CORRIGENDUM

EXTREME COVERINGS OF n-SPACE BY SPHERES

Journal of the Australian Mathematical Society 7 (1967), 115-127
E. S. BARNES and T. J. DICKSON
(Received 4 September 1967)

The proof of Theorem 1 is deficient; the error lies in part (ii) of the proof of Lemma 4.1, where the 'sufficient smallness' of ε is not shown to be independent of the matrix T. In order to repair the proof, we need the following refinements of Lemmas 3.1 and 3.3:

Lemma 3.1'. Let $f(\boldsymbol{x})=\boldsymbol{x}^{\prime} A \boldsymbol{x}$, where A is positive definite. Then there exist positive constants c_{1}, ε_{1} such that for any neighbouring form

$$
\begin{equation*}
g(\boldsymbol{x})=\boldsymbol{x}^{\prime}(A+\varepsilon T) \boldsymbol{x} \tag{1}
\end{equation*}
$$

satistying

$$
\begin{equation*}
\operatorname{tr}\left(A^{-1} T\right)=0, \quad \max \left|t_{i j}\right|=1 \tag{2}
\end{equation*}
$$

we have

$$
\begin{equation*}
d(g)<d(f)\left(1-c_{1} \varepsilon^{2}\right) \text { whenever } 0<\varepsilon<\varepsilon_{1} \tag{3}
\end{equation*}
$$

Proof. As in the proof of Lemma 3.1, we have

$$
\begin{equation*}
d(g)=d(f)\left(1+k_{2} \varepsilon^{2}+k_{3} \varepsilon^{3}+\cdots+k_{n} \varepsilon^{n}\right) \tag{4}
\end{equation*}
$$

where

$$
\begin{equation*}
A=P^{\prime} P, \quad T=P^{\prime} D P, \quad D=\operatorname{diag}\left(d_{1}, d_{2}, \cdots, d_{n}\right) \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
k_{2}=-\frac{1}{2} \sum_{i=1}^{n} d_{i}^{2}<0 \tag{6}
\end{equation*}
$$

Setting $a=\max \left|a_{i j}\right|, p=\max \left|p_{i j}\right|, d=\max \left|d_{i}\right|$, we have, from (5) and (6),

$$
a \geqq p^{2}, \quad 1=\max \left|t_{i j}\right| \leqq n p^{2} d, \quad 2\left|k_{2}\right| \geqq d^{2}
$$

Hence

$$
\left|k_{2}\right| \geqq \frac{1}{2 n^{2} a^{2}}
$$

giving a lower bound for $\left|k_{\mathbf{2}}\right|$ which is independent of T. Also the coefficients
k_{3}, \cdots, k_{n} in (4) are clearly bounded independently of T, since $\max \left|t_{i j}\right|=1$. The result (3) now follows, with any c_{1} satisfying

$$
0<c_{1}<\frac{1}{2 n^{2} a^{2}}
$$

We now write the result (3.3) of Lemma 3.2 in full as

$$
\begin{equation*}
\boldsymbol{w}=\boldsymbol{v}+\sum_{n=\mathbf{1}}^{\infty} \varepsilon^{n} \boldsymbol{\alpha}_{n} \tag{7}
\end{equation*}
$$

where, as in (3.4), (3.5),

$$
\begin{equation*}
\alpha_{1}=\gamma-A^{-1} T v \tag{8}
\end{equation*}
$$

$$
\begin{equation*}
\boldsymbol{\alpha}_{n}=-A^{-1} T \boldsymbol{\alpha}_{n-1} \quad \text { for all } n>1 \tag{9}
\end{equation*}
$$

We now prove, with the above notation,
Lemma 3.3'.

$$
\begin{equation*}
g(w)=f(v)+\varepsilon\left(2 \boldsymbol{v}^{\prime} A \gamma-\varphi(v)\right)+\sum_{n=1}^{\infty} \varepsilon^{2 n} \psi\left(\alpha_{n}\right) \tag{10}
\end{equation*}
$$

where

$$
\begin{equation*}
\varphi(\boldsymbol{x})=\boldsymbol{x}^{\prime} T \boldsymbol{x}, \varphi(\boldsymbol{x})=f(\boldsymbol{x})-\varepsilon \varphi(\boldsymbol{x})=\boldsymbol{x}^{\prime}(A-\varepsilon T) \boldsymbol{x} \tag{11}
\end{equation*}
$$

Proof. All series being absolutely convergent for all T satisfying (2) if ε is sufficiently small, we have

$$
\begin{aligned}
g(\boldsymbol{w}) & =\boldsymbol{w}^{\prime}(A+\varepsilon T) \boldsymbol{w} \\
& =f(\boldsymbol{v})+\sum_{n=1}^{\infty} c_{n} \varepsilon^{n}
\end{aligned}
$$

where, from (7), (8) and (9), we easily find that

$$
c_{\mathbf{1}}=2 \boldsymbol{v}^{\prime} A \boldsymbol{\gamma}-\varphi(\boldsymbol{v})
$$

and, for $n \geqq 2$,

$$
c_{n}=\boldsymbol{\alpha}_{n-1}^{\prime} A \boldsymbol{\alpha}_{1} .
$$

Using (9) repeatedly, we obtain

$$
\alpha_{n-1}^{\prime} A \alpha_{1}=-\alpha_{n-2}^{\prime} T \alpha_{1}=\alpha_{n-2}^{\prime} A \alpha_{2}=\cdots
$$

whence

$$
c_{2 n}=\alpha_{n}^{\prime} A \alpha_{n}, \quad c_{2 n+1}=-\alpha_{n}^{\prime} T \alpha_{n} \quad(n \geqq 1)
$$

The result (10) now follows at once.
Proof of Lemma 4.1 (ii).
We have to show that an interior form f is extreme if there exists no symmetric T satisfying

$$
\begin{equation*}
\operatorname{tr}\left(A^{-1} T\right) \geqq 0 \tag{12}
\end{equation*}
$$

and, for every maximal vertex v of Π_{f},

$$
\begin{equation*}
2 \boldsymbol{v}^{\prime} A \gamma-\varphi(v)<0 \tag{13}
\end{equation*}
$$

As in the original paper (p. 122), we note that any sufficiently close neighbour g of f, which is not a multiple of f, can be written as

$$
\begin{equation*}
g(\boldsymbol{x})=\boldsymbol{x}^{\prime}(A+\varepsilon T) \boldsymbol{x} \tag{14}
\end{equation*}
$$

where

$$
\begin{equation*}
\varepsilon>0, \max \left|t_{i j}\right|=1 \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{tr}\left(A^{-1} T\right)=0 \tag{16}
\end{equation*}
$$

We choose ε_{2} so small that the form ψ defined in (11) is positive definite for all T satisfying (15) and all ε satisfying

$$
\begin{equation*}
0<\varepsilon<\varepsilon_{2} \tag{17}
\end{equation*}
$$

Since T now satisfies (12), our hypothesis implies that there is a maximal vertex v of Π_{f} for which

$$
\begin{equation*}
2 \boldsymbol{v}^{\prime} A \boldsymbol{\gamma}-\varphi(\boldsymbol{v}) \geqq 0 \tag{18}
\end{equation*}
$$

We denote the corresponding vertex of Π_{g} by \boldsymbol{w}; then, from (10), (17) and (18),

$$
\begin{align*}
m(g) & \geqq g(\boldsymbol{w}) \\
& \geqq f(\boldsymbol{v})+\varepsilon\left(2 \boldsymbol{v}^{\prime} A \boldsymbol{\gamma}-\varphi(\boldsymbol{v})\right) \tag{19}\\
& \geqq f(\boldsymbol{v})=m(f)
\end{align*}
$$

Choosing also ε_{1} as in Lemma 3.1', we obtain at once from (3) and (19) that

$$
\mu(g)>\mu(f)
$$

provided only that $0<\varepsilon<\min \left(\varepsilon_{1}, \varepsilon_{2}\right)$; and this now shows that f is extreme.

University of Adelaide
University of Western Australia

