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Abstract

Let K be a (non-archimedean) local field and let F be the function field of a curve over
K. Let D be a central simple algebra over F of period n and λ ∈ F ∗. We show that if n
is coprime to the characteristic of the residue field of K and D · (λ) = 0 in H3(F, µ⊗2

n ),
then λ is a reduced norm from D. This leads to a Hasse principle for the group SL1(D),
namely, an element λ ∈ F ∗ is a reduced norm from D if and only if it is a reduced norm
locally at all discrete valuations of F .

1. Introduction

Let K be a p-adic field and F a function field in one variable over K. Let ΩF be the set of all
discrete valuations of F . Let G be a semi-simple simply connected linear algebraic group defined
over F . It was conjectured in [CPS12] that the Hasse principle holds for principal homogeneous
spaces under G over F with respect to ΩF ; i.e. if X is a principal homogeneous space under G
over F with X(Fν) 6= ∅ for all ν ∈ ΩF , then X(F ) 6= ∅. If G is SL1(D), where D is a central
simple algebra over F of square-free index n, it follows from the injectivity of the Rost invariant
[MS90] and a Hasse principle for H3(F, µ⊗2

n ) due to Kato [Kat86] that this conjecture holds.
This conjecture has been settled for classical groups of type Bn, Cn and Dn [Hu14, Pre13]. It is
also settled for groups of type 2An with the assumption that n+ 1 is square-free [Hu14, Pre13].

The main aim of this paper is to prove that the conjecture holds for SL1(D) for any central
simple algebra D over F with period coprime to p. In fact we prove the following theorem
(cf. Theorem 11.1).

Theorem 1.1. Let K be a local field and F a function field in one variable over K. Let D be
a central simple algebra over F of period coprime to the characteristic of the residue field of K
and λ ∈ F ∗. If D · (λ) = 0 ∈ H3(F, µ⊗2

n ), then λ is a reduced norm from D.

This, together with Kato’s result on the Hasse principle for H3(F, µ⊗2
n ), gives the following

theorem (cf. Corollary 11.2).

Theorem 1.2. Let K be a local field and F a function field in one variable over K. Let ΩF be
the set of discrete valuations of F . Let D be a central simple algebra over F of period n coprime
to the characteristic of the residue field of K and λ ∈ F ∗. If λ is a reduced norm from D ⊗ Fν
for all ν ∈ ΩF , then λ is a reduced norm from D.
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Local–global principle

In fact we may restrict the set of discrete valuations to the set of divisorial discrete valuations
of F ; namely, those discrete valuations of F centered on a regular proper model of F over the
ring of integers in K.

Here are the main steps in the proof. We reduce to the case where D is a division algebra
of period `d with ` a prime not equal to p. Given a central division algebra D over F of period
n = `d with ` 6= p and λ ∈ F ∗ with D · (λ) = 0 ∈ H3(F, µ⊗2

n ), we construct an extension L of
F of degree `, and µ ∈ L∗ such that NL/F (µ) = λ, (D ⊗ L) · (µ) = 0 and the index of D ⊗ L is
strictly smaller than the index of D. Then, by induction on the index of D, µ is a reduced norm
from D ⊗ L and hence NL/F (µ) = λ is a reduced norm from D.

Let X be a regular proper two-dimensional scheme over the ring of integers in K with
function field F and X0 the reduced special fiber of X . By the patching techniques of Harbater,
Hartmann and Krashen [HH10, HHK09], construction of such a pair (L, µ) is reduced to the
construction of compatible pairs (Lx, µx) over Fx for all x ∈ X0 (7.5), where for any x ∈ X0, Fx
is the field of fractions of the completion of the regular local ring at x on X . We use local and
global class field theory to construct such local pairs (Lx, µx). Our proof does not immediately
extend to the more general situation where F is a function field in one variable over a complete
discretely valued field with arbitrary residue field.

Here is a brief description of the organization of the paper. In § 3 we prove a few technical
results concerning central simple algebras and reduced norms over global fields. These results
are key to the later patching construction of the fields Lx and µx ∈ Lx with required properties.

In § 4 we prove the following local variant of Theorem 1.1.

Theorem 1.3. Let F be a complete discrete valued field with residue field κ. Suppose that κ is
a local field or a global field. Suppose further that if κ is a global field, then either n is odd or
κ has no real places. Let D be a central simple algebra over F of period n. Suppose that n is
coprime to char(κ). Let α ∈ H2(F, µn) be the class of D and λ ∈ F ∗. If α · (λ) = 0 ∈ H3(F, µ⊗2

n ),
then λ is a reduced norm from D.

Let A be a complete regular local ring of dimension 2 with residue field κ finite, field of
fractions F and maximal ideal m = (π, δ). Let ` be a prime not equal to char(κ). Let D be
a central simple algebra over F of period `n with n > 1 and α the class of D in H2(F, µ`n).
Suppose that D is unramified on A, except possibly at π and δ. In § 5 we analyze the structure
of D. We prove that the index of D is equal to the period of D. A similar analysis is done by
Saltman [Sal97] with the additional assumption that F contains all the primitive `nth roots of
unity, where `n is the period of D. Let λ ∈ F ∗. Suppose that λ = uπrδt for some unit u ∈ A
and r, s ∈ Z and α · (λ) = 0 ∈ H3(F, µ⊗2

`n ). In § 6 we construct possible pairs (L, µ) with L/F of
degree `, µ ∈ L such that NL/F (µ) = λ, ind(D ⊗ L) < ind(D) and α · (µ) = 0 ∈ H3(L, µ⊗2

`n ).
Let K be a local field and F a function field of a curve over K. Let ` be a prime not equal to

the characteristic of the residue field of K, D a central division algebra over F of period `n and
α the class of D in H2(F, µ`n). Let λ ∈ F ∗ with α · (λ) = 0 ∈ H3(F, µ⊗2

`n ). Let X be a normal
proper model of F over the ring of integers in K and X0 its reduced special fiber. In § 7 we
reduce the construction of (L, µ) to the construction of local (Lx, µx) for all x ∈ X0 with some
compatible conditions along the ‘branches’.

Further, assume that X is regular and ramX (α)∪suppX (λ)∪X0 is a union of regular curves
with normal crossings. In § 8, we group the components of X0 into eight types depending on the
valuation of λ, the index of D and the ramification type of D along those components. We call
some nodal points of X0 as special points depending on the type of components passing through
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the point. We also say that two components of X0 are type 2 connected if there is a sequence
of curves of type 2 connecting these two components. We prove that there is a regular proper
model of F with no special points and no type 2 connection between certain types of components
(Proposition 8.6).

Starting with a model constructed in Proposition 8.6, in § 9 we construct (LP , µP ) for all
nodal points of X0 (Proposition 9.8) with the required properties. In § 10, using the class field
results of § 3, we construct (Lη, µη) for each of the components η of X0 which are compatible
with (LP , µP ) when P is in the component η.

Finally, in § 11, we prove the main results by piecing together all the constructions of §§ 7, 9
and 10.

2. Preliminaries

In this section we recall a few definitions and facts about Brauer groups, Galois cohomology
groups, residue homomorphisms and unramified Galois cohomology groups. We refer the reader
to [Col95] and [GS06].

Let K be a field and n > 1. Let nBr(K) be the n-torsion subgroup of the Brauer group
Br(K). Assume that n is coprime to the characteristic of K. Let µn be the group of nth roots
of unity. For d > 1 and m > 0, let Hd(K,µ⊗mn ) denote the dth Galois cohomology group of K
with values in µ⊗mn . We have H1(K,µn) ' K∗/K∗n and H2(K,µn) ' nBr(K). For a ∈ K∗, let
(a)n ∈ H1(K,µn) denote the image of the class of a in K∗/K∗n. When there is no ambiguity
of n, we drop n and denote (a)n by (a). If K is a product of finitely many fields Ki, we denote∏
Hd(Ki, µ

⊗m
n ) by Hd(K,µ⊗mn ).

Let Ks be a separable closure of K. Then H1(K,Z/nZ) = Homcont(Gal(Ks/K),Z/nZ). Let
χ : Gal(Ks/K) → Z/nZ be a continuous homomorphism and E the fixed field of ker(χ). Then
E/K is a cyclic extension of degree equal to the order of the image of χ. Hence the degree of E
divides n. Let σ ∈ Gal(Ks/K) with χ(σ) = n/[E : K] modulo nZ. Then χ is uniquely determined
by the pair (E, σ). Thus every element of H1(K,Z/nZ) is uniquely represented by a pair (E, σ),
where E/K is a cyclic extension of degree t dividing n and σ a generator of Gal(E/K). Let
r > 1. Then (E, σ)r ∈ H1(K,Z/nZ) is represented by the pair (E′, σ′), where E′ is the fixed
field of the subgroup of Gal(E/K) generated by σt/d, where d = gcd(t, r), and σ′ = σr

′
, where

rr′+ tt′ = d. In particular, if r is coprime to n, then (E, σ)r = (E, σr
′
) with rr′ ≡ 1 modulo t. Let

(E, σ) ∈ H1(K,Z/nZ) and χ : Gal(Ks/K) → Z/nZ be the associated homomorphism. Let L/K
be a field extension. Then we have the restriction homomorphism Gal(Ls/L) → Gal(Ks/K). Let
χL be the composition of χ with this restriction. Let EL/L be the fixed field of ker(χL) and σL
be the corresponding generator of Gal(EL/L). Then (EL, σL) is the image of (E, σ) under the
restriction map H1(K,Z/nZ) → H1(L,Z/nZ). Further, E ⊗K L '

∏
EL.

Let (E, σ) ∈ H1(K,Z/nZ) and λ ∈ K∗. Let (E, σ, λ) = (E/K, σ, λ) denote the cyclic algebra
over K,

(E, σ, λ) = E ⊕ Ey ⊕ · · · ⊕ Eyn−1,

with yn = λ and ya= σ(a)y. The cyclic algebra (E, σ, λ) is a central simple algebra and its index is
the order of λ in K∗/NE/K(E∗) [Alb61, Theorem 18, p. 98]. The pair (E, σ) represents an element
in H1(K,Z/nZ) and the element (E, σ) · (λ) ∈ H2(K,µn) is represented by the central simple
algebra (E, σ, λ). In particular, (E, σ, λ)⊗E is a matrix algebra and hence ind(E, σ, λ) 6 [E : K].

For λ, µ ∈ K∗ we have [Alb61, p. 97]

(E, σ, λ) + (E, σ, µ) = (E, σ, λµ) ∈ H2(K,µn).

In particular, (E, σ, λ−1) = −(E, σ, λ).
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Let (E, σ, λ) be a cyclic algebra over a field K and L/K be a field extension. Then (E, σ, λ)⊗L
is Brauer equivalent to (EL, σL, λ). In particular, if L is a finite extension of K and EL is the
composite of E and L in an algebraic closure of K, then EL/L is cyclic with Galois group
isomorphic to a subgroup of the Galois group of E/K and (E, σ, λ)⊗ L is Brauer equivalent to
(EL, σL, λ).

By an abuse of notation, when the role of σ is not important or is clear from the context, we
denote (E, σ, λ) by (E, λ).

Lemma 2.1. Let E/K be a cyclic extension of degree n, σ a generator of Gal(E/K) and λ ∈K∗.
Let m be a factor of n and d = n/m. Let M/K be the subextension of E/K with [M : K] = m.
Then (E, λ)⊗K( d

√
λ) = (M( d

√
λ), d
√
λ).

Proof. We have (E, σ)d = (M,σ) ∈ H1(K,Z/nZ) and hence

(E, λ)⊗K(
d
√
λ) = (E(

d
√
λ), λ)

= (E(
d
√
λ), (

d
√
λ)d)

= ({E(
d
√
λ)}d, ( d

√
λ))

= (M(
d
√
λ),

d
√
λ). 2

Lemma 2.2. Let K be a complete discretely valued field and ` a prime. Let L/K be a cyclic field
extension or the split extension of degree ` and µ ∈ L∗. Then there exists θ ∈ L with NL/K(θ) = 1
such that L = K(µθ) and θ is sufficiently close to 1.

Proof. Since [L : K] is a prime, if µ 6∈ K, then L = K(µ). In this case θ = 1 has the required
properties.

Suppose that µ ∈K. If L =
∏
K, let θ0 ∈K∗\{±1} be sufficiently close to 1 and θ = (θ0, θ

−1
0 ,

1, . . . , 1). Suppose that L is a field. Let σ be a generator of Gal(L/K). Suppose that char(K) 6= `
contains a primitive `th root of unity. Since L/K is cyclic, we have L = K(

√̀
a) for some a ∈ K∗.

For any sufficiently large n, θ = (1 + πn
√̀
a)−1σ(1 + πn

√̀
a) ∈ L has the required properties.

Suppose that char(K) = ` or K contains no primitive `th root of unity. Since L/K is
separable, we have L = K(α) for some α ∈ L∗. Let θ = (1 + σ(πnα))/(1 + πnα). Then θ 6= 1
and NL/K(θ) = 1. Suppose that θ ∈ K. Then θ` = NL/K(θ) = 1 and hence θ = 1, leading to a
contradiction. Hence θ 6∈ K. Therefore for sufficiently large n, θ has the required properties. 2

Lemma 2.3. Let K be a field and E/K be a finite extension of degree coprime to char(K). Let
L/K be a subextension of E/K and e = [E : L]. Suppose L/K is Galois and E = L( e

√
π) for

some π ∈ L∗. Then E/K is Galois if and only if E contains a primitive eth root of unity and,
for every τ ∈ Gal(L/K), τ(π) ∈ E∗e.

Proof. Suppose that E/K is Galois. Let f(X) = Xe−π ∈ L[X]. Since [E : L] = e and E = L( e
√
π),

f(X) is irreducible in L[X]. Since f(X) has one root in E and E/L is Galois, f(X) has all the
roots in E. Hence E contains a primitive eth root of unity. Let τ ∈ Gal(L/K). Then τ can be
extended to an automorphism τ̃ of E. We have τ(π) = τ̃(π) = (τ̃( e

√
π))e ∈ E∗e.

Conversely, suppose that E contains a primitive eth root of unity and τ(π) ∈ E∗e for every
τ ∈ Gal(L/K). Let

g(X) =
∏

τ∈Gal(L/K)

(Xe − τ(π)).
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Then g(X) ∈ K[X] and g(X) splits completely in E. Since e is coprime to char(K), the splitting
field E0 of g(X) over K is Galois. Since L/K is Galois and E is the composite of L and E0,
E/K is Galois. 2

The following lemma is well known.

Lemma 2.4. Let K be a complete discretely valued field with residue field κ and π ∈ K a
parameter. Let e be a natural number coprime to the characteristic of κ. If L/K is a totally
ramified extension of degree e, then L = K( e

√
vπ) for some v ∈K which is a unit in the valuation

ring of K. Further, if e is a power of a prime `, θ ∈ K∗, θ 6∈ ±K∗` and −θ is a norm from L,
then L = K( e

√
θ).

Proof. Since K is a complete discretely valued field, there is a unique extension of the valuation
ν on K to a valuation νL on L. Since L/K is totally ramified extension of degree e and e is
coprime to char(κ), the residue field of L is κ and νL(π) = e. Let πL ∈ L with νL(πL) = 1. Then
π = wπeL for some w ∈ L with νL(w) = 0. Since the residue field of L is same as the residue field
of K, there exists v ∈ K with ν(v) = 0 and the image of v−1 is the same as the image of w in the
residue field κ. Since L is complete and e is coprime to char(κ), by Hensel’s lemma, there exists
u ∈ L such that w = v−1ue. Thus π = wπeL = v−1ueπeL = v−1(uπL)e. In particular, vπ ∈ L∗e and
hence L = K( e

√
vπ).

Suppose that θ ∈ K∗, θ 6∈ ±K∗` and −θ is a norm from L. Let µ ∈ L with NL/K(µ) = −θ.
Since L = K( e

√
vπ) with v ∈K a unit in the valuation ring of K and π ∈K a parameter, e

√
vπ ∈ L

is a parameter at the valuation of L. Write µ = w0( e
√
vπ)s for some w0 ∈ L a unit at the valuation

of L and s ∈ Z. As above, we have w0 = v1u
e
1 for some v1 ∈ K and u1 ∈ L. Since v1 ∈ K, we

have

−θ = NL/K(µ) = NL/K(w0( e
√
vπ)s)

= NL/K(v1u
e
1( e
√
vπ)s)

= ve1NL/K(u1)e(−1)(e+1)s(vπ)s

= ae(−1)s(vπ)s,

where a = v1NL/K(u1)(−1)s. Hence θ = (−1)s+1(vπ)s ∈ K∗/K∗e. Since θ 6∈ ±K∗` and e is a

power of `, s is coprime to `. In particular, (−1)s+1 ∈ Ke and hence K( e
√
θ) = K( e

√
(vπ)s) =

K( e
√
vπ) = L. 2

Throughout this paper by a local field we mean a non-archimedean local field.

Lemma 2.5. Let k be a local field and ` a prime not equal to the characteristic of the residue
field of k. Let L0/k be an extension of degree ` and θ0 ∈ k∗. If θ0 6∈ ±k∗` and −θ0 is a norm from
L0, then L0 = k(

√̀
θ0).

Proof. Suppose that L0/k is ramified. Since θ0 6∈ ±k∗`, by Lemma 2.4, L0 = k(
√̀
θ0).

Suppose that L0/k is unramified. Let π be a parameter in k and write θ0 = uπr with u a
unit in the valuation ring of k. Since θ0 is a norm from L0, ` divides r and k(

√̀
θ0) = k(

√̀
u) is an

unramified extension of k of degree `. Since k is a local field, there is only one unramified field
extension of k of degree ` and hence L0 = k(

√̀
θ0). 2

Lemma 2.6. Suppose K is a complete discretely valued field with residue field κ a local field.
Let ` be a prime not equal to the characteristic of the residue field of κ. Let L/K be a field
extension of degree ` and θ ∈ K∗. If θ 6∈ ±K∗` and −θ is a norm from L, then L ' K(

√̀
θ).
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Proof. If L/K is a ramified extension, then by Lemma 2.4, L ' K(
√̀
θ). Suppose that L/K is an

unramified extension. Since −θ is a norm from L/K, the valuation of θ is divisible by `. Thus,
without loss of generality, we assume that θ has valuation zero. Let L0 be the residue field of
L and θ be the image of θ in κ. Then L0/κ is a field extension of degree ` and −θ is a norm

from L0. Since θ 6∈ ±K∗`, θ 6∈ ±κ`. Since κ is a local field, L0 ' κ(
√̀
θ) (Lemma 2.5) and hence

L ' K(
√̀
θ). 2

For L =
∏`

1K, let σ be the automorphism of L given by σ(a1, . . . , a`) = (a2, . . . , a`, a1). Set
Gal(L/K) = {σi | 0 6 i 6 `− 1}. Then any σi, 1 6 i 6 `− 1, is called a generator of Gal(L/K).

Lemma 2.7. Let K be a field and ` a prime not equal to the characteristic of K. Let L be a
cyclic extension of K or the split extension of degree ` and σ a generator of the Galois group of
L/K. Suppose that there exists an integer t > 1 such that K does not contain a primitive `tth
root of unity. Let µ ∈ L with NL/K(µ) = 1 and m > t. If µ ∈ L∗`2m , then there exists b ∈ L∗

such that µ = b−`
m
σ(b`

m
).

Proof. Suppose L =
∏
K and µ ∈ L∗`

s
for some s > 1 with NL/K(µ) = 1. Then µ =

(θ`
s

1 , . . . , θ
`s

` ) ∈ L with θ`
s

1 · · · θ`
s

` = 1. Without loss of generality we assume that σ is given
by σ(a1, . . . , a`) = (a2, . . . , a`, a1). Let b = (1, b1, . . . , b`−1) ∈ L∗, where bi = θ1 · · · θi. Then
µ = b−`

s
σ(b`

s
).

Suppose L/K is a cyclic field extension. Write µ = µ`
2m

0 for some µ0 ∈ L. Let µ1 = µ`
m

0 . Then
µ = µ`

m

1 . Let θ0 = NL/K(µ0) and θ1 = NL/K(µ1). Then θ1 = θ`
m

0 . Since NL/K(µ) = 1, we have

θ`
m

1 = NL/K(µ`
m

1 ) = 1. If θ1 6= 1, then K contains a primitive `mth root of unity. Since m > t and
K has no primitive `tth root of unity, θ1 = 1. Hence NL/K(µ1) = 1 and by Hilbert’s Theorem

90, µ1 = b−1σ(b) for some b ∈ L. Thus µ = µ`
m

1 = b−`
m
σ(b`

m
). 2

We end this section with the following well-known fact.

Lemma 2.8. Let k be a local field and ` a prime not equal to char(κ). If θ ∈ k∗, then there exist
a field extension L/k of degree ` and µ ∈ L∗ such that NL/k(µ) = θ.

Proof. Let ν be the discrete valuation on k and θ ∈ k∗. Without loss of generality we assume
that 0 6 ν(θ) < `. Suppose ν(θ) > 0. Let L = k(

√̀
−θ) and µ = −

√̀
−θ ∈ L. Then NL/k(µ) = θ.

Suppose ν(θ) = 0. Then let L/k be the unramified extension of degree `. Then θ is a norm from
L (cf. [Ser79, p. 82, Proposition 3 and Remark 1]). 2

3. Global fields

In this section we prove a few technical results concerning Brauer groups of global fields and
reduced norms. We begin with the following lemma.

Lemma 3.1. Let k be a global field, ` a prime not equal to char(k), n, d > 2 and r > 1 be integers.
Let E0 be a cyclic extension of k, σ0 a generator of the Galois group of E0/k and θ0 ∈ k∗. Let
β ∈ H2(k, µ`n) be such that r`β = (E0, σ0, θ0) ∈ H2(k, µ`n). Let S be a finite set of places of
k containing all the places of k with β ⊗ kν 6= 0. For each ν ∈ S, let Lν/kν be a cyclic field
extension of degree ` or Lν be the split extension of kν of degree ` and µν ∈ L∗ν . Suppose that:

(1) NLν/kν (µν) = θ0;

(2) rβ ⊗ Lν = (E0 ⊗ Lν , σ0 ⊗ 1, µν);
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(3) ind(β ⊗ E0 ⊗ Lν) < d;

(4) k contains a primitive `th root of unity.

Then there exist a field extension L0/k of degree ` and µ0 ∈ L0 such that:

(1) NL0/k(µ0) = θ0;

(2) rβ ⊗ L0 = (E0 ⊗ L0, σ0 ⊗ 1, µ0);

(3) ind(β ⊗ E0 ⊗ L0) < d;

(4) L0 ⊗ kν ' Lν for all ν ∈ S;

(5) µ0 is close to µν for all ν ∈ S.

Proof. Let Ωk be the set of all places of k and

S′ = S ∪ {ν ∈ Ωk | θ0 is not a unit at ν or E0/k is ramified at ν}.

Let ν ∈ S′\S. Then β ⊗ kν = 0. Since k contains a primitive `th root of unity, there exists

a cyclic field extension Lν of kν of degree ` such that θ0 ∈ N(L∗ν) (cf. the proof of Lemma 2.8).

Let µν ∈ Lν with NLν/kν (µν) = θ0. Since β ⊗ kν = 0, ind(β ⊗ E0 ⊗ Lν) = 1 < d. Since

the corestriction map cor : H2(Lν , µ`n) → H2(kν , µ`n) is injective (cf. [Lor08, Theorem 10,

p. 237]) and cor(E0⊗Lν , σ0⊗ 1, µν) = (E0⊗ kν , σ0⊗ 1, θ0) = r`β⊗ kν = 0, (E0⊗Lν , σ0⊗ 1, µν)

= 0 = rβ ⊗ Lν . Thus, if necessary, by enlarging S, we assume that S contains all those places

ν of k with either θ0 not a unit at ν or E0/k ramified at ν and that there is at least one ν ∈ S
such that Lν is a field extension of kν of degree `.

Let ν ∈S. By Lemma 2.2, there exists θν ∈Lν such that NLν/kν (θν) = 1, Lν = kν(θνµν) and

θν is sufficiently close to 1. In particular, θν ∈L`
n

ν and hence rβ⊗Lν = (E0⊗Lν , σ0⊗ 1, µν)

= (E0⊗Lν , σ0⊗1, µνθν). Thus, replacing µν by µνθν , we assume that Lν = kν(µν). Let fν(X) =

X` + b`−1,νX
`−1 + · · ·+ b1,νX + (−1)`θ0 ∈ kν [X] be the minimal polynomial of µν over kν .

By Chebotarev’s density theorem [FJ08, Theorem 6.3.1], there exists ν0 ∈ Ωk\S such that

E0⊗kν0 is the split extension of kν0 . By the strong approximation theorem [CF67, p. 67], choose

bj ∈ k, 1 6 j 6 `− 1, such that each bj is sufficiently close to bj,ν for all ν ∈ S and each bj is an

integer at all ν 6∈ S ∪ {ν0}. Let L0 = k[X]/(X` + b`−1X
`−1 + · · ·+ b1X + (−1)`θ0) and µ0 ∈ L0

be the image of X. We now show that L0 and µ0 have the required properties.

Since each bj is sufficiently close to bj,ν at each ν ∈ S, it follows from Krasner’s lemma

that there exists an isomorphism L0⊗ kν ' Lν with the image of µ0⊗ 1 in Lν close to µν for all

ν ∈ S (cf. [Ser79, ch. II, § 2]). Since Lν is a field extension of kν of degree ` for at least one ν ∈ S,

L0 is a field extension of degree ` over k. Since X` + b`−1X
`−1 + · · · + (−1)`θ0 is the minimal

polynomial of µ0, we have N(µ0) = θ0.

To show that ind(β ⊗ E0 ⊗ L0) < d and rβ = (E0, σ0, µ0) ∈ H2(L0, µ`n), by the Hasse–

Brauer–Noether theorem (cf. [CF67, p. 187]), it is enough to show that for every place w of L0,

ind(β ⊗ E0 ⊗ Lw) < d and rβ ⊗ Lw = (E0, σ0, µ0)⊗ Lw ∈ H2(Lw, µ`n).

Let w be a place of L0 and ν a place of k lying below w. Suppose that ν ∈ S. Then L0⊗kν ' Lν .

By the assumption on Lν , we have ind(β ⊗ E0 ⊗ kν) < d. Since µν is close to µ0, we have

rβ ⊗ Lν = (E0 ⊗ Lν , σ0, µν) = (E0 ⊗ L⊗ kν , σ0, µ0).

Suppose that ν 6∈ S and ν 6= ν0. Then θ0 is a unit at ν, E0/k is unramified at ν and

β ⊗ kν = 0. Since each bj is an integer at ν and µ0 is a root of the polynomial X` + b`−1X
`−1 +

· · ·+ b1X+ (−1)`θ0, µ0 is an integer at w. Since θ0 is a unit at ν, µ0 is a unit at w. In particular,
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(E0 ⊗ Lw, σ0, µ0) = 0 = rβ ⊗ Lw. If ν = ν0, then by the choice of ν0, β ⊗ kν = 0, E0 ⊗ kν is the
split extension of kν and hence (E0, σ0, µ0)⊗ Lw = 0 = rβ ⊗ Lw. 2

Corollary 3.2. Let k be a global field, ` a prime not equal to char(k), n and r > 1 integers.
Suppose that either ` 6= 2 or κ has no real place. Let θ0 ∈ k∗ and β ∈ H2(k, µ`n). Suppose that
r`β = 0 ∈ H2(k, µ`n) and β 6= 0. Then there exist a field extension L0/k of degree ` and µ0 ∈ L0

such that NL0/k(µ0) = θ0, rβ ⊗ L0 = 0 and ind(β ⊗ L0) < ind(β).

Proof. Let S be a finite set of places of k containing all the places ν with β ⊗ kν 6= 0. Let
ν ∈ S. Let Lν/kν be a field extension of degree ` and µν ∈ Lν be such that NLν/kν (µv) = θ0

(cf. Lemma 2.8).
Since Lν/kν is a field extension of degree `, ` divides ind(β) and kν is a local field, we

have ind(β⊗Lν) < ind(β) [CF67, p. 131]. Since r`β = 0 and Lν/kν is a field extension of degree
`, rβ ⊗ Lν = 0. Let E0 = k. Then, by Lemma 3.1, there exist a field extension L0/k of degree `
and µ ∈ L0 with required properties. 2

We use the following notation for the rest of this section:
• k a global field with no real places and θ0 ∈ k∗;
• ` a prime not equal to char(k);
• k contains a primitive `th root of unity;
• E0/k a cyclic extension of degree a power of ` and σ0 a generator of Gal(E0/k);
• n > 1;
• β ∈ H2(k, µ`n) with r`β = (E0, σ0, θ0) for some r > 1.

Lemma 3.3. Suppose that rβ⊗E0 6= 0. If ν is a place of k and Lν/kν a field extension of degree `
such that θ0 ∈ NLν/kν (L∗ν), then ind(β ⊗ E0 ⊗ Lν) < ind(β ⊗ E0).

Proof. Write r` = m`d with m coprime to `. Then d > 1. Since m`dβ = r`β = (E0, σ0, θ0), we
have m`dβ ⊗E0 = 0. Since m is coprime to ` and the period of β is a power of `, it follows that
`dβ ⊗ E0 = 0. Since rβ ⊗ E0 6= 0, `d−1β ⊗ E0 6= 0 and per(β ⊗ E0) = `d.

Let ν be a place of k and Lν/kν a field extension of degree ` such that θ0 ∈ NLν/kν (L∗ν).
Suppose that Lν is not contained in E0⊗kν . Then [E0⊗Lν : E0⊗kν ] = ` and hence ind(β⊗E0⊗
Lν) < ind(β⊗E0) [CF67, p. 131]. Suppose that Lν is contained in E0⊗kν . Then E0⊗Lν =

∏
Ei

with each Ei a cyclic field extension of kν . Since E0/k is a Galois extension, Ei ' Ej for all
i and j and m`dβ ⊗ kν = (E0, σ0, θ0) ⊗ kν = (Ei, σi, θ0) for all i, for suitable generators σi of
Gal(Ei/kν). Since Lν is a field and contained in E0⊗ kν , Lν is contained in Ei for all i. Since θ0

is a norm from Lν , θ
[Ei:kν ]/`
0 ∈ NEi/kν (E∗i ). Since the period of (Ei, σi, θ0) is equal to the order of

the class of θ0 in the group k∗ν/NEi/kν (E∗i ) [Alb61, p. 75], per(Ei, σi, θ0) 6 [Ei : kν ]/` < [Ei : kν ].
Suppose that per(β ⊗ kν) 6 [Ei : kν ]. Since kν is a local field, per(β ⊗ Ei) = 1. Thus

per(β ⊗ E0 ⊗ kν) = per(β ⊗ Ei) = 1 < `d = per(β ⊗ E0).
Suppose that per(β ⊗ kν) > [Ei : kν ]. Since m`dβ ⊗ kν = (Ei, σi, θ0) and m is coprime to `,

we have per(β ⊗ kν) 6 `d per(Ei, σi, θ0). Since kν is a local field,

per(β ⊗ E0 ⊗ kν) = per(β ⊗ Ei) =
per(β ⊗ kν)

[Ei : kν ]
6 `d per(Ei, σi, θ0)

[Ei : kν ]
< `d = per(β ⊗ E0).

Since kν is a local field, period equals index and hence the lemma follows. 2
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Proposition 3.4. Suppose that rβ ⊗E0 6= 0. Then there exist a field extension L0/k of degree
` and µ0 ∈ L0 such that:

(1) NL0/k(µ0) = θ0;

(2) ind(β ⊗ E0 ⊗ L0) < ind(β ⊗ E0);

(3) rβ ⊗ L0 = (E0 ⊗ L0, σ0 ⊗ 1, µ0).

Proof. Let S be the finite set of places of k consisting of all those places ν with β ⊗ kν 6= 0.
Let ν ∈ S. By Lemma 2.8, we have a field extension Lν/kν of degree ` and µν ∈ Lν such that
NLν/kν (µν) = θ0 and, by Lemma 3.3, ind(β⊗E0⊗Lν) < ind(β⊗E0). Since corLν/kν (rβ⊗Lν) =
r`β = (E0⊗kν , σ0, θ0) = corLν/kν (E0⊗Lν , σ0⊗ 1, µν) and the corestriction map here is injective
(cf. [Lor08, Theorem 10, p. 237]), we have rβ ⊗ Lν = (E0 ⊗ Lν , σ0 ⊗ 1, µν).

By Lemma 3.1, we have the required L0 and µ0. 2

Proposition 3.5. Suppose that rβ ⊗ E0 = 0 and E0 6= k. Let L0 be the unique subfield of E0

of degree ` over k. Then there exists µ0 ∈ L0 such that:

(1) NL0/k(µ0) = θ0;

(2) rβ ⊗ L0 = (E0 ⊗ L0, σ0 ⊗ 1, µ0).

Proof. Since rβ⊗E0 = 0 and E0/k is a cyclic extension, we have rβ = (E0, σ0, µ
′) for some µ′ ∈ k.

We have (E0, σ0, µ
′ `) = `rβ = (E0, σ0, θ0). Thus θ0 = NE0/k(y)µ′ `. Let µ0 = NE0/L0

(y)µ′ ∈ L0.

Since L0 ⊂ E0, we have rβ ⊗ L0 = (E0/L0, σ
`
0, µ
′) = (E0/L0, σ

`
0, NE0/L0

(y)µ′) = (E0/L0, σ
`
0, µ0)

(cf. § 2) and
NL0/k(µ0) = NL0/k(NE0/L0

(y))µ′ ` = θ0. 2

Corollary 3.6. Suppose that rβ ⊗ E0 = 0 and E0 6= k. Let L0 be the unique subfield of E0

of degree ` over k. Let S be a finite set of places of k. Suppose that for each ν ∈ S there exists
µν ∈ L0 ⊗ kν such that:
• NL0⊗kν/kν (µν) = θ0;
• rβ ⊗ L0 ⊗ kν = (E0 ⊗ L0 ⊗ kν , σ0 ⊗ 1, µν).

Then there exists µ ∈ L0 such that:

(1) NL0/k(µ) = θ0;

(2) rβ ⊗ L0 = (E0 ⊗ L0, σ0 ⊗ 1, µ);

(3) µ is close to µν for all ν ∈ S.

Proof. By Proposition 3.5, there exists µ0 ∈ L0 such that:
• NL0/k(µ0) = θ0;
• rβ ⊗ L0 = (E0 ⊗ L0, σ0 ⊗ 1, µ0).

Let ν ∈ S. Then we have:
• NL0/k(µ0) = θ0 = NL0⊗kν/kν (µν);
• (E0 ⊗ L0 ⊗ kν , σ0 ⊗ 1, µ0) = (E0 ⊗ L0 ⊗ kν , σ0 ⊗ 1, µν).

Let bν = µ0µ
−1
ν ∈ L0 ⊗ kν . Then NL0⊗kν/kν (bν) = 1 and (E0 ⊗ L0 ⊗ kν , σ0 ⊗ 1, bν) = 0. Thus,

there exists aν ∈ E0 ⊗ L0 ⊗ kν with NE0⊗L0⊗kν/L0⊗kν (aν) = bν . We have NE0⊗L0⊗kν/kν (aν) =
NL0⊗kν/kν (bν) = 1. Since E0/k is a cyclic extension with σ0 a generator of Gal(E0/k), for each
ν ∈ S, there exists cν ∈ E0 ⊗ L0 ⊗ kν such that aν = c−1

ν (σ0 ⊗ 1)(cν). By weak approximation,
there exists c ∈ E0 ⊗L0 such that c is close to cν for all ν ∈ S. Let a = c−1(σ ⊗ 1)(c) ∈ E0 ⊗L0

and µ = µ0NE0⊗L0/L0
(a) ∈ L0. Then µ has all the required properties. 2
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4. Complete discretely valued fields

Let F be a field with a discrete valuation ν, valuation ring R and residue field κ. Suppose
that n is coprime to the characteristic of κ. For any d > 1, we have the residue map ∂F :
Hd(F, µ⊗in ) → Hd−1(κ, µ⊗i−1

n ). We also denote ∂F by ∂. An element α in Hd(F, µ⊗in ) is called
unramified at ν or R if ∂(α) = 0. The subgroup of all unramified elements is denoted by Hd

nr(F/R,
µ⊗in ) or simply Hd

nr(F, µ
⊗i
n ). Suppose that F is complete with respect to ν. Then we have an

isomorphism Hd(κ, µ⊗in )
∼−→ Hd

nr(F, µ
⊗i
n ) and the composition Hd(κ, µ⊗in )

∼−→ Hd
nr(F, µ

⊗i
n ) ↪→

Hd(F, µ⊗in ) is denoted by ικ or simply ι.
Let F be a complete discretely valued field with residue field κ, ν the discrete valuation

on F and π ∈ F ∗ a parameter. Suppose that n is coprime to the characteristic of κ. Let ∂ :
H2(F, µn) → H1(κ,Z/nZ) be the residue homomorphism. Let E/F be a cyclic unramified
extension of degree n with residue field E0 and σ a generator of Gal(E/F ) with σ0 ∈ Gal(E0/κ)
induced by σ. Then (E, σ, π) is a division algebra over F of degree n. For any λ ∈ F ∗, we have

∂(E, σ, λ) = (E0, σ0)ν(λ).

For λ, µ ∈ F ∗, we have

∂((E, σ, λ) · (µ)) = (E0, σ0) · ((−1)ν(λ)ν(µ)θ),

where θ is the image of λν(µ)/µν(λ) in the residue field.
Suppose E0 is a cyclic extension of κ of degree n. Then there is a unique unramified cyclic

extension E of F of degree n with residue field E0. Let σ0 be a generator of Gal(E0/κ) and
σ ∈ Gal(E/F ) be the lift of σ0. Then σ is a generator of Gal(E/F ). We call the pair (E, σ) the
lift of (E0, σ0).

We use the following notation throughout this section:
• (F , ν) a complete discretely valued field;
• κ the residue field of F ;
• π ∈ F ∗ a parameter at ν;
• n > 2 an integer coprime to char(κ);
• D a central simple algebra over F of period n;
• α ∈ H2(F, µn) the class representing D.

Let λ ∈ F ∗. In this section we analyze the condition α · (λ) = 0 and we use this analysis in
the proof of our main result (§ 10). We also prove that if κ is either a local field or a global field
and α · (λ) = 0 in H3(F, µ⊗2

n ), then λ is a reduced norm from D.
Let E0 be the cyclic extension of κ and σ0 ∈ Gal(E0/κ) be such that ∂(α) = (E0, σ0). Let

(E, σ) be the lift of (E0, σ0). The pair (E, σ) or E is called the lift of the residue of α. The
following lemma is well known.

Lemma 4.1. Let α ∈ H2(F, µn), (E, σ) the lift of the residue of α. Then α = α′ + (E, σ, π) for
some α′ ∈ H2

nr(F, µn). Further, α′ ⊗ E = α⊗ E is independent of the choice of π.

Proof. Since ∂(E, σ, π) = ∂(α), α′ = α− (E, σ, π) ∈ H2
nr(F, µn) and α = α′ + (E, σ, π). 2

Lemma 4.2. Let α ∈ H2(F, µn). If α = α′ + (E, σ, π) as in Lemma 4.1, then ind(α) =
ind(α′ ⊗ E)[E : F ] = ind(α⊗ E)[E : F ].

Proof. Cf. [FS39, Proposition 1(3)] and [JW90, 5.15]. 2

Lemma 4.3. Let E be the lift of the residue of α. Suppose there exists a totally ramified extension
M/F which splits α. Then α⊗ E = 0.
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Proof. Write α = α′+ (E, σ, π) as in Lemma 4.1. Since α′⊗E = α⊗E, we have α′⊗E⊗M = 0.
Since E ⊗M/E is totally ramified, the residue field of E ⊗M is the same as the residue field
of E. Since α′ ⊗ E ⊗M = 0 and α′ ⊗ E is unramified, it follows from [Ser03, 7.9 and 8.4] that
α′ ⊗ E = 0 and hence α⊗ E = 0. 2

For an element ζ ∈ Hm(F,A) for any abelian group A, let per(ζ) denote the order of ζ in
the group Hm(F,A).

Lemma 4.4. Let α ∈ H2(F, µn) and (E, σ) be the lift of the residue of α. If α ⊗ E = 0, then
α = (E, σ, uπ) for some u ∈ F ∗ which is a unit at the discrete valuation, and per(α) = ind(α).

Proof. We have α = α′ + (E, σ, π) as in Lemma 4.1. Since α′ ⊗ E = α ⊗ E = 0, we have
α′ = (E, σ, u) for u ∈ F ∗. Since E/F and α′ are unramified at the discrete valuation of F , u
is a unit at the discrete valuation of F . We have α = (E, σ, u) + (E, σ, π) = (E, σ, uπ). Since
E/F is an unramified extension and uπ is a parameter, (E, σ, uπ) is a division algebra and its
period is [E : F ]. In particular, ind(α) = per(α). 2

Theorem 4.5. Let F be a complete discretely valued field with residue field κ. Suppose that κ
is a local field. Let ` be a prime not equal to the characteristic of κ, n = `d and α ∈ H2(F, µn).
Then per(α) = ind(α).

Proof. Write α = α′ + (E, σ, π) as in Lemma 4.1. Then E is an unramified cyclic extension of F
with ∂(α) = (E0, σ0) and α′ is unramified at the discrete valuation of F . Let α′ be the image of
α′ in H2(κ, µn).

Suppose that per(∂(α)) = per(α). Then per(∂(α)) = [E0 : κ]. Since F is complete and E/F
is an unramified extension, we have [E0 : κ] = [E : F ]. Thus,

0 = per(α)α

= per(α)(α′ + (E, σ, π))

= per(α)α′ + per(α)(E, σ, π)

= per(α)α′ + [E : F ](E, σ, π)

= per(α)α′.

In particular, per(α′) divides per(α) = [E0, κ] = [E : F ]. Since κ is a local field, α′ ⊗ E0 is
zero [CF67, p. 131] and hence α′ ⊗ E is zero. By Lemma 4.4, we have α = (E, σ, θπ) for some
θ ∈ F which is a unit in the valuation ring. In particular, α is cyclic and ind(α) = per(α) = [E : F ].

Suppose that per(∂(α)) 6= per(α). Then per(∂(α)) < per(α). Since per(∂(α)) = per(E, σ, π),
we have per(α) = per(α′). Since κ is a local field, per(α′) = ind(α′). Since per(α′) = per(α′) and
per(∂(α)) = [E0 : κ], we have [E0 : κ] < per(α′). Since κ is a local field,

ind(α′ ⊗ E0) =
per(α′)

[E0 : κ]
.

Since E is a complete discretely valued field with residue field E0 and α′ is unramified at the
discrete valuation of E, we have ind(α′ ⊗ E) = ind(α′ ⊗ E0). Thus, we have

ind(α) = ind(α′ ⊗ E)[E : F ] (by Lemma 4.2)

= ind(α′ ⊗ E0)[E0 : κ]

=
per(α′)

[E0 : κ]
[E0 : κ]

= per(α′) = per(α). 2
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Proposition 4.6 [Kat79, Corollary 2, p. 331]. Suppose that κ is a local field. If L/F is a finite
field extension, then the corestriction homomorphism H3(L, µ⊗2

n ) → H3(F, µ⊗2
n ) is bijective.

Proof. Let κ′ be the residue field of L. Since κ and κ′ are local fields, H3(κ, µ⊗2
n ) = H3(κ′, µ⊗2

n )
= 0 [Ser97, p. 86]. Since F and L are complete discretely valued fields, the residue

homomorphisms H3(F, µ⊗2
n )

∂F−→ H2(κ, µn) and H3(L, µ⊗2
n )

∂L−→ H2(κ′, µn) are isomorphisms
(cf. [Ser03, 7.9]). The proposition follows from the commutative diagram

H3(L, µ2
n)

∂L //

��

H2(κ′, µn)

��
H3(F, µ⊗2

n )
∂F // H2(κ, µn)

where the vertical arrows are the corestriction maps [Ser03, 8.6]. 2

Lemma 4.7. Let ` be a prime not equal to char(κ) and n = `d for some d > 1. Let α ∈ H2(F, µn)
and λ ∈ F ∗. Write λ = θπr for some θ, π ∈ F with ν(θ) = 0 and ν(π) = 1. Let (E, σ) be the lift
of the residue of α and α = α′ + (E, σ, π) as in Lemma 4.1. Then

∂(α · (−λ)) = 0 ⇐⇒ rα′ = (E, σ, (−1)r+1θ) ⇐⇒ rα = (E, σ, (−1)r+1λ).

In particular, if ∂(α · (−λ)) = 0 and r = ν(λ) is coprime to `, then ind(α⊗F (
√̀
λ)) < ind(α) and

∂
F (
√̀
λ)

(α · (−
√̀
λ)) = 0.

Proof. Since rα = rα′ + (E, σ, πr) and λ = θπr, rα = (E, σ, (−1)r+1λ) if and only if rα′ =
(E, σ, (−1)r+1θ).

We have

∂(α · (−λ)) = ∂((α′ + (E, σ, π)) · (−θπr)) = rα′ + (E0, σ0, (−1)r+1θ
−1

),

where ∂(α) = (E0, σ0).

Thus ∂(α · (−λ)) = 0 if and only if rα′ + (E0, σ0, (−1)r+1θ
−1

) = 0 if and only if rα′ =
(E0, σ0, (−1)r+1θ) if and only if rα′ = (E, σ, (−1)r+1θ) (F being complete).

Suppose r = ν(λ) is coprime to ` and ∂(α · (−λ)) = 0. Clearly (−1)r+1 is an `dth power in F .
Thus, we have rα = (E, σ, (−1)r+1λ) = (E, σ, λ). Since r is coprime to `, we have

ind(α) = ind(rα) = ind(E, σ, λ) = [E : F ]

and

ind(α⊗ F (
√̀
λ)) = ind(rα⊗ F (

√̀
λ)) = ind(E(

√̀
λ), σ, λ)

= [E(
√̀
λ) : F (

√̀
λ)]/` < [E : F ] = ind(α).

Further, ∂
F (
√̀
λ)

(rα · (−
√̀
λ)) = ∂

F (
√̀
λ)

((E, σ, λ) · (−
√̀
λ)) = (E0, σ0) · ((−1)r

2`+r`). If ` is even,

then (−1)r
2`+r` = 1. If ` is odd, then n is odd and −1 is an nth power. Thus, in either case,

(E0, σ0) · ((−1)r
2`+r`) = 0 ∈ H2(κ, µn). Since r is coprime to `, ∂

F (
√̀
λ)

(α · (−
√̀
λ)) = 0. 2

Lemma 4.8. Let n > 2 be coprime to char(κ) and ` a prime which divides n. Let α ∈ H2(F, µn),
λ = θπ`r ∈ F ∗ with θ a unit in the valuation ring of F , π a parameter and α = α′ + (E, σ, π) be
as in Lemma 4.1. Let L0/κ be an extension of degree ` and µ0 ∈ L0. Suppose that:
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• NL0/κ(µ0) = −θ;
• rα′ ⊗ L0 = (E0 ⊗ L0, σ0 ⊗ 1, (−1)rµ0).

Let L/F be the unramified extension of degree ` with residue field L0. Then, there exists µ ∈ L
such that:
• µ a unit in the valuation ring of L;
• µ = µ0;
• NL/F (µ) = −θ;
• α · (µπr) ∈ H3(L, µ⊗2

n ) is unramified.

Proof. Since ` is a prime and [L0 : κ] = `, L0 = κ(µ′0) for any µ′0 ∈ L0\κ. Let g(X) = X` +
b`−1X

`−1+· · ·+b1X+b0 ∈ κ[X] be the minimal polynomial of µ′0 over κ. Let ai be in the valuation
ring of F mapping to bi and f(X) = X`+a`−1X

`−1+· · ·+a1X+a0 ∈ F [X]. Suppose µ0 6∈ κ. Then
we take µ′0 = µ0. Since NL0/κ(µ0) = −θ, we have b0 = −(−1)`θ. Let a0 = −(−1)`θ. Since g(X)
is irreducible in κ[X], f(X) ∈ F [X] is irreducible. Then L = F [X]/(f). Let µ ∈ L be the class of
X. Then the image of µ is µ0 and NL/F (µ) = −θ. Suppose µ0 ∈ κ. Then −θ = NL0/κ(µ0) = µ`0.
Since F is a complete discretely valued field and ` is coprime to char(κ), there exists µ ∈ F
which is a unit in the valuation ring of F which maps to µ0 and µ` = −θ.

Since L/F , E/F and α′ are unramified at the discrete valuation of F , we have ∂L(α′ ·(µπr)) =
rα′⊗L0 and ∂L((E, σ, π) · (µπr)) = (E0⊗L0, σ0⊗1, (−1)rµ−1

0 ). Since α = α′+(E, σ, π), we have

∂L(α · (µπr)) = ∂L((α′ ⊗ L) · (µπr)) + ∂L((E, σ, π) · (µπr))
= rα′ ⊗ L0 + (E0 ⊗ L0, σ0 ⊗ 1, (−1)rµ−1

0 )

= 0. 2

Lemma 4.9. Suppose that κ is a local field. Let ` be a prime not equal to char(k) and n a power
of `. Let α ∈ H2(F, µn) with α 6= 0 and λ ∈ F ∗. Suppose λ 6∈ ±F ∗`, α 6= 0 and α · (−λ) = 0.
Then ind(α⊗ F (

√̀
λ)) < ind(α) and α · (−

√̀
λ) = 0 ∈ H3(F (

√̀
λ), µ⊗2

n ).

Proof. Since λ 6∈ F ∗` and N
F (
√̀
λ)/F

(−
√̀
λ) = −λ, we have cor

F (
√̀
λ)/F

(α · (−
√̀
λ)) = α · (−λ) = 0.

Hence, by Proposition 4.6, α · (−
√̀
λ) = 0 ∈ H3(F (

√̀
λ), µ⊗2

n ).
Suppose r = ν(λ) is coprime to `. Then, by Lemma 4.7, we have ind(α⊗ F (

√̀
λ)) < ind(α).

Suppose that ν(λ) is divisible by `. Write λ = θπ`d, with θ ∈ F a unit in the valuation ring
of F . Since λ 6∈ ±F ∗`, θ 6∈ ±F ∗`.

Write α = α′+ (E, σ, π) as in Lemma 4.1. Then ind(α) = ind(α′⊗E)[E : F ] (cf. Lemma 4.2)
and ind(α⊗ F (

√̀
θ)) 6 ind(α′ ⊗ E(

√̀
θ))[E(

√̀
θ) : F (

√̀
θ)].

Suppose
√̀
θ ∈ E. Then F (

√̀
θ) ⊂ E = E(

√̀
θ). In particular, [E(

√̀
θ) : F (

√̀
θ)] = [E : F (

√̀
θ)] <

[E : F ]. Since θ is a unit in the valuation ring of F , F (
√̀
θ)/F is unramified and hence π

is a parameter in F (
√̀
θ) and we have α ⊗ F (

√̀
θ) = α′ ⊗ F (

√̀
θ) + (E/F (

√̀
θ), σ`, π). We have

(cf. Lemma 4.2), ind(α⊗ F (
√̀
θ)) = ind(α′ ⊗ E)[E : F (

√̀
θ)] = ind(α′ ⊗ E)[E : F ]/` < ind(α).

Suppose that α′⊗E = 0. Then, by Lemma 4.4, α = (E, σ, uπ) for some unit u in the valuation
ring of F . Since α · (−λ) = 0, (E, σ, uπ) · (−λ) = 0. Since E/F is unramified with residue field
E0, u, θ are units in the valuation ring of F and π is a parameter, by taking the residue of

α · (−λ) = 0, we see that (E0, σ0,−(−1)`dθ
−1
u`d) = 0 ∈ H2(κ, µn) (cf. Lemma 4.7). In particular,

−(−1)`dθu−`d is a norm from E0. Since [E0 : κ] is a power of ` and E0/κ is cyclic, there exists a
subextension L0 of E0 such that [L0 : κ] = `. Then −(−1)`dθu−`d is a norm from L0 and hence

−θ is a norm from L0. Since ±θ is not in κ∗`, by Lemma 2.5, L0 = κ(
√̀
θ). In particular,

√̀
θ ∈ E0

and hence
√̀
θ ∈ E. Also ind(α⊗ F (

√̀
θ)) < ind(α).
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Suppose that
√̀
θ 6∈ E. Then, as above, α′ ⊗E 6= 0. Since E is an unramified extension of F

and θ is a unit in the valuation ring of E, E(
√̀
θ) is an unramified extension of F with residue

field E0(
√̀
θ), where E0 is the residue field of E and θ is the image of θ in the residue field. Since

F is a complete discretely valued field and θ is not an `th power in E, θ is not an `th power in
E0 and [E0(

√̀
θ) : E0] = `. Since α′⊗E 6= 0, α′⊗E0 6= 0. Since E0 is a local field and ind(α′) is a

power of `, ind(α′⊗E0(
√̀
θ)) < ind(α′⊗E0) [CF67, p. 131]. Hence ind(α′⊗E(

√̀
θ)) < ind(α′⊗E)

and ind(α⊗ F (
√̀
θ)) < ind(α) (cf. Lemma 4.2). 2

Lemma 4.10. Suppose κ is a local field. Let ` be a prime not equal to char(κ) and n = `d. Let
α ∈ H2(F, µn) and λ ∈ F ∗. Suppose that κ contains a primitive `th root of unity. If α 6= 0 and
α · (−λ) = 0 ∈ H3(F, µ⊗2

n ), then there exist a cyclic field extension L/F of degree ` and µ ∈ L∗
such that NL/F (µ) = −λ, ind(α⊗ L) < ind(α) and α · (µ) = 0 ∈ H3(L, µ⊗2

n ). Further, if ν(λ) is
divisible by `, then one can choose L/F unramified.

Proof. Suppose λ 6∈ ±F ∗`. Let L = F (
√̀
λ) and µ = −

√̀
λ. Then, by Lemma 4.9, ind(α ⊗ L) <

ind(α) and α · (µ) = 0 ∈ H3(L, µ⊗2
n ). Clearly NL/F (µ) = −λ, and if ν(λ) is a multiple of `, then

L/F is unramified.
Suppose λ ∈ F ∗` or −λ ∈ F ∗`. Write α = α′ + (E, σ, π) as in Lemma 4.1.
Suppose that α′ ⊗ E = 0. Then, by Lemma 4.4, α = (E, σ, uπ) for some u ∈ F ∗ which is a

unit in the valuation ring of F . Since α 6= 0, E 6= F . Let L be the unique subfield of E with L/F
of degree `. Then ind(α⊗ L) < ind(α).

Suppose −λ ∈ F ∗`. Then −λ = µ` for some µ ∈ F ∗ and NL/F (µ) = µ` = −λ. Since

corL/F (α · (µ)) = α · (µ`) = α · (−λ) = 0, by Proposition 4.6, we have α · (µ) = 0 in H3(L, µ⊗2
n ).

Suppose −λ 6∈ F ∗`. Then λ ∈ F ∗`, ` = 2 and −1 6∈ F ∗2. Write λ = (θπr)2 for some θ ∈ F ∗
with ν(θ) = 0. Since α · (−λ) = 0 and α = (E, σ, uπ), by taking the residue of α · (−λ), we see

that (E0, σ0) · (−u2rθ
−2

) = 0. In particular, −u2rθ−2 is a norm from E. Thus −1 is a norm from
L. Let v ∈ L such that NL/F (v) = −1 and µ = vθπr. Then NL/F (µ) = NL/F (v)(θπr)2 = −λ.
Since cor(α · (µ)) = α · (−λ) = 0 ∈ H3(F, µ⊗2

n ), α · (µ) = 0 ∈ H3(L, µ⊗2
n ) (cf. Proposition 4.6).

Suppose that α′⊗E 6= 0. Let E0 be the residue field of E. Then E0/κ is a cyclic field extension
of κ of degree equal to the degree of E/F . Let α′ be the image of α′ in H2(κ, µn). Since λ ∈ F ∗`
or −λ ∈ F ∗`, −λ = εθ`πr` with ε = ±1 and θ ∈ F ∗ a unit at ν. Since E is a complete discretely
valued field, α′ ⊗ E0 6= 0. Since κ is a local field and contains a primitive `th root of unity,

there exist a cyclic extension L0/κ of degree ` and µ0 ∈ L0 such that NL0/κ(µ0) = εθ
`

(cf. the
proof of Lemma 2.8). Let L/F be the unramified extension of degree ` with residue field L0.
Since F is complete, εθ` ∈ NL/F (L∗). Let µ′ ∈ L∗ such that NL/F (µ′) = εθ` and µ = µ′πr. Then
NL/F (µ) = −λ. Suppose that L0 6⊂ E0. Since κ is a local field, ind(α′⊗E0⊗L0) < ind(α′⊗E0).
Since E is a complete discretely valued field with residue field E0, ind(α⊗E⊗L) < ind(α⊗E).
Suppose that L0 ⊂ E0. Then L ⊂ E. Since L/F is unramified, ∂(α⊗L) = ∂(α)⊗L0 (cf. [Col95,
Proposition 3.3.1]) and hence the decomposition α ⊗ L = α′ ⊗ L + (E ⊗ L, σ ⊗ 1, π) is as in
Lemma 4.1. Thus, by Lemma 4.2, ind(α⊗L) < ind(α). Since −λ = NL/F (µ), as above, we have
α · (µ) = 0 ∈ H3(L, µ⊗2

n ). 2

Lemma 4.11. Suppose that κ is a global field. Let ` be a prime not equal to char(κ) and n = `d.
Suppose that either n is odd or κ has no real places. Let α ∈ H2(F, µn) and λ ∈ F ∗. If α 6= 0
and α · (−λ) = 0 ∈ H3(F, µ⊗2

n ), then there exist a field extension L/F of degree ` and µ ∈ L∗
such that NL/F (µ) = −λ, ind(α⊗ L) < ind(α) and α · (µ) = 0 ∈ H3(L, µ⊗2

n ).
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Proof. Suppose that ν(λ) is coprime to `. Then, by Lemma 4.7, L = F (
√̀
λ) and µ = −

√̀
λ has

the required properties.
Suppose that ν(λ) is divisible by `. Let π be a parameter in F . Then λ = θπr` with ν(θ) = 0.

Write α = α′ + (E, σ, π) as in Lemma 4.1. Let α′ be the image of α′ in H2(κ, µn) and θ0 the
image of θ in κ. Since α · (−λ) = 0, by Lemma 4.7, we have r`α′ = (E0, σ0, (−1)r`+1θ0), where
E0 is the residue field of E and σ0 induced by σ.

Suppose that rα′ ⊗ E0 6= 0. Then, by Proposition 3.4, there exist an extension L0/κ of
degree ` and µ0 ∈ L0 such that NL0/κ(µ0) = (−1)r`+1θ0, ind(α′ ⊗ E0 ⊗ L0) < ind(α′ ⊗ E0) and
rα′ ⊗ L0 = (E0 ⊗ L0, σ0, µ0).

Suppose that rα′ ⊗ E0 = 0. Suppose that E0 6= κ. Let L0 be the unique subfield of E0 of
degree ` over κ. Then, by Proposition 3.5, there exists µ0 ∈ L0 such that NL0/κ(µ0) = (−1)r`+1θ0

and rα′ ⊗ L0 = (E0, σ0, µ0). Suppose that E0 = κ. Then, by Corollary 3.2, there exist a field
extension L0/κ of degree ` and µ0 ∈ L0 such that NL0/k(µ0) = (−1)r`+1θ0 and ind(α′ ⊗ L0) <

ind(α′). Let µ1 = (−1)rµ0. Then NL0/κ(µ1) = (−1)r`NL0/κ(µ0) = (−1)r`(−1)r`+1θ0 = −θ0. Since
(−1)rµ1 = µ0, we have rα′ ⊗ L0 = (E0, σ0, (−1)rµ1).

Let L be the unramified extension of F of degree ` with residue field L0. Then, as in the last
paragraph of the proof of Lemma 4.10, ind(α⊗ L) < ind(α). By Lemma 4.8, there exists µ ∈ L
with the required properties. 2

Theorem 4.12. Let F be a complete discretely valued field with residue field κ. Suppose that κ
is a local field or a global field. Suppose that either n is odd or κ has no real places. Let D
be a central simple algebra over F of period n. Suppose that n is coprime to char(κ). Let
α ∈ H2(F, µn) be the class of D and λ ∈ F ∗. If α · (λ) = 0 ∈ H3(F, µ⊗2

n ), then λ is a reduced
norm from D.

Proof. Write n = `d11 · · · `drr , `i distinct primes, di > 0, D = D1 ⊗ · · · ⊗ Dr with each Di a
central simple algebra over F of period power of `i [Alb61, ch. V, Theorem 18]. Let αi be the
corresponding cohomology class of Di. Since the `i are distinct primes, α · (λ) = 0 if and only if
αi · (λ) = 0 and λ is a reduced norm from D if and only if λ is a reduced norm from each Di.
Thus without loss of generality we assume that per(D) = `d for some prime `.

We prove the theorem by induction on the index of D. Suppose that ind(D) = 1. Then every
element of F ∗ is a reduced norm from D. We assume that ind(D) = n = `d > 2.

Let λ ∈ F ∗ with α · (λ) = 0 ∈ H3(F, µ⊗2
n ). Let ρ be a primitive `th root of unity. Since

[F (ρ) : F ] is coprime to n, λ is a reduced norm from F if and only if λ is a reduced norm from
D ⊗ F (ρ). Thus, replacing F by F (ρ), we assume that ρ ∈ F .

Since κ is either a local field or a global field, by Lemmas 4.10 and 4.11, there exist an
extension L/F of degree ` and µ ∈ L∗ such that NL/F (µ) = λ, α·(µ) = 0 and ind(α⊗L) < ind(α).
Thus, by induction, µ is a reduced norm from D ⊗ L. Since NL/F (µ) = λ, λ is a reduced norm
from D. 2

The following technical lemma is used in § 6.

Lemma 4.13. Let κ be a finite field and K a function field of a curve over κ. Let u, v, w ∈ κ∗
and λ ∈ K∗. Let ` be a prime not equal to char(κ) and θ = wuλ. If κ contains a primitive `th
root of unity and w 6∈ κ∗`, then for r > 1, the element (v, `

r√
θ)` in H2(K( `

r√
θ), µ`) is trivial over

K( `
r√
θ,
√̀
v + uλ).

Proof. Let L = K( `
r√
θ,
√̀
v + uλ) and β = (v, `

r√
θ)`. Since L is a global field, to show that β⊗L

is trivial, it is enough to show that β⊗Lν is trivial for every discrete valuation ν of L. Let ν be a
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discrete valuation of L. Since v ∈ κ∗, v is a unit at ν. If θ is a unit at ν, then β⊗L is unramified
at ν and hence β ⊗ Lν is trivial. Suppose that θ is not a unit at ν. Since u and w are units at
ν, λ is not a unit. Suppose that ν(λ) > 0. Then v ∈ L∗`ν and hence β ⊗ Lν is trivial. Suppose
that ν(λ) < 0. Then

√̀
uλ ∈ Lν . Since r > 1, θ = uwλ and `r

√
θ ∈ Lν , we have

√̀
θ =
√̀
wuλ ∈ Lν .

Hence
√̀
w ∈ Lν . Since w ∈ κ∗\κ∗`, v ∈ κ∗ and κ is a finite field,

√̀
v ∈ κ(

√̀
w). Since κ(

√̀
w) ⊂ Lν ,

β ⊗ Lν is trivial. 2

We end this section with the following well-known fact.

Lemma 4.14. Let L/F be a cyclic extension of degree n, τ a generator of Gal(L/F ) and θ ∈ F ∗.
If ν(θ) is coprime to n and ind(L/F, τ, θ) = [L : F ], then [L : F ] = per(∂(L/F, τ, θ)).

Proof. Let β = (L/F, τ, θ) and m = per(∂(β)). Since n = [L : F ] = ind(β), m divides n. Since
ν(θ) is coprime to n, F (m

√
θ)/F is a totally ramified extension of degree m with residue field

equal to the residue field κ of F . Since ∂(β ⊗ F (m
√
θ)) = m∂(β), β ⊗ F (m

√
θ) is unramified. Since

F (n
√
θ)/F (m

√
θ) is totally ramified and β⊗F (n

√
θ) is trivial, β⊗F (m

√
θ) is trivial (cf. Lemma 4.3).

Hence n = m. 2

5. Brauer group: complete two-dimensional regular local rings

Let X be an integral regular scheme with function field F . For every point x of X, let OX,x be

the regular local ring at x and κ(x) the residue field at x. Let ÔX,x be the completion of OX,x at

its maximal ideal mx and Fx the field of fractions of ÔX,x. Then every codimension one point x
of X gives a discrete valuation νx on F . Let n > 1 be an integer which is a unit on X. For any

d > 1, the residue homomorphism Hd(F, µ⊗jn ) → Hd−1(κ(x), µ
⊗(j−1)
n ) at the discrete valuation

νx is denoted by ∂x. An element α ∈ Hd(F, µ⊗mn ) is said to be ramified at x if ∂x(α) 6= 0 and
unramified at x if ∂x(α) = 0. If X = Spec(A) and x is a point of X given by (π), π a prime
element, we also denote Fx by Fπ and κ(x) by κ(π).

Throughout this section A denotes a complete regular local ring of dimension 2 with residue
field κ and F its field of fractions. Let ` be a prime not equal to the characteristic of κ and
n = `d for some d > 1. Let m = (π, δ) be the maximal ideal of A. For any prime p ∈ A, let Fp be
the completion of the field of fractions of the completion of the local ring A(p) at p and κ(p) the
residue field at p.

Lemma 5.1. Let Eπ be an unramified Galois extension of Fπ of degree coprime to char(κ). Then
there exists a Galois extension E of F of degree [Eπ : Fπ] which is unramified on A, except
possibly at δ and Gal(E/F ) ' Gal(Eπ/Fπ). Further, if the residue field of Eπ is unramified over
κ(π), then E/F can be chosen to be unramified on A.

Proof. Since A is complete and m = (π, δ), κ(π) is a complete discretely valued field with residue
field κ and the image δ of δ as a parameter. Let E0 be the residue field of Eπ. Then E0/κ(π)
is a Galois extension with Gal(E0/κ(π)) ' Gal(Eπ/Fπ). Let L0 be the maximal unramified
extension of κ(π) contained in E0. Then L0 is also a complete discretely valued field with δ as a
parameter and L0/κ(π) is Galois. Since E0/L0 is a totally ramified extension of degree coprime

to char(κ), we have E0 = L0(
e
√
vδ) for some v ∈ L0 which is a unit at the discrete valuation of

L0 (cf. Lemma 2.4).
Since E0/κ(π) is a Galois extension, E0/L0 is a Galois extension. Let κ0 be the residue field of

E0. Then the residue field of L0 is also κ0. Since κ0 is a Galois extension of κ and A is complete,
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there exists a Galois extension L of F which is unramified on A with residue field κ0. Let B be
the integral closure of A in L. Then B is a regular local ring with residue field κ0 (cf. [PS14,
Lemma 3.1]). Let u ∈ B be a lift of v in κ0.

Let E = L( e
√
uδ). Since L/F is unramified on A, E/F is unramified on A, except possibly at δ.

In particular, E/F is unramified at π with residue field E0. By construction, [E : F ] = [E0 : κ(π)].
Hence E ⊗ Fπ ' Eπ.

Since L/F is a Galois extension which is unramified at π, we have Gal(L/F ) ' Gal(L0/κ(π)).
Let τ ∈ Gal(L/F ) and τ ∈ Gal(L0/κ(π)) be the image of τ . Since E0/κ(π) is Galois and E0 =

L0(
e
√
vδ), by Lemma 2.3, E0 contains a primitive eth root of unity ρ and τ(vδ) ∈ Ee0. In particular,

ρ ∈ κ0. Since B is complete with residue field κ0, ρ ∈ B and hence ρ ∈ L ⊆ E. Since τ(vδ) = τ(v)δ
and vδ, τ(vδ) ∈ Ee0, τ(v)/v ∈ Ee0. Since τ(v) and v are units at the discrete valuation of L0 and
E0/L0 is totally ramified, τ(v)/v ∈ Le0. Since B is complete and the image of τ(u)/u in L0 is
τ(v)/v, τ(u)/u ∈ Le. Since E = L( e

√
uδ), τ(uδ) ∈ Ee. Thus, by Lemma 2.3, E/F is Galois. Since

E ⊗ Fπ ' Eπ, Gal(E/F ) ' Gal(Eπ/Fπ).
Further, if the residue field E0 of Eπ is unramified, then E0 = L0 and hence E = L is

unramified on A. 2

Since A is complete and (π, δ) is the maximal ideal of A, A/(π) is a complete discrete
valuation ring with δ as a parameter and A/(δ) is a complete discrete valuation ring with π as
a parameter. The next lemma follows from [Kat86, Proposition 1.7].

Lemma 5.2 [Kat86, Proposition 1.7]. Let m > 1 and α ∈ Hm(F, µ
⊗(m−1)
n ). Suppose that α is

unramified on A, except possibly at π and δ. Then

∂δ(∂π(α)) = −∂π(∂δ(α)).

Let Hm
nr(F, µ

⊗(m−1)
n ) be the intersection of the kernels of the residue homomorphisms ∂θ :

Hm(F, µ
⊗(m−1)
n ) → Hm−1(κ(θ), µ

⊗(m−2)
n ) for all primes θ ∈ A. The next lemma follows from the

purity theorem of Gabber.

Lemma 5.3. For m = 1, 2, we have Hm
nr(F, µ

⊗(m−1)
n ) ' Hm(κ, µ

⊗(m−1)
n ). For m > 3, we have a

surjection Hm(κ, µ
⊗(m−1)
n ) → Hm

nr(F, µ
⊗(m−1)
n ). In particular, if κ is a finite field and m > 2,

then Hm
nr(F, µ

⊗(m−1)
n ) = 0.

Proof. For m > 1, by the purity theorem of Gabber (cf. [Rio14, ch. XVI]), we have a

surjection Hm
ét (A,µ

⊗(m−1)
n ) →Hm

nr(F, µ
⊗(m−1)
n ). Since A is complete, we have Hm

ét (A,µ
⊗(m−1)
n ) '

Hm(κ, µ
⊗(m−1)
n ) (cf. [Mil80, Corollary 2.7, p. 224]). Thus we have a surjection Hm(κ, µ

⊗(m−1)
n ) →

Hm
nr(F, µ

⊗(m−1)
n ). Form= 1 and 2, since the mapHm

ét (A,µ
⊗(m−1)
n ) →Hm

nr(F, µ
⊗(m−1)
n ) is injective

(cf. [MO60, Theorem 7.2]), we have Hm
nr(F, µ

⊗(m−1)
n ) ' Hm(κ, µ

⊗(m−1)
n ).

Suppose κ is a finite field and m > 2. Since Hm(κ, µ
⊗(m−1)
n ) = 0 (cf. [Ser79, § 3.3 p. 80]), we

have Hm
nr(F, µ

⊗(m−1)
n ) = 0. 2

Lemma 5.4. Let 1 6 m 6 3 and α ∈ Hm(F, µ
⊗(m−1)
n ). Suppose that α is unramified, except

possibly at π. Then there exist α0 ∈ Hm(F, µ
⊗(m−1)
n ) and β ∈ Hm−1(F, µ

⊗(m−2)
n ) which are

unramified on A such that
α = α0 + β · (π).
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Proof. Let β0 = ∂π(α). By Lemma 5.2, β0 ∈ Hm−1(κ(π), µ
⊗(m−2)
n ) is unramified on A/(π). Since

A/(π) is a complete discrete valuation ring with residue field κ, we have Hm−1
nr (κ(π), µ

⊗(m−2)
n ) '

Hm−1(κ, µ
⊗(m−2)
n ) (cf. Lemma 5.3). Since A is complete, we have Hm−1

nr (F, µ
⊗(m−1)
n ) '

Hm−1(κ, µ
⊗(m−1)
n ) (cf. Lemma 5.3). Thus, there exists β ∈ Hm−1

nr (F, µ⊗(m−1)) which is the lift
of β0. Then α0 = α− β · (π) is unramified on A. Hence α = α0 + β · (π). 2

Corollary 5.5. Let 1 6 m 6 3 and α ∈ Hm(F, µ
⊗(m−1)
n ) is unramified on A, except possibly

at π and δ. If α ⊗ Fδ = 0, then α = 0. In particular, if α1, α2 ∈ Hm(F, µ
⊗(m−1)
n ) unramified on

A, except possibly at π and δ and α1 ⊗ Fδ = α2 ⊗ Fδ, then α1 = α2.

Proof. Since α⊗Fδ = 0, α is unramified at δ. Thus α is unramified on A, except possibly at π. By

Lemma 5.4, we have α = α0 + β · (π) for some α0 ∈ Hm(F, µ
⊗(m−1)
n ) and β ∈ Hm−1(F, µ

⊗(m−2)
n )

which are unramified on A. Since α ⊗ Fδ = 0, we have (β · (π)) ⊗ Fδ = −α0 ⊗ Fδ. Since β · (π)
and α0 are unramified at δ, we have β · (π) = −α0, where the bar denotes the image over κ(δ).
Since κ(δ) is a complete discretely valued field with π as a parameter, by taking the residues,

we see that the image of β is zero in Hm−1(κ, µ
⊗(m−2)
n ). Since A is a complete regular local

ring, β = 0 (cf. Lemma 5.3). Hence α = α0 is unramified on A. Let α′ ∈ Hm(κ, µ⊗m−1
n ) which

maps to α (cf. Lemma 5.3). Let Â(δ) be the completion of the localization of A at (δ). Since Â(δ)

is a complete discrete valuation ring, the natural map Hm
ét (Â(δ), µ

⊗(m−1)
n ) → Hm(Fδ, µ

⊗m−1
n ) is

injective [Col95, § 3.6]. Thus, since α⊗Fδ = 0, α′⊗ Â(δ) = 0 ∈ Hm
ét (Â(δ), µ

⊗(m−1)
n ). In particular,

α′ ⊗ A/(δ) = 0 ∈ Hm
ét (A/(δ), µ

⊗(m−1)
n ) and hence α′ ⊗ κ = 0 ∈ Hm(κ, µ

⊗(m−1)
n ). Since A is a

complete regular local ring, α′ = 0 (cf. [Mil80, Corollary 2.7, p. 224]) and hence α = 0. 2

If char(F ) = char(κ), the above corollary follows from [Hu17, Lemma 2.2].

Corollary 5.6. Let 1 6m 6 3 and α ∈ Hm(F, µm−1
n ). If α is unramified on A, except possibly

at π and δ, then per(α) = per(α⊗ Fπ) = per(α⊗ Fδ).

Proof. Suppose t = per(α ⊗ Fδ). Then tα ⊗ Fδ = 0 and hence, by Corollary 5.5, tα = 0. Since
per(α⊗Fδ) 6 per(α), it follows that per(α) = per(α⊗Fδ). Similarly, per(α) = per(α⊗Fπ). 2

Corollary 5.7. Suppose that κ is a finite field. Let α ∈ H2(F, µn). If α is unramified, except
at π and δ, then there exist a cyclic extension E/F and σ ∈ Gal(E/F ) a generator, u ∈ A a
unit, and 0 6 i, j < n such that α = (E, σ, uπiδj) with E/F unramified on A, except at δ and
i = 1, or E/F unramified on A, except at π and j = 1.

Proof. Since n is a power of the prime ` and nα = 0, per(∂π(α)) and per(∂δ(α)) are powers
of `. Let d′ be the maximum of per(∂π(α)) and per(∂δ(α)). Then ∂π(d′α) = d′∂π(α) = 0 and
∂δ(d

′α) = d′∂δ(α) = 0. In particular, d′α is unramified on A. Since κ is a finite field, d′α = 0.
Hence per(α) divides d′ and d′ = per(α). Thus per(α) = per(∂π(α)) or per(∂δ(α)).

Suppose that per(α) = per(∂π(α)). Since ∂π(α ⊗ Fπ) = ∂π(α), we have per(∂π(α)) 6
per(α ⊗ Fπ) 6 per(α). Thus per(α ⊗ Fπ) = per(∂π(α ⊗ Fπ)). Let (E0, σ0) = ∂π(α ⊗ Fπ) and
(Eπ/Fπ, σ) be the lift of (E0, σ0). Then [Eπ : Fπ] = [E0 : κ(π)] = per(∂π(α⊗Fπ)) = per(α⊗Fπ).
Write α⊗Fπ = α′+ (Eπ, σ, π) as in Lemma 4.1. Let α′ be the image of α′ over κ(π). Since κ(π)
is a local field and per(α′) divides per(α ⊗ Fπ) = [E0 : κ(π)], we have α′ ⊗ E0 = 0 and hence
α′ ⊗ Eπ = 0. Since α ⊗ Eπ = α′ ⊗ Eπ = 0, by Lemma 4.4, we have α ⊗ Fπ = (Eπ/Fπ, σ, θπ) for
some cyclic unramified extension Eπ/Fπ and θ ∈ Fπ a unit in the valuation ring of Fπ.
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By Lemma 5.1, there exists a Galois extension E/F which is unramified on A, except possibly
at (δ), such that E ⊗ Fπ ' Eπ. Since Eπ/Fπ is cyclic, E/F is cyclic. Since θ ∈ Fπ is a unit in
the valuation ring of Fπ and the residue field of Fπ is a complete discretely valued field with δ
as parameter, we can write θ = uδjθn1 for some unit u ∈ A, θ1 ∈ Fπ and 0 6 j 6 n − 1. Then
α⊗ Fπ ' (E, σ, uδjπ)⊗ Fπ. Thus, by Corollary 5.5, we have α = (E, σ, uδjπ).

If per(α) = per(∂δ(α)), then, as above, we get α = (E, σ, uπiδ) for some cyclic extension E/F
which is unramified on A, except possibly at π. 2

The following proposition is proved in [RS13, 2.4] under the assumption that F contains a
primitive nth root of unity.

Proposition 5.8. Suppose that κ is a finite field. Let α ∈ H2(F, µn). If α is unramified on A,
except possibly at (π) and (δ), then ind(α) = ind(α⊗ Fπ) = ind(α⊗ Fδ).

Proof. Suppose that α is unramified on A, except possibly at (π) and (δ). Then, by Corollary 5.7,
we assume without loss of generality that α = (E/F, σ, πδj) with E/F unramified on A, except
possibly at δ. Then ind(α) 6 [E : F ]. Since E/F is unramified on A except possibly at δ, we
have [E : F ] = [Eπ : Fπ] and ind(α⊗ Fπ) = [Eπ : Fπ]. Thus [E : F ] = [Eπ : Fπ] = ind(α⊗ Fπ) 6
ind(α) 6 [E : F ] and hence [E : F ] = ind(α⊗ Fπ) = ind(α). 2

Corollary 5.9. Suppose that κ is a finite field. Let α ∈ H2(F, µn). If α is unramified on A,
except possibly at (π) and (δ), then ind(α) = per(α).

Proof. By Corollary 5.6, per(α) = per(α⊗Fπ), and by Theorem 4.5, ind(α⊗Fπ) = per(α⊗Fπ).
Thus per(α) = ind(α⊗ Fπ). By Proposition 5.8), we have ind(α) = per(α). 2

Let X be an integral regular two-dimensional scheme with field of fractions F . For each
x ∈X , let Fx denote the field of fractions of the completion of the local ring at x. The following
proposition follows from [HHK15b].

Proposition 5.10. Let α ∈ H2(F, µn). Let φ : X → Spec(A) be a sequence of blow-ups and
V = φ−1(m). Then ind(α) = l.c.m.{ind(α⊗ Fx) | x ∈ V }.

Proof. Let η be the generic point of an irreducible component of an exceptional curves in X .
Then, arguing as in [HHK15a, Theorems 9.2 and 9.12], we get that ind(α ⊗ Fη) = ind(α ⊗ FU )
for some nonempty open set U of the closure of η. Since A is a complete regular local ring of
dimension 2, the proposition follows by [HHK15b, Lemma 4.6 and Example 4.16]. 2

We end this section with the following well-known results.

Lemma 5.11. Let E/F be a cyclic extension of degree `d for some d > 1. If E/F is unramified on
A, except possibly at δ, then there exist a subextension Enr of E/F and w ∈ Enr which is a unit
in the integral closure of A in Enr such that Enr/F is unramified on A and E = Enr(

`e
√
wδ) for

some e > 0. Further, if κ is a finite field containing a primitive `th root of unity and 0 < e < d,
then NE/F ( `

e√
wδ) = w1δ

`d−e with w1 ∈ A a unit and not an `th power in A.

Proof. Let E(π) be the residue field of E at π. Since E/F is unramified at A, except possibly
at δ, by Corollary 5.6 (with m = 1), [E(π) : κ(π)] = [E : F ]. Since E/F is cyclic, E(π)/κ(π) is
cyclic. As in the proof of Lemma 5.1, there exist a cyclic extension E0/F unramified on A and a
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unit w in the integral closure of A in E0 such that the residue field of E0( `
e√
wδ) at π is E(π). By

Corollary 5.5 (with m = 1), we have E ' E0( `
e√
wδ). Let Enr = E0. Then Enr has the required

properties. Since [E : F ] = `d and [E : Enr] = `e, we have [Enr : F ] = `f , where f = d− e.
Suppose that κ is a finite field and contains a primitive `th root of unity. Let B be the

integral closure of A in Enr. Then B is a complete regular local ring with residue field κ′ a finite
extension of κ.

Let w0 = NEnr/F (w) ∈ A∗ and w0 ∈ κ∗. Suppose that w0 ∈ A∗`. Then w0 ∈ κ∗`. Since κ

contains a primitive `th root of unity, we have |κ′∗/κ′∗`| = |κ∗/κ∗`| = `. Since it is surjective
from κ′ to κ, the norm map induces an isomorphism from κ′∗/κ′∗` to κ∗/κ∗`. Thus the image of
w in κ′ is an `th power. Since B is a complete regular local ring, w ∈ B∗`. Suppose 0 < e < d.
Then

√̀
δ ∈ E. Since Enr/F is a nontrivial unramified extension and F (

√̀
δ)/F is a nontrivial

extension of F which is totally ramified at δ, we have two distinct subextensions of E/F of
degree `, in contradiction to the fact that E/F is cyclic. Hence w0 6∈ A∗`. Further, we have

NE/F ( `
e√
wδ) = NEnr/F ((−1)`

e+1wδ) = (−1)(`e+1)`fw0δ
`f . Since f > 0, w1 = (−1)(`e+1)`fw0 is

not an `th power in A. 2

Lemma 5.12. Suppose κ is a perfect field. Let Lπ/Fπ be an unramified field extension of degree
N . Then there exists a field extension L/F of degree N such that L⊗ Fπ ' Lπ and the integral
closure of A in L is regular.

Proof. Let L(π) be the residue field of Lπ. Suppose that L(π)/κ(π) is unramified at the discrete
valuation of A/(π). Let κ′ be the residue field of L(π). Then κ′/κ is an extension of degree N .
Write κ′ = κ[T ]/(f(T )) for some monic polynomial. Let g(T ) ∈ A[T ] be a monic polynomial
which is a lift of f(T ). Then clearly L = F [T ]/(g(T )) has the required properties.

Suppose L(π)/κ(π) is ramified. Let L(π)nr be the maximal unramified extension of κ(π)
contained in L(π). Let L̃π be the subextension of Lπ with residue field L(π)nr. Then, as above,
there exists a field extension L̃/F such that L̃ ⊗ Fπ ' L̃π. Let Ã be the integral closure of A
in L̃. Then Ã is a regular local ring with (π, δ) as the maximal ideal. Thus, replacing F by
L̃π, we assume that L(π)/κ(π) is totally ramified. Hence L(π) = κ(π)[T ]/(f(T )) with f(T ) =
TN +aN−1δT

N−1 + · · ·+a1δT + vδ for some ai ∈ A and a unit v ∈ A, where the bar denotes the
image in A/(π). Let g(T ) = TN + aN−1δT

N−1 + · · · + a1δT + vδ ∈ A[T ]. Let L = F [T ]/(g(T ))
and B = A[T ]/(g(T )). Let m̃ be a maximal ideal of B. Let t be the image of T in B. We have
t(tN−1+aN−1δt

N−2+· · ·+a1δ) = −vδ. Since δ ∈m ⊂ m̃, it follows that t ∈ m̃. Since B/(π, t) ' κ,
m̃ = (π, t) is the unique maximal ideal of B and hence B is a regular local ring. In particular, B
is integrally closed and hence B is the integral closure of A in L. 2

Remark 5.13. Let Lπ/Fπ be an unramified extension of degree N and L/F be the extension of
degree N as in the proof of Lemma 5.12. Let B be the integral closure of A in L. Then, by the
construction of L, (π, δ′) is the maximal ideal of B for some δ′ ∈ B such that δ′ is the only prime
in B lying over δ and NL/F (δ′) = vδf for some unit v ∈ A and f > 1.

6. Reduced norms: complete two-dimensional regular local rings

Throughout this section we fix the following notation:
• A a complete two-dimensional regular local ring;
• F the field of fractions of A;
• m = (π, δ) the maximal ideal of A;

429

https://doi.org/10.1112/S0010437X17007618 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X17007618


R. Parimala, R. Preeti and V. Suresh

• κ = A/m a finite field;
• ` a prime not equal to char(κ);
• n = `d;
• α ∈ H2(F, µn) is unramified on A, except possibly at (π) and (δ);
• λ = wπsδt, w ∈ A a unit and s, t ∈ Z with 1 6 s, t < n.

The aim of this section is to prove that if α 6= 0 and α · (λ) = 0, then there exist an extension
L/F of degree ` and µ ∈ L such that ind(α⊗ L) < ind(α) and NL/F (µ) = λ. We assume that:
• F contains a primitive `th root of unity.

We begin with the following lemma.

Lemma 6.1. If α · (−λ) = 0, then sα = (E, σ, (−1)s+1λ) for some cyclic extension E of F
which is unramified on A, except possibly at δ. In particular, if s is coprime to `, then α =
(E′, σ′, (−1)s+1λ) for some cyclic extension E′ of F which is unramified on A, except possibly
at δ.

Proof. By Lemma 4.7, there exists an unramified cyclic extension Eπ of Fπ such that sα⊗Fπ =
(Eπ, σ, (−1)s+1λ). By Lemma 5.1, there exists a cyclic extension E of F which is unramified on
A, except possibly at δ with E⊗Fπ ' Eπ. Since E/F is unramified on A, except possibly at δ and
λ = wπsδt with w a unit in A, (E, σ, (−1)s+1λ) is unramified on A, except possibly at (π) and (δ).
Since α is unramified on A, except possibly at (π) and (δ), sα − (E, σ, (−1)s+1λ) is unramified
on A, except possibly at (π) and (δ). Since sα⊗Fπ = (Eπ, σ, (−1)s+1λ) = (E, σ, (−1)s+1λ)⊗Fπ,
by Corollary 5.5, sα = (E, σ, (−1)s+1λ). 2

Lemma 6.2. Suppose that α · (−λ) = 0 and λ 6∈ ±F ∗`. If α 6= 0, then ind(α⊗ F (
√̀
λ)) < ind(α)

and α · (−
√̀
λ) = 0 ∈ H3(F (

√̀
λ), µ⊗2

n ).

Proof. Suppose that s is coprime to `. Then, by Lemma 6.1, α = (E′, σ′, (−1)s+1λ) for some
cyclic extension E′ of F which is unramified on A, except possibly at δ. Since νπ(λ) = s is
coprime to ` and E′/F is unramified at π, it follows that ind(α) = [E′ : F ]. In particular,
ind(α ⊗ F (

√̀
(−1)s+1λ)) 6 [E′ : F ]/` < ind(α). Since s is coprime to `, we have (−1)s = −(ε)`

for some ε = ±1 and hence F (
√̀

(−1)s+1λ) = F (
√̀
λ). Similarly, if t is coprime to `, then

ind(α⊗ F (
√̀
λ)) < ind(α). Further, α · (−

√̀
λ) = (E′, σ′, λ) · (−

√̀
λ) = 0.

Suppose that s and t are divisible by `. Since λ = wπsδt, we have F (
√̀
λ) = F (

√̀
w). Let

L = F (
√̀
w) and B be the integral closure of A in L. Since w is a unit in A, by [PS14, Lemma 3.1],

B is a complete regular local ring with maximal ideal generated by π and δ. Since λ 6∈ ±F ∗` and
A is a complete regular local ring, the images of ±w in A/m are not `th powers. Since A/(π)
is also a complete regular local ring with residue field A/m, the images of ±w in A/(π) are not
`th powers. Since Fπ is a complete discretely valued field with residue field the field of fractions
of A/(π), ±w are not `th powers in Fπ. Since α · (−λ) = 0 and the residue field of Fπ is a local
field, by Lemma 4.9, ind(α⊗ Lπ) < ind(α). Hence, by Proposition 5.8, ind(α⊗ L) < ind(α).

Since Lπ = L⊗Fπ and Lδ = L⊗Fδ are field extensions of degree ` over Fπ and Fδ respectively,
and cores(α·(−

√̀
λ)) = α·(−λ) = 0, by Proposition 4.6, (α·(−

√̀
λ))⊗Lπ = 0 and (α·(−

√̀
λ))⊗Lδ

= 0. Hence, by Corollary 5.5, α · (−
√̀
λ) = 0. 2

Lemma 6.3. Suppose α = (E/F, σ, uπδ`m) for some m > 0, u a unit in A, E/F a cyclic extension
of degree `d which is unramified on A, except possibly at δ, and σ a generator of Gal(E/F ). Let `e

be the ramification index of E/F at δ and f = d−e. Let i> 1 be such that `f+`di > `m. Let v ∈ A
be a unit which is not in F ∗` and L = F (

√̀
vδ`f+`di−`m + uπ). If f > 0, then ind(α⊗L) < ind(α).
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Proof. Let B be the integral closure of A in L and r = `f + `di − `m. Since `f + `di > `m,
L = F (

√̀
vδr + uπ) and vδr +uπ is a regular prime in A. Thus B is a complete regular local ring

(cf. [PS14, Lemma 3.2]) and π, δ remain primes in B. Note that π and δ may not generate the
maximal ideal of B. Let Lπ and Lδ be the completions of L at the discrete valuations given by
π and δ, respectively. Since v 6∈ F ∗`, F (

√̀
v) is the unique extension of F of degree `, which is

unramified on A. Since f > 0, there is a subextension of E of degree ` over F which is unramified
on A and hence F (

√̀
v) ⊂ E.

Since E/F is unramified on A, except possibly at δ, [E : F ] = [Eπ : Fπ] and hence ind(α) =
per(α) = [E : F ] (Proposition 5.8).

Since r is divisible by `, Lπ ' Fπ(
√̀
v) and hence Lπ ⊂ Eπ. Thus ind(α⊗Lπ) < ind(α). Since

r > 0, Lδ ' Fδ(
√̀
uπ). Since α = (E/F, σ, uπδ`m), ind(α ⊗ Lδ) < [E ⊗ Lδ : Lδ] 6 [E : F ]. In

particular, per(α ⊗ Lπ) < ind(α) and per(α ⊗ Lδ) < ind(α). Since α ⊗ L is unramified on B,
except possibly at π and δ, and H2(B,µ`) = 0, per(α⊗L) < ind(α). If d = 1, then per(α⊗L) <
ind(α) = ` and hence per(α⊗ L) = ind(α⊗ L) = 1 < ind(α). Suppose that d > 2.

Let φ : X → Spec(B) be a sequence of blow-ups such that the ramification locus of
α ⊗ L is a union of regular curves with normal crossings. Let V = φ−1(P ). To show that
ind(α⊗L) < ind(α), by Proposition 5.10, it is enough to show that for every point x of V ,
ind(α⊗ Lx) < ind(α).

Let x ∈ V be a closed point. Then, by Corollary 5.9, ind(α ⊗ Lx) = per(α ⊗ Lx). Since
per(α⊗ Lx) < ind(α), ind(α⊗ Lx) < ind(α).

Let x ∈ V be a codimension zero point. Then φ(x) is the closed point of Spec(B). Let ν̃ be
the discrete valuation of L given by x. Then κ(ν̃) ' κ′(t) for some finite extension κ′ over κ and
a variable t over κ. Let ν be the restriction of ν̃ to F .

Suppose that ν(δr) < ν(π). Then L ⊗ Fν = Fν(
√̀
vδr). Since ` divides r, L ⊗ Fν = Fν(

√̀
v).

Since F (
√̀
v) ⊂ E, ind(α⊗L⊗Fν) < ind(α). Suppose that ν(δr) > ν(π). Then L⊗Fν = Fν(

√̀
uπ)

and, as above, ind(α⊗ L⊗ Fν) < ind(α). Suppose that ν(δr) = ν(π). Let g = π/δr. Then g is a

unit at ν and Lν̃ = Fν(
√̀
v + ug). We have uπδ`m = ugδr+`m = ugδ`

f+`di and

α⊗ Fν = (E ⊗ Fν/Fν , σ ⊗ 1, uπδ`m) = (E ⊗ Fν/Fν , σ ⊗ 1, ugδ`
f+`di).

Since [E : F ] = `d, α⊗Fν = (E⊗Fν/Fν , σ⊗ 1, ugδ`
f
). Suppose that f = d. Then E/F is

unramified and hence every element of A∗ is a norm from E. Thus α ⊗ Fν = (E ⊗ Fν/Fν ,
σ ⊗ 1, w0ug) for any w0 ∈ A∗. Suppose that f < d. Then e = d − f > 0 and hence, by
Lemma 5.11, we have E = Enr(

`e
√
wδ), for some unit w in the integral closure of A in Enr,

with NE/F ( `
e√
wδ) = w1δ

`f with w1 ∈ A∗\A∗`. Thus

α⊗ Fν = (E ⊗ Fν/Fν , σ ⊗ 1, ugδ`
f
) = (E ⊗ Fν/Fν , σ ⊗ 1, w0ug),

with w0 = w−1
1 . Hence, in either case, we have α⊗Fν = (E⊗Fν/Fν , σ⊗1, w0ug) with w0 6∈ A∗`.

If E⊗Fν is not a field, then ind(α⊗Fν) < [E : F ]. Suppose E⊗Fν is a field. Let θ = w0ug.

Since α⊗Fν = (E⊗Fν/Fν , σ⊗1, θ), ind(α⊗L⊗Fν) 6 ind(α⊗L⊗Fν( `
d−1√

θ)) · [L⊗Fν( `
d−1√

θ) :

L⊗Fν ]. Since [L⊗Fν( `
d−1√

θ) : L⊗Fν ] 6 `d−1 < [E : F ], it is enough to show that α⊗L⊗Fν( `
d−1√

θ)
is trivial.

Since F (
√̀
v)/F is the unique subextension of E/F of degree ` and [E : F ] = `d, we have

α⊗Fν( `
d−1√

θ) = (Fν( `
d−1√

θ,
√̀
v)/Fν( `

d−1√
θ), σ, `

d−1√
θ) (cf. Lemma 2.1). Let M = Fν( `

d−1√
θ). Since

κ contains a primitive `th root of unity, we have α ⊗M = (v, `
d−1√

θ)`. Then M is a complete
discretely valued field. Since g is a unit at ν, θ is a unit at ν. Hence the residue field of M
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is κ(ν)(
`d−1√

θ). Since θ and v are units at ν, α ⊗M = (v, `
d−1√

θ) is unramified at the discrete
valuation of M . Hence it is enough to show that the specialization β of α ⊗M is trivial over

κ(ν)(
`d−1√

θ)⊗ L0, where L0 is the residue field of L⊗ Fν at ν.
Suppose that Lν̃/Fν is ramified. Since Lν̃ = Fν(

√̀
v + ug), v + ug is not a unit at ν. Thus

v = −ug modulo F ∗`
d

ν and θ = w0ug = −w0v modulo F ∗`
d

ν . In particular, `d−1√
θ = `d−1√−w0v

modulo M∗`. Since v, w0 ∈ κ and κ a finite field, β = (v, `
d−1√

θ) = (v, `
d−1√−w0v) is trivial.

Suppose that Lν̃/Fν is unramified. Then L0 = κ(ν)(
√̀
v + ug). Since κ(ν) is a global field of

positive characteristic and d− 1 > 1, by Lemma 4.13, β ⊗ L0(
`d−1√

θ) = 0. 2

Lemma 6.4. Suppose Lπ/Fπ and Lδ/Fδ are unramified cyclic field extensions of degree ` and
µπ ∈ Lπ, µδ ∈ Lδ such that:
• −λ = NLπ/Fπ(µπ) and −λ = NLδ/Fδ(µδ);
• α · (µπ) = 0 ∈ H3(Lπ, µ

⊗2
n ), α · (µδ) = 0 ∈ H3(Lδ, µ

⊗2
n );

• α = 0 or α 6= 0, ind(α⊗ Lπ) < ind(α) and ind(α⊗ Lδ) < ind(α).
Then there exist a cyclic extension L/F of degree ` and µ ∈ L such that:
• −λ = NL/F (µ);
• α · (µ) = 0 ∈ H3(L, µ⊗2

n );
• L⊗ Fπ ' Lπ and L⊗ Fδ ' Lδ;
• if α 6= 0, then ind(α⊗ L) < ind(α).

Proof. Since α · (µπ) = 0 ∈ H3(Lπ, µ
⊗2
n ) and −λ = NLπ/Fπ(µπ), by taking the corestriction, we

see that α · (−λ) = 0 ∈ H3(Fπ, µ
⊗2
n ). Since α · (−λ) is unramified on A, except possibly at π and

δ, by Corollary 5.5, α · (−λ) = 0.
Suppose that λ 6∈ ±F ∗`. Then, by Lemmas 2.6 and 6.2, L = F (

√̀
λ) and µ = −

√̀
λ have the

required properties.
Suppose that λ ∈ F ∗` or −λ ∈ F ∗`. Let L(π) and L(δ) be the residue fields of Lπ and Lδ,

respectively. Since Lπ/Fπ and Lδ/Fδ are unramified cyclic extensions of degree `, L(π)/κ(π) and
L(δ)/κ(δ) are cyclic extensions of degree `. Since F contains a primitive `th root of unity, we
have L(π) = κ(π)[X]/(X` − a) and L(δ) = κ(δ)[X]/(X` − b) for some a ∈ κ(π) and b ∈ κ(δ).
Since κ(π) is a complete discretely valued field with δ a parameter, without loss of generality we
assume that a = u1δ

ε
for some unit u1 ∈ A and ε = 0 or 1. Similarly, we have b = u2π

ε′ for some
unit u2 ∈ A and ε′ = 0 or 1.

Suppose α = 0. If −λ ∈ F ∗`, then L = F (
√̀
u1δε+` + u2πε

′+`) and µ =
√̀
−λ ∈ F ⊂ L have

the required properties. Suppose −λ 6∈ F ∗`. Then λ ∈ F ∗` and hence ` = 2 and −1 6∈ F ∗2. In
particular, −1 6∈ κ(π)∗2 and −1 6∈ κ(δ)∗2. Since −λ is a norm from Lπ and Lδ, −1 is a norm from
Lπ and Lδ. Thus −1 is a norm from the extensions L(π)/κ(π) and L(δ)/κ(δ). Hence L(π)/κ(π)
and L(δ)/κ(δ) are unramified and hence ε = ε′ = 0. Let L be the degree two extension of F which
is unramified on A. Then −1 is a norm from L. Hence there exists µ ∈ L such that NL/F (µ) = −λ
and L, µ have the required properties.

Suppose that α 6= 0. Then ind(α⊗ Lπ) < ind(α) and ind(α⊗ Lδ) < ind(α).
By Corollary 5.7, we assume that α = (E/F, σ, uπδj) for some cyclic extension E/F which

is unramified on A, except possibly at δ, u a unit in A and j > 0. Then ind(α) = [E : F ].
Let E0 be the residue field of E at π. Then [E : F ] = [E0 : κ(π)]. Since ∂π(α) = (E0/κ(π), σ),
per(∂π(α)) = [E : F ] = ind(α). Since Lπ/Fπ is an unramified extension of degree `, π is a
parameter in Lπ and hence ind(α ⊗ Lπ) = [ELπ : Lπ]. Since ind(α ⊗ Lπ) < ind(α) = [Eπ : Fπ],
[ELπ : Lπ] < [Eπ : Fπ] and hence Lπ ⊆ Eπ. Thus the residue field L(π) of Lπ is the unique
subextension of E0/κ(π) of degree `.
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Suppose that ε = ε′ = 0. Since Lπ and Lδ are fields, u1 and u2 are not `th powers. Let L/F

be the unique cyclic field extension of degree ` which is unramified on A. Then L ⊗ Fπ ' Lπ
and L ⊗ Fδ ' Lδ. Let B be the integral closure of A in L. Then B is a regular local ring with

maximal ideal (π, δ) and hence, by Proposition 5.8, ind(α⊗ L) < ind(α).

Suppose ε = 1. Then Lπ = Fπ(
√̀
u1δ) and L(π) = κ(π)(

√̀
u1δ). Since E0/κ(π) is a cyclic

extension containing a totally ramified extension, E0/κ(π) is a totally ramified cyclic extension.

Thus κ(π) contains a primitive `dth root of unity and E0 = κ(π)(
`d
√
u1δ) (cf. Lemmas 2.3

and 2.4). In particular, F contains a primitive `dth root of unity and α = (u1δ, uπδ
j) =

(u1δ, u
′π). Then ∂δ(α) = κ(δ)( `

d
√

(u′π)). Since Lδ/Fδ is an unramified extension of degree `

with ind(α ⊗ Lδ) < ind(α), the residue field L(δ) of Lδ is the unique subfield of κ(δ)(
`d
√
u′π)

of degree ` over κ(δ). Hence L(δ) = κ(δ)(
√̀
u′π). Since L(δ) = κ(δ)(

√̀
u2πε

′
), we have ε′ = 1

and u′ = u2 modulo F ∗`. Hence α = (u1δ, u2π). Let L = F (
√̀
u1δ + u2π). Then L⊗Fπ ' Lπ and

L⊗Fδ ' Lδ. Since for any a, b ∈ F ∗, (a, b) = (a+b,−a−1b), we have α = (u1δ+u2π,−u−1
1 δ−1u2π).

In particular, ind(α⊗ L) < ind(α).

Suppose that ε = 0 and ε′ = 1. Suppose j is coprime to `. Then, by Lemma 4.14, ind(α) =

per(∂δ(α)), and, as in the proof of Corollary 5.7, we have α = (E′/F, σ′, vδπj
′
) for some cyclic

extension E′/F which is unramified on A, except possibly at π. Thus, we have the required

extension as in the case ε = 1.

Suppose j is divisible by `. Since ε = 0, Lπ = Fπ(
√̀
u1). Since the residue field L(π) of Lπ is

contained in the residue field E0 of E at π, F (
√̀
u1) ⊂ E and hence E/F is not totally ramified

at δ. Since E/F is unramified on A, except possibly at δ, by Lemma 5.11, E = Enr(
`e
√
wδ)

for some unit w in the integral closure of A in Enr. Suppose e = 0. Then E = Enr/F is

unramified on A. Since κ is a finite field and A is complete, every unit in A is a norm from

E/F . Thus, multiplying uπδj by a norm from E/F , we assume that α = (E/F, σ, u2πδ
j).

Suppose that e > 0. Then, by Lemma 5.11, NE/F ( `
e√
wδ) = w1δ

`f with w1 ∈ A∗\A∗`. Since

A∗/A∗`
d

is a cyclic group of order dividing `d, we have u−1u2 = wj
′

1 modulo A∗`
d
. In particular,

NE/F (( `
e√
wδ)j

′
) = wj

′

1 δ
`f j′ = u−1u2δ

`f j′ modulo A∗`
d
. Hence, we have α = (E/F, σ, u2πδ

j+j′`f )

for some j′. Since j is divisible by ` and f > 1, j+j′`f is divisible by `. Hence, we assume that α =

(E/F, σ, u2πδ
`m) for some m. Thus, by Lemma 6.3, there exists i > 0 such that ind(α ⊗ L) <

ind(α) for L = F (
√̀
u1δ`

f+`di + u2πδ`m).

By choice, we have that L/F is the unique unramified extension or L = F (
√̀
u1δ + u2π) or

L = F (
√̀
u1δ`

f+`di + u2πδ`m) with `f + `di > `m. Let B be the integral closure of A in L. Then

B is a complete regular local ring with π and δ remain prime in B.

Suppose −λ ∈ F ∗`. Since −λ = −wπsδt, we have −λ = w`0π
`s1δ`t1 for some unit w0 ∈ A. Let

µ = w0π
s1δt1 ∈ F . Then NL/F (µ) = µ` = −λ. Since α · (−λ) = 0, by Proposition 4.6, α · (µ) = 0

in H3(Lπ, µ
⊗2
n ) and H3(Lδ, µ

⊗2
n ). Hence α · (µ) is unramified at all height one prime ideals of B.

Since B is a complete regular local ring with residue field finite, α · (µ) = 0 (Lemma 5.3).

Suppose that −λ 6∈ F ∗`. Then λ ∈ F ∗`, ` = 2 and −1 6∈ F ∗`. Hence −1 6∈ F ∗2π and −1 6∈ F ∗2δ .

In particular, −1 6∈ κ(π)∗2, −1 6∈ κ(δ)∗2. Since λ ∈ F ∗2 and −λ is a norm from Lπ and Lδ, −1

is a norm from Lπ and Lδ. Hence −1 is a norm from L(π) and L(δ). Since κ(π) and κ(δ) are

local fields with residue fields of characteristic not equal to 2, we have L(π) ' κ(π)(
√
−1) and

L(δ) ' κ(δ)(
√
−1). Let L = F (

√
−1). Since κ is a finite field of characteristic not equal to 2, −1

is a norm from L. Since λ ∈ F ∗2, there exists µ ∈ L such that NL/F (µ) = −λ. Further, L and µ

have the required properties. 2
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Lemma 6.5. Suppose that νπ(λ) is divisible by `, α is unramified on A, except possibly at π and
δ, and α · (−λ) = 0. Let Lπ be a finite product of unramified finite field extensions of Fπ with
dimFπ(Lπ) = `, µπ ∈ Lπ and d0 > 2 such that:
• NLπ/Fπ(µπ) = −λ;
• ind(α⊗ Lπ) < d0;
• α · (µπ) = 0 in H3(Lπ, µ

⊗2
n ).

Then there exist an étale algebra L over F of degree ` and µ ∈ L such that:
• NL/F (µ) = −λ;
• ind(α⊗ L) < d0;
• α · (µ) = 0 ∈ H3(L, µ⊗2

n ); and
• there is an isomorphism φ : Lπ → L⊗ Fπ with

φ(µπ)(µ⊗ 1)−1 ∈ (L⊗ Fπ)`
m
,

for all m > 1.
Further, if Lπ/Fπ is a field extension with the residue field of Lπ unramified over κ(π), then L
can be chosen to be a field extension with L/F unramified on A.

Proof. Since νπ(λ) is divisible by `, λ = wπs1`δt for some w ∈ A a unit. Write Lπ =
∏q

1 Lπ,i
with Lπ,i/Fπ a finite unramified extension and µπ = (µ1, . . . , µq) with µi ∈ Lπ,i. Since Lπ,i/Fπ
is unramified, π is a parameter in Lπ,i for all i. Write µi = θiπ

ri for some θi ∈ Lπ,i a unit at π.
Let θ = (θ1, . . . , θq) ∈ Lπ. Since NLπ/Fπ(µπ) = λ = wπs1`δt, we have NLπ/Fπ(θ) = wδt.

For each i, let Li/F be a field extension with Li ⊗ Fπ ' Lπ,i as in Lemma 5.12. Let Bi be
the integral closure of A in Li. Then each Bi is regular local ring with maximal ideal (π, δi) for
some prime δi with NLi/F (δi) = viδ

fi for some unit vi ∈ A and fi > 1 (Remark 5.13). Then the
residue field Li(π) of Li at the discrete valuation given by π is the field of fractions of Bi/(π). In
particular, Li(π) is a complete discrete valued field with δi ∈ Bi/(π) as a parameter. We identify
Lπ,i with Li ⊗ Fπ and assume that µi ∈ Li ⊗ Fπ.

For 1 6 i 6 q, let θ̄i be the image of θi in Li(π). Then θ̄i = wiδ̄
ti
i for some unit wi ∈

Bi and ti ∈ Z. Since NLπ/Fπ(θ) = wδt and NLπ,i/Fπ(δi) = viδ
fi , we have

∏q
1NLi(π)/κ(π)(θi) =∏q

1NLi(π)/κ(π)(wi)
∏q

1(vi
tiδ

fiti) = wδt. Hence

∑
fiti = t and NL1(π)/κ(π)(w1) = w

q∏
2

NLi(π)/κ(π)(wi)
−1

q∏
1

vi
−ti .

Since A is complete, there exists w′1 ∈ B1 such that w′1 = w1 ∈ B1/(π) and NL1/F (w′1) =

w
∏q

2NLi/Fπ(wi)
−1

∏q
1 v
−ti
i . Let L =

∏q
1 Li and µ = (w′1δ

t1
1 π

s1 , w2δ
t2
2 π

s1 , . . . , wqδ
tq
q πs1) ∈ L. Then

we claim that L and µ have the required properties.
By the choice of w′1, we have NL/F (µ) = λ. Since Li⊗Fπ ' Lπ,i, we have L⊗Fπ ' Lπ. Since

w′1 = w1 ∈ B1/(π), we have µ−1µπ = 1 ∈ B/(π). Since B is complete, we have µ−1µπ ∈ (L⊗Fπ)`
m

for all m > 1.
Since α is unramified on A, except possibly at π and δ, α ⊗ Li is unramified on Bi, except

possibly at π and δi for each i. Since ind(α ⊗ Lπ,i) < d0, by Proposition 5.8, ind(α ⊗ Li) =
ind(α⊗ Lπ,i) < d0. Hence ind(α⊗ L) < d0.

Since µ−1µπ ∈ (L ⊗ Fπ)`
m

for all m > 1, α · (µ) = α · (µπ) = 0 ∈ H3(Lπ, µ
⊗2
n ). Since α is

unramified on A, except possibly at π and δ, and µ = (w′1δ
t1
1 π

s1 , w2δ
t2
2 π

s1 , . . . , wqδ
tq
q πs1) with w′1

and wi units in B, by Corollary 5.5, we have α · (µ) = 0 in H3(L, µ⊗2
n ). Thus L and µ have the

required properties.
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Further, if Lπ/Fπ is a field extension such that the residue field Lπ(π) of Lπ is an unramified
extension of κ(π), then by the choice of L, L/F is a field extension with L/F unramified on A
(see the proof of Lemma 5.12). 2

Lemma 6.6. Suppose that α= (E/F, σ, uπδm) for some cyclic extension E/F which is unramified
on A, except possibly at δ. Let Eδ be the lift of the residue of α at δ. If t1α ⊗ Eδ = 0 for some
t1, then there exists an integer r1 > 0 such that w1δ

mr1−t1 is a norm from the extension E/F
for some unit w1 ∈ A.

Proof. Write α ⊗ Fδ = α′ + (Eδ/Fδ, σδ, δ) as in Lemma 4.1. Suppose that t1α ⊗ Eδ = 0. Since
α ⊗ Eδ = α′ ⊗ Eδ, t1α′ ⊗ Eδ = 0. Hence t1α

′ = (Eδ, σδ, θ) for some θ ∈ Fδ. Since α′ and Eδ/Fδ
are unramified at δ, we assume that θ ∈ Fδ is a unit at δ. Since the residue field κ(δ) of Fδ is a
complete discretely valued field with the image of π as a parameter, without loss of generality we
assume that θ = w0π

r1 for unit w0 ∈ A and r1 > 0. Let λ1 = w0π
r1δt1 . Since t1α

′ = (Eδ, σδ, θ),
by Lemma 4.7, ∂δ(α · (λ1)) = 0. Since κ(δ) is a local field, α · (λ1) = 0 ∈ H3(Fδ, µ

⊗2
n ) (cf. the

proof of Proposition 4.6). Since α is unramified on A , except possibly at π, δ and λ1 = w0π
r1δt1

with w0 ∈ A a unit, α · (λ1) is unramified in A, except possibly at π and δ. Hence, by Corollary
5.5, α · (λ1) = 0 ∈ H3(F, µ⊗2

n ). We have

0 = ∂π(α · (λ1)) = ∂π((E/F, σ, uπδm) · (w0π
r1δt1)) = (E(π)/κ(π), σ, (−1)r1ur1w−1

0 δ
mr1−t1

).

Since (E/F, σ, (−1)r1ur1w−1
0 δmr1−t1) is unramified on A, except possibly at π and δ, by Corollary

5.5, (E/F, σ, (−1)r1ur1w−1
0 δmr1−t1) = 0. In particular, (−1)r1ur1w−1

0 δmr1−t1 is a norm from the
extension E/F . 2

Lemma 6.7. Suppose that α · (−λ) = 0 and λ = wπsδt1` for some unit w ∈ A and s coprime to `.
Let Eδ be the lift of the residue of α at δ. If t1α⊗ Eδ = 0, then there exists θ ∈ A such that:
• α · (θ) = 0;
• νπ(θ) = 0;
• νδ(θ) = t1.

Proof. Since s is coprime to `, by Lemma 6.1, α = (E/F, σ, (−1)s+1λ) for some cyclic extension
E/F which is unramified on A, except possibly at δ. Let r = [E : F ]. Since r is a power of ` and
s is coprime to `, there exists an integer s′ > 1 such that ss′ ≡ 1 modulo r. We have

α = αss
′

= (E/F, σ, (−1)s+1wπsδt1`)ss
′

= (E/F, σ)s · ((−1)s+1wπsδt1`)s
′

= (E/F, σ)s · ((−1)s
′
ws
′
πδs

′t1`).

Since s is coprime to `, we also have (E/F, σ)s = (E/F, σs
′
) (cf. § 2) and hence α =

(E/F, σs
′
, ((−1)s

′
ws
′
πδs

′t1`)). Thus, by Lemma 6.6, there exist a unit w1 ∈ A and r1 > 0 such
that w1δ

s′t1`r1−t1 is a norm from E/F . Since s′`r1 − 1 is coprime to `, s′`r1 − 1 is coprime to
r and hence there exists an integer r2 > 0 such that (s′`r1 − 1)r2 ≡ 1 modulo r. In particular,
wr21 δ

t1 ≡ (w1δ
s′t1`r1−t1)r2 modulo F ∗r and hence wr21 δ

t1 is a norm from E/F . Thus θ = wr21 δ
t1

has the required properties. 2

Lemma 6.8. Let Eπ and Eδ be the lift of the residues of α at π and δ, respectively. Suppose that
λ = wπs1`δt1` for some unit w ∈ A. If α · (−λ) = 0, s1α⊗ Eπ = 0 and t1α⊗ Eδ = 0, then there
exists θ ∈ A such that:
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• α · (θ) = 0;
• νπ(θ) = s1;
• νδ(θ) = t1.

Proof. By Corollary 5.7, we assume that α = (E/F, σ, uπδm) for some extension E/F
which is unramified on A, except possibly at δ and m > 0. Without loss of generality, we assume
that 0 6 m < [E : F ]. By Lemma 6.6, there exist an integer r1 > 0 and a unit w1 ∈ A such that
w1δ

mr1−t1 is a norm from E/F . Let r = [E : F ] and θ = (−uπ + δr−m)r1−s1w−1
1 (−u)s1πs1δt1 .

Since r −m > 0, we have νπ(θ) = s1 and νδ(θ) = t1.
Now we show that α · (θ) = 0. Let γ be a prime in A with (γ) 6= (π) and (γ) 6= (δ). Since α

is unramified on A, except possibly at π and δ, if γ does not divide θ, then α · (θ) is unramified
at γ. Suppose γ divides θ. Then γ = −uπ+ δr−m. Thus uπδm ≡ δr modulo γ. Since ∂γ(α · (θ)) =
(E(γ), σ, uπδ

m
)r1−s1 , where E(γ) is the residue field of E at γ and bar denotes the image

modulo γ, we have ∂γ(α · (θ)) = (E(γ), σ, uπδ
m

)r1−s1 = (E(γ), σ, δ
r
)r1−s1 = 0. Hence α · (θ)

is unramified on A, except possibly at π and δ.
We have (−uπ + δr−m)r1−s1 ≡ δr(r1−s1)+m(s1−r1) modulo π and hence

θ ≡ δr(r1−s1)+m(s1−r1)w−1
1 (−u)s1πs1δt1 ≡ (−uπδm)s1(w1δ

mr1−t1)−1 modulo F ∗rπ .

Since w1δ
mr1−t1 is a norm from E/F and r = [E : F ], we have

(α · (θ))⊗ Fπ = (E/F, σ, uπδm) · ((−uπδm)s1(w1δ
mr1−t1)−1)⊗ Fπ

= (E/F, σ, uπδm) · ((−uπδm)s1)⊗ Fπ = 0.

Thus, by Corollary 5.5, we have α · (θ) = 0. 2

7. Patching

We fix the following data:
• R a complete discrete valuation ring;
• K the field of fractions of R;
• κ the residue field of R;
• ` a prime not equal to char(κ) and n = `d for some d > 1;
• X a smooth projective geometrically integral curve over K;
• F the function field of X;
• α ∈ H2(F, µn), α 6= 0;
• λ ∈ F ∗ with α · (−λ) = 0;
• X a normal proper model of X over R and X0 the reduced special fiber of X ;
• P0 the finite set of closed points of X0 consisting of all the points of intersection of

irreducible components of X0.
We recall the following notation from [HH10, § 6] and [HHK09, § 3.3]. For x ∈ X , let Âx

be the completion of the local ring Ax at x on X , Fx the field of fractions of Âx and κ(x) the
residue field at x. Let η be a codimension zero point of X0 and U ⊂ η be a nonempty open
subset. Let AU be the ring of all those functions in F which are regular at every closed point
of U . Let t be a parameter in R. Then t ∈ AU . Let ÂU be the (t)-adic completion of AU and FU
be the field of fractions of ÂU . Then F ⊆ FU ⊆ Fη.

Let η ∈ X0 be a codimension zero point and P ∈ X0 be a closed point such that P is in the
closure of η. By an abuse of notation, we denote the closure of η by η and say that P is a point
of η. A branch is a height one prime ideal ℘ of ÂP containing t. Let ℘ be a branch. Let Â℘ be
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the completion of the localization of ÂP at ℘ and F℘ the field of fractions of Â℘. The contraction
℘ ∩ AP of ℘ to AP is a height one prime ideal and hence a branch ℘ uniquely determines an
irreducible component η of X0 containing P .

Suppose further that X is a regular proper model of X over R and X0 is a union of regular
curves with normal crossings. Then Ax, Âx are regular local rings. Every branch ℘ is uniquely
determined by a pair (P, η) where η is a codimension zero point of X0 and P ∈ η is a closed
point. In this case, F℘ is the completion of FP at the discrete valuation of FP given by η. We

also denote F℘ by FP,η. Note that the residue field κ(η)P of Â℘ is the completion of the residue
field κ(η) at the discrete valuation given by P .

We begin with the following result, which follows from [HHK15a, Theorem 9.11] (cf. the
proof of [PS15, Theorem 2.4]).

Proposition 7.1. For each irreducible component Xη of X0, let Uη be a nonempty proper open
subset of Xη and P = X0\∪η Uη, where η runs over the codimension zero points of X0. Suppose
that P0 ⊆P. Let L be a finite extension of F . Suppose that there exists N > 1 such that for
each codimension zero point η of X0, ind(α⊗L⊗ FUη) 6 N , and for every closed point P ∈P,
ind(α⊗ L⊗ FP ) 6 N . Then ind(α⊗ L) 6 N .

Proof. Let Y be the integral closure of X in L and φ : Y → X be the induced map. Let P ′ be a
finite set of closed points of Y containing the inverse image of P under φ. Let U be an irreducible
component of Y0\P ′. Then φ(U) ⊂ Uη for some Uη and there is a homomorphism of algebras
from L⊗FUη to LU . (Note that L⊗FUη may be a product of fields.) Since ind(α⊗L⊗FUη) 6 N ,
we have ind(α⊗LU ) 6 N . Let Q ∈P ′. Suppose φ(Q) = P ∈P. Then there is a homomorphism
of algebras from L⊗FP to LQ. (Once again note that L⊗FP may be a product of fields.) Since
ind(α⊗ L⊗ FP ) 6 N , ind(α⊗ LQ) 6 N . Suppose that φ(Q) ∈ Uη for some Uη. Then there is a
homomorphism of algebras from L⊗FUη to LQ. Thus ind(α⊗LQ) 6 N . Therefore, by [HHK15a,
Theorem 9.11], ind(α⊗ L) 6 N . 2

Lemma 7.2. Let η be a codimension zero point of X0. Suppose there exist a field extension or
split extension Lη/Fη of degree ` and µη ∈ Lη such that:

(1) NLη/Fη(µη) = −λ;

(2) ind(α⊗ Lη) < ind(α);

(3) α · (µη) = 0 ∈ H3(Lη, µ
⊗2
n ).

Then there exist a nonempty open subset Uη of η, a split or field extension LUη/FUη of degree `
and µUη ∈ LUη such that:

(1) NLUη/FUη
(µUη) = −λ;

(2) ind(α⊗ LUη) < ind(α);

(3) α · (µUη) = 0 ∈ H3(LUη , µ
⊗2
n );

(4) there is an isomorphism φUη : LUη ⊗ Fη → Lη with φUη(µUη ⊗ 1)µ−1
η ∈ L∗`

m

η for all m > 1.

Further, if Lη/Fη is cyclic, then LUη/FUη is cyclic.

Proof. Suppose Lη =
∏
Fη is the split extension of degree `. Write µη = (µ1, . . . , µ`) with µi ∈ Fη.

Then −λ = NLη/Fη(µη) = µ1 · · ·µ`. Since ind(α ⊗ Lη) = ind(α ⊗ Fη) < ind(α), by [HHK15a,
Proposition 5.8], [KMRT98, Proposition 1.17], there exists a nonempty open subset Uη of η such
that ind(α ⊗ FUη) < ind(α). Since Fη is the completion of F at the discrete valuation given
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by η, there exist θi ∈ F ∗, 1 6 i 6 `, such that θiµ
−1
i ≡ 1 modulo the maximal ideal of R̂η. Let

LUη =
∏
FUη and µUη = (−λ(θ2 · · · θ`)−1, θ2, . . . , θ`) ∈ LUη . Then NLUη/FUη

(µUη) = −λ. Since

α · (θi) ∈ H3(FUη , µ
⊗2
n ) and α · (θi) = 0 ∈ H3(Fη, µ

⊗2
n ), by [HHK14, Proposition 3.2.2], there

exists a nonempty open subset Vη ⊆ Uη such that α · (θi) = 0 ∈ H3(FVη , µ
⊗2
n ). By replacing Uη

by Vη, we have the required LUη and µUη ∈ LUη .
Suppose that Lη/Fη is a field extension of degree `. Let F hη be the henselization of F at the

discrete valuation η. Then there exists a field extension Lhη/F
h
η of degree ` with an isomorphism

φhη : Lhη ⊗Fhη Fη → Lη. We identify Lhη with a subfield of Lη through φhη . Further, if Lη/Fη is a

cyclic extension, then Lhη/F
h
η is also a cyclic extension. Let π̃η ∈ Lhη be a parameter. Then π̃η is

also a parameter in Lη. Write µη = uηπ̃
r
η for some uη ∈ Lη a unit at η. Since NLη/Fη(µη) = −λ,

we have −λ = NLη/Fη(uη)NLη/Fη(π̃η). Since uη ∈ Lη is a unit at η, NLη/Fη(uη) ∈ Fη is a unit

at η. By [Art69, Theorem 1.10], there exists uhη ∈ Lhη such that NLhη/F
h
η

(uhη) = NLη/Fη(uη) and

uhη ≡ uη modulo the maximal ideal of the valuation ring of Lhη . Let µhη = uhη π̃
r
η ∈ Lhη . Then

α·(µhη) = α·(µη) = 0 ∈H3(Lη, µ
⊗2
n ) and hence α·(µhη) = 0 ∈H3(Lhη , µ

⊗2
n ) (cf. the proof of [HHK14,

Proposition 3.2.2]). Since F hη is the filtered direct limit of the fields FV , where V ranges over the
nonempty open subset of η [HHK14, Lemma 3.2.1], there exist a nonempty open subset Uη of η, a
field extension LUη/FUη of degree ` and µUη ∈ LUη such that NLUη/FUη

(µUη) = −λ and there is an

isomorphism φhUη : LUη⊗F hη ' Lhη with φhUη(µUη) = µhη . Since uhη ≡ uη modulo the maximal ideal of

the valuation ring of Lη, µη = uηπ̃
r
η and µhη = uhη π̃

t
η, it follows that φUη(µUη⊗1)µ−1

η ∈ L∗`
m

η for all
m> 1. By shrinking Uη, we assume that α·(µUη) = 0 ∈H3(LUη , µ

⊗2
n ) [HHK14, Proposition 3.2.2].

Further, if Lη/Fη is cyclic, by shrinking Uη, we can assume that LUη/FUη is cyclic. 2

For the rest of this section we assume that for each point x of X0, there exist an étale algebra
Lx/Fx of degree ` and µx ∈ Lx such that:

(1) NLx/Fx(µx) = −λ;

(2) α · (µx) = 0 ∈ H3(Lx, µ
⊗2
n );

(3) ind(α⊗ Lx) < ind(α);

(4) for any branch (P, η) there is an isomorphism φP,η : Lη ⊗ FP,η → LP ⊗ FP,η such that
φP,η(µη)µ

−1
P ∈ (LP ⊗ FP,η)∗`

m
for all m > 1;

(5) if x = η is a codimension zero point of X0, then Lη/Fη is either a field or the split extension.

Lemma 7.3. There exist:
• a field extension L/F of degree `;
• a nonempty open proper subset Uη of η for every codimension zero point η of X0 and
µ′Uη ∈ L⊗ FUη ;

• for every P ∈P = X0\ ∪ Uη, µ′P ∈ L⊗ FP ,
such that:

(1) ind(α⊗ L) < ind(α);

(2) NL⊗FUη/FUη (µ′Uη) = −λ and α ·(µ′Uη) = 0 ∈H3(L⊗FUη , µ⊗2
n ) for all codimension zero points

η of X0;

(3) NL⊗FP /FP (µ′P ) = −λ and α · (µ′P ) = 0 ∈ H3(L⊗ FP , µ⊗2
n ) for all P ∈P;

(4) for any branch (P, η), µ′Uηµ
′ −1
P ∈ (LP ⊗ FP,η)`

m
for all m > 1.

Further, if for each x ∈ X0, Lx/Fx is cyclic or split, then L/F is cyclic.
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Proof. Let η be a codimension zero point of X0. By assumption, there exist a field or split
extension Lη/Fη and µη ∈ Lη such that NLη/Fη(µη) = −λ, α · (µη) = 0 ∈ H3(Lη, µ

⊗2
n ) and

ind(α ⊗ Lη) < ind(α). By Lemma 7.2, there exist a nonempty open set Uη of η, a field or split
extension LUη/FUη of degree ` and µUη ∈ LUη such that NLUη/FUη

(µUη) = −λ, α · (µUη) = 0 ∈
H3(LUη , µ

⊗2
n ), ind(α⊗LUη) < ind(α), φη : LUη⊗Fη → Lη an isomorphism φUη(µUη⊗1)µ−1

η ∈ L`
m

η

for all m > 1. By shrinking Uη, if necessary, we assume that P0 ∩ Uη = ∅.
Let P = X0\ ∪η Uη and P ∈ P. Then, by assumption, we have an étale algebra LP /FP

of degree ` and for every branch (P, η) there is an isomorphism φP,η : Lη ⊗ FP,η → LP ⊗ FP,η.
Thus φP,Uη = φP,η(φη ⊗ 1) : LUη ⊗ Fη ⊗ FP,η → LP ⊗ FP,η is an isomorphism. Thus, by [HH10,
Theorem 7.1], there exists an extension L/F of degree ` with isomorphisms φUη : L⊗FUη → LUη
for all codimension zero points η of X0 and φP : L⊗FP → LP for all P ∈P with the following
commutative diagram:

L⊗ FUη ⊗ FP,η
φUη⊗1

//

��

LUη ⊗ Fη ⊗ FP,η
φP,Uη
��

L⊗ FP ⊗ FP,η
φP⊗1 // LP ⊗ FP,η

where the vertical arrow on the left is the natural map. Further, if each Lx/Fx is cyclic or split
for all x ∈ X0, then L/F is cyclic [HH10, Theorem 7.1].

Since ind(α⊗L⊗FUη) < ind(α) for all codimension zero points of X0 and ind(α⊗L⊗FP ) <
ind(α) for all P ∈P, by Proposition 7.1, ind(α⊗ L) < ind(α). In particular, L is a field.

For every codimension zero point η of X0, let µ′Uη = (φUη)−1(µUη) ∈ L⊗ FUη , and for every

P ∈P, let µ′P = (φP )−1(µP ) ∈ L⊗FP . Since φUη and φP are isomorphisms, we have the required
properties. 2

Proposition 7.4. Suppose that for every branch ℘ = (P, η), there exists t℘ > 0 such that FP,η
has no primitive `t℘th root of unity. Let L/F be a cyclic field extension of degree `. Suppose
that:
• for every codimension zero point η of X0, there exist a nonempty open proper subset Uη of
η and µ′Uη ∈ L⊗ FUη ;

• for every P ∈P = X0\ ∪ Uη, µ′P ∈ L⊗ FP ,
such that:

(1) NL⊗FUη/FUη (µ′Uη) = −λ and α ·(µ′Uη) = 0 ∈H3(L⊗FUη , µ⊗2
n ) for all codimension zero points

η of X0;

(2) NL⊗FP /FP (µ′P ) = −λ and α · (µ′P ) = 0 ∈ H3(L⊗ FP , µ⊗2
n ) for all P ∈P;

(3) for any branch (P, η), µ′Uηµ
′ −1
P ∈ (LP ⊗ FP,η)`

m
for all m > 1.

Then there exists µ ∈ L∗ such that:
• NL/F (µ) = −λ; and
• α · (µ) = 0 ∈ H3(L, µ⊗2

n ).

Proof. Let σ be a generator of Gal(L/F ). Let ℘ = (P, η) be a branch. Since NL⊗FP,η/FP,η(µ′Uη) =

NL⊗FP,η/FP,η(µ′P ), by Lemma 2.7, there exists θP,η ∈ L⊗ FP,η such that µ′Uηµ
′ −1
P = θ−`

d

P,η σ(θ`
d

P,η).

Applying [HHK09, Theorem 3.6] for the rational group RL/FGm, there exist θUη ∈ L⊗FUη and
θP ∈ L ⊗ FP for every codimension zero point η of X0 and P ∈ P such that for every branch
(P, η), θP,η = θUηθP .
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Let µ′′Uη = µ′Uηθ
`d

Uη
σ(θ−`

d

Uη
) ∈ L⊗ FUη and µ′′P = µ′P θ

−`d
P σ(θ`

d

P ) ∈ L⊗ FP . If (P, η) is a branch,
then we have

µ′′Uη = µ′Uηθ
`d

Uησ(θ−`
d

Uη
)

= µ′P θ
−`d
P,η σ(θ`

d

P,η)θ
`d

Uησ(θ−`
d

Uη
)

= µ′P θ
−`d
P σ(θ`

d

P )

= µ′′P ∈ L⊗ FP,η.

Hence, by [HH10, Proposition 6.3], there exists µ ∈ L such that µ = µ′′Uη and µ = µ′′P for every

codimension zero point η of X0 and P ∈P. Clearly, NL/F (µ) = −λ over F . Let P ∈P. Since

α·(µ′P ) = 0 and α·(θ`dP ) = 0, α·(µ) = 0 ∈H3(L⊗FP , µ⊗2
n ). Similarly, α·(µ) = 0 ∈H3(L⊗FUη , µ⊗2

n )

for every codimension zero point η of X0. Let Y be the normal closure of X in L and Y0 the

reduced special fiber of Y . Let η′ be a codimension zero point of Y0. Then the image η of η′

in X is a codimension zero point. Since Fη ⊂ Lη′ , we have a map L ⊗ FUη → Lη′ and hence

α · (µ) = 0 ∈ H3(Lη′ , µ
⊗2
n ). Let Q be a closed point of Y0 and P its image in X0. Suppose P ∈ Uη

for some η. Since FUη ⊂ FP ⊂ LQ, it follows that α · (µ) = 0 ∈ H3(LQ, µ
⊗2
n ). Suppose P ∈ P.

Since FP ⊂ LQ, we have α·(µ) = 0 ∈H3(LQ, µ
⊗2
n ). Hence, by [HHK14, Theorem 3.2.3], α·(µ) = 0

in H3(L, µ⊗2
n ). 2

Proposition 7.5. Suppose that for every branch ℘ = (P, η), there exists t℘ > 0 such that FP,η
has no primitive `t℘th root of unity. Let L/F be an extension of degree ` as in Lemma 7.3. Then

there exist a field extension N/F of degree coprime to ` and µ ∈ (L⊗N)∗ such that:

• NL⊗N/N (µ) = −λ; and

• α · (µ) = 0 ∈ H3(L⊗N,µ⊗2
n ).

Proof. Let L/F , Uη, P, µ′Uη and µ′P be as in Lemma 7.3. Since L/F is an extension of degree `,

there exists a field extension N/F of degree coprime to ` such that L⊗N is a cyclic extension

field extension N of degree `.

Let Y be the integral closure of X in N and Y0 the reduced special fiber of Y . Let φ : Y0 →

X0 be the induced morphism.

Let η′ ∈ Y0 be a codimension zero point. Then η = φ(η′) ∈ X0 is a codimension zero point.

Let Uη′ = φ−1(Uη) ∩ η′ ∈ Y0. Then Uη′ is a proper open subset of η′ and we have an inclusion

FUη ⊂ NUη′ . Let µ′Uη′
∈ (L ⊗F N) ⊗N NUη′ be the image of µ′Uη under the natural map L ⊗F

FUη → L ⊗F NUη′ ' (L ⊗F N) ⊗N NUη′ . Then we have N(L⊗FN)⊗NNUη′ /NUη′
(µ′Uη′

) = −λ and

α · (µ′Uη′ ) = 0 ∈ H3((L⊗F N)⊗N NUη′ , µ
⊗2
n ).

Let P ′ = Y0\ ∪η′ Uη′ . Let Q ∈ P ′ and P = φ(Q) ∈ X0. Then P ∈ P and FP ⊂ NQ. Let

µ′Q ∈ (L ⊗F N) ⊗N NQ be the image of µ′P under the natural map L ⊗F FP → L ⊗F NQ '
(L⊗F N)⊗N NQ. Then we have N(L⊗FN)⊗NNQ/NQ(µ′Q) =−λ and α · (µ′Q) = 0∈H3((L ⊗F N)

⊗N NQ, µ
⊗2
n ).

Let ℘′ = (Q, η′) be a branch in Y0 and P = φ(Q), η = φ(η′). Then (P, η) is a branch in X0.

Since µ′Uηµ
′ −1
P ∈ (LP ⊗ FP,η)`

m
for all m > 1, it follows that µ′Uη′

µ′ −1
Q ∈ ((L⊗F N)⊗N NQ,η′)

`m

for all m > 1. Since there exists t℘ > 0, such that FP,η has no primitive `t℘th root of unity and

NQ,η′/FP,η is a finite extension, there exists t℘′ > 0 such that NQ,η′ contains no primitive `t℘′ th

root of unity.
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Since L⊗F N is a cyclic extension of degree `, by Proposition 7.4, there exist µ′ ∈ L⊗F N
such that NL⊗FN/N (µ′) = −λ and α · (µ′) = 0 ∈ H3(L⊗F N,µ⊗2

n ). 2

8. Types of points, special points and type 2 connections

Let F , α ∈ H2(F, µn), λ ∈ F ∗ with α · (−λ) = 0 ∈ H3(F, µ⊗2
n ), X and X0 be as in § 7. Further,

assume that:
• κ is a finite field;
• X is regular such that ramX (α)∪ suppX (λ)∪X0 is a union of regular curves with normal

crossings;
• the intersection of any two distinct irreducible curves in X0 is at most one closed point.

We fix the following notation:
• P is the set of points of intersection of distinct irreducible curves in X0;
• OX ,P is the semi-local ring at the points of P on X ;
• if a codimension zero point η of X0 contains a closed point P ∈ P, then πη ∈ OX ,P is a

prime defining η on OX ,P .
Let η be a codimension zero point of X0. For the rest of this paper, let (Eη, ση) denote the

lift of the residue of α at η. Since α ∈ H2(F, µn) with n a power of `, [Eη : Fη] is a power of `.
If α is unramified at η, then Eη = Fη and let Mη = Fη. If α is ramified at η, then Eη 6= Fη and
there is a unique subextension of Eη of degree ` and we denote it by Mη.

Remark 8.1. Let η be a codimension zero point of X0. Suppose α is ramified at η. Since
ind(α⊗Fη) = ind(α⊗Eη)[Eη : Fη] (cf. Lemma 4.2) and Mη ⊂ Eη, it follows that ind(α⊗Mη) <
ind(α).

We divide the codimension zero points η of X0 as follows.
Type 1 : νη(λ) is coprime to ` and ind(α⊗ Fη) = ind(α).
Type 2 : νη(λ) is coprime to ` and ind(α⊗ Fη) < ind(α).
Type 3 : νη(λ) = r`, rα⊗ Eη 6= 0 and ind(α⊗ Fη) = ind(α).
Type 4 : νη(λ) = r`, rα⊗ Eη 6= 0 and ind(α⊗ Fη) < ind(α).
Type 5 : νη(λ) = r`, rα⊗ Eη = 0 and ind(α⊗ Fη) = ind(α).
Type 6 : νη(λ) = r`, rα⊗ Eη = 0 and ind(α⊗ Fη) < ind(α).

Let P be a closed point of X . Suppose P is the point of intersection of two distinct
codimension zero points η1 and η2 of X0. We say that the point P is a:

(1) special point of type I if η1 is of type 1 and η2 is of type 2;

(2) special point of type II if η1 is of type 1 and η2 is of type 4;

(3) special point of type III if η1 is of type 3 or 5 and η2 is of type 4;

(4) special point of type IV if η1 is of type 1, 3 or 5 and η2 is of type 5 with Mη2 ⊗ FP,η2 not a
field.

Lemma 8.2. Suppose that η is a codimension zero point of X0 and P a point of η. Suppose that
α is ramified at η. Let (Eη, ση) be the lift of residue of α at η. If Eη ⊗ FP,η is not a field, then
ind(α⊗ FP ) < ind(α).

Proof. Suppose that Eη ⊗FP,η is not a field. Since Eη/Fη is a cyclic extension, Eη⊗FP,η '
∏
Eη,P

with [Eη,P : FP,η] < [Eη : Fη]. We have (Eη, ση, πη)⊗ FP,η = (Eη,P , ση, πη) (cf. § 2).
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Write α⊗Fη = α1 +(Eη, ση, πη) as in Lemma 4.1. Then α⊗FP,η = α1⊗FP,η+(Eη,P , ση, πη).
By Lemma 4.2, we have ind(α⊗ Fη) = ind(α1 ⊗ Eη)[Eη : Fη]. We have

ind(α⊗ FP,η) 6 ind(α1 ⊗ Eη,P )[Eη,P : FP,η]

6 ind(α1 ⊗ Eη)[Eη,P : FP,η]

< ind(α1 ⊗ Eη)[Eη : Fη]

= ind(α⊗ Fη).

Thus, by Proposition 5.8, ind(α⊗ FP ) < ind(α). 2

Lemma 8.3. Let η ∈X0 be a point of codimension zero and P a closed point on η. Let XP → X
be the blow-up at P and γ the exceptional curve in XP . If Eη⊗FP,η is not a field or η is of type
2, 4 or 6, then γ is of type 2, 4 or 6.

Proof. If Eη ⊗ FP,η is not a field, then by Lemma 8.2, ind(α ⊗ FP ) < ind(α). If η is of type 2,
4 or 6, then ind(α ⊗ Fη) < ind(α) and hence, by Proposition 5.8, ind(α ⊗ FP ) < ind(α). Since
FP ⊂ Fγ , we have ind(α⊗ Fγ) 6 ind(α⊗ FP ) < ind(α). Hence γ is of type 2, 4 or 6. 2

Lemma 8.4. Let η1 and η2 be two distinct codimension zero points of X0 intersecting at a closed
point P . Suppose that η1 is of type 1 or 2 and η2 is of type 2. Then there exists a sequence of
blow-ups ψ : X ′

→ X such that if η̃i are the strict transforms of ηi, then:

(1) ψ : X ′\ψ−1(P ) → X \{P} is an isomorphism;

(2) ψ−1(P ) is the union of irreducible regular curves γ1, . . . , γm;

(3) η̃1 ∩ γ1 = {P0}, γi ∩ γi+1 = {Pi}, γm ∩ η̃2 = {Pm}, η̃1 ∩ γi = ∅ for all i > 1, η̃2 ∩ γi = ∅ for
all i < m, η̃1 ∩ η̃2 = ∅, γi ∩ γj = ∅ for all i < j 6= i+ 1;

(4) γ1 and γm are of type 6 and γi, 1 < i < m, are of type 2, 4 or 6;

(5) ψ−1(P ) has no special points.

Proof. Let XP → X be the blow-up of X at P and γ the exceptional curve in XP . Let η̃i be
the strict transform of ηi. Then η̃1 intersects γ only at one point P0 and η̃2 intersects γ at only
one point P1. Since η2 is of type 2, by Lemma 8.3, γ is of type 2, 4 or 6 and hence P1 is not a
special point.

Let s1 = νη1(λ), s2 = νη2(λ). Then νγ(λ) = s1 +s2. Suppose s1 +s2 = `d+1r0 for some integer
r0, where `d = ind(α). Since `dα = 0, `dr0α = 0. Thus, γ is of type 6. Hence P0 is not a special
point and XP has all the required properties.

Suppose s1 + s2 = `tr0 with t 6 d and r0 coprime to `. Then blow up the points P0 and P1

and let γ1 and γ2 be the exceptional curves in this blow-up. Then we have νγ1(λ) = 2s1 + s2 and
νγ2(λ) = s1 + 2s2. If 2s1 + s2 is not of the form `d+1r1 for some r1 > 1, then blow up the point of
intersection of the strict transforms of η1 and γ1. If s1 + 2s2 is not of the form `d+1r2 for some
r2 > 1, then blow up the point of intersection of the strict transforms of η2 and γ2. Since s1 and
s2 are coprime to `, there exist i and j such that is1 + s2 = `d+1r and s1 + js2 = `d+1r′ for some
r, r′ > 1. Thus, we get the required finite sequence of blow-ups. 2

Proposition 8.5. There exists a regular proper model of F with no special points.

Proof. Let P ∈ P. Then there exist two codimension zero points η1 and η2 of X0 intersecting
at P .

Suppose that P is a special point of type I. Let ψ : X ′
→ X be a sequence of blow-ups as

in Lemma 8.4. Then there are no special points in ψ−1(P ). Since there are only finitely many
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special points in X , replacing X by a finite sequence of blow-ups at all special points of type I,
we assume that X has no special points of type I.

Suppose P is a special point of type II. Without loss of generality we assume that η1 is of
type 1 and η2 is of type 4. Let XP → X be the blow-up of X at P and γ the exceptional curve
in XP . Since η2 is of type 4, by Lemma 8.3, γ is of type 2, 4 or 6. Since η1 is of type 1 and η2

is of type 4, νη1(λ) is coprime to ` and νη2(λ) is divisible by `. Since νγ(λ) = νη1(λ) + νη2(λ),
νγ(λ) is coprime to ` and hence γ is of type 2. Let η̃i be the strict transform of ηi in XP . Then
η̃i and γ intersect at only one point Qi. Since γ is of type 2, Q1 is a special point of type I and
Q2 is not a special point. Thus, as above, by replacing X by a sequence of blow-ups of X , we
assume that X has no special points of type I or II.

Suppose P is a special point of type III. Without loss of generality assume that η1 is of type
3 or 5 and η2 of type 4. Let XP → X be the blow-up of X at P , γ, η̃i, and Qi be as above.
Since η2 is of type 4, by Lemma 8.3, γ is of type 2, 4 or 6. Since νη1(λ) and νη2(λ) are divisible
by `, νγ(λ) = νη1(λ) + νη2(λ) is divisible by `. Thus γ is of type 4 or 6. Hence Q2 is not a special

point. By Corollary 5.7, α ⊗ FP = (EP , σ, uπ
d1
η1π

d2
η2 ) for some cyclic extension EP /FP , u ∈ ÂP

a unit, and at least one of the di is coprime to ` (in fact equal to 1). In particular, α ⊗ FP is

split by the extension FP (m
√
uπd1η1π

d2
η2 ), where m is the degree of EP /FP which is a power of `.

Suppose d1 + d2 is coprime to `. Since νγ(πd1η1π
d2
η2 ) = d1 + d2, FP (m

√
uπd1η1π

d2
η2 ) is totally ramified

at γ. Thus, by Lemma 4.3, γ is of type 6. Hence Q1 is not a special point. Suppose that d1 +d2 is
divisible by `. Let πγ be a prime defining γ at Q1. Then we have uπd1η1π

d2
η2 = w1π

d1
η1π

d1+d2
γ for some

unit w1 at Q1. Since one of di is coprime to ` and d1 +d2 is divisible by `, the di are not divisible
by `. In particular, 2d1 + d2 is coprime to `. Let XQ1 be the blow-up of XP at Q1 and γ′ be the
generic point of the exceptional curve in XQ1 . Then νγ′(uπ

d1
η1π

d2
η2 ) = νγ′(w1π

d1
η1π

d1+d2
γ ) = 2d1 +d2.

Since 2d1 + d2 is coprime to `, once again by Lemma 4.3, γ′ is of type 6. In particular, no point
on the exceptional curve in XQ1 is a special point. Thus, replacing X by a sequence of blow-ups,
we assume that X has no special points of type I, II or III.

Suppose P is a special point of type IV. Without loss of generality assume that η1 is of type
1, 3 or 5 and η2 is of type 5, with Mη2 ⊗ FP,η2 not a field. Let XP → X be the blow-up of X
at P and γ, η̃i, Qi be as above. Since Mη2 ⊗ FP,η2 is not a field, by Lemma 8.3, γ is of type 2, 4
or 6. If γ is of type 6, then Q1 and Q2 are not special points. Suppose γ is of type 2 or 4. Then
Q1 and Q2 are special points of type I, II or III. Thus, as above, by replacing X by a sequence
of blow-ups of X , we assume that X has no special points. 2

Let η and η′ be two codimension zero points of X0 (need not be distinct). A type 2 connection
from η to η′ is a sequence of distinct codimension zero points η1, . . . , ηn of X0 of type 2 such
that η intersects η1, η′ intersects ηn, ηi intersects ηi+1 for all 1 6 i 6 n− 1, η does not intersect
ηi for i > 1, η′ does not intersect ηi for i < n, ηi does not intersect ηj for i < j 6= i + 1 and if
η = η′, then n > 2.

We note that if η is a codimension zero point of X0 of type 2 and η′ is any other codimension
zero point of X0 intersecting η at a closed point, then there is a type 2 connection from η to η′.
This can be seen by taking n = 1 and η1 = η.

Proposition 8.6. There exists a regular proper model X of F such that:

(1) X has no special points;

(2) if η1 and η2 are two (not necessarily distinct) codimension zero points of X0 with η1 of type
3 or 5 and η2 of type 3, 4 or 5, then there is no type 2 connection between η1 and η2.
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Proof. Let X be a regular proper model with no special points (Proposition 8.5). Let m(X ) be
the number of type 2 connections between a point of type 3 or 5 and a point of type 3, 4 or 5.
We prove the proposition by induction on m(X ). Suppose m(X ) > 1. We show that there is a
sequence of blow-ups X ′ of X with no special points and m(X ′) < m(X ).

Let η be a codimension zero point of X0 of type 3 or 5 and η′ a codimension zero point of X0

of types 3, 4 or 5. Suppose there is a type 2 connection from η to η′. Then there exist distinct
codimension zero points η1, . . . , ηn of X0 of type 2 with η intersecting η1, η′ intersecting ηn and
ηi intersecting ηi+1 for i = 1, . . . , n− 1.

Suppose n = 1. Let Q be the point of the intersection of η and η1. Let XQ → X be the
blow-up of X at Q and γ the exceptional curve in XQ. Since η1 is of type 2, by Lemma 8.3, γ
is of type 2, 4 or 6. Since η is of type 3 or 5 and η1 is of type 2, ` divides νη(λ) and ` does not
divide νη1(λ). Since νγ(λ) = νη(λ) + νη1(λ), νγ(λ) is not divisible by ` and hence γ is of type 2.
Let η̃ and η̃1 be the strict transform of η and η1 in XQ. Since γ is a point of type 2, the points of
intersection of η̃ and η̃1 with γ are not special points. Hence XQ has no special points. Replacing
X by XQ, we assume that n > 2 and X has no special points.

Let P be the point of intersection of η1 and η2. Let X ′ be as in Lemma 8.4. Then X ′ has
no special points and all the exceptional curves in X ′ are of type 2, 4 or 6 and the exceptional
curves which intersect the strict transforms of η1 and η2 are of type 6. In particular, the number
of type 2 connections between the strict transforms of η and η′ is one less than the number of
type 2 connections between η and η′. Since all the exceptional curves in X ′ are of type 2, 4 or
6, m(X ′) = m(X ) − 1. Thus, by induction, we have a regular proper model with the required
properties. 2

Lemma 8.7. Let X be as in Proposition 8.6 and X0 the special fiber of X . Let η be
a codimension zero point of X0 of type 2 and η′ a codimension zero point of X0 of type 3
or 5. Suppose there is a type 2 connection from η to η′. If there is a type 2 connection from η
to a type 3 or 5 point η′′, then η′ = η′′. Further, if η1, . . . , ηn are codimension zero points of X0

of type 2 giving a type 2 connection from η to η′ and γ1, . . . , γm codimension zero points of X0 of
type 2 giving another type 2 connection from η to η′, then n = m and ηi = γi for all i.

Proof. Suppose η′′ is a codimension zero point of X0 of type 3 or 5 with type 2 connection to
η. Since η is of type 2, there is a type 2 connection from η′ to η′′. Since no two points of type
3 or 5 have a type 2 connection (cf. Proposition 8.6), η′ = η′′. Suppose γ1, . . . , γm is of type 2
connection from η to η′. If m 6= n or ηi 6= γi for some i, then we will have a type 2 connection
from η′ to η′ and hence a contradiction to the choice of X (cf. Proposition 8.6). Thus n = m
and ηi = γi for all i. 2

Let η be a codimension zero point of X0 of type 2 and η′ be a codimension zero point of X0

of type 3 or 5. Suppose there is a type 2 connection η1, . . . , ηn from η to η′. Then, by Lemma 8.7,
η′ and ηn are uniquely defined by η. We call this point of intersection of ηn with η′ the point
of type 2 intersection of η and η′. Once again note that such a closed point is uniquely defined
by η.

9. Choice of LP and µP at closed points

Let F , α ∈ H2(F, µn), λ ∈ F ∗ with α · (−λ) = 0 ∈ H3(F, µ⊗2
n ), X and X0 be as in (§§ 7 and 8).

Throughout this section we assume that X has no special points and if η1 and η2 are two (not
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necessarily distinct) codimension zero points of X0 with η1 is of type 3 or 5 and η2 is of type 3,
4 or 5, then there is no type 2 connection between η1 and η2. Further, assume that F contains
a primitive `th root of unity.

Let η be a codimension zero point of X0 of type 5. Then we call η of type 5a if α is unramified
at η and of type 5b if α is ramified at η. Suppose η is of type 5b. Then α is ramified and hence
Mη is the unique subextension of Eη of degree `, where (Eη, ση) is the lift of the residue of α.

Lemma 9.1. Let η be a codimension zero point of X0 of type 5b. Then ind(α ⊗Mη) < ind(α)
and there exists µη ∈Mη such that NMη/Fη(µη) = −λ and α · (µη) = 0 ∈ H3(Mη, µ

⊗2
n ).

Proof. Since η is of type 5b, α is ramified at η, νη(λ) = r` , rα⊗Eη = 0 and Eη 6= Fη. Thus, as in
the proof of Lemma 4.11, there exists µη ∈Mη such that NMη/Fη(µη) = −λ and α · (µη) = 0. 2

Lemma 9.2. Let P ∈P, and η1 and η2 be codimension zero points of X0 containing P . Suppose
that η1 and η2 are of type 5. Then there exist a cyclic field extension LP /FP of degree ` and
µP ∈ LP such that:

(1) NLP /FP (µP ) = −λ;

(2) ind(α⊗ LP ) < ind(α);

(3) α · (µP ) = 0 ∈ H3(LP , µ
⊗2
n );

(4) if ηi is of type 5a, then LP ⊗ FP,ηi/FP,ηi is an unramified field extension;

(5) if ηi is of type 5b, then LP ⊗ FP,ηi 'Mηi ⊗ FP,ηi .

Proof. Since X has no special points, P is not a special point of type IV. Since η1 and η2 are
of type 5 intersecting at P , Mη1 ⊗ FP,η1 and Mη2 ⊗ FP,η2 are fields. Suppose ηi is of type 5a.
If α ⊗ FP,ηi = 0, then let LP,ηi/FP,ηi be any cyclic unramified field extension with −λ a norm
and µηi ∈ LP,ηi with NLP,ηi/FP,ηi

(µηi) = −λ. If α ⊗ FP,ηi 6= 0, then let LP,ηi/FP,ηi be a cyclic
unramified field extension of degree ` and µηi be as in Lemma 4.10. Suppose ηi is of type 5b.
Let LP,ηi = Mηi ⊗ FP,ηi and µηi ∈ Mηi be as in Lemma 9.1. Then, by choice LP,ηi/FP,ηi are
unramified field extensions. By applying Lemma 6.4 to LP,ηi and µηi , there exist a cyclic field
extension LP /FP and µP ∈ LP with the required properties. 2

Lemma 9.3. Let η be a codimension zero point of X0 with νη(λ) a multiple of ` and P a closed
point on η. Then there exists a cyclic unramified field extension LP,η/FP,η of degree ` and
µP,η ∈ LP,η such that NLP,η/FP,η(µP,η) = −λ and α · (µP,η) = 0. Further, if η is of type 3 or 4,
then ind(α⊗ Eη ⊗ LP,η) < ind(α⊗ Eη).

Proof. Since νη(λ) is divisible by `, write λ = θπr`η for some θ ∈ Fη a unit at η and integer r.
Write α⊗Fη = α′+ (Eη, ση, πη) as in Lemma 4.1. Let α′ be the image of α′ in H2(κ(η), µn) and
θ0 be the image of θ in κ(η). Since κ(η)P is a local field containing a primitive `th root of unity,
there exists a cyclic field extension L(η)P /κ(η)P of degree ` such that −θ0 is a norm from L(η)P
(cf. the proof of Lemma 2.8). Let LP,η/FP,η be the unramified extension of degree ` with residue
field L(η)P . Since −θ is a norm from L(η)P , −θ is a norm from LP,η and hence −λ = −θπr`η is
a norm from LP,η. Since NLP,η/FP,η(µP,η) = −λ, LP,η/FP,η is a field extension and α · (−λ) = 0,
by Proposition 4.6, we have α · (µP,η) = 0.

Suppose η is of type 3 or 4. Then rα′ ⊗ Eη = rα ⊗ Eη 6= 0 and hence rα′ ⊗ E(η) 6= 0.
Thus, by Lemma 3.3, ind(α′ ⊗ E(η) ⊗ L(η)P ) < ind(α′ ⊗ E(η)). Suppose α ⊗ Eη ⊗ FP,η 6= 0.
Since α ⊗ Eη = α′ ⊗ Eη, α′ ⊗ Eη 6= 0 and hence α′ ⊗ E(η) 6= 0. Thus, by the choice of L(η)P ,
ind(α′⊗E(η)⊗L(η)P ) < ind(α′⊗E(η)). In particular, ind(α⊗Eη⊗LP,η) = ind(α′⊗Eη⊗LP,η) =
ind(α′ ⊗ E(η)⊗ L(η)P ) < ind(α′ ⊗ E(η)) = ind(α′ ⊗ Eη) = ind(α⊗ Eη). 2
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Lemma 9.4. Let P ∈P, and η1 and η2 be codimension zero points of X0 containing P . Suppose
that η1 is of type 2 and η2 is of type 5 or 6. Then there exist µi ∈ FP , 1 6 i 6 `, such that:

(1) µ1 · · ·µ` = −λ;

(2) νη1(µ1) = νη1(λ), νη1(µi) = 0 for i > 2;

(3) νη2(µi) = νη2(λ)/` for all i > 1;

(4) α · (µi) = 0 ∈ H3(FP , µ
⊗2
n ).

Proof. Since η1 is of type 2 and η2 is of type 5 or 6, we have λ = wπr1η1π
r2`
η2 with r1 coprime to `

and r2α⊗Eη2 = 0. Hence, by Lemma 6.7, there exists θ ∈ FP such that α ·(θ) = 0, νη1(θ) = 0 and
νη2(θ) = r2. For i > 2, let µi = θ and µ1 = −λθ1−`. Then the µi have the required properties. 2

Lemma 9.5. Let P ∈P, and η1 and η2 be codimension zero points of X0 containing P . Suppose
that η1 and η2 are of type 5 or 6. Then there exist µi ∈ FP , 1 6 i 6 `, such that:

(1) µ1 · · ·µ` = −λ;

(2) νηj (µi) = νηj (λ)/` for all i > 0 and j = 1, 2;

(3) α · (µi) = 0 ∈ H3(FP , µ
⊗2
n ).

Proof. Since η1 and η2 are of type 5 or 6, by Lemma 6.8, there exists θ ∈ FP such that α · (θ) = 0
and νηi(θ) = νηi(λ)/` for i = 1, 2. For i > 2, let µi = θ ∈ FP and µ1 = −λθ1−` ∈ FP . Then the
µi have the required properties. 2

Lemma 9.6. Let P ∈P, η1 be a codimension zero point of X0 of type 3 and η2 a codimension
zero point of X0 of type 5. Suppose η1 and η2 intersect at P . Then there exist a cyclic field
extension LP /FP of degree ` and µP ∈ LP such that:

(1) NLP /FP (µP ) = −λ;

(2) ind(α⊗ LP ) < ind(α);

(3) α · (µP ) = 0 ∈ H3(LP , µ
⊗2
n );

(4) LP ⊗ FP,ηi/FP,ηi is an unramified field extension for i = 1, 2;

(5) if λ ∈ F ∗`P or −λ ∈ F ∗`P , then ind(α⊗ (Eη1 ⊗ FP,η1)⊗ (LP ⊗ FP,η1)) < ind(α⊗ Eη1);

(6) if η2 is of type 5b, then LP ⊗ FP,η2 'Mη2 ⊗ FP,η2 .

Proof. Suppose λ 6∈ ±F ∗`P . Let LP = FP (
√̀
λ) and µP = −

√̀
λ. Then NLP /FP (µP ) = −λ and, by

Lemma 6.2, (2) and (3) are satisfied. Since ηi is of type 3 or 5, νηi(λ) is divisible by ` and hence
(4) is satisfied. Since λ 6∈ F ∗`P , case (5) does not arise. Suppose that η2 is of type 5b. Since X
has no special points, Mη2 ⊗ FP,η2 is a field. Since −λ is a norm from Mη2 (Lemma 9.1), by
Lemma 2.6, we have LP ⊗ FP,η2 'Mη2 ⊗ FP,η2 .

Suppose that λ ∈ F ∗`P or −λ ∈ F ∗`P . Let LP,η1 and µP,η1 ∈ LP,η1 be as in Lemma 9.3. Write
α ⊗ Fη1 = α1 + (Eη1 , σ1, πη1) as in Lemma 4.1. Then, by Lemma 4.2, we have ind(α ⊗ Fη1) =
ind(α ⊗ Eη1)[Eη1 : Fη1 ]. Since η1 is of type 3, by the choice of LP,η1 (cf. Lemma 9.3), ind(α ⊗
Eη1⊗LP,η1) < ind(α⊗Eη1). We have ind(α⊗LP,η1) 6 ind(α⊗Eη1⊗LP,η1)[Eη1⊗LP,η1 : LP,η1 ] <
ind(α⊗ Eη1)[Eη1 : Fη1 ] = ind(α).

Suppose that η2 is of type 5a. Let LP,η2 and µP,η2 ∈ LP,η2 be as in Lemma 9.3. Since η2 is of
type 5a, α is unramified at η2. Since LP,η2/FP,η2 is an unramified field extension, ind(α⊗LP,η2) <
ind(α).
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Suppose η2 is of type 5b. Since X has no special points, Mη2 ⊗ FP,η2 is a field. Let LP,η2 =
Mη2 ⊗FP,η2 . Then, by Lemma 9.1, there exists µP,η2 ∈ LP,η2 such that NLP,η2/FP,η2

(µP,η2) = −λ,

ind(α⊗ LP,η2) < ind(α) and α · (µP,η2) = 0.
Then, by Lemma 6.4, there exist LP and µP with the required properties. 2

Lemma 9.7. Let P ∈ P, and η1 and η2 be codimension zero points of X0 of type 3, 4 or 6.
Suppose η1 and η2 intersect at P . Then there exist a cyclic field extension LP /FP of degree `
and µP ∈ LP such that:

(1) NLP /FP (µP ) = −λ;

(2) ind(α⊗ LP ) < ind(α);

(3) α · (µP ) = 0 ∈ H3(LP , µ
⊗2
n );

(4) LP ⊗ FP,ηi/FP,ηi is an unramified field extension;

(5) if ηi is of type 3, λ ∈ F ∗`P or−λ ∈ F ∗`P , then ind(α⊗(Eηi⊗FP,ηi)⊗(LP⊗FP,ηi))< ind(α⊗Eηi).

Proof. Suppose λ 6∈ ±F ∗`P . Then, as in the proof of Lemma 9.6, LP = FP (
√̀
λ) and µP = −

√̀
λ

have the required properties.
Suppose that λ ∈ F ∗`P or −λ ∈ F ∗`P . For i = 1, 2, let LP,ηi and µP,ηi ∈ LP,ηi be as in Lemma 9.3.

If ηi is of type 3, then as in the proof of Lemma 9.6, ind(α ⊗ LP,ηi) < ind(α). Suppose ηi is of
type 4 or 6. Then ind(α⊗ Fηi) < ind(α) and hence ind(α⊗ LP,ηi) < ind(α).

Then, by Lemma 6.4, there exist LP and µP with the required properties. 2

Proposition 9.8. Let P ∈P. Then there exist a cyclic field extension or split extension LP /FP
of degree ` and µP ∈ LP such that:

(1) NLP /FP (µP ) = −λ;

(2) ind(α⊗ LP ) < ind(α);

(3) α · (µP ) = 0 ∈ H3(LP , µ
⊗2
n ).

Further, suppose η is a codimension zero point of X0 containing P .

(4) If η is of type 1, then LP = FP (
√̀
λ) and µP = −

√̀
λ.

(5) Suppose η is of type 2 with a type 2 connection to a type 5 point η′. Let Q be the type
2 intersection point of η and η′. If Mη′ ⊗ FQ,η′ is not a field, then LP =

∏
FP and µP =

(θ1, . . . , θ`) with θi ∈ FP , νη(θ1) = νη(λ) and νη(θi) = 0 for i > 2.

(6) Suppose η is of type 2 with a type 2 connection to a type 5 point η′. Let Q be the type 2
intersection point of η and η′. If Mη′ ⊗ FQ,η′ is a field, then LP = FP (

√̀
λ) and µP = −

√̀
λ.

(7) Suppose η is of type 2 and there is no type 2 connection from η to any type 5 point. Then
LP = FP (

√̀
λ) and µP = −

√̀
λ.

(8) If η is of type 3, then LP ⊗ FP,η/FP,η is an unramified field extension. Further, if λ ∈ F ∗`P
or −λ ∈ F ∗`P , then ind(α⊗ (Eη ⊗ FP,η)⊗ (LP ⊗ FP,η)) < ind(α⊗ Eη).

(9) If η is of type 4, then LP ⊗ FP,η/FP,η is an unramified field extension.

(10) If η is of type 5a, then LP ⊗ FP,η/FP,η is an unramified field extension.

(11) If η is of type 5b, then LP ⊗ FP,η ' Mη ⊗ FP,η, and if LP =
∏
FP , then µP = (θ1, . . . , θ`)

with νη(θi) = νη(λ)/`.
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(12) If η is of type 6, then either LP ⊗FP,η/FP,η is an unramified field extension or LP =
∏
FP ,

with µP = (θ1, . . . , θ`) and νη(θi) = νη(λ)/`.

Proof. Let η1 and η2 be two codimension zero points of X0 intersecting at P . By the choice of X ,
X0 is a union of regular curves with normal crossings and hence there are no other codimension
zero points of X0 passing through P .

Case I. Suppose that either η1 or η2, say η1, is of type 1. Then νη1(λ) is coprime to ` and hence
λ 6∈ ±F ∗`P . Let LP = FP (

√̀
λ) and µP = −

√̀
λ. Then, by Lemma 6.2, LP and µP satisfy (1), (2)

and (3). By choice (4) is satisfied. Since X has no special points, η2 is not of type 2 or 4. Thus
(5), (6), (7) and (9) do not arise. Suppose η2 is of type 3, 5 or 6. Then νη2(λ) is divisible by ` and
hence LP ⊗ FP,η2/FP,η2 is an unramified field extension. Thus (8), (10) and (12) are satisfied.
Suppose η2 is of type 5b. Since X has no special points and η1 is of type 1, Mη2⊗FP,η2 is a field.
Since −λ is a norm from the extension Mη2/Fη2 (Lemma 9.1) and λ 6∈ ±F ∗`P,η2 (Corollary 5.6),

by (Lemma 2.6), Mη2 ⊗ FP,η2 ' FP,η2(
√̀
λ) and hence (11) is satisfied.

Case II. Suppose neither η1 nor η2 is of type 1. Suppose either η1 or η2 is of type 2, say η1 is of
type 2. Then νη1(λ) is coprime to ` and hence λ 6∈ ±F ∗`P .

Suppose that η1 has type 2 connection to a codimension zero point η′ of X0 of type 5. Let
Q be the closed point on η′ which is the type 2 intersection point of η1 and η′. By the choice of
X (cf. Proposition 8.6), η2 is of type 2, 5 or 6. Note that if η2 is also of type 2, then Q is also
the point of type 2 intersection of η2 and η′. Thus if both η1 and η2 are of type 2, η′ and Q do
not depend on whether we start with η1 or η2.

Suppose that Mη′ ⊗ FQ,η′ is not a field. Let LP =
∏
FP . Suppose η2 is of type 2. Then

let µP = (λ, 1, . . . , 1) ∈ LP =
∏
FP . Suppose η2 is of type 5. Then by the assumption on X ,

η2 = η′, Q = P . Thus Mη2 ⊗ FP,η2 = Mη′ ⊗ FQ,η′ is not a field and hence η2 is of type 5b. Let
µi ∈ FP be as in Lemma 9.4, and µP = (µ1, . . . , µ`). Suppose η2 is of type 6. Let µi ∈ FP be as
in Lemma 9.4, and µP = (µ1, . . . , µ`) ∈ LP . Then LP and µP satisfy (1) and (3). Since η1 is of
type 2, ind(α ⊗ Fη1) < ind(α) and hence, by Proposition 5.8, ind(α ⊗ FP ) < ind(α) and (2) is
satisfied. Since neither η1 nor η2 is of type 1, case (4) does not arise. By choice LP satisfies (5).
Since there is only one type 5 point with a type 2 connection to η1 or η2, case (6) does not arise.
Clearly case (7) does not arise. Since η2 is not of type 3, 4 or 5a, cases (8), (9) and (10) do not
arise. By the choice of LP and µP , (11) and (12) are satisfied.

SupposeMη′⊗FQ,η′ is a field. Let LP = FP (
√̀
λ) and µP =−

√̀
λ. Since λ 6∈ F ∗`P , by Lemma 6.2,

LP and µP satisfy (1), (2) and (3). As above, cases (4), (5), (7), (8) and (9) do not arise. By
choice (6) is satisfied. Suppose η2 is of type 5. Then η2 = η′, Q = P and νη2(λ) is divisible by `
and hence (10) is satisfied. Suppose η2 is of type 5b. Since Mη2 ⊗ FP,η2 is a field, as in case I,
Mη2 ⊗ FP,η2 ' LP ⊗ FP,η2 and hence (11) is satisfied. If η2 is of type 6, then νη2(λ) is divisible
by ` and LP ⊗ FP,η2/FP,η2 is an unramified field extension and hence (12) is satisfied.

Suppose that η1 has no type 2 connection to a point of type 5. In particular, η2 is not of
type 5. Then, let LP = FP (

√̀
λ) and µP = −

√̀
λ. Then, by Lemma 6.2, LP and µP satisfy (1),

(2) and (3). Since neither η1 nor η2 is of type 1, case (4) does not arise. Since neither η1 nor η2

has type 2 connection to a point of type 5, (5) and (6) do not arise. By the choice of LP and µP ,
(7) is satisfied. If η2 is of type 3, 4 or 6, then νη2(λ) is divisible by ` and (8), (9) and (12) are
satisfied. Since neither η1 nor η2 is of type 5, (10) and (11) do not arise.

Case III. Suppose neither of ηi is of type 1 or 2. Suppose that one of the ηi, say η1, is of type 3.
Since X has no special points, η2 is not of type 4 and hence η2 is of type 3, 5 or 6. If η2 is
of type 5, let LP and µP be as in Lemma 9.6. If η2 is of type 3 or 6, let LP and µP be as
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in Lemma 9.7. Then, (1), (2), (3), (8), (9), (10), (11) and (12) are satisfied and the other cases
do not arise.

Case IV. Suppose neither of ηi is of type 1, 2 or 3. Suppose that one of the ηi, say η1, is of type 4.
Since X has no special points, η2 is not of type 5. Hence η2 is of type 4 or 6. Let LP and µP be
as in Lemma 9.7. Then LP and µP have the required properties.

Case V. Suppose neither of ηi is of type 1, 2, 3 or 4. Suppose that one of the ηi is of type 5, say
η1 is of type 5. Then η2 is of type 5 or 6. Suppose that η2 is of type 5. Since X has no special
points, Mηi ⊗ FP,ηi are fields for i = 1, 2. Let LP and µP be as in Lemma 9.2. Then LP and µP
have the required properties.

Suppose that η2 is of type 6. Suppose that η1 is of type 5a. Let LP,ηi and µP,ηi be as in
Lemma 4.10. Since νi(λ) is divisible by `, by the construction of LP,ηi , LP,ηi/FP,ηi are unramified.
Let LP , µP ∈ LP be as in Lemma 6.4. Then LP , µP have the required properties. Suppose that
η1 is of type 5b. Suppose Mη1 ⊗ FP,η1 is a field with the residue field M(η1)P of Mη1 ⊗ FP,η1
unramified over κ(η1)P . Let LP,η1 = Mη1 ⊗ FP,η1 and µη1 ∈ Mη1 with NMη1/Fη1

(µη1) = −λ (cf.
Lemma 9.1). Let LP and µP be as in Lemma 6.5 with LP ⊗FP,η1 ' LP,η1 . Then LP is a field with
LP /FP unramified on AP (cf. Lemma 6.5) and hence LP and µP have the required properties.
Suppose that Mη1 ⊗ FP,η1 is a field extension and the residue field M(η1)P of Mη1 ⊗ FP,η1 is
ramified over κ(η1)P . Then Mη1 ⊗ FP,η1 = FP,η1(

√̀
vPπη2) for some unit vP at P (cf. proof of

Lemma 6.4). Since λ = wPπ
r1`
η1 π

r2`
η2 for some unit wP at P and −λ is a norm from Mη1 ⊗ FP,η1 ,

it follows that the image −wP of wP in κ(η1)P is a norm from M(η1)P . Since wP is a unit and
M(η1)P /κ(η1)P is a ramified extension, it follows that −wP ∈ F `P,η1 and hence −wP ∈ F ∗`P . Let

LP = FP (
√̀
vPπη2 + πη1) and µP =

√̀
−λ ∈ FP . Then NLP /FP (µP ) = −λ. Since η2 is of type 6,

ind(α ⊗ Fη2) < ind(α) and hence, by Proposition 5.8, ind(α ⊗ FP ) < ind(α). In particular,
ind(α ⊗ LP ) < ind(α). Let BP be the integral closure of the local ring AP at P in LP . Since
the maximal ideal mP at P is equal to (πη1 , πη2), vPπη2 + πη1 is a regular prime and hence BP
is a regular local ring. Since corLP⊗FP,ηi/FP,ηi

(α · (µP )) = α · (−λ) = 0 and LP,ηi/FP,ηi is a field

extension, by Proposition 4.6, α · (µP ) = 0 in H3(LP ⊗ FP,ηi , µ⊗2
n ) for i = 1, 2. In particular,

α · (µP ) is unramified on BP and hence α · (µP ) = 0 (cf. Lemma 5.3). Thus LP and µP satisfy
the required properties.

Suppose that Mη1 ⊗ FP,η1 is not a field. Let LP =
∏
FP and µi ∈ FP be as in Lemma 9.5,

and µP = (µ1, . . . , µ`) ∈ LP . Then LP and µP have the required properties.

Case VI. Suppose neither of ηi is of type 1, 2, 3, 4 or 5. Then, η1 and η2 are of type 6. Let LP
and µP be as in Lemma 9.7. Then LP and µP have the required properties. 2

10. Choice of Lη and µη at codimension zero points

Let F , n = `d, α ∈ H2(F, µn), λ ∈ F ∗ with α 6= 0, α · (−λ) = 0 ∈ H3(F, µ⊗2
n ), X , X0 and P

be as in §§ 7– 9). Assume that X has no special points and that there is no type 2 connection
between a codimension zero point of X0 of type 3 or 5 and a codimension zero point of X0 of
type 3, 4 or 5.

For a codimension zero point η of X0, let Pη = η ∩P.

Proposition 10.1. Let η be a codimension zero point of X0 of type 1. For each P ∈ Pη, let
(LP , µP ) be chosen as in Proposition 9.8, and Lη = Fη(

√̀
λ) and µη = −

√̀
λ ∈ Lη. Then:

(1) NLη/Fη(µη) = −λ;

(2) α · (µη) = 0 ∈ H3(Lη, µ
⊗2
n );
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(3) ind(α⊗ Lη) < ind(α);

(4) for P ∈Pη, there is an isomorphism φP,η : Lη ⊗ FP,η → LP ⊗ FP,η and

φP,η(µη ⊗ 1)(µP ⊗ 1)−1 = 1.

Proof. By choice, we have NLη/Fη(µη) = −λ. Since η is of type 1, νη(λ) is coprime to ` and hence
by Lemma 4.7, Lη and µη satisfy (2) and (3). Let P ∈ Pη. Since η is of type 1, by the choice
of LP and µP (cf. Proposition 9.8(4)), we have LP = FP (

√̀
λ) and µP = −

√̀
λ. Hence Lη and µη

satisfy (4). 2

Lemma 10.2. Let η be a codimension zero point of X0. For each P ∈ Pη, let θP ∈ FP with
α · (θP ) = 0 ∈ H3(FP,η, µ

⊗2
n ). Suppose νη(θP ) = 0 for all P ∈Pη. Then there exists θη ∈ Fη such

that:

(1) α · (θη) = 0 ∈ H3(Fη, µ
⊗2
n );

(2) for P ∈Pη, θ
−1
P θη ∈ F `

m

P,η for all m > 1.

Proof. Let πη ∈ Fη be a parameter. Write α⊗Fη = α′ + (Eη, ση, πη) as in Lemma 4.1. Let E(η)
be the residue field of Eη. Since α · (θP ) = 0 ∈ H3(FP,η, µ

⊗2
n ) and νη(θP ) = 0, by Lemma 4.7,

we have (E(η) ⊗ κ(η)P , σ0, θP ) = 0 ∈ H2(κ(η)P , µn), where θP is the image of θP ∈ κ(η)P .
Hence θP is a norm from E(η) ⊗ κ(η)P for all P ∈ Pη. For P ∈ Pη, let θ̃P ∈ E(η) ⊗ κ(η)P
with NE(η)⊗κ(η)P /κ(η)P (θ̃P ) = θP . By weak approximation, there exists θ̃ ∈ E(η)⊗ κ(η) which is

sufficiently close to θ̃P for all P ∈Pη. Let θ0 = NE(η)/κ(η)(θ̃) ∈ κ(η). Then θ0 is sufficiently close

to θP for all P ∈ Pη. In particular, θ−1
0 θP ∈ κ(η)`

m

P for all m > 1. Let θη ∈ Fη have image θ0

in κ(η). Then (Eη, ση, θη) = 0 and hence, by Lemma 4.7, α · (θη) = 0. Since θ−1
0 θP ∈ κ(η)`

m

P for
all m > 1 and FP,η is a complete discretely valued field with residue field κ(η)P , it follows that
θ−1
η θP ∈ F `

m

P,η for all m > 1. 2

Proposition 10.3. Let η be a codimension zero point of X0 of type 2. Suppose there is a type
2 connection between η and a codimension zero point η′ of X0 of type 5. Let Q be the point of
type 2 intersection of η and η′. Suppose that Mη′ ⊗ FQ,η′ is not a field. For each P ∈ Pη, let
µP = (θP1 , . . . , θ

P
` ) ∈ LP =

∏
FP be as in Proposition 9.8(5). Let Lη =

∏
Fη. Then there exists

µη = (θη1 , . . . , θ
η
` ) ∈ Lη such that:

(1) NLη/Fη(µη) = −λ;

(2) α · (µη) = 0 ∈ H3(Lη, µ
⊗2
n );

(3) ind(α⊗ Lη) < ind(α);

(4) µ−1
P µη ∈ (Lη ⊗ FP,η)`

m
for all P ∈Pη and m > 1.

Proof. Let i > 2. By choice (cf. Proposition 9.8(5)), we have νη(θ
P
i ) = 0 and α · (θPi ) = 0 ∈

H3(FP , µ
⊗2
n ) for all P ∈ Pη. By Lemma 10.2, there exists θηi ∈ Fη such that α · (θηi ) = 0 ∈

H3(Fη, µ
⊗2
n ) and (θPi )−1θηi ∈ F `

m

P,η for all P ∈ Pη and m > 1. Let θη1 = −λ(θη2 · · · θ
η
` )−1. Then

θη1 · · · θ
η
` = −λ and (θP1 )−1θη1 ∈ F `

m

P,η for all m > 1. Since α·(−λ) = 0 and α·(θηi ) = 0 ∈H3(Fη, µ
⊗2
n )

for i > 2, we have α · (θη1) = 0 ∈ H3(Fη, µ
⊗2
n ). Let Lη =

∏
Fη and µη = (θη1 , . . . , θ

η
` ) ∈ Lη. Since

η is of type 2, ind(α⊗ Fη) < ind(α) and hence Lη, µη have the required properties. 2

Proposition 10.4. Let η be a codimension zero point of X0 of type 2. For each P ∈ Pη, let
(LP , µP ) be chosen as in Proposition 9.8. Suppose one of the following holds:
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• there is a type 2 connection between η and codimension zero point η′ of X0 of type 5 with
Q the point of type 2 intersection of η and η′, and Mη′ ⊗ FQ,η′ is a field;

• there is no type 2 connection between η and any codimension zero point of X0 of type 5.
Let Lη = Fη(

√̀
λ) and µη = −

√̀
λ. Then:

(1) NLη/Fη(µη) = −λ;

(2) α · (µη) = 0 ∈ H3(Lη, µ
⊗2
n );

(3) ind(α⊗ Lη) < ind(α);

(4) for P ∈Pη, there is an isomorphism φP,η : Lη ⊗ FP,η → LP ⊗ FP,η and

φP,η(µη ⊗ 1)(µP ⊗ 1)−1 = 1.

Proof. Since νη(λ) is coprime to `, by Lemma 4.7, α · (µη) = 0 ∈ H3(Lη, µ
⊗2
n ) and ind(α⊗Lη) <

ind(α). Clearly, NLη/Fη(µη) = λ. By the choice of (LP , µP ) (cf. Proposition 9.8), for P ∈Pη, we

have LP = FP (
√̀
λ) and µP = −

√̀
λ. Thus Lη and µη have the required properties. 2

Lemma 10.5. Let η be a codimension zero point of X0 of type 3, 4 or 5a. Let P ∈ η. Suppose
there exists LP,η/FP,η an unramified field extension of degree ` and µP,η ∈ LP,η such that:

(1) NLP,η/FP,η(µP,η) = −λ;

(2) ind(α⊗ LP,η) < ind(α);

(3) α · (µP,η) = 0 ∈ H3(LP,η, µ
⊗2
n );

(4) if η is of type 3, λ ∈ F ∗`P or −λ ∈ F ∗`P , then ind(α⊗ (Eη ⊗ FP,η)⊗ (LP,η)) < ind(α⊗ Eη).

Then ind(α⊗ (Eη ⊗ FP,η)⊗ (LP,η)) < ind(α)/[Eη : Fη].

Proof. Write α⊗Fη = α′ + (Eη, ση, πη) as in Lemma 4.1. Then, by Lemma 4.2, ind(α ⊗ Fη) =
ind(α′ ⊗ Eη)[Eη : Fη] = ind(α ⊗ Eη)[Eη : Fη]. Let t = [Eη : Fη] and β be the image of α′ in
H2(κ(η), µn).

Suppose η is of type 4. Then ind(α⊗Fη) < ind(α) and hence ind(α⊗Eη) = ind(α⊗Fη)/t <
ind(α)/t. Thus ind(α⊗ (Eη ⊗ FP,η)⊗ (LP,η)) 6 ind(α⊗ Eη) < ind(α)/t.

Suppose that η is of type 5a. Then α is unramified at η and hence Eη = Fη and t = 1. The
lemma is clear if α ⊗ FP,η = 0. Suppose α ⊗ FP,η 6= 0. Then β ⊗ κ(η)P 6= 0. Since LP,η is an
unramified field extension, the residue field LP (η) of LP,η is a field extension of κ(η)P of degree `.
Since κ(η)P is a local field and ind(β) is divisible by `, ind(β ⊗ LP (η)) < ind(β) [CF67, p. 131].
In particular, ind(α⊗ LP,η) < ind(α).

Suppose that η is of type 3. Then rα ⊗ Eη 6= 0 and hence rα′ ⊗ Eη = rα ⊗ Eη 6= 0. In
particular, rβ ⊗ E(η) 6= 0 and ind(α ⊗ Fη) > t. Suppose λ ∈ F ∗`P or −λ ∈ F ∗`P . Then, by the
choice of LP,η, ind(α⊗ (Eη⊗FP,η)⊗ (LP,η)) < ind(α⊗Eη) = ind(α)/t. Suppose λ 6∈ ±F ∗`P . Then
λ 6∈ ±F ∗`P,η. Since LP,η is a field extension of degree ` and −λ is a norm from LP,η, by Lemma 2.6,

LP,η ' FP,η(
√̀
λ). Since η is of type 3, νη(λ) = r` and λ = θηπ

r`
η with θη ∈ Fη a unit at η. Let

θη be the image of θη in κ(η). Then θη 6∈ κ(η)`P and LP (η) = κ(η)P (
√̀
θη). Since α · (−λ) = 0,

by Lemma 4.7, r`α′ = (Eη, ση, (−1)r`+1θη) and hence r`β = (E(η), σ0, (−1)r`+1θη). Since −θη
is a norm from LP (η) and LP (η)/κ(η)P is an extension of degree `, (−1)r`+1θη is a norm from
LP (η). Thus, by Lemma 3.3, ind(β ⊗ E(η)P ⊗ LP (η)) < ind(β ⊗ E(η)). Thus

ind(α⊗ (Eη ⊗ FP,η)⊗ (LP,η)) = ind(α′ ⊗ (Eη ⊗ FP,η)⊗ (LP,η))

= ind(β ⊗ E(η)P ⊗ LP (η))
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< ind(β ⊗ E(η)) = ind(α′ ⊗ Eη)
= ind(α⊗ Eη) = ind(α)/t. 2

Proposition 10.6. Let η be a codimension zero point of X0 of type 3, 4 or 5a. For each P ∈Pη,
let (LP , µP ) be chosen as in Proposition 9.8. Then there exist an unramified field extension Lη/Fη
of degree ` and µη ∈ Lη such that:

(1) NLη/Fη(µη) = −λ;

(2) α · (µη) = 0 ∈ H3(Lη, µ
⊗2
n );

(3) ind(α⊗ Lη) < ind(α);

(4) for P ∈Pη, there is an isomorphism φP,η : Lη ⊗ FP,η → LP ⊗ FP,η and

φP,η(µη ⊗ 1)(µP ⊗ 1)−1 ∈ (LP ⊗ FP,η)`
m
,

for all m > 1.

Proof. Since η is of type 3, 4 or 5a, we have νη(λ) = r` for some integer r and λ = θηπ
r`
η

for some parameter πη at η and θη ∈ Fη a unit at η. Write α ⊗ Fη = α′ + (Eη, ση, πη) as in
Lemma 4.1. By Lemma 4.7, r`α′ = (Eη, ση, (−1)r`+1θη). Let β be the image of α′ in H2(κ(η), µn)
and E(η) the residue field of Eη. Then r`β = (E(η), σ0, (−1)r`+1θ0) ∈ H2(κ(η), µn), where σ0 is
the automorphism of E(η) induced by ση and θ0 is the image of θη in κ(η).

Let S be a finite set of places of κ(η) containing the places given by closed points of Pη

and places ν of κ(η) with β ⊗ κ(η)ν 6= 0. Let t = [Eη : Fη]. For each ν ∈ S, we now give a
field extension Lν/κ(η)ν of degree ` and µν ∈ Lν satisfying the conditions of Lemma 3.1 with
E0 = E(η) and d = ind(α)/t.

Let ν ∈ S. Then ν is given by a closed point P of η. If P ∈ P, let LP,η = LP ⊗FP,η and
µP,η = µP ⊗ 1 ∈ LP,η. Suppose that P 6∈ P. Suppose that λ 6∈ ±F ∗`P . Then λ 6∈ ±F ∗`P,η. Let

LP,η = FP,η(
√̀
λ) and µP,η = −

√̀
λ. Suppose that λ ∈ F ∗`P or −λ ∈ F ∗`P . Let LP,η/FP,η be a

cyclic unramified field extension of degree ` and µP,η ∈ LP,η as in Lemma 9.3. Since LP,η/FP,η
is an unramified field extension of degree `, πη is a parameter in LP,η and the residue field
LP (η) is a field extension of κ(η)P of degree `. Let Lν = LP (η). Since NLP,η/FP,η(µP,η) = −λ,
µP,η = θP,ηπ

r
η for some θP,η ∈ LP,η which is a unit at η. Let µν be the image of θP,η in Lν = LP (η).

Then NLν/κ(η)ν (µν) = −θ0. Since the corestriction map H2(Lν , µn) → H2(κ(η)ν , µn) is injective,
rβ ⊗ Lν = (E0 ⊗ Lν , σ0 ⊗ 1, (−1)rµν). By Lemma 10.5, we have ind(α ⊗ (Eη ⊗ FP,η) ⊗ LP,η) <
ind(α)/t. Since α ⊗ Eη = α′ ⊗ Eη, we have ind(α′ ⊗ (Eη ⊗ FP,η) ⊗ LP,η) < ind(α)/t. Since
ind(β ⊗ E0 ⊗ Lν) = ind(α′ ⊗ (Eη ⊗ FP,η)⊗ (LP,η)), ind(β ⊗ E0 ⊗ Lν) < ind(α)/t.

Since κ(η) is a global field, by Lemma 3.1, there exist a field extension L0/κ(η) of degree `
and µ0 ∈ L0 such that:

(1) NL0/k(µ0) = −θ0;

(2) rβ ⊗ L0 = (E(η)⊗ L0, σ0 ⊗ 1, (−1)rµ0);

(3) ind(β ⊗ E(η)⊗ L0) < ind(α)/t;

(4) L0 ⊗ κ(η)P ' LP (η) for all P ∈Pη;

(5) µ0 is close to θP,η for all P ∈Pη.

Then, by Lemma 4.8, there exist a field extension Lη/Fη of degree ` and µ ∈ Lη such that:
• the residue field of Lη is L0;
• µ a unit in the valuation ring of Lη;
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• µ = µ0;
• NLη/Fη(µ) = −θη;
• α · (µπrη) ∈ H3(Lη, µ

⊗2
n ) is unramified.

Since Lη is a complete discretely valued field with residue field L0 a global field, H3
nr(Lη, µ

⊗2
n )

= 0 [Ser97, p. 85] and hence α · (µπrη) = 0. Since Lη/Fη is unramified and α ⊗ Lη = α′ ⊗ Lη +
(Eη⊗Lη, ση, πη), ind(α⊗Lη) 6 ind(α′⊗Eη⊗Lη)[Eη⊗Lη : Lη] = ind(β⊗E(η)⊗L0)t < ind(α).
Thus Lη and µη = µπrη ∈ Lη have the required properties. 2

Proposition 10.7. Let η be a codimension zero point of X0 of type 5b. Let (Eη, ση) be the lift
of the residue of α at η and Mη be the unique subfield of Eη with Mη/Fη a cyclic extension of
degree `. For each P ∈Pη, let LP and µP be as in Proposition 9.8. Then there exists µη ∈Mη

such that:

(1) NMη/Fη(µη) = −λ;

(2) α · (µη) = 0 ∈ H3(Mη, µ
⊗2
n );

(3) ind(α⊗Mη) < ind(α);

(4) for P ∈Pη, there is an isomorphism φP,η : Mη ⊗ FP,η → LP ⊗ FP,η and

φP,η(µη ⊗ 1)(µP ⊗ 1)−1 ∈ (LP ⊗ FP,η)`
m
,

for all m > 1.

Proof. Let E(η) and M(η) be the residue fields of Eη and Mη at η. Since η is of type 5b,
M(η) is the unique subfield of E(η) with M(η)/κ(η) a cyclic field extension of degree `. Let
πη be a parameter at η. Since η is of type 5, νη(λ) = r` and λ = θηπ

r`
η for some θη ∈ F a

unit at η. Let θη be the image of θη in κ(η). Let P ∈ Pη. Suppose Mη ⊗ FP,η is a field. Since
NMη⊗FP,η/FP,η(µP ) = −λ = −θηπr`η , we have µP = µ′Pπ

r
η with µ′P ∈ Mη ⊗ FP,η a unit at η

and NMη⊗FP,η/FP,η(µ′P ) = −θη. Suppose Mη ⊗ FP,η is not a field. Then, by the choice of µP
(cf. Proposition 9.8(11)), we have µP = µ′Pπ

r
η, where µ′P = (θ′1, . . . , θ

′
`) ∈ Mη ⊗ FP,η =

∏
FP,η

with each θ′i ∈ FP,η a unit at η. Let µ′P be the image of µ′P in the residue field M(η) ⊗ κ(η)P
of Mη ⊗FP,η at η. Write α⊗Fη = α′+ (Eη, ση, πη) as in Lemma 4.1. Let β be the image of α′ in
H2(κ(η), µn). Since α·(−λ) = 0, by Lemma 4.7, r`β = (E(η), ση, (−1)r`+1θη). Since α·(µP ) = 0 in
H3(Mη⊗FP,η, µ⊗2

n ), once again by Lemma 4.7, rβ⊗κ(η)P = (E(η)⊗M(η)⊗κ(η)P , ση, (−1)rµ′P ).
Since κ(η) is a global field, by Corollary 3.6, there exists µ′η ∈M(η) such that:

(1) NM(η)/κ(η)(µ
′
η) = −θη;

(2) rβ ⊗M(η) = (E(η)⊗M(η), ση, (−1)rµ′η);

(3) µ′P is close to µ′η for all P ∈Pη.

Since Mη is complete, there exists µ̃′η ∈ Mη such that NMη/Fη(µ̃′η) = −θη and the image of

µ̃′η in M(η) is µ′η. Let µη = µ̃′ηπ
r
η. Since Mη/Fη is of degree `, ind(α ⊗ Mη) < ind(α ⊗ Fη)

(cf. Remark 8.1). Thus µη has the required properties. 2

Proposition 10.8. Let η be a codimension zero point of X0 of type 6. For each P ∈Pη, let LP
and µP be as in Proposition 9.8. Then there exist an unramified field extension Lη/Fη of degree
` and µη ∈ Lη such that:

(1) NLη/Fη(µη) = −λ;

(2) α · (µη) = 0 ∈ H3(Lη, µ
⊗2
n );
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(3) ind(α⊗ Lη) < ind(α);

(4) for P ∈Pη, there is an isomorphism φP,η : Lη ⊗ FP,η → LP ⊗ FP,η and

φP,η(µη ⊗ 1)(µP ⊗ 1)−1 ∈ (LP ⊗ FP,η)`
m
,

for all m > 1.

Proof. Let P ∈Pη. Suppose LP ⊗ FP,η is a field. Let LP (η), θP,η ∈ LP (η), θ0 ∈ κ(η) and β be
as in the proof of Proposition 10.6. Then, as in the same proof, we have NLP (η)/κ(η)P (θP ) = −θ0

and ind(β ⊗ E0 ⊗ LP (η)) < ind(α)/[Eη : Fη]. As in the proof of Proposition 10.7, we have
rβ ⊗ LP (η) = (E0 ⊗ LP (η), σ0 ⊗ 1, (−1)rθP ).

If LP /FP is not a field, by choice (cf. Proposition 9.8(12)), we have µP = (θ1π
r
η, . . . , θ`π

r
η).

Since α · (µP ) = 0 in H3(LP , µ
⊗
n ) =

∏
H3(FP , µ

⊗2
n ), we have α · (θiπrη) = 0 ∈ H3(FP , µ

⊗2
n ). Thus,

by Lemma 4.7, we have rβ ⊗ κ(η)P = (E0, σ0 ⊗ 1, (−1)rθi) for all i. Since LP (η) =
∏
κ(η)P and

θP = (θ1, . . . , θ`), we have rβ ⊗ LP (η) = (E0 ⊗ LP (η), σ0 ⊗ 1, (−1)rθP ).
As in the proof of Proposition 10.6, we construct Lη and µη with the required properties. 2

Lemma 10.9. Let η be a codimension zero point of X0 and P a closed point on η. Suppose
there exist θη ∈ Fη such that α · (θη) = 0 ∈ H3(Fη, µ

⊗2
n ). Then there exists θP ∈ FP such that

α · (θP ) = 0 ∈ H3(FP , µ
⊗2
n ), νη(θP ) = νη(θη) and θ−1

P θη ∈ F `
m

P,η, for all m > 1.

Proof. Let π be a prime representing η at P . Since X0 ∪ ramX (α) has normal crossings, there
exists a prime δ at P such that the maximal ideal at P is generated by π and δ, and α is
unramified at P , except possibly at π and δ. Since FP,η is a complete discretely valued field with
π as a parameter, θη = wπs for some w ∈ Fη unit at η. Since the residue field κ(η)P of FP,η is a
complete discretely valued field with δ as a parameter, we have w = uδ

r
for some u ∈ FP unit

at P . Let θP = uδrπs. Then clearly νη(θη) = νη(θP ) and θ−1
P θη ∈ F `

m

P,η, for all m > 1. Since α ·(θP )

is unramified at P , except possibly at π and δ, and α · (θP ) = α · (θη) = 0 ∈ H3(FP,η, µ
⊗2
n ), by

Corollary 5.5, α · (θP ) = 0 ∈ H3(FP , µ
⊗2
n ). 2

11. The main theorem

Theorem 11.1. Let K be a local field with residue field κ and F the function field of a curve
over K. Let D be a central simple algebra over F of period n, α its class in H2(F, µn), and
λ ∈ F ∗. If α · (−λ) = 0 and n is coprime to char(κ), then −λ is a reduced norm from D∗.

Proof. As in the proof of Theorem 4.12, we assume that n = `d for prime ` with ` 6= char(κ) and
F contains a primitive `th root of unity. We prove the theorem by induction on ind(D).

The case ind(D) = 1 is clear. Assume that ind(D) > 1.
Without loss of generality we assume that K is algebraically closed in F . Let X be a regular

projective geometrically irreducible curve over K with K(X) = F . Let R be the ring of integers
in K and κ its residue field. Let X be a regular proper model of F over R such that the union
of ramX (α), suppX (λ) and the special fiber X0 of X is a union of regular curves with normal
crossings. By Proposition 8.6, we assume that X has no special points, and there is no type 2
connection between codimension zero points of X0 of type 3 or 5, and codimension zero points
of X0 of type 3, 4 or 5.

Let P be the set of nodal points of X0. For each P ∈ P, let LP and µP be as in
Proposition 9.8. Let η be a codimension zero point of X0 and Pη = P ∩ η. Let Lη and µη
be as in Propositions 10.1, 10.3, 10.4, 10.6, 10.7 or 10.8 depending on the type of η. Then Lη/Fη
is a field or the split extension of degree ` and µη ∈ Lη such that:
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(1) NLη/Fη(µη) = −λ;

(2) α · (µη) = 0 ∈ H3(Lη, µ
⊗2
n );

(3) ind(α⊗ Lη) < ind(α);

(4) for P ∈Pη, there is an isomorphism φP,η : Lη ⊗ FP,η → LP ⊗ FP,η and

φP,η(µη ⊗ 1)(µP ⊗ 1)−1 ∈ (LP ⊗ FP,η)`
m
,

for all m > 1.

Let P ∈ X be a closed point with P 6∈ P. Then there is a unique codimension zero point
η of X0 with P ∈ η. We give a choice of an étale algebra LP /FP of degree ` and µP ∈ L∗P such
that:

(1) NLP /FP (µP ) = −λ;

(2) ind(α⊗ LP ) < ind(α);

(3) α · (µP ) = 0 ∈ H3(LP , µ
⊗2
n );

(4) there is an isomorphism φP,η : Lη ⊗ FP,η → LP ⊗ FP,η and

φP,η(µη ⊗ 1)(µP ⊗ 1)−1 ∈ (LP ⊗ FP,η)`
m
,

for all m > 1.

Suppose that η is of type 1. Let LP = FP (
√̀
λ) and µP = −

√̀
λ. Then, by Lemma 6.2 and

Proposition 10.1, LP and µP have the required properties.
Suppose that η is of type 2. Suppose that there is a type 2 connection to a codimension

zero point η′ of X0 of type 5. Let Q be the point of type 2 intersection η and η′. Suppose
that Mη′ ⊗ FQ,η′ not a field. Then, by choice (cf. Proposition 10.3), we have Lη =

∏
Fη and

µη = (θ1, . . . , θ`). Since α · (µη) = 0, we have α · (θi) = 0. For each i, 2 6 i 6 `, by Lemma 10.9,
there exists θPi ∈ FP such that α · (θPi ) = 0 ∈ H3(FP , µ

⊗2
n ) and θ−1

i θPi ∈ F `
m

P,η, for all m > 1. Let

θP1 = −λ(θP2 · · · θP` )−1. Then LP =
∏
FP and µP = (θP1 , . . . , θ

P
` ) have the required properties.

Suppose that Mη′⊗FQ,η′ is a field or there is no type 2 connection from η to any point of type 5.

Then, by choice (Proposition 10.4), we have Lη = Fη(
√̀
λ) and µη = −

√̀
λ. Hence LP = FP (

√̀
λ)

and µP = −
√̀
λ ∈ LP have the required properties (cf. Lemma 6.2).

Suppose that η is not of type 1 or 2. Then, by choice, Lη/Fη is an unramified field extension

of degree ` or the split extension of degree `. Let ÂP be the completion of the local ring at P
and π a prime in ÂP defining η at P . Since P 6∈P and ramX (α) is union of regular curves with
normal crossings, there exists a prime δ ∈ ÂP such that α is unramified on ÂP , except possibly
at π and δ. Further, λ = wπrδs for some unit w ∈ ÂP . Since η is not of type 1 or 2, νη(λ) = r is
divisible by `. Thus, by Lemma 6.5, there exist an étale algebra LP /FP and µP ∈ LP such that:

(1) LP ⊗ FP,η ' Lη ⊗ FP,η;
(2) ind(α⊗ LP ) < ind(α);

(3) α · (µP ) = 0 ∈ H3(LP , µ
⊗2
n );

(4) there is an isomorphism φP,η : Lη ⊗ FP,η → LP ⊗ FP,η and

φP,η(µη ⊗ 1)(µP ⊗ 1)−1 ∈ (LP ⊗ FP,η)`
m
,

for all m > 1.

Thus for every x ∈ X0, we have chosen an étale algebra Lx/Fx of degree ` and µx ∈ Lx such
that:
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(1) NLx/Fx(µx) = −λ;

(2) α · (µx) = 0 ∈ H3(Lx, µ
⊗2
n );

(3) ind(α⊗ Lx) < ind(α);

(4) for any branch (P, η), there is an isomorphism φP,η : Lη ⊗ FP,η → LP ⊗ FP,η and
φP,η(µη ⊗ 1)(µP ⊗ 1)−1 ∈ (LP ⊗ FP,η)

`m , for all m > 1. Further, if η is a codimension
zero point of X0, then Lη/Fη is field or the split extension.

Let (P, η) be a branch. Since κ(P ) is a finite field, there exists tP such that κ(P ) has no
`tP th primitive root of unity. Since κ(η)P is a complete discretely valued field with residue field
κ(P ), κ(η)P has no `tP th primitive root of unity. Since FP,η is a complete discretely valued field
with residue field κ(η)P , FP,η has no `tP th primitive root of unity.

Let L/F be a degree ` extension as in Lemma 7.3. Then ind(α⊗L) < ind(α). Note that for
every closed point P of X0, the residue field κ(P ) at P is a finite field. Thus, for every closed
point P of X0, there exists tP > d such that there is no primitive `tP th root of unity in κ(P ).
Thus, by Proposition 7.5), there exist a field extension N/F of degree coprime to ` and µ ∈ L⊗N
such that:
• NL⊗N/N (µ) = −λ; and
• α · (µ) = 0 ∈ H3(L⊗N,µ⊗2

n ).
Since L ⊗ N is also a function field of a curve over a local field, by induction hypotheses, µ
is a reduced norm from D ⊗ L ⊗ N and hence −λ = NL⊗N/N (µ) is a reduced norm from D.

Since NN/F (−λ) = (−λ)[N :F ], (−λ)[N :F ] is a norm from D. Since [N : F ] is coprime to `, −λ is
a reduced norm from D. 2

Corollary 11.2. Let K be a local field with residue field κ and F the function field of a curve
over K. Let Ω be the set of divisorial discrete valuations of F . Let D be a central simple algebra
over F of period coprime to char(κ) and λ ∈ F . If λ is a reduced norm from D⊗Fν for all ν ∈ Ω,
then λ is a reduced norm from D.

Proof. Let n be the period of D and α ∈ H2(F, µn) be the class of D. Since λ is a reduced norm
from Fν for all ν ∈ ΩF , α ·(λ) = 0 in H3(Fν , µ

⊗2
n ) for all ν ∈ Ω. Thus, by [Kat86, Proposition 5.2],

α · (λ) = 0 in H3(F, µ⊗2
n ) and by Theorem 11.1, λ is a reduced norm from D. 2
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Polytechnique 2006–2008, Astérisque, vol. 363–364, eds L. Illusie, Y. Laszlo and F. Orgogozo
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