ON THE PERIODICITY OF COMPOSITIONS OF ENTIRE FUNCTIONS. II

FRED GROSS
In (1) the author suggested the following research problem. Does there exist a non-periodic entire function f such that $f f$ is periodic? My aim in this note is to give a partial answer to this question and, more generally, to give a partial solution to the following problem: if f and g are entire functions and $f(g)$ is periodic, what can one say about g ? These results also extend a previous result of mine; for details, see ($\mathbf{2}$, Theorem 4). We begin with some simple lemmas.

Lemma 1. If g is a transcendental entire function such that

$$
(g(z+1)-g(z))(g(z+2)-g(z))
$$

has at most finitely many zeros, then $g(z)=P_{1}(z)+Q(z) \exp \left(P_{2}(z)+C_{2} z\right)$, where $P_{i}(z)$ are entire periodic functions such that $P_{i}(z+1)=P_{i}(z), i=1,2$, C_{2} is a constant, and $Q(z)$ is a polynomial.

Proof. It is clear from the hypotheses of the lemma that one can express

$$
\begin{equation*}
g(z+i)-g(z)=L_{i}(z) \exp \alpha_{i}(z) \tag{1}
\end{equation*}
$$

where $L_{i}(z)$ are polynomials and $\alpha_{i}(z)$ are entire functions for $i=1,2$. One can easily verify from (1) that

$$
L_{1}(z) \exp \alpha_{1}(z)+L_{1}(z+1) \exp \alpha_{1}(z+1)=L_{2}(z) \exp \alpha_{2}(z) .
$$

It follows from a well-known theorem of Borel and Nevanlinna (3) that $\alpha_{1}(z+1)=\alpha_{1}(z)+C$, so that $\alpha_{1}(z)=P_{2}(z)+C_{2} z$, where $P_{2}(z+1)=P_{2}(z)$ and C_{2} is a constant. Choose $Q(z)$ such that $Q(z+1) \exp C_{2}-Q(z)=L_{1}(z)$. One can easily show that $g(z)$ has the desired form.

Lemma 2. Let $f(z), \alpha(z)$, and $\beta(z)$ be entire functions such that

$$
f(\alpha(z))=f(\beta(z))
$$

If for some $z_{0}, \alpha\left(z_{0}\right)=\beta\left(z_{0}\right)$ and $f^{\prime}\left(\alpha\left(z_{0}\right)\right) \neq 0$, then $\alpha(z)$ is identical to $\beta(z)$.
Proof. This follows almost immediately from the fact that f is $1-1$ in a neighbourhood of $\alpha\left(z_{0}\right)$.

Theorem 1. Let f and g be two entire functions such that f^{\prime} and g^{\prime} both have no zeros. If $f(g)$ is periodic, say with period 1 , then g is either periodic or linear.

[^0]Proof. Assume that $g(z)$ is non-linear. From Lemmas 1 and 2 we have that $g(z)=P_{1}(z)+\exp \left(P_{2}(z)+C_{2} z\right)$, where P_{1}, P_{2}, and C_{2} are as in Lemma 1. Using the fact that g^{\prime} has no zeros, one can easily verify that for any integer n greater than 1 ,

$$
\begin{equation*}
\left(\exp \left(P_{2}(z)+C_{2} z\right)\right)\left(P_{2}^{\prime}(z)+C_{2}\right)=\frac{\exp \alpha(z+n)-\exp \alpha(z)}{\exp \left(n C_{2}\right)-1} \tag{2}
\end{equation*}
$$

where $\alpha(z)$ is some entire function. Using the fact that the left side of (2) is independent of n, we obtain

$$
\begin{array}{r}
\left(\exp (n+1) C_{2}-1\right) \exp \alpha(z+n)-\left(\exp (n+1) C_{2}-1\right) \exp \alpha(z)= \tag{3}\\
\quad\left(\exp n C_{2}-1\right) \exp \alpha(z+n+1)-\left(\exp n C_{2}-1\right) \exp \alpha(z)
\end{array}
$$

Thus, either $\exp C_{2}=1$ or $\alpha(z+1)=\alpha(z)+C_{3}$, where C_{3} is a constant. In the former case, g is periodic. In the latter case, we obtain, for some $k \neq 0$,

$$
\begin{align*}
P_{1}^{\prime}+\exp \left(C_{2}\right)\left(P_{2}{ }^{\prime}+C_{2}\right) \exp \left(P_{2}+\right. & \left.C_{2} z\right)= \tag{4}\\
& k\left(P_{1}^{\prime}+\left(\exp \left(P_{2}+C_{2} z\right)\right)\left(P_{2}^{\prime}+C_{2}\right)\right)
\end{align*}
$$

If $P_{2}{ }^{\prime}=-C_{2}$, then $P_{2} \equiv 0, C_{2} \equiv 0$, and g must be periodic. If $P_{2}{ }^{\prime} \neq-C_{2}$, then one obtains

$$
\begin{equation*}
\left(\exp C_{2}-k\right) \exp \left(P_{2}+C_{2} z\right)=\frac{(k-1) P_{1}^{\prime}}{\left(P_{2}^{\prime}+C_{2}\right)} \tag{5}
\end{equation*}
$$

which implies that either $\exp C_{2} z$ is periodic or $\exp C_{2}=1$, and the proof is complete.

Corollary. If f is entire, f^{\prime} has no zeros, and $f f$ is periodic, then f is periodic.
More generally, we have the following theorem.
Theorem 2. Let f and g be two entire functions such that f has no zeros and g^{\prime} has at most finitely many. If $f(g)$ is periodic, then g is either periodic or linear.

Proof. We write

$$
\begin{equation*}
f^{\prime}(z)=\exp \alpha(z) \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
g^{\prime}(z)=Q(z) \exp \beta(z) \tag{7}
\end{equation*}
$$

where $\alpha(z)$ and $\beta(z)$ are entire functions, and $Q(z)$ is a polynomial. From (6), (7), and the hypotheses of the theorem, one obtains

$$
\begin{equation*}
Q(z+n) \exp \gamma(z+n)=Q(z) \exp \gamma(z) \tag{8}
\end{equation*}
$$

where $\gamma(z)=\beta(z)+\alpha(g(z))$. (8) implies that $Q(z)$ is a constant and our conclusion follows from Theorem 1 .

Theorem 3. Let f and g be entire functions such that f^{\prime}, g, and g^{\prime} each have at most finitely many zeros. If $f(g)$ is periodic, then g is a periodic function without zeros.

Proof. Write f^{\prime}, g, and g^{\prime} in the forms $Q_{i}(z) \exp \alpha_{i}(z), i=1,2,3$, respectively, where $Q_{i}(z)$ are polynomials and $\alpha_{i}(z)$ are entire functions. Using the periodicity of $f(g)$ and its derivative (we may assume it has period 1), we obtain, for any integer n,

$$
\begin{align*}
& Q_{3}(z+n) \sum_{j=0}^{k} \lambda_{j} Q_{2}(z+n)^{j} \exp \left(j \alpha_{2}(z+n)+\gamma(z+n)\right)= \tag{9}\\
& Q_{3}(z) \sum \lambda_{j} Q_{2}(\dot{z})^{j} \exp \left(j \alpha_{2}(z)+\gamma(z)\right)
\end{align*}
$$

where k is the degree of $Q_{1}(z)$ and $\gamma(z)=\alpha_{3}(z)+\alpha_{1}(g(z))$.
A careful analysis of (9) implies that $Q_{1}(z)$ or $Q_{3}(z)$ must be a constant and our conclusion follows from the previous theorem. It is natural to ask: what can one say about a periodic function $f(g)$ when f^{\prime} and g^{\prime} each have at most a finite number of zeros? Let us assume, for the sake of simplicity, that $f(g)$ has period 1 . We answer this question for certain classes of entire functions g. For any complex a and any integer t, let

$$
S_{\imath}(g)=\{z ; g(z+t)-g(z)=0\} \quad \text { and } \quad T_{a}(g)=\{z ; g(z)=a\}
$$

Let
$F=\left\{g ; S_{l n_{0}}(g) \cap T_{a}(g)\right.$ is finite for all complex numbers a for some integer n_{0} and $l=1,2\}$.
Theorem 4. Let f and g be entire functions such that f^{\prime} and g^{\prime} each have at most finitely many zeros and $g \in F$. If $f(g(z))$ is periodic of period 1 , then $g(z)$ has the following form:

$$
\begin{equation*}
g(z)=(a z+b) P_{2}(z)+P_{1}(z) \tag{11}
\end{equation*}
$$

where $P_{i}(z)$ is periodic with a common integral period for $i=1,2, P_{2}$ has no zeros, and a and b are constants.

Proof. One observes from the hypotheses that

$$
\begin{equation*}
g(z)=Q_{2}(z) \exp \left(P_{2}(z)+C_{2} z\right)+P_{1}(z) \tag{11}
\end{equation*}
$$

where $P_{1}(z)$ and $P_{2}(z)$ have some common integral period $n, Q_{2}(z)$ is a polynomial, and C_{2} is a constant. Write $g^{\prime}(z)=L(z) \exp \alpha(z)$, where $L(z)$ is a polynomial and $\alpha(z)$ an entire function. Denote by $D\left(Q_{2}, L, \alpha, n\right)$ the expression

$$
\begin{aligned}
& \left(\left(\exp \left(C_{2} n\right)\right) Q_{2}(z+n)-Q_{2}(z)\right)(L(z+2 n) \exp \alpha(z+2 n)-L(z) \exp \alpha(z)) \\
& \quad-\left(\left(\exp \left(2 C_{2} n\right)\right) Q_{2}(z+2 n)-Q_{2}(z)\right)(L(z+n) \exp \alpha(z+n)-L(z) \exp \alpha(z))
\end{aligned}
$$

One can easily verify that, for any period n,

$$
\begin{equation*}
P_{2}^{\prime}(z)+C_{2}=-D\left(Q_{2}^{\prime}, L, \alpha, n\right) / D\left(Q_{2}, L, \alpha, n\right) \tag{12}
\end{equation*}
$$

Using the fact that P_{2} is periodic and entire, one deduces from (12) and Borel's theorem that $\alpha(z+n)=\alpha(z)+C_{3}$, where C_{3} is a constant. This fact, together with (12), yields an expression obtained from (12) by replacing $\alpha(z+i n)$ by $i C_{3}, i=0,1,2$, respectively. This latter expression leads to the following equality:

$$
\begin{equation*}
\exp \left(2 C_{2} n\right) Q_{2}(z+2 n)-Q_{2}(z)=k\left(\exp \left(C_{2} n\right) Q(z+n)-Q_{2}(z)\right) \tag{13}
\end{equation*}
$$

for some $k \neq 0$.
This implies that

$$
k=\exp C_{2} n+1
$$

Repeating the above argument with $l n$ replacing n for arbitrarily large integers l, (13) yields, for a zero, z_{0}, of $Q(z)$, the following:

$$
\frac{\exp \left(C_{2} l n\right) Q_{2}\left(z_{0}+2 l n\right)}{Q_{2}\left(z_{0}+l n\right)}=\exp C_{2} l n+1 .
$$

This implies that

$$
\left|\exp \left(-C_{2} \ln \right)\right|+1 \rightarrow 2^{t}
$$

as $l \rightarrow \infty$, where t is the degree of Q_{2}. If $\left|\exp \left(-C_{2}\right)\right|<1$, then it is clear that f must be a constant; thus, $\exp C_{2}=1$ and our proof is complete.

It is reasonable to conjecture that Theorem 4 remains valid without the assumption that $g \in F$. As an extension of Theorem 4 we obtain, by a similar proof, the following theorem.

Theorem 5. Let f and g be as in Theorem 4. Suppose, furthermore, that $P_{1}(z)=0$; then $g(z)=c \cdot \exp 2 \pi i k z$, where k is an integer and c is a constant.

Using arguments as above, one can also prove the following theorem.
Theorem 6. Let f and g be entire functions such that f has at least one and at most finitely many zeros. If $f(g(z))$ is periodic, then the order of convergence of the zeros of g is at least one unless g has no zeros at all.

Corollary. If f is entire and has at least one zero, and if $f f(z)$ is periodic, then the order of convergence of the zeros of f is at least one.

References

1. Fred Gross, Research problem, On periodic entire functions, Bull. Amer. Math. Soc. 72 (1966), 656.
2. -On the periodicity of compositions of entire functions, Can. J. Math. 18 (1966), 724-730.
3. Rolf Nevanlinna, Théorème de Picard Borel, p. 117 (Gauthier-Villars, Paris, 1929).

Bellcomm, Inc.,
Washington, D.C.

[^0]: Received May 15, 1967.

