
ON THE PERIODICITY OF COMPOSITIONS OF 
ENTIRE FUNCTIONS. II 

FRED GROSS 

In (1) the author suggested the following research problem. Does there 
exist a non-periodic entire function / such tha t / f is periodic? My aim in this 
note is to give a partial answer to this question and, more generally, to give 
a partial solution to the following problem: if / and g are entire functions and 
f(g) is periodic, what can one say about g? These results also extend a previous 
result of mine; for details, see (2, Theorem 4). We begin with some simple 
lemmas. 

LEMMA 1. If g is a transcendental entire function such that 

( g ( * + l ) - g ( * ) ) ( g ( * + 2 ) -g{z)) 

has at most finitely many zeros, then g(z) = P\(z) + Q(z)exp (P2(z) + C22), 
where P\{z) are entire periodic functions such that P t(z + 1) = Ptiz), i = 1,2, 
C2 is a constant, and Qiz) is a polynomial. 

Proof. It is clear from the hypotheses of the lemma that one can express 

(1) g(z + i) - g(z) = Lt(z) e x p a t s ) , 

where Lt(z) are polynomials and at(z) are entire functions for i = 1, 2. One 
can easily verify from (1) that 

Li{z) exp 0:1(2;) + Lt(z + 1) e x p a t s + 1) = L2(z) expa2(z). 

I t follows from a well-known theorem of Borel and Nevanlinna (3) that 
ai(z+ 1) = axiz) + C,sothatai(z) = P2(s) + C2z, whereP2(z + 1) = P2(z) 
and C2 is a constant. Choose Q(z) such that Q(z + 1) exp C2 — Q(z) = Li(z). 
One can easily show that g(z) has the desired form. 

LEMMA 2. Letf(z), a(z), and /3(z) be entire functions such that 

/ ( « « ) =/G8(*)). 
If for some z0j a(z0) = 13(z0) and f (a(zo)) 5* 0, ^ew a(z) w identical to fi(z). 

Proof. This follows almost immediately from the fact that / is 1-1 in a 
neighbourhood of a(zo). 

THEOREM 1. Let f and g be two entire functions such thatf and g' both have no 
zeros. If f(g) is periodic, say with period 1, then g is either periodic or linear. 
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Proof. Assume that g (z) is non-linear. From Lemmas 1 and 2 we have that 
g(z) = P\{z) + exp(P2(s) + C2z), where Pi , P2, and C2 are as in Lemma 1. 
Using the fact that gf has no zeros, one can easily verify that for any integer n 
greater than 1, 

(2) (exp(P2(2) + C*))(P2 ' (2) + C2) = ^ ^ l ^ p ( £ l f 

where a(z) is some entire function. Using the fact that the left side of (2) is 
independent of n, we obtain 

(3) (exp(n + 1)C2 — 1) expa(z + n) — (exp(n + 1)C2 — 1) expa(z) = 

(exp nC2 — 1) expa(s + n + 1) — (exp ̂ C2 — 1) exp a(z). 

Thus, either exp C2 = 1 or a(z + 1) = a(z) + C3, where C3 is a constant. In 
the former case, g is periodic. In the latter case, we obtain, for some k 9e 0, 

(4) P / + exp(C2) ( P / + C2) exp(P2 + C2z) = 

k{P,f + (exp(P2 + C2z))(P2 ' + C2)). 

If p 2 ' = _ C 2 , then P 2 - 0, C2 = 0, and g must be periodic. If P 2 ' ^ - C 2 , 
then one obtains 

(5) (exp C2 - &)exp(P2 + C&) = / D / , * , 
i^ 2 "T" ^2) 

which implies that either exp C2z is periodic or exp C2 = 1, and the proof is 
complete. 

COROLLARY. If f is entire, f has no zeros, andff is periodic, then f is periodic. 

More generally, we have the following theorem. 

THEOREM 2. Let f and g be two entire functions such thatf has no zeros and gf 

has at most finitely many. If f(g) is periodic, then g is either periodic or linear. 

Proof. We write 

(6) / '(*) = expa(z) 

and 

(7) *'(*) =<2(s)exP /3( 2) , 

where a(z) and (3(z) are entire functions, and Q(z) is a polynomial. From (6), 
(7), and the hypotheses of the theorem, one obtains 

(8) Q(z + n) exp y(z + n) = Q(z) exp 7(2), 

where 7(2) = fi(z) + a(g(z)). (8) implies that Q(z) is a constant and our 
conclusion follows from Theorem 1. 
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THEOREM 3. Let f and g be entire functions such that f, g, and g' each have 
at most finitely many zeros. If f(g) is periodic, then g is a periodic function 
without zeros. 

Proof. Write/ ' , g, and gf in the forms Qt(z) e x p a t s ) , i = 1, 2, 3, respectively, 
where Qt(z) are polynomials and at(z) are entire functions. Using the 
periodicity of /(g) and its derivative (we may assume it has period 1), we 
obtain, for any integer n, 

k 

(9) Qz(z + » ) I X ^ ( 2 + n)jexp(ja2(z + n) + y(z + »)) = 
3=0 

&(*) ]£ hQiizYexp(ja2(z) + y(z)), 

wrhere k is the degree of Qi(z) and y(z) = a^(z) + ai(g(z)). 
A careful analysis of (9) implies that Qi(z) or Q%{z) must be a constant and 

our conclusion follows from the previous theorem. I t is natural to ask: what 
can one say about a periodic function/(g) when/ ' and gf each have at most a 
finite number of zeros? Let us assume, for the sake of simplicity, tha t / (g ) 
has period 1. We answer this question for certain classes of entire functions g. 
For any complex a and any integer /, let 

St(g) = {*; g(z + t) - g(z) = 0} and Ta(g) = {z; g(z) = a}. 
Let 

F = {&; SmQ (g) r\ Ta{g) is finite for all complex numbers a for some integer no 
and/ = 1,2}. 

THEOREM 4. Let f and g be entire functions such that f and gr each have at 
most finitely many zeros and g G F. If f(g(z)) is periodic of period 1, then g(z) 
has the following form: 

(11) g(z) = (az + b)P2(z) +Pl(z)1 

where Pi{z) is periodic with a common integral period for i = 1, 2, P2 has no 
zeros, and a and b are constants. 

Proof. One observes from the hypotheses that 

(11) g{z) = Q2(z) exp(P2(z) + C2z) + P1(z), 

where P\(z) and P2(z) have some common integral period n, Q2(z) is a poly
nomial, and C2 is a constant. Write gr(z) = L(z) expa(s), where L(z) is a 
polynomial and a(z) an entire function. Denote by D(Q2, L, a, n) the 
expression 

((exp(C2n))Q2(z + n) - Q2(z))(L(z + 2») expa(z + 2») - L{z) expa(z)) 

— ((exp(2C2n))Q2(z + 2n) — Q2(z))(L(z + n) expa(z + n) — L(z) expa(z)). 

One can easily verify that, for any period n, 

(12) P2 ' (2) + C2 = -D(Qt', L, a, n)/D(Q2, L, a, n). 
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Using the fact that P2 is periodic and entire, one deduces from (12) and Borel's 
theorem that a(z + n) = a(z) + C3, where C% is a constant. This fact, 
together with (12), yields an expression obtained from (12) by replacing 
a(z + in) by iCz, i = 0, 1, 2, respectively. This latter expression leads to the 
following equality: 

(13) exp(2C2n)Q2(z + 2n) - Q2(z) = k(exp(C2n)Q(z + n) - Q2{z)) 

for some k ^ 0. 

This implies that 

k = exp C2n + 1. 

Repeating the above argument with In replacing n for arbitrarily large 
integers /, (13) yields, for a zero, z0, of Q(z), the following: 

exp(C2ln)Q2(z0 + 2ln) r i . 1 

——-7.-7 \~T\ = e x P C*ln + 1-
This implies that 

\exp(-C2ln)\ + l ->2< 

as / —> œ, where / is the degree of Q2. If |exp(— C2)| < 1, then it is clear t h a t / 
must be a constant; thus, exp C2 = 1 and our proof is complete. 

I t is reasonable to conjecture that Theorem 4 remains valid without the 
assumption that g G F. As an extension of Theorem 4 we obtain, by a similar 
proof, the following theorem. 

THEOREM 5. Let f and g be as in Theorem 4. Suppose, furthermore, that 
Pi{z) — 0; then g(z) = c-exp 2-nikz, where k is an integer and c is a constant. 

Using arguments as above, one can also prove the following theorem. 

THEOREM 6. Let f and g be entire functions such that f has at least one and at 
most finitely many zeros. If f(g(z)) is periodic, then the order of convergence of 
the zeros of g is at least one unless g has no zeros at all. 

COROLLARY. If f is entire and has at least one zero, and if ff(z) is periodic, 
then the order of convergence of the zeros of f is at least one. 
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