t

there
y * x\

follows

i s W (
V , V

that

i C(X)

g i s

such that g(y) € W and
[W) € C(X) , and yet a; { .

a dual order-isomorphism.
2

Since g = 1Y it follows that g is a dual order-isomorphism. The rest

A

of the theorem follows immediately from Lemmas 2.1 and 2.2, since

= v[a{x)) .
If (X, g) is an object in g-Spec then the topology T which

converts X to ft(A') is precisely the coarsest topology on X for which

g is continuous or even a homeomorphism. Thus, we see the advantage of

using g-Todc as a representation of the dual of M . Indeed, we now give

a simple proof of a theorem due to Berman and Dwinger (see [/, Theorem 2,

p. 2363).

THEOREM 2.4. The product of any set \[x., g.)) of objects in
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g-Todc. is (~| \x., ] fg.) , where ] \x. is the cartesian product of the

spaces X. endowed with the direct product order, and \ \g • is the

product of the functions g. . Hence, for any set {N.} of De Morgan

algebras, \ \ufl• and I |.jy. are isomorphic lattices.

Proof. The theorem follows immediately from duality and the fact that
] \g. : ] \x. •* 1 \X- is continuous if and only if each g. is

Is "Ts Is 1s

continuous.

COROLLARY 2.5. Let {M. : i € j } be a set of De Morgan algebras and

J be a non-empty subset of I such that for each Q € J , N. is a
3

~-subalgebra of M. . Then, provided that each M. is regarded as a
3 *•

~-subalgebra of I 1 ^ . , the ~-subalgebra of 1 Î Af- .generated by

UN. is isomorphic to
Proof. Because of Gratzer [9, Theorem 5> p- 131; of. Corollary 6, p.

132] the sublattice of | | nM. generated by U N. is isomorphic to

- • I n "view of Theorem 2.k, this sublattice is a De Morgan algebra

and, of course, the restrictions of the ^operations of \_\_^i a n d t n e

s u b l a t t i c e g e n e r a t e d b y UN. c o i n c i d e o n e a c h N. . H e n c e , t h e s u b
3 3

l a t t i c e g e n e r a t e d b y UN. i s a ~ * - s u b a l g e b r a o f | \fipfj , a n d t h e
J a id

result follows.

COROLLARY 2.6. Let {B.) be a set of boolean algebras. Then,

J [nB., | \yB., J _ [ M 5 . J and \_\rp• are isomorphic lattices.

Proof. Due to Theorem 2.U and [', Theorem 2, p. 133], I 1^- is a

boolean algebra.

Let X be an ordered topological space and L be a bounded

distributive lattice endowed with the discrete topology. Then £„,(%> L)

denotes the set of all continuous monotone functions mapping X into L ,
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and <? (X, £) i s the set of all members of C (X, L) whose range is

finite. Under pointwise operations C {X, L) is a bounded distributive

lattice and in [7, Theorem 2.1] it is shown that C (X, L) is isomorphic

to V{X)| | rX . Hence, if A is another bounded distributive lattice and

X = PrU) , ~CmiX, L) = Cm(X, L) and C {X, L) is isomorphic to A \ | p£

(of. V, Corollary 2.3] and Davey [S]). For y € L , let e(t/) be the

constant function on X such that c(y)(x) = i/ for all x € X ; the map

2/ •"+ c(y) is a lattice-embedding of L into <?mU> ^) • For ^ € t>U) ,

let XT^ be the characteristic function of V ; that is, Xr?(x) ~ ̂  i f

x € K and Xy(a;) = 0 if x € X\F ; the map 7 •-»- x^ is a lattice-

embedding of V{X) into ?m(X, L) .

How suppose (X, g) is an ordered topological space with an

involutorial homeomorphism g which is also a dual order-isomorphism. If

V € V(X) and we define ~V = X\g(V) then we see that V{X) becomes a De

Morgan algebra. Thus, if L is also a De Morgan algebra, Theorem 2.U

implies that C (X, L) is a De Morgan algebra which is isomorphic to

)| | up . The purpose of the next result is to give a formula for the

involution on C {X, L) .

THEOREM 2.7. Let (X, g) be an ordered topological space X with

an involutorial homeomorphism g which is also a dual order-isomorphism.

Let L be a De Morgan algebra. Then C (x, L) is a De Morgan algebra,

where, for each f € C (x, L) , ~/ is given by (~f)(x) = ~(/(ff(x))) for

each x £ X , and C {x, L) is isomorphic to V(x)\ 1^ .

Proof. Let / € C {X, L) . Then ~f , as defined above, is equal to

the product ~ ° / o g . Hence ~/ has finite range, is monotone as it is

the composition of a monotone function together with two antitone

functions, and is continuous since f and g are continuous and the

^operation on L is continuous because L has the discrete topology.

Since ~~/ = ~ o ( ~ o y > o g ) o g . = ~ ° f ° g = 1. ° / » L and because
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i t i s easy to see that ~0 = 1 and fx-fz 0 i> -^ € ^ X ' L^ i m P l i e s

~/p - ~.f, , C (X, L) i s a De Morgan algebra with the ^-operation, as

defined above. In order to prove that C (X, L) i s isomorphic to

V{X) | IĴ JL , i t i s suf f ic ient , in the l ight of our remarks preceding th i s

theorem, to check that the maps y •—* c(y) and V •—»• xv
 a r e

~-homomorphisms of L and V(X) , respectively, into C (X, L) . But i t

i s not hard to verify tha t e(~j/) = ~c{y) for any y € L and

~Xy = Xx\ iv\ = X^y for any V € V(X) , and so the theorem follows.

The representation of A\ \rX (A, L objects in D ) by means of

C \Pr(A), L) can be simplified when A i s a chain with n elements (see,

for example, [7, Example 2.13D). We now note the corresponding resul t for

M , when A = n and L i s a De Morgan algebra.

COROLLARY 2.8. Let L be a De Morgan algebra. Then n| ( ^ is

isomorphic to the subalgebra of the (n-l)-fold direct power of L

consisting of all (n-l)-tuples [yQ, y., — , y _S) such that

yo>y±> ••• > yn_2 , and ~(y 0 , yv . . . , yn_2) = [zQ, z± z ^ ,

where z. = ~ j / o . for each i = 0, 1, , n-2 .

3. Kleene algebras

If P is a prime ideal of a De Morgan algebra M , let R(P) be the

largest lattice-congruence having P as a congruence-class. Of course,

the partition of M associated with R(P) is {P, M\P) . The partition

associated with the lattice-congruence i?(P) n R[g(P)) is

{M\[P U g(P)) , P\g{P), g{P)\P, P n g(P)} , though, of course, we are not

implying that these four congruence-classes are necessarily d i s t i nc t . If

x e M\(P u g(P)) then -<c 6 P n j(P) ; i f x € P n ^(P) then

~-cc € Af\(P u g{P)) ; i f x € P\g-(P) then -xc i s also in P\g{P) ; i f

x 6 #(P)\P then ~x i s also in ^(P)\P . Hence, R(P) n i?(^(P)) i s a

••^congruence and M/{R(P) n R[g{P)]) i s isomorphic to 2 i f and only i f

P = #(P) , M/(i?(P) n i?(g(P))) is isomorphic to 3 i f and only i f P and

g{P) are comparable but not equal, and M/[R(P) n R[g{P))) i s isomorphic

to T = {0, a, b, 1 : 0 = a A b < a, b < a v b = 1, ~0 = 1, ^a = a, ~fe = fc}
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if and only if all four congruence-classes are distinct. In order to

describe the dual of K we need a consequence of the following result; we

will need the full generality of the result later in this section.

THEOREM 3 .1 . Let $ be a ^-congruence on a De Morgan algebra M

and let 8 : Af -»• Af/$ be the canonical epimorphism. Then

$ = fl{i?[6~1(P)) n R[g{Q-1(P))) : P € Pr(M/<5>)} .

Proof. Let x, y € M be such that a; = #($) . Then 6(x) = 6{y) .

Of course, 9 (P) € Pr(Af) and, as 9 is a ~-homomorphism,

3(9"1(P)) = M~9"1(P) = 6~1(M/$\-i') = e"1(g'(P)) for each P € Pr(M/$) .

As x € 6~1(P) if and only if y € ̂ ( P ) and x € 9"1(g'(P)) if and only

if y € B^tg-CP)) for each P € Pr(W/$) , we have

x = y n {R^iP)) n i?(?(6"
1(P))) : P €

Conversely, suppose a, b (. M and yet a \ fc($) • Then 9(a) t 8(£>)

and so there exists P € Pr(M/*) such that 6(a) f P and 9(&) ̂  P , or

vice-versa. Then a % b(i?(9"1(P))) and a | 2>(i?(8~1(P)) n fl1

and the result follows.

Let $ be u , the smallest congruence on M , whereby x = y(w)

(x, y € Af) if and only if x = y . Then M/9 = M and so Theorem 3.1

implies that

{ n flfe(P)) : P € Pr(M)} = u .

Hence we obtain the well known result that any De Morgan algebra is

isomorphic to a subdirect product of copies of T and its subalgebras 3

and 2 . Of course, T, 3 , and 2 are the only subdirectly irreducible

(simple) De Morgan algebras. All this was first established by Bia/ynicki-

Birula [2, Theorem 2.1] and Kalman [/', Lemma 2 ] , using other techniques.

Since 2 and 3 are Kleene algebras while T is not a Kleene algebra, we

see that a De Morgan algebra is a Kleene algebra if and only if it is

isomorphic to a subdirect product of copies of 2 and 3 . In other

words, we have

THEOREM 3.2. The dual of K is isomorphic to the subcategory of

g-Todc whose objects (X, g) are such that x and g{x) are comparable

for each x € X .
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LEMMA 3.3. Each of the coproducts 3j [̂ 3, 3| 1̂ 4 , and 4| 1̂ 4 is

not a Kleene algebra.

Proof. The lemma can be proved by obtaining the required coproducts

via Corollary 2.8; 3j L.3 has a six-element planar graph, 3j L.4 has a

ten element planar graph, while 4J L.4 has a twenty element non-planar

graph. However, it is a simple matter to establish the lemma by making use

of Theorems Z.\ and 3.2; (Pr(3), g) is the discrete space

{xQ, x± : xQ > x±, g{xQ) = xx, g[x^) = xQ] , (Pr(4), g) is the discrete

space {yQ, y%, y2 : yQ > y± > y^ g{yQ) = y2, g{y^ = y±, g[y2) = yQ] .

In (Pr(3), g) x (Pr(3), g) , g{{xQ, x±)) = [g[xj , g&J) = (x^ xQ) ,

which is incomparable with (xQ, x±) . Similarly g[[yQ, y2)) = [y2, J/Q)

in (Pr(4), g) x (Pr(4), g) and [y2, yQ) is incomparable with

(j/0, y2) . Similarly g[[xQ, y2)) = (a^, yQ) in (Pr(3), g) x (pr(4), g)

and [x , y ] is incomparable with [x , y ) . The proof is now complete.

LEMMA 3.4. Let B be a boolean algebra and K be a Kleene algebra.

Then B\ \ji is a Kleene algebra.

Proof. Since all the prime ideals are maximal in a boolean algebra

B , (Pr B, g) is an ordered space in which the partial order is equality

and the involution g is the identity function. Thus, if

h.k € Cm[Pr(B), K.) and x € Pr(B) ,

(h A ~fc)(x) = ?z(x) A {~h)(x) = h{x) A ̂ h[g(x)) = h(x) A

~(Mz)) 2 k(x) v ~ fe(x) = (fe v

Thus the lemma follows from Theorem 2.7-

THEOREM 3.5. Let {K^} be a set of Kleene algebras. Then

is a Kleene algebra if and only if at most one of the K. is not a boolean

algebra.

Proof. Due to Corollary 2.6, Lemma 3.U, and the "associativity" of

coproducts, | [„£. is a Kleene algebra when all but possibly one of the

K. is not boolean.
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On the other hand, suppose the coproduct in M of the K. is a

Kleene algebra and yet there exist two, namely K. and K. , which are
\ %2

not boolean. Then K. and K. each have either 3 or 4 as a
l l V2

subalgebra and so one of 3j L.3, 3j Li4 or 4J L.4 is isomorphic to a

subalgebra of | ItJf • , due to Corollary 2.5 and its proof. Then Lemma 3.**

supplies the required contradiction.

Because a Kleene algebra is isomorphic to a subdirect product of

copies of 3 and its subalgebra 2 , there is always a homomorphism of a

given Kleene algebra into 3 which distinguishes distinct elements of the

algebra. Hence, due to Gratzer [9, Exercise 9, p. 138], the category K

has arbitrary coproducts. In Theorem 3.8 below, we exhibit a property of

such coproducts; we present this after developing two results, which are

of independent interest.

Cignoli [4, Corollaries 3-3, U.1+] showed that the categories M and

K are injectively complete. From general theory [7 3, Proposition 2.1 and

Theorem 2.3], a variety of algebras is injectively complete if and only if

it is residually small and has both the congruence extension property and

the amalgamation property. Thus M and K must have these three

properties. Since the only subdirectly irreducible members of M are the

four element algebra T together with its subalgebras 3 and 2 , M and

K are residually small (of. Taylor [73, Theorem 1.2 (ii)]); the aim of

the next two results is to provide alternative proofs of the congruence

extension and amalgamation properties for M and K .

THEOREM 3.6. M , and so K , has the congruence extension-property.

Proof. Let M be a subalgebra of De Morgan algebra M. and let $

be a congruence on M . Due to Theorem 3.1,

: P €

where 9 : M •* M/$ is the canonical epimorphism. Now for each prime ideal

P € Pr(M/$) , 9"1(P) is a prime ideal of the sublattice M of the

distributive lattice Af and so, by [/, Proof of Theorem 5, p. 71+] (see

also [9, Exercise 3, p. 100]), there is at least one prime ideal P. of
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1 such that P^ n M = Q~X(P) and Px n (M9~
1(P)) = 0 .- Since A/ is a

-subalgebra of M , we must also have ~6~ (P) = A/ n ~P and

~P n (w\~6"1(P)) = 0 , so that g(8~1(P)) = A/ n ^(P ) and

g{P ) n (Af\^(0"1(P))] = 0 . For each P € Pr(W/$) , choose a prime ideal

P € Pr(Af ) with the above properties. Define

$x = nfi?^) n if^P.J) : P is related to P € Pr(A//$), as above} .

Then <2> is a congruence on M and a routine check shows that

$ n (Af x M) = $ , as required.

Since M and K are each varieties with the congruence extension

property and such that each subalgebra of a subdirectly irreducible algebra

is itself subdirectly irreducible, we can show that each of M and K has

the amalgamation property if we prove that each amalgam

(A; B, Y. C, 8; y : A •*• B and 6 : B •* C are monomorphisms) ,

where A, B , and C are subdirectly irreducible algebras in M or K ,

can be amalgamated. This is due to a deep result of Gratzer and Lakser

[70, Theorem 3]. The verification that such an amalgam can here be

amalgamated is a simple matter and so we have

THEOREM 3.7. Both M and K have the amalgamation property.

Because of Theorems 3.6 and 3.7 and another result of Gratzer and

Lakser [70, Theorem It] we have

THEOREM 3.8. Let A and B be Kleene algebras, and A and B

be subalgebras of A and B 3 respectively. Then the subalgebra of
A\ \yB generated by A and B is isomorphic to l J _ U •
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