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Acoustic levitation of a rigid nano-sphere at
non-continuum conditions
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We study the steady force acting on a rigid spherical particle immersed in an ideal gas
and impinged by a standing acoustic wave. The acoustic wavelength and particle radius
are assumed much larger and smaller, respectively, than the molecular mean-free path. To
analyse the system, an asymptotic scheme is constructed, combining an inviscid continuum
description in the far field with a free-molecular formulation for the near gas–surface
interaction. The computation yields a closed-form expression for the steady acoustic force.
The free-molecular solution is compared with a formerly derived result in the continuum
regime (Doinkov, Proc. R. Soc. Lond. A, vol. 447, 1994, pp. 447–466), and the latter
is found characteristically larger by an order of magnitude at a given ratio between the
particle radius and the acoustic wavelength. Markedly, the size of the acoustic force at
ballistic flow conditions may become up to four orders of magnitude larger than the typical
gravitational force, suggesting the feasibility of nano-particle acoustic levitation.

Key words: non-continuum effects

1. Introduction

Particles subject to an acoustic field experience a net force, traditionally termed the
acoustic radiation force, mostly due to pressure spatial inhomogeneities in the surrounding
fluid. While the time average of the leading-order time-harmonic acoustic force vanishes,
higher-order terms yield a mean net force on the particle. The application of this force
has proven advantageous in various frameworks requiring the manipulation of small
particles (of a size smaller than few millimetres) due to the tractable monitoring of the
applied acoustic field. Consequently, acoustic radiation forces are used in a sequence
of gas-particle applications, including the separation, sorting and filtering of particles
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by means of acoustic tweezers (Baudoin & Thomas 2020). This platform has emerged
in recent years as a versatile and substance-unharmful tool for bioparticle manipulation
across a broad range of particle sizes, from nano-scale exosomes to millimetric size
bacteria (Ozcelik et al. 2018).

A large body of work concerns the study of the radiation force acting on particles
subject to an acoustic field at continuum-flow conditions, as recently reviewed by Baudoin
& Thomas (2020). An early investigation has been carried out by King (1934), who
derived an expression for the radiation force on a solid sphere in the inviscid (ideal flow)
limit. Ever since, this theory has been extended to consider the effects of fluid viscosity
(Doinikov 1994; Danilov & Mironov 2000; Annamalai, Balachandar & Parmar 2014), flow
thermodynamic state (Doinikov 1997; Karlsen & Bruus 2015), particle shape and type
(Hasegawa & Yosioka 1969; Glynne-Jones et al. 2013) and the waveform of impinging
disturbance (Silva 2011) on the acoustic force. Relying on the continuum description, these
analyses become invalid for particle sizes �1 μm at standard atmospheric conditions,
where the gas molecular mean-free path equals ≈0.1 μm (Sone 2007). Further smaller
nano-sized particles should be treated at free-molecular (ballistic) conditions, where the
effect of gas molecular collisions is negligible. To the best of our knowledge, this limit has
not been investigated hitherto.

Noting the above, the objective of the present work is to analyse the acoustic radiation
force on a rigid particle submerged in a gas at collisionless flow conditions. The
investigation is carried out for a nano-sized sphere subject to a standing acoustic wave.
The acoustic wavelength is assumed much larger than the sphere radius and molecular
mean-free path, so that far-field continuum inviscid-flow conditions prevail. Different from
existing finite-difference-based evaluations of the acoustic force about continuum-scale
elements (Foresti, Nabavi & Poulikakos 2012; Glynne-Jones et al. 2013), counterpart
non-continuum simulations (e.g. the direct simulation Monte Carlo method; see Bird
1994) of nano-sized particles are presently impractical. This is due to the formidably
costly computational resources necessary to resolve both small and large length scales
of the particle and acoustic wavelength, respectively. In this context, the significance of
the following analysis, yielding a closed-form evaluation for the free-molecular acoustic
force, is evident.

2. Problem formulation and analysis

Consider a sphere of radius r∗
0 (with asterisks hereafter denoting dimensional quantities)

submerged in a nominally quiescent monatomic ideal gas of ambient density ρ∗
0 and

temperature T∗
0 . The sphere is subject to an acoustic field of wavelength U∗

th/ω
∗, where

ω∗ marks the wave frequency, U∗
th = √2R∗T∗

0 denotes the most probable molecular speed
and R∗ is the specific gas constant. Taking r∗

0 and U∗
th as the set-up normalizing length

and velocity scales,
r = r∗/r∗

0 and u = u∗/U∗
th, (2.1a,b)

we construct the system Knudsen number and non-dimensional frequency,

Kn = l∗

r∗
0

and ω = ω∗r∗
0

U∗
th

, (2.2a,b)

respectively, where l∗ denotes the gas molecular mean-free path. Focusing on a set-up
where the acoustic wavelength is large compared with the molecular mean-free path,
we obtain the non-dimensional restriction ωKn � 1. In accordance with gas kinetic
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theory, gases at low rarefaction rates (i.e. with small ratio of the molecular to the local
macroscopic scale) are inviscid at leading order (Sone 2007). Consequently, at large
distances from the sphere (r∗ � r∗

0), the effect of gas rarefaction becomes negligible
and the flow field may be assumed ideal. In § 2.1 we describe the far acoustic field. The
description obtained is then used in § 2.2 to derive an expression for the radiation force on
the sphere.

2.1. Far acoustic field
We model the far acoustic field as a small-amplitude stationary acoustic wave oscillating
along the x-direction. Introducing the scaled acoustic pressure amplitude

ε = ε∗

ρ∗
0 U∗2

th
� 1, (2.3)

we expand

Φ = Φ(0) + εΦ(1)(t, x) + ε2Φ(2)(t, x) + · · · , (2.4)

where Φ represents either the density ρ, x-velocity component u, pressure p or temperature
T . At leading order, ρ(0) = T(0) = 1, u(0) = 0 and p(0) = 1/2, in accordance with the
scaled equation of state, p = ρT/2. The O(ε) continuum and inviscid x-momentum
equations are supplemented by the isentropic relation, p(1) = c2

0ρ
(1), where c0 = √

5/6
denotes the normalized speed of sound (in most probable speed units) for a monatomic
gas. Solving the consequent O(ε) one-dimensional wave equation for the pressure and
placing the field antinode at x = −h, we obtain

p(1)(t, x) = cos[ω(x + h)/c0] cos(ωt) and

u(1)(t, x) = 1
c0

sin[ω(x + h)/c0] sin(ωt).

⎫⎪⎬
⎪⎭ (2.5a,b)

Since the steady acoustic force is quadratic in ε, the next-order correction in (2.4) should
be calculated. To this end, the O(ε2) time-averaged inviscid x-momentum equation is given
by

∂
〈
p(2)
〉

∂x
= −

〈
ρ(1) ∂u(1)

∂t

〉
−
〈

u(1) ∂u(1)

∂x

〉
, (2.6)

where 〈·〉 marks the time average over a period (tp = 2π/ω). Using the O(ε) x-momentum
balance, ∂u(1)/∂t = −∂p(1)/∂x, together with the isentropic ρ(1) = 6p(1)/5 relation, we
obtain

∂
〈
p(2)
〉

∂x
= 6

5

〈
p(1) ∂p(1)

∂x

〉
−
〈

u(1) ∂u(1)

∂x

〉
. (2.7)

Integrating with x, we find〈
p(2)
〉
= 3

5

〈(
p(1)
)2
〉
− 1

2

〈(
u(1)
)2
〉
, (2.8)

indicating that the average pressure at second order equals the difference between the
average acoustic potential energy and gas kinetic energy. Here, the constant of integration
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was eliminated as it does not contribute to the steady force on the particle. Applying a
similar procedure to the O(ε2) time-averaged continuity balance we obtain〈

u(2)
〉
= −6

5

〈
p(1)u(1)

〉
= 0, (2.9)

where (2.5a,b) has been used to yield the vanishing of 〈p(1)u(1)〉 and therefore of 〈u(2)〉.
The contribution of the constant of integration to 〈u(2)〉, representing the system acoustic
streaming, was eliminated from (2.9), as it results in a uniform-velocity-induced drag on
the particle that is not in the focus of the present work.

Having determined 〈p(2)〉 and 〈u(2)〉, 〈ρ(2)〉 and 〈T(2)〉 may be obtained. Using the O(ε2)
time-averaged equation of state for an ideal gas and applying (2.8), we find〈

ρ(2)
〉
+
〈
T(2)

〉
= 2

〈
p(2)
〉
−
〈
ρ(1)T(1)

〉
= 6

25

〈(
p(1)
)2
〉
−
〈(

u(1)
)2
〉
. (2.10)

Generally, the O(ε2) energy balance should subsequently be imposed to yield an additional
relation between 〈ρ(2)〉 and 〈T(2)〉. Yet, the O(ε2) time-average inviscid energy equation
is satisfied for any choice of 〈ρ(2)〉 and 〈T(2)〉, implying that they can only be obtained by
considering the viscous Navier–Stokes-Fourier transport equations at vanishingly small
(yet non-zero) ωKn � 1. Such a formulation would involve effects of gas heating due
to viscous dissipation and would depend on the specific details of thermal boundary
conditions on the far sound transducer and reflector surfaces. These effects are not treated
here, yet the force due to an imposed far-field steady temperature gradient – namely,
the thermophoretic force – has been considered in previous investigations (Sone 2007).
In the present work we wish to separate between the contributions of acoustic and
thermophoretic forces, to allow for a comparison with existing continuum-limit results. For
this purpose, we consider hereafter an adiabatic spherical particle. In this case, as shown
in § 2.2 (see (2.22), (2.23) et seq.), the contributions of 〈ρ(2)〉 and 〈T(2)〉 to the steady
force form uniquely as their sum, evaluated in (2.10). Apart from separating between the
acoustic and thermophoretic problems, the adiabatic condition renders the formulation
simpler compared with the isothermal sphere set-up, thus enabling a more straightforward
illustration of the effect of gas rarefaction on the calculated force. The omission of the
viscous terms in (2.5a,b) and (2.6) neglects O(ωKn) � 1 components in the acoustic field,
resulting in a similar-order error in the evaluated radiation force for a long stationary wave.

2.2. Free-molecular near field
We consider a spherical particle of radius r∗

0 much smaller than the molecular mean-free
path l∗, so that Kn � 1. Combined with the previously prescribed condition of ωKn � 1
(see (2.2a,b) et seq.), this requires that ω � 1. The effect of molecular collisions in
the vicinity of the sphere is then negligible, and the near flow field is governed by the
collisionless Boltzmann equation. This has been established in previous works on flow
set-ups containing small-size objects (e.g. the thermophoretic motion of a sphere (Sone
2007) and the generation of sound by actuated cylindrical (Ben Ami & Manela 2017)
and spherical (Ben-Ami & Manela 2019) bodies), showing the vanishing impact of the
surface-reflected particles on the distribution function of the impinging gas molecules.
Consequently, the gas adjacent to the sphere consists of: (i) molecules arriving from the far
field with a probability density function f∞(t, x, ξ) governed by the far inviscid conditions;
(ii) molecules that diffusely reflect from the spherical surface with a probability density
function fw(t, x, ξ). The inviscid conditions at infinity identify f∞(t, x, ξ) as a local
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Maxwellian distribution (Sone 2007). Expanding f∞(t, x, ξ) in powers of ε up to O(ε2),
we obtain

f∞(t, x, ξ) ≈ e−ξ2

π3/2

[
1 + εφ(1)

∞ + ε2
〈
φ(2)

∞
〉]

= e−ξ2

π3/2

[
1 + ε

(
2ξxu(1) + 4

5
ξ2p(1)

)

+ ε2
(〈

ρ(2)
〉
+
〈
T(2)

〉
(ξ2 − 3/2) +

(
2ξ2

x − 1
) 〈(

u(1)
)2
〉

+ 2
25

〈(
p(1)
)2
〉
(−3 − 8ξ2 + 4ξ4)

)]
, (2.11)

where ξ ≡ |ξ | is the magnitude of the molecular velocity vector ξ = (ξx, ξy, ξz) and
time-harmonic components have been omitted from the O(ε2) time-average term.
Considering fw(t, x, ξ), the molecules reflected diffusely from the sphere acquire a
Maxwellian distribution containing the spherical surface properties. A similar power
expansion yields

fw(t, x, ξ) ≈ e−ξ2

π3/2

[
1 + εφ(1)

w + ε2
〈
φ(2)

w

〉]

= e−ξ2

π3/2

[
1 + ε

(
ρ(1)

w + 2ξxu(1)
p + T(1)

w (ξ2 − 3/2)
)

+ ε2
(〈

ρ(2)
w

〉
+
(〈

T(2)
w

〉
+
〈
ρ(1)

w T(1)
w

〉)(
ξ2 − 3

2

)
+
(

2ξ2
x − 1

) 〈(
u(1)

p

)2
〉

+
〈(

T(1)
w

)2
〉 (

15
8

− 5
2
ξ2 + 1

2
ξ4
))]

, (2.12)

where u(1)
p denotes the (a priori unknown) first-order particle velocity in the x-direction

resulting from the applied acoustic field. The surface outgoing flux, ρ
(1),(2)
w , and

temperature, T(1),(2)
w , perturbations should be obtained through the imposition of

impermeability and adiabatic wall conditions, described below.

2.2.1. First-order wall functions
Applying the impermeability condition at O(ε) at the spherical surface r = 1, we obtain

1
2π3/2

∫ 2π

0
dϕξ

∫ ∞

0
ξ3e−ξ2

dξ

[∫ π/2

0
φ(1)

w sin(2θξ )dθξ +
∫ π

π/2
φ(1)

∞ sin(2θξ ) dθξ

]
r=1

= u(1)
p cos θ, (2.13)

where the spherical-coordinate representation of ξ = (ξr, ξθ , ξϕ) is used, cos θξ = ξr/ξ
and tan ϕξ = ξθ/ξϕ . Assuming an adiabatic sphere, the surface temperature is treated
unknown and is determined through the application of a zero-heat-flux condition at r = 1.
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At O(ε) this yields∫ 2π

0
dϕξ

∫ ∞

0
ξ5e−ξ2

dξ

[∫ π/2

0
φ(1)

w sin(2θξ )dθξ +
∫ π

π/2
φ(1)

∞ sin(2θξ ) dθξ

]
r=1

= 0.

(2.14)
Integrating (2.13) and (2.14), we obtain

ρ(1)
w =

[
7
√

π

8

(
u(1)

p − u(1)
)

cos θ + 6
5

p(1)

]
r=1

and

T(1)
w =

[√
π

4

(
u(1)

p − u(1)
)

cos θ + 4
5

p(1)

]
r=1

,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.15a,b)

where u(1)
p may be evaluated using Newton’s second law,

4π

3
ρp/g

du(1)
p

dt
= F(1)

x . (2.16)

Here, ρp/g = ρ∗
p/ρ∗

0 denotes the ratio of particle to gas densities, and F(1)
x marks the

leading-order x-directed force on the sphere. Using scaling arguments, we find

u(1)
p ∼ F(1)

x (ω)

ωρp/g
. (2.17)

Implicit calculation of F(1)
x (given in Appendix A) shows that F(1)

x (ω) ∼ ω for ω � 1.
It is therefore established that, for the prevailing set-up of particles much heavier than
the ambient gas (ρp/g � 1, common for solid particles), u(1)

p � u(1) and u(1)
p may be

neglected in (2.15a,b). The diminishing effect of particle oscillatory motion on the acoustic
force for ρp/g � 102 was similarly reported in Annamalai et al. (2014) at continuum-flow
conditions.

2.2.2. Second-order wall functions and steady acoustic force
Following a similar procedure to obtain ρ

(2)
w and T(2)

w in (2.12), we formulate the respective
O(ε2) time-averaged impermeability,∫ 2π

0
dϕξ

∫ ∞

0
ξ3e−ξ2

dξ

[∫ π/2

0
φ(2)

w sin(2θξ ) dθξ +
∫ π

π/2
φ(2)

∞ sin(2θξ ) dθξ

]
r=1

= 0,

(2.18)
and adiabatic,

− 2

〈
v

(1)
θ

∫ 2π

0
sin ϕξ dϕξ

∫ ∞

0
ξ4 e−ξ2

dξ

[∫ π/2

0
φ(1)

w sin2 θξ cos θξ dθξ

+
∫ π

π/2
φ(1)

∞ sin2 θξ cos θξ dθξ

]〉
r=1

+ 1
2

∫ 2π

0
dϕξ

∫ ∞

0
ξ5 e−ξ2

dξ

[∫ π/2

0

〈
φ(2)

w

〉
sin(2θξ ) dθξ

+
∫ π

π/2

〈
φ(2)

∞
〉

sin(2θξ )dθξ

]
r=1

= 0, (2.19)
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wall conditions. In (2.19), the first-order tangential velocity v
(1)
θ over the sphere surface is

evaluated through

v
(1)
θ (r = 1) = 1

π3/2

∫ 2π

0
sin ϕξ dϕξ

∫ ∞

0
ξ3e−ξ2

dξ

[∫ π/2

0

〈
φ(1)

w

〉
sin2 θξ dθξ

+
∫ π

π/2

〈
φ(1)

∞
〉

sin2 θξ dθξ

]
r=1

= −u(1)(r = 1) sin θ

2
. (2.20)

Integrating (2.18) and (2.19) and assigning (2.10) yields

〈
ρ(2)

w

〉
+
〈
T(2)

w

〉
= 6

25

〈(
p(1)
)2

r=1

〉
−
〈(

u(1)
)2

r=1

〉 (
1 −

(
3
2

− 29π

128

)
cos2 θ

)
. (2.21)

As shown below, and in similar to the discussion following (2.10), the steady acoustic force
on the adiabatic sphere depends on the sum of ρ

(2)
w and T(2)

w only and not on their separate
values, which are therefore not computed here.

Having analysed the O(ε2) wall functions, the general expression for the steady acoustic
force on the sphere is given by〈

F(2)
x

〉
= −2π

∫ π

0

[〈
σ (2)

rr (r = 1)
〉

cos θ −
〈
σ

(2)
rθ (r = 1)

〉
sin θ

]
sin θ dθ, (2.22)

where σ
(2)
rr (r = 1) and σ

(2)
rθ (r = 1) denote the second-order normal and shear stresses

along the sphere, respectively. Importantly, (2.22) assumes that the sphere displacement,
xp, is small compared to its radius (i.e. xp � 1), so that a fixed reference surface
surrounding the particle may be introduced and a ‘stationary’ force balance could be
carried out. Focusing on a heavy (relative to the gas) sphere, it may be shown that
xp ∼ ε/(ωρp/g) (see (2.17) et seq.). Indeed, this condition is satisfied over a wide range
of parameters, where ρp/g � 1 and ω and ε are similarly small, in line with the
long-wavelength and linearization assumptions, respectively.

The time-averaged normal stress component appearing in (2.22) forms as

〈
σ (2)

rr (r = 1)
〉
= 1

π3/2

∫ 2π

0
dϕξ

∫ ∞

0
ξ4e−ξ2

dξ

×
[∫ π/2

0

〈
φ(2)

w

〉
cos2 θξ sin θξ dθξ +

∫ π

π/2

〈
φ(2)

∞
〉

cos2 θξ sin θξ dθξ

]
r=1

= 1
4

[〈
ρ(2)

w

〉
+
〈
T(2)

w

〉
+
〈
ρ(1)

w T(1)
w

〉
+
〈
ρ(2)

〉
+
〈
T(2)

〉
+ 24

25

〈(
p(1)
)2
〉

+2
〈(

u(1)
)2
〉

cos2 θ

]
r=1

, (2.23)

indicating its specific dependence on 〈ρ(2)〉 + 〈T(2)〉 and 〈ρ(2)
w 〉 + 〈T(2)

w 〉 evaluated in (2.10)
and (2.21), respectively. Using these relations, 〈σ (2)

rr (r = 1)〉 is expressed by〈
σ (2)

rr (r = 1)
〉
=
[

3
5

〈(
p(1)
)2
〉
+
〈(

u(1)
)2
〉 (

−1
2

+
(

7
8

− π

512

)
cos2 θ

)]
r=1

. (2.24)
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The time-averaged second-order wall shear stress is given by

〈
σ

(2)
rθ (r = 1)

〉
= − 1

2π3/2

〈
v

(1)
θ

∫ 2π

0
dϕξ

∫ ∞

0
ξ3 e−ξ2

dξ

[∫ π/2

0
φ(1)

w sin(2θξ ) dθξ

+
∫ π

π/2
φ(1)

∞ sin(2θξ ) dθξ

]〉
r=1

− 1√
π

〈(
u(1)
)2
〉

r=1
sin(2θ)

∫ ∞

0
ξ6 e−ξ2

dξ

∫ π

π/2
cos2 θξ sin3 θξ dθξ

= −1
4

sin(2θ)

〈(
u(1)
)2
〉

r=1
, (2.25)

where (2.11), (2.12) and (2.20) have been applied.
To substitute (2.24) and (2.25) into (2.22) and carry out the required quadratures, p(1)

and u(1) in (2.5a,b) should be expressed in spherical coordinates. Towards this end, we
expand〈(

p(1)
)2
〉

r=1

= Π2

8

∞∑
n=0

∞∑
m=0

{
(2n + 1)(2m + 1)in+mjn

(
ω

c0
r
)

jm

(
ω

c0
r
)

Pn(cos θ)Pm(cos θ)

×
[
(−1)n exp

(
−i

ωh
c0

)
+ exp

(
i
ωh
c0

)][
(−1)m exp

(
−i

ωh
c0

)
+ exp

(
i
ωh
c0

)]}
(2.26)

and〈(
u(1)
)2
〉

r=1

= −Π2

8c2
0

∞∑
n=0

∞∑
m=0

{
(2n + 1)(2m + 1)in+mjn

(
ω

c0
r
)

jm

(
ω

c0
r
)

Pn(cos θ)Pm(cos θ)

×
[
(−1)n exp

(
−i

ωh
c0

)
− exp

(
i
ωh
c0

)][
(−1)m exp

(
−i

ωh
c0

)
− exp

(
i
ωh
c0

)]}
.

(2.27)

Here, Pn denotes the Legendre polynomial of nth order and jn marks the nth-order
spherical Bessel function of the first kind. Upon substitution of the expanded forms of
〈( p(1))2〉r=1 and 〈(u(1))2〉r=1 into (2.24) and (2.25) and then into (2.22), the orthogonality
relations for triple products of the Legendre polynomials,∫ π

0
P1(cos θ)Pn(cos θ)Pn+1(cos θ) sin θ dθ = (2n + 2)

(2n + 1)(2n + 3)
and

∫ π

0
P3(cos θ)Pn(cos θ)Pn+3(cos θ) sin θ dθ = 15

24
(2n + 2)(2n + 4)(2n + 6)

(2n + 1)(2n + 3)(2n + 5)(2n + 7)
,

⎫⎪⎪⎬
⎪⎪⎭

(2.28)
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Acoustic levitation of a rigid nano-sphere

are applied (Dougall 1953), yielding the desired expression for the free-molecular
second-order steady acoustic force on the sphere,

〈
F(2)

x

〉
fm

= 3π

100
sin
(

2ωh
c0

) ∞∑
n=0

[(
11 + 3π

64

)
(−1)n(2n + 2)jn

(
ω

c0

)
jn+1

(
ω

c0

)

+5
4

(
3 − π

64

)
(−1)n (2n + 2)(2n + 4)(2n + 6)

(2n + 3)(2n + 5)
jn

(
ω

c0

)
jn+3

(
ω

c0

)]
. (2.29)

3. Discussion

As stated in the beginning of § 2.2, expression (2.29) for the steady acoustic force should
be valid only for ω � 1/Kn, ensuring inviscid-flow conditions of the impinging acoustic
wave. As additionally noted therein, since Kn � 1, this implies that ω � 1, and (2.29)
may be simplified to yield the leading-order approximation

〈F(2)
x 〉fm ≈ π

10c2
0

√
30

(
11 + 3π

64

)
sin
(

2ωh
c0

)
ω + O(ω3) as ω � 1. (3.1)

To examine the feasibility of levitating the spherical particle through the applied
acoustic field, we estimate the characteristic ratio between the amplitudes of the acoustic
and gravitational forces operating on the sphere. Typically, for the free-molecular regime
to be valid, Kn � 10, equivalent to a nano-sphere of radius r∗

0 � 10 nm at atmospheric
conditions. Additionally, to ensure far inviscid conditions, we require that ωKn �
10−2, so that the standing-wave attenuation may be considered negligible (Ben Ami &
Manela 2017). The above restrictions yield ω � 10−3, corresponding to a dimensional
frequency of ω∗ ∼ 1 MHz for a nano-sized particle at atmospheric conditions with U∗

th ≈
350 m s−1. Taking ε � 10−1 to warrant linearized flow conditions (as supported by
previous analyses of acoustic wave propagation in planar and non-planar geometries, e.g.
Manela & Pogorelyuk 2015; Ben Ami & Manela 2017; Ben-Ami & Manela 2019), we
evaluate the acoustic to gravitational force ratio as

ε2〈F(2)
x 〉fm

Fg
∼ ε2U∗2

th ω

g∗r∗
0ρp/g

� 104, (3.2)

where g∗ ≈ 10 m s−2 marks the dimensional gravitational acceleration and the particle to
gas densities ratio was taken ρp/g ≈ 103. Evidently, the large characteristic ratio obtained
implies that the long-wavelength-induced acoustic field may be useful in levitating
nano-particles.

Having demonstrated the above, it is of interest to compare the ballistic-limit result
with former evaluations of the steady force in the continuum regime (where Kn � 1) at
large acoustic wavelengths (ω � 1) (King 1934; Doinikov 1994). To this end, we start by
rescaling expression (3.1) for the free-molecular force to read

Yfm = 〈F(2)
x 〉fm

π

2c2
0

sin
(

2ωh
c0

) ≈ 1
30

√
6
5

(
11 + 3π

64

)
ω + O(ω3) as ω � 1, (3.3)

reducing the harmonic dependence of 〈F(2)
x 〉fm on the prescribed position x = −h of the

acoustic wave antinode. Next, consider (6.14) and (7.6) in Doinikov (1994) for the case of
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10–3 10–2 10–1 100

10–4

10–3Y

ω

10–2 Kn � ω � 1

ω � Kn � 1

Kn � 1, ωKn � 1

Figure 1. Variation with ω of the steady acoustic force on a sphere in the free-molecular (blue curves) and
continuum (black lines) regimes. The solid blue curve corresponds to the force calculated in (2.29) (with 20
terms of the series), while the dashed blue line presents its ω � 1 leading-order term given in (3.3). The dashed
black lines mark the continuum-limit results obtained in Doinikov (1994) for Kn = 0.01 (see (3.5)).

a standing acoustic wave impinging on a ‘fastened’ sphere (ρp/g � 1). We focus on the
limits of a viscous layer much smaller or larger than the sphere radius. Applying the current
scaling, these correspond to set-ups with Kn � ω and Kn � ω, respectively, where we
make use of the viscosity-based definition of the Knudsen number,

Kn = 2ν∗/(U∗
thr∗

0). (3.4)

Here, ν∗ marks the gas mean kinematic viscosity, and the factor 2 is introduced such that
(Kn/ω)1/2 specifies the ratio between the viscous boundary-layer width and the sphere
radius, [2ν∗/(ω∗r∗2

0 )]1/2 (Doinikov 1994). In (6.14) and (7.6) of Doinikov (1994), the
amplitude of the wave velocity potential A∗ may be recast as A∗ = εU∗2

th /ω∗ to correspond
to current notation. Scaling the force in Doinikov (1994) by πε2r∗2

0 ρ∗
0 U∗2

th /(2c2
0), the

non-dimensional force in the continuum limit is given by

Ycont ≈

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

5
3

√
6
5
ω

(
1 + 9

10

√
Kn
ω

)
, Kn � ω � 1,

9
5

√
6ωKn

5

(
1 + 10

27

√
ω

Kn

)
, ω � Kn � 1.

(3.5)

Notably, the result in (3.5) (as in other works concerning the problem in the continuum
limit) does not consider the impact of fluid velocity slip over the spherical surface at
non-zero Kn. It is nevertheless reasonable to assume that this effect, typically proportional
to Kn � 1 (Sone 2007), should only slightly affect the acoustic force in the limit of
small Knudsen numbers. The free-molecular and continuum-limit results are compared
in figure 1. The blue solid curve presents the force obtained in (2.29) for Kn � 1 using
N = 20 terms of the series, whereas the dashed-blue line shows its ω � 1 leading-order
approximation given in (3.3). We observe that the two curves are nearly indiscernible for
ω � 0.2, implying that the leading-order approximation (3.3) is sufficient for capturing
the force in the free-molecular limit. As discussed above (see (3.1) et seq.), free-molecular
conditions are expected to hold at low frequencies that should not exceed ω � 0.2.
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Acoustic levitation of a rigid nano-sphere

Inspecting the forces in the free-molecular and continuum limits, we notice that the
latter are larger in the entire range of ω � 1 considered. In the case Kn � ω (where the
viscous boundary layer is thin compared with the sphere radius), Ycont ∝ ω, similarly to
Yfm (cf. (3.3)). Yet, the magnitude of the continuum-limit force is approximately five times
larger than its free-molecular counterpart. Physically, for Kn � ω, the acoustic force in the
continuum limit is dominated by the contribution of pressure distribution over the sphere,
whereas the shear stress and the non-isotropic contributions to the deviatoric part of the
normal stress are scaled with Kn. Conversely, these terms turn O(1) at free-molecular
conditions (see 〈σ (2)

rθ 〉 in (2.25) and the cos2 θ term of 〈σ (2)
rr 〉 in (2.24)), counteract the

pressure contribution and diminish the total force. Using kinetic-level arguments, while
the effect of molecular collisions at continuum-limit conditions leads to transformation of
far-field x-momentum into excess pressure on the sphere, the absence of collisions in the
free-molecular limit results in partial ‘escape’ of wall-reflected momentum to the far field.
Traversing to the ω � Kn regime, the dominant contribution to the continuum-limit force
is due to the viscous-shear component. Here, the non-dimensional force is proportional to
the width of the viscous boundary layer scaled by the acoustic wavelength, ∼ √

ωKn. This
results in a slower decrease as ω → 0 relative to the ∼ ω reduction in the free-molecular
limit, where a viscous layer cannot be defined.

4. Conclusions

We studied the steady acoustic force, imposed by a long-wavelength standing acoustic
wave in an ideal gas, on a sphere of radius much smaller than the molecular mean-free path.
A closed-form expression was obtained for the steady force on an adiabatic nano-sphere
(for which Kn � 1) submerged in a long-wavelength field (where ωKn � 1). While the
force on an otherwise isothermal particle was not considered in the present work, it may
be readily obtained by subsequently solving for the O(ε2) far-field steady temperature
deviation in the gas, which depends on specific modelling of the far sound generator
and reflector surfaces. Comparison between the current free-molecular and previous
continuum-limit (Doinikov 1994) analyses of the acoustic force at long-wavelength (ω �
1) conditions revealed a typical five times larger force in the latter case at a given
non-dimensional frequency. This was rationalized in terms of momentum ‘escape’ at
free-molecular conditions by molecules reflected from the solid particle. Inspecting the
amplitude of the free-molecular force, we found that it may become up to four orders of
magnitude larger than the gravitational force, thus suggesting the viability of applying an
acoustic field for the manipulation of nano-scale particles.

While the current work constructs a theoretical framework for the calculation of
free-molecular acoustic forces on small-scale particles, it is yet desirable to examine the
breakdown of the scheme with decreasing Kn. This may be carried out by either employing
non-continuum simulations (e.g. the direct simulation Monte Carlo method; Bird 1994)
or by directly solving the kinetic Boltzmann equation. However, such analyses appear
particularly challenging, mainly due to the formidable computational effort required to
capture both small and large length scales of the particle and sound wave, respectively.
One approach for overcoming this difficulty may be the application of a hybrid simulation
method (e.g. the scheme presented by Stephani, Goldstein & Varghese 2013), where the
far acoustic field, calculated via continuum equations, is matched with a kinetic-simulation
computation in the vicinity of the particle. This approach may allow the calculation of the
long-wavelength acoustic force on particles in the entire range of Knudsen numbers, and
its application constitutes a topic for a future investigation.
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Appendix A. Evaluation of F (1)
x

The expression for F(1)
x forms similarly to (2.22) for 〈F(2)

x 〉, after removing the
time-average operator and replacing the second-order with a first-order notation. This
yields

F(1)
x = −2π

∫ π

0

[
σ (1)

rr (r = 1) cos θ − σ
(1)
rθ (r = 1) sin θ

]
sin θ dθ, (A1)

where r and θ mark the radial coordinate and azimuthal angle relative to the x-direction in
spherical coordinates, respectively. The O(ε) normal and shear stresses along the sphere
in (A1) are given by

σ (1)
rr (r = 1) = 2√

π

[∫ ∞

0
ξ4 e−ξ2

dξ

∫ π/2

0
φ(1)

w cos2 θξ sin θξ dθξ

+
∫ ∞

0
ξ4 e−ξ2

dξ

∫ π

π/2
φ(1)

∞ cos2 θξ sin θξ dθξ

]
r=1

= p(1) (r = 1) − cos θ

(
9
√

π

32
+ 1√

π

)
u(1) (r = 1) (A2)

and

σ
(1)
rθ (r = 1) = −2u(1) (r = 1) sin θ√

π

∫ ∞

0
ξ5 e−ξ2

dξ

×
∫ π

π/2
cos θξ sin3 θξ dθξ = u(1) (r = 1)

2
√

π
sin θ, (A3)

respectively. Transferring p(1) and u(1) to the frequency domain,

{p, u}(1) (t, x) = 1
2

[
{p̄, ū}(1) (x) exp [iωt] + c.c.

]
(A4)

(with c.c. denoting the complex conjugate of a complex function), and expanding {p̄, ū}(1)

in spherical coordinates, we write

p̄(1) = 1
2

∞∑
n=0

(2n + 1)injn

(
ω

c0
r
)

Pn(cos θ)

[
(−1)n exp

(
−i

ωh
c0

)
+ exp

(
i
ωh
c0

)]
(A5)

and

ū(1) = 1
2c0

∞∑
n=0

(2n + 1)injn

(
ω

c0
r
)

Pn(cos θ)

[
(−1)n exp

(
−i

ωh
c0

)
− exp

(
i
ωh
c0

)]
,

(A6)
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where we have applied the identity (Arfken & Weber 2005)

exp
(

i
ω

c0
x
)

= exp
(

i
ω

c0
r cos θ

)
=

∞∑
n=0

(2n + 1)injn

(
ω

c0
r
)

Pn(cos θ) (A7)

and used the notations jn and Pn for the nth-order spherical Bessel function and Legendre
polynomial, respectively. Substituting (A5) and (A6) into (A2) and (A3), we obtain

σ̄ (1)
rr (r = 1) = 1

2

∞∑
n=0

(2n + 1)injn

(
ω

c0

)
Pn(cos θ)

×
{[

(−1)n exp
(

−i
ω

c0
h
)

+ exp
(

i
ω

c0
h
)]

− 1
c0

(
9
√

π

32
+ 1√

π

)
cos θ

[
(−1)n exp

(
−i

ωh
c0

)
− exp

(
i
ωh
c0

)]}
(A8)

and

σ̄
(1)
rθ (r = 1) = 1

2c0
√

π
sin θ

∞∑
n=0

(2n + 1)injn

(
ω

c0

)
Pn(cos θ)

×
[
(−1)n exp

(
−i

ω

c0
h
)

− exp
(

i
ω

c0
h
)]

. (A9)

The expression for F̄(1)
x is then

F̄(1)
x = −2π

∫ π

0

(
σ̄ (1)

rr (r = 1) cos θ − σ̄
(1)
rθ (r = 1) sin θ

)
sin θ dθ

= −4π

c0
sin
(

ω

c0
h
)[

i
(

3
√

π

32
+ 1√

π

)
j0

(
ω

c0

)
− c0j1

(
ω

c0

)
− 3i

16
√

πj2

(
ω

c0

)]
,

(A10)

and F(1)
x follows from application of the operator in (A4) to (A10).
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