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On the Theorem of the Primitive Element
with Applications to the Representation
Theory of Associative and Lie Algebras

Leandro Cagliero and Fernando Szechtman

Abstract. We describe all finite dimensional uniserial representations of a commutative associative
(resp. abelian Lie) algebra over a perfect (resp. sufficiently large perfect) field. In the Lie case the size
of the field depends on the answer to following question, considered and solved in this paper. Let K/F
be a finite separable field extension and let x, y ∈ K. When is F[x, y] = F[αx + βy] for some nonzero
elements α, β ∈ F?

1 Introduction

That the classification of all finite dimensional indecomposable modules over al-
most any Lie algebra is a hopeless enterprise follows from [Ma] (see [GP] for the
2-dimensional abelian case).

It is more realistic to concentrate on certain indecomposable modules over some
types of Lie algebras. In this regard, recall that a module is uniserial if it is nonzero
and its submodules are totally ordered by inclusion. In this paper we consider the
problem of describing all finite dimensional uniserial representations of an abelian
Lie algebra over an arbitrary field.

This is the starting point of a project aiming to systematically investigate the finite
dimensional uniserial representations of distinguished classes of Lie algebras. We
have recently ([CS1]) classified all such representations for the family of complex
perfect Lie algebras sl(2) n V (m), where V (m) is the irreducible sl(2)-module of
highest weight m ≥ 1. This classification turned out to rely on certain zeros of
the Racah-Wigner 6 j-symbol. The analogous problem for a family of solvable Lie
algebras over an arbitrary field is considered in [CS2].

In this context, our main result is the following theorem.

Theorem 1.1 Let g be an abelian Lie algebra over a perfect field F and let V be a
finite dimensional uniserial g-module. Let ` be the composition length of V and let W
be the socle of V . Let N be the number of distinct prime factors of dimF(W ) and suppose
that |F| > N − 1. Then there exists x ∈ g such that V is a uniserial F[x]-module. In
particular, x acts on V , relative to some basis, via the companion matrix C f of a power
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f = p` of an irreducible polynomial p ∈ F[X], and every other element of g acts on V
via a polynomial on C f .

The condition that F be a perfect field such that |F| > N − 1 is essential. A full
account of what happens when F is imperfect is given in Note 3.5. The condition
|F| > N − 1 is related to the following question.

Question A Let K/F be a finite separable field extension and let x, y ∈ K. When
is F[x, y] = F[αx + βy] for some nonzero elements α, β ∈ F?

The same question with some replaced by all has a long history, which is explored
in detail in Section 2. For the stated version, we have the following results.

Theorem 1.2 Let K/F be a finite separable field extension, and let x, y ∈ K have
respective degrees a = md and b = nd over F, where d = gcd(a, b). Let N be the
number of distinct prime factors of d not dividing mn. If |F| > N + 1, then there are
nonzero α, β ∈ F such that F[x, y] = F[αx + βy].

Theorem 1.3 Let K/F be a finite separable field extension. Let N be the num-
ber of distinct prime factors of [K :F]. Suppose that |F| > N − 1. Then, given any
x1, . . . , xn ∈ K such that K = F[x1, . . . , xn], there is an F-linear combination z =
α1x1 + · · · + αnxn such that all αi 6= 0 and K = F[z].

Theorem 2.7 shows that the conditions involving |F| in Theorems 1.1, 1.2, and 1.3
are exact.

We remark that Theorem 1.1 is a corollary of a closely related result concerning
associative algebras, which reads as follows.

Theorem 1.4 Let F be a perfect field and let A be a finite dimensional commutative
and associative algebra over F. Then the following conditions are equivalent:

(i) A = F[u] for some u ∈ A whose minimal polynomial over F is an `-power of an
irreducible polynomial in F[X];

(ii) the regular module of A is uniserial of length `;
(iii) A has a finite dimensional faithful uniserial representation of length `.

Moreover, suppose any of the conditions (i)–(iii) is satisfied. Then A has a unique irre-
ducible module, up to isomorphism, namely the residue field, say R(A), of A. Let N be
the number of distinct prime factors of [R(A) :F] and suppose that |F| > N − 1. Then,
given any elements x1, . . . , xn ∈ A such that A = F[x1, . . . , xn], there is an F-linear
combination z of x1, . . . , xn such that A = F[z].

Our proof of Theorem 1.4, given in Section 3, is fairly subtle, a key ingredient
being the existence and uniqueness of the Jordan–Chevalley decomposition of an
endomorphism acting on a finite dimensional vector space over a perfect field. An-
other consequence of Theorem 1.4 is the following characterization of the finite di-
mensional uniserial modules of a commutative and associative algebra over a perfect
field.
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Theorem 1.5 Let F be a perfect field and let A be a commutative and associative
F-algebra. Let V be a finite dimensional uniserial A-module of length `. Then there
exists x ∈ A such that V is a uniserial F[x]-module. In particular, x acts on V via the
companion matrix C f of a power f = p` of an irreducible polynomial p ∈ F[X], and
every element of A acts on V via a polynomial on C f .

To place Theorems 1.1, 1.4, and 1.5 in context, we observe that the class of unise-
rial modules is very important for associative algebras, whereas for Lie algebras this
class has barely been considered. We are confident that it is as relevant as in the
associative case and thus worthy of detailed study.

There is an extensive literature on uniserial modules and, more generally, on unis-
erial and serial rings. Recall that a ring R with identity is called uniserial (resp. serial)
if both RR and RR are uniserial (resp. direct sum of uniserial) modules. Here all mod-
ules are assumed to be unitary.

Serial rings and algebras occur in several contexts. This class includes discrete
valuation rings, Nakayama algebras, triangular matrix rings over a skew field and
Artinian principal ideal rings (see [Pu, EG]). In particular, every proper factor ring
of a Dedekind domain is serial. Also, serial algebras occur as the group algebras in
characteristic p of certain finite groups, including all p-solvable groups with cyclic
Sylow p-subgroups (see [Sr]).

Some important results include the following:

(a) A finitely generated module over a serial ring is a serial module (i.e., a direct sum
of uniserial modules); see T. Nakayama [Na, Theorem 17].

(b) Nakayama algebras (those whose right and left projective modules are uniserial)
are of finite representation type; i.e., they have only a finite number of indecom-
posable modules up to isomorphism (see [ARS, Ch. VI, Theorem 2.1]).

(c) D. Eisenbud and P. Griffith [EG] proved the following.

(i) For a finite dimensional F-algebra, the serial property is stable under a
change of the base field, provided that A0 = A/Rad(A) be separable, i.e.,
A0 ⊗F K is semisimple for every field extension K/F.

(ii) The composition series of any uniserial module over a serial ring is periodic
in a strong sense (see [EG, Theorem 2.3] for a precise statement).

(iii) Any two simple modules of an indecomposable uniserial ring have the
same endomorphism ring.

(d) A complete description of finite dimensional serial algebras over a perfect field
is contained in [AF, DK].

(e) T. Shores and W. Lewis [SL] show that if M is a faithful uniserial module over an
integral domain R, then EndR(M) is a valuation ring.

2 Finding Primitive Elements

Let K/F be an algebraic separable field extension and let x, y ∈ K.

Question 1 When is F[x, y] = F[αx + βy] for all nonzero elements α, β ∈ F?
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Question 2 When is F[x, y] = F[αx + βy] for some nonzero elements α, β ∈ F?

Question 1 has been studied by many authors, and a brief summary is given below.
However, for our purposes, Question 1 only plays a subsidiary role to Question 2,
which is an indispensable tool in understanding the finite dimensional uniserial rep-
resentations of abelian Lie algebras.

By the standard proof of the theorem of the primitive element (see [Ar, Theorem
26]) we may restrict our consideration of Question 2 to the case when F is a finite
field. In this case, as is well known, every finite extension of F has a primitive element,
but it may surprise the reader to learn that one can always find algebraic elements x, y
such that F[x, y] 6= F[αx+βy] for allα, β ∈ F. Examples are not so easy to construct.
It is also unclear at first how to find the exact conditions under which the existence of
α, β ∈ F× such that F[x, y] = F[αx +βy] is guaranteed. When these conditions fail,
our general description of the finite dimensional uniserial representations of abelian
Lie algebras over F ceases to be true.

Our answer to Question 2 is given in Theorems 2.5 and 2.6, while Theorem 2.7
shows that the conditions are exact. Our main applications of the results of this
section to representation theory are given in Section 3.

Question 1 seems to have been first considered by Nagell [N1, N2], followed by
Kaplansky [K] and Isaacs [I]. Let x and y have degrees m and n over F, respectively.
Isaacs showed that if gcd(m, n) = 1, then F[x, y] = F[αx + βy] for all α, β ∈ F×,
provided certain technical conditions hold when F has prime characteristic p. The
same conclusion was later obtained by Browkin, Diviš, and Schinzel [BDS], provided
[F[x, y] :F] = mn and different technical conditions hold in the prime characteristic
case.

Recently, Weintraub [W] showed that if F[x]/F and F[y]/F are Galois exten-
sions, F[x] ∩ F[y] = F and p - gcd(m, n) when F has prime characteristic p, then
F[x, y] = F[αx + βy] for all α, β ∈ F×. We also obtained and proved this re-
sult (see Theorem 2.1), before we were aware of Weintraub’s paper. The condition
p - gcd(m, n) is essential, as seen in Example 2.3. In particular, if F[x, y]/F is an
abelian Galois extension and gcd(m, n) = 1, then F[x, y] = F[αx + βy] for all
α, β ∈ F× (see Corollary 2.2). In this regard, see [P, §3].

When F[x] ∩ F[y] 6= F, an answer to Question 1 is more difficult. Sufficient
conditions are given in Theorem 2.4, which provides enough information for us to
answer Question 2 in Theorems 2.5 and 2.6 when F is a finite field.

Theorem 2.1 Let K/F be an algebraic extension. Let x and y be elements of K of
respective degrees m and n over F, and satisfying the following:

(C1) F[x]/F and F[y]/F are Galois extensions;
(C2) F[x] ∩ F[y] = F;
(C3) if F has prime characteristic p, then p - gcd(m, n).

Then F[x, y] = F[αx + βy] for all α, β ∈ F different from 0.

Proof It suffices to prove the result for α = β = 1. It is well known ([DF, §14.4,
Corollary 22]) that F[x, y]/F is a Galois extension of degree mn.
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For z ∈ K, let Sz be the stabilizer of z in Gal(K/F). We need to show that Sx+y is
trivial. Since x, y generate F[x, y] over F, this is equivalent to Sx+y ⊆ Sx ∩ Sy .

Let σ ∈ Sx+y . Then σ(x + y) = x + y, so

(2.1) σ(x)− x = −(σ(y)− y).

Since F[x]/F and F[y]/F are normal, this common element, say f , belongs to
F[x] ∩ F[y] = F.

Suppose first that char(F) = 0. Then σ(x) = x + f implies that f = 0, since σ has
finite order. It follows that σ ∈ Sx ∩ Sy .

Suppose next that F has prime characteristic p. Without loss of generality we may
assume that p - m. From σ(x) = x + f we infer that σp(x) = x, so σp ∈ Sx. Now Gx

is normal in G and G/Gx has order m, so σm ∈ Gx. Since gcd(p,m) = 1, we deduce
σ ∈ Sx, which implies that f = 0 and, a fortiori, σ ∈ Sy , as required.

Corollary 2.2 Let K/F be a finite abelian Galois extension. If x, y ∈ K have degrees
m, n over F and gcd(m, n) = 1, then F[x, y] = F[αx + βy] for all α, β ∈ F×.

The condition that G = Gal(K/F) be abelian in Corollary 2.2 is placed to ensure
that every subgroup of G be normal. The groups for which this condition holds are
called Dedekind groups. Every Dedekind group is the direct product of the quater-
nion group Q8 with an abelian group [R], so not much is gained by relaxing our
hypothesis so that G be a Dedekind group.

Theorem 2.1(C3) is redundant if F is a finite field or, more generally, if the Galois
group of F[x, y]/F is cyclic. Indeed, in this case[

F[x] ∩ F[y] :F
]
= gcd(m, n),

so F[x] ∩ F[y] = F if and only if gcd(m, n) = 1.
However, (C3) cannot be dropped entirely, as the following example shows. This

example also illustrates the fact that element (2.1) of F need not be zero if (C3) fails.

Example 2.3 Given a prime p, let E = Fp2 . Let X,Z be algebraically independent
over E and let q = Z p2−Z−X ∈ E[X,Z]. It is not difficult to see that q is irreducible
in E[Z][X], hence in E[X,Z] and therefore in E[X][Z]. Let F = E(X). It follows from
Gauss’ Lemma that q ∈ F[Z] is irreducible. Let α be a root of q in some extension
of F and set K = F[α]. Then α+ a ∈ K is also a root of q for every a ∈ E, so K/F is a
Galois extension of degree p2. Let G = Gal(K/F). For each a ∈ E let σa ∈ G be given
by α 7→ α + a. Then a 7→ σa is a group isomorphism from the underlying additive
group of E onto G. In particular, G ∼= C p ×C p.

Let

x = α(α + 1)× · · · ×
(
α + (p − 1)

)
.

Then

(2.2) x = αp − α.

Since α has degree p2 over F, it follows that x is not in F. On the other hand,

xp + x − X = αp2

− αp + αp − α− X = α + X − α− X = 0.
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Thus x is a root of Z p +Z−X ∈ F[Z]. Since [F[x] :F] > 1 and [K :F] = p2, it follows
that [F[x] :F] = p.

Since G is abelian, F[x]/F is a Galois extension of degree p. Here F[x] is the fixed
field of σ ∈ G, given by α 7→ α + 1. In fact,

x = α× ασ × · · · × ασ
p−1

.

Next take a in E but not in Fp and let

y = α(α + a)× · · · ×
(
α + (p − 1)a

)
.

Then for β = α/a, we have

(2.3) y = ap y/ap = apβ(β + 1)× · · ·
(
β + (p− 1)

)
= ap(β p−β) = αp− ap−1α.

In particular, y is not in F. On the other hand,

y p + a1−p y − X = α + X − a1−pαp + a1−pαp − α− X = 0.

Thus, y has minimal polynomial Z p + a1−pZ − X over F; the extension F[y]/F is
Galois of degree p, and F[y] is the fixed field of τ ∈ G, given by α 7→ α + a, with

y = α× ατ × · · · × ατ
p−1

.

Note that σ and τ both have order p, but, by the choice of a, 〈σ〉 ∩ 〈τ〉 is trivial. In
particular, F[x] and F[y] are different subfields of K. Degree considerations imply
that F[x] ∩ F[y] = F.

We wish to find all b, c ∈ F different from 0 such that K = F[bx + yc]. Clearly this
is equivalent to finding all b ∈ F, b 6= 0, such that K = F[x + by], and we claim that
this holds if and only if b /∈ Fp ·a. Thus, x + f ay, where f ∈ Fp is nonzero, has degree
p over F, while x + by, where b ∈ F is not an Fp-scalar multiple of a, has degree p2

over F.
To see the claim, note first that G consists of all σiτ j , where i, j ∈ Fp. Now (2.2)

gives

xσ
iτ j

= (α + ja)p − (α + ja) = x + j(ap − a),

while (2.3) yields

(by)σ
iτ j

= b
[

(α + i)p − ap−1(α + i)
]
= b
[

y + i(1− ap−1)
]
= by + ib(1− ap−1).

Therefore,

(x + by)σ
iτ j

= x + by + ja(ap−1 − 1) + ib(1− ap−1).

By the choice of a, we have ap−1 6= 1. Therefore σiτ j fixes x + by if and only if
ja = ib. Clearly i, j are both zero or both nonzero. In the first case we deal with the
identity element of G, which fixes every element of K. In the second case σiτ j fixes
x + by if and only if b = j/i × a. All in all, x + by has a non-trivial stabilizer in G if
and only if b ∈ Fp · a, as claimed.

Further information about generalized Artin–Schreier polynomials of the form
Z pn − Z − a and their associated Galois extensions, including the computation of
primitive elements for every intermediate field, can be found in [GS].
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Theorem 2.4 Let K/F be a field extension, let x, y ∈ K of degrees a = md and
b = md, respectively, with d = gcd(a, b), and let E = F[x] ∩ F[y]. Given α, β ∈ F×

let z = αx + βy and let pz,E be the minimal polynomial of z over E. Assume that:

(i) F[x]/F and F[y]/F are finite Galois extensions;
(ii) K = F[x, y] has degree mnd = lcm(a, b) over F.

Then the degree of z over F is mne, with e = d/|S| and S is the stabilizer of pz,E in
Gal(E/F). Moreover, if K/F is cyclic and p|mn for every factor p of d, then K = F[z].
In particular, if K/F is cyclic and d | mn, then K = F[z].

Proof That K/F are E/F are Galois extensions follows from [DF, §14.4, Proposition
21]. Here [E :F] = d, by [DF, §14.4, Corollary 20].

Now K/E is a Galois extension ([DF, §14.2, Theorem 14]) of degree mn, where
gcd(m, n) = 1. Moreover, E[x] = F[x] has degree m over E and E[y] = F[y] has
degree n over E. It follows from Theorem 2.1 that K = E[z]. Thus the degree z
over E is mn. If T is a transversal for S in Gal(E/F), then

∏
σ∈T pσz,E is the minimal

polynomial of z over F and therefore the degree of z over F is mn|Gal(E/F)|/|S| =
mnd/|S|.

Suppose next that Gal(K/F) = 〈σ〉 is cyclic. We claim that if p is a prime and
p|mn then σmnd/p(z) 6= z. Indeed, if p|m then σmnd/p(y) = σbm/p(y) = y and,
since gcd(m, n) = 1, we infer that p - n, so σmnd/p(x) = σan/p(x) 6= x, whence
σmnd/p(z) 6= z. The case p|n is analogous. This proves the claim. Consequently, if
every prime factor p of d divides mn, then necessarily, S = 1, so K = F[z].

Theorem 2.5 Let K/F be a finite separable field extension, and let x, y ∈ K have
respective degrees a = md and b = nd over F, where d = gcd(a, b). Let A be the
number of distinct prime factors of d not dividing mn. If |F| > A + 1, then there is
0 6= α ∈ F such that F[x, y] = F[x + αy].

Proof By the standard proof of the theorem of the primitive element (see [Ar, The-
orem 26]) we may assume that F is finite.

Let K = F[x, y]. Since K/F is cyclic, we see that [F[x]∩F[y] :F] = d and [K :F] =
lcm(a, b).

By Theorem 2.4, if α ∈ F, α 6= 0, then x + αy has degree mneα over F for some
eα|d. We wish to select α so that eα = d.

We have Gal(K/F) = 〈σ〉, where σ has order mnd. Suppose p is a prime factor of
d. If p|mn, then σmnd/p(x + αy) 6= x + αy, while if p - mn, then σmnd/p(x) 6= x and
σmnd/p(y) 6= y, as seen in the proof of Theorem 2.4. In the latter case there is at most
one α 6= 0 in F such that σmnd/p(x + αy) = x + αy.

If |F| − 1 > A, then there is α 6= 0 in F such that x + αy ∈ is not fixed by σmnd/p

for any prime factor p of d such that d - mn, so eα = d in this case.

Theorem 2.6 Let K/F be a finite separable field extension. Let B be the number of dis-
tinct prime factors of [K :F]. Suppose that |F| > B− 1. Then, given any x1, . . . , x` ∈ K
such that K = F[x1, . . . , x`], there is an F-linear combination z = α1x1 + · · · + α`x`
such that all αi 6= 0 and K = F[z].
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Proof By the standard proof of the theorem of the primitive element (see [Ar, The-
orem 26]) we may assume that F is finite. In this case, we argue by induction on `. If
` = 1, there is nothing to do. Suppose ` = 2 and let p1, . . . , pB be the distinct prime
factors of [K :F]. Let a = pa1

1 · · · p
aB
B and b = pb1

1 · · · pbs
s be the respective degrees of

x1 and x2 over F, where ai , b j ≥ 0. If all ai ≤ bi , we take z = x2, and if all b j ≤ a j ,
we take z = x1. Suppose next that ai > bi and b j > a j for some 1 ≤ i 6= j ≤ B.
Let d = gcd(a, b), m = a/d, n = b/d, and let A be the number of distinct prime
factors of d not dividing mn. Since pi |m and p j |n, we have A ≤ B − 2. Therefore
|F| − 1 > B− 2 ≥ A, so K = F[z] for some F-linear combination z = α1x1 + α2x2,
αi 6= 0, by Theorem 2.5.

Suppose ` > 2 and the result is true for ` − 1. Let C be the number of distinct
prime factors of [F[x1, . . . , x`−1] :F]. Then C ≤ B, so |F| > C − 1. By inductive
assumption there is an F-linear combination u = β1x1 + · · · + β`−1x`−1, βi 6= 0,
such that F[x1, . . . , x`−1] = F[u]. Therefore K = F[u, x`]. By the case ` = 2 we can
find an F-linear combination z = γ1u + γ2x`, γi 6= 0, such that K = F[z]. Since
z = α1x1 + · · · + α`x`, with all 0 6= αi ∈ F, the proof is complete.

Theorem 2.7 Given a prime power q and A ≥ q− 1, there exist a, b ≥ 1 and x, y in
some extension of F = Fq such that the following hold:

(i) d = gcd(a, b) has exactly A distinct prime factors that are not factors of a/d×b/d;
(ii) x has degree a over F and y has degree b over F;
(iii) no F-linear combination of x, y generates F[x, y] over F.

Proof All degrees considered below are taken over F = Fq. Let (pi)i∈F× be a family
of distinct primes in N, and let r, s be primes in N distinct from each other and all pi .
Let d be the product of all pi and let t = drs. Let K be an extension of F of degree
t . For i ∈ F×, let ui ∈ K be an element of degree pi . We further take x0, y0 ∈ K of
degree r and s, respectively. Let x be the sum of all iui and x0, and let y be the sum of
all ui and y0. It follows from Corollary 2.2 that x, y have respective degrees a = t/s
and b = t/r, whence K = F[x, y]. Moreover, gcd(a, b) = d. The number of distinct
prime factors of d that are not factors of a/d × b/d = rs is q − 1. We claim that no
F-linear combination of x, y generates K over F. It suffices to verify this for x, y, and
all x− i y, i ∈ F×. Now s does not divide the degree of x; r does not divide the degree
of of y; and pi does not divide the degree of x − i y, as required.

If A > q − 1, we can easily modify the above construction by selecting
k = A− (q− 1) further primes, say q1, . . . , qk, multiplying the previous choices of
d and t by q1 · · · qk, selecting v1, . . . , vk ∈ K of respective degrees q1, . . . , qk, and
adding the sum of the vi to the previous choices of x and y. The same conclusion
follows.

3 Uniserial Representations of Abelian Associative and Lie Algebras

We are ready to prove Theorem 1.4. We recall some basic notions before proceeding
to the actual proof.

If A is a commutative local ring with maximal ideal m, then R(A) = A/m is known
as the residue field of A.
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If A is an associative or Lie algebra over a field F and U is a finite dimensional
A-module, then the socle of U is the sum of all irreducible submodules of U .

Suppose V is a finite dimensional vector space over a field F and let x ∈ End(V ). A
Jordan–Chevalley decomposition of x is a pair (s, n) of elements of End(V ) satisfying

(a) x = s + n;
(b) [s, n] = 0;
(c) n is nilpotent;
(d) s is semisimple; i.e., V is a completely reducible F[X]-module via s.

It is well known (see [B, Chapter VII, §5]) that if F is perfect, then every x ∈ End(V )
has a unique Jordan–Chevalley decomposition (s, n) and, moreover, s, n ∈ F[x].

Theorem 3.1 Let F be a perfect field and let A be a finite dimensional commutative
and associative algebra over F. Then the following conditions are equivalent:

(i) A = F[u] for some u ∈ A whose minimal polynomial over F is an `-power of an
irreducible polynomial in F[X];

(ii) the regular module of A is uniserial of length `;
(iii) A has a finite dimensional faithful uniserial representation of length `.

Moreover, suppose any of the conditions (i)–(iii) is satisfied. Then A has a unique irre-
ducible module, up to isomorphism, namely the residue field, say R(A), of A. Let N be
the number of distinct prime factors of [R(A) :F] and suppose that |F| > N − 1. Then,
given any elements x1, . . . , xn ∈ A such that A = F[x1, . . . , xn], there is an F-linear
combination z of x1, . . . , xn such that A = F[z].

Proof It is obvious that (i) implies (ii) and that (ii) implies (iii).
Suppose (iii) holds. Then there is a finite dimensional F-vector space V such that

A is a subalgebra of End(V ) and V is a uniserial A-module. We wish to show that
there is u ∈ A such that A = F[u], where the minimal polynomial of u is an `-power
of an irreducible polynomial in F[X].

We argue by induction on the composition length ` of V as an A-module. Suppose
first that ` = 1, that is, V is irreducible. It follows from Schur’s Lemma that D =
EndA(V ) is a finite dimensional division algebra over F. Since A is commutative,
every v 7→ av, a ∈ A, is in D. Thus the image of A in D is a finite field extension of
F, and hence so is A since V is faithful. Since F is perfect, there is u ∈ A such that
A = F[u] (see [Ar, Theorem 27]). Clearly, the minimal polynomial of u is irreducible
in F[X].

Suppose next that ` > 1 and the result is true for faithful uniserial modules of
length < `.

Let a ∈ A. Since A is commutative and V is uniserial over A, the minimal poly-
nomial of a must be a power of monic irreducible polynomial pa ∈ F[X]. Moreover,
the minimal polynomial of a acting on any finite dimensional irreducible A-module
must be irreducible. We deduce that the minimal polynomial of a acting on any
composition factor of V is pa.

Let W be the socle of V . Since V is uniserial, W is irreducible. Let B the subalgebra
of End(W ) consisting of all a|W , a ∈ A. By the above, B = F[b|W ] for some b ∈ A.
Since W is irreducible as a module for F[b], we see that dim(W ) = deg(pb).
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Let C be the subalgebra of End(V/W ) of all ã, where a ∈ A and ã(v + W ) =
a(v) + W for v ∈ V . Note that V/W is a faithful uniserial C-module of length `− 1.
By inductive hypothesis, there is x ∈ A such that C = F[x̃], where the minimal
polynomial of x in V/W is p`−1

x .
We claim that deg(px) = deg(pb). Indeed, from x|W ∈ F[b|W ] we deduce

deg(px) ≤ deg(pb). Let U/W be the socle of V/W , which is an irreducible A-

module. Let x̂ and b̂ be the elements of End(U/W ) corresponding to x and b, re-

spectively. Since b̂ ∈ F[x̂], we infer deg(pb) ≤ deg(px), as claimed.
From deg(px) = deg(pb) = dim(W ) we deduce that W is an irreducible

F[x]-module. From now on we let p = px. Thus x has a single elementary divi-
sor p`−1 on V/W and a single elementary divisor p on W . Therefore, one of the
following cases must occur.

Case 1. x has a single elementary divisor p`. In this case we take u = x. Since every
a ∈ A commutes with the cyclic operator u, we infer A = F[u].

Case 2. x has elementary divisors p`−1 and p. Let R = F[X] and view V as an R-
module via x. Then V = Rv1 ⊕ Rv2, where the annihilating ideals of v1 and v2 are
respectively generated by p and p`−1. Suppose, if possible, that ` > 2. Let a ∈ A.
Then av2 = g(x)v2 + h(x)v1 for some g, h ∈ R. Therefore,

ap`−2(x)v2 = p`−2(x)av2 = g(x)p`−2(x)v2 + h(x)p`−2(x)v1 = g(x)p`−2(x)v2.

Thus Rp`−2(x)v2 is an irreducible A-submodule of V , so W = Rp`−2(x)v2. But then
the minimal polynomial of x acting on V/W is p`−2, a contradiction. This proves
that ` = 2.

Thus V is a completely reducible R-module, so V = W ⊕U , for some irreducible
R-submodule U of V .

But V is not a completely reducible A-module, so A is not a semisimple algebra.
Therefore, A has a nonzero nilpotent element, say y. Hence py(X) = X, so y acts
trivially on W and V/W . It follows that the minimal polynomial of u = x + y is
p or p2. Suppose, if possible, that the first case occurs. Then u is semisimple and
has two different Jordan–Chevalley decompositions, which is impossible, since F is
perfect (see [B, Chapter VII, §5]). Thus u has minimal polynomial p2, so V is a
uniserial F[u]-module, and a fortiori A = F[u]. This proves (i).

Suppose now that the equivalent conditions (i)–(iii) hold. Since A is local, it is
clear that its residue field R(A) is its unique irreducible module. Let N be the number
of distinct prime factors of [R(A) :F] and suppose that |F| > N − 1. Let x1, . . . , xn

be any elements of A satisfying A = F[x1, . . . , xn]. We wish to show the existence of
an F-linear combination z of x1, . . . , xn such that A = F[z]. We argue by induction
on the composition length ` of V = A as an A-module.

If ` = 1, then A = F[u] is a finite field extension of F. In this case the existence of
z follows from Theorem 2.6.

Suppose next that ` > 1 and the result is true for algebras of satisfying (i)–(iii)
of length < `. Arguing as above, since C is a nonzero factor of the local ring A, its
residue field is F-isomorphic to that of A. By inductive hypothesis, there is v in the
F-span of x1, . . . , xn such that C = F[ṽ]. In Case 1, when v is cyclic, we can take
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z = v. In Case 2 we have V = W ⊕ U , where W is the socle of the A-module V
and W,U are irreducible F[v]-modules upon which v acts with irreducible minimal
polynomial pv. Suppose, if possible, that every nonzero x1, . . . , xn acts semisimply
on V . Since F is perfect, it follows that every element of A acts semisimply on V (see
[B, Chapter VII, §5, Corollary to Proposition 16]). This contradicts the fact that A
has nonzero nilpotent radical. Thus, there is at least one i such that y = xi 6= 0
is not semisimple. Since F is perfect, y has a Jordan–Chevalley decomposition in
End(V ) (see [B, Chapter VII, §5]), say y = s + m, where s,m ∈ F[y] ⊆ A, s is
semisimple, 0 6= m is nilpotent, and [s,m] = 0. By Theorem 2.6 applied to the finite
field extension B = F[v|W ] of F, there is 0 6= α ∈ F such that z = v + αy satisfies
B = F[z|W ]. Since m acts trivially on W , it follows that v + αs acts irreducibly on W .
Now v and αs are semisimple and commute. Since F is perfect, it follows, as above,
that v + αs is semisimple. By uniqueness of the Jordan–Chevalley decomposition we
see, as above, that v + αs + αm = z has minimal polynomial p2

z , where deg(p2
z ) =

deg(p2) = dim(V ). Thus A = F[z], where z = v + αxi is an F-linear combination of
x1, . . . , xn.

Corollary 3.2 Let F be a perfect field and let A be a commutative and associative
F-algebra. Let V be a finite dimensional uniserial A-module of length `. Then there
exists x ∈ A such that V is a uniserial F[x]-module. In particular, x acts on V via the
companion matrix C f of a power f = p` of an irreducible polynomial p ∈ F[X], and
every element of A acts on V via a polynomial on C f .

Corollary 3.3 Let F be a perfect field and let g be an abelian Lie algebra over F. Let
V be a finite dimensional uniserial g-module of length `. Let W be the socle of V . Let N
be the number of distinct prime factors of dim(W ) and suppose that |F| > N − 1. Then
there exists x ∈ g such that V is a uniserial F[x]-module. In particular, x acts on V via
the companion matrix C f of a power f = p` of an irreducible polynomial p ∈ F[X],
and other every element of g acts on V via a polynomial on C f .

Proof Apply Theorem 3.1 to the subalgebra of End(V ) generated by the image of g

under the given representation.

Corollary 3.4 Let F be an algebraically closed field and let A be an abelian associative
or Lie algebra over F. Let V be a uniserial A-module of finite dimension m. Then there
exists an x in A that is represented by a Jordan block Jm(α), α ∈ F, relative to a basis of
V . Moreover, every other element of A is represented by a polynomial in Jm(α) in that
basis.

Note 3.5 It is well known (see [Ar, Theorem 27]) that if F is a perfect field, then
every finite extension K of F has a primitive element, i.e., an element x ∈ K such that
K = F[x].

However, certain imperfect fields share this property, and it is conceivable that
the implication (iii) → (i) of Theorem 3.1 remains valid for these fields, which is
certainly the case when the given uniserial module is irreducible. The purpose of
this note is to show that the implication (iii)→ (i) of Theorem 3.1 actually fails for
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every imperfect field, once we allow uniserial non-irreducible modules. In short, the
condition that F be perfect is essential to Theorem 3.1.

For the remainder of this note F stands for a field of prime characteristic p. Then
Fp is a subfield of F and the degree [F :Fp] is either infinite or a power of p. Following
Teichmüller [T], we define the degree of imperfection of F to be infinite or m ≥ 0,
depending on whether [F :Fp] is infinite or equal to pm. Thus F is perfect if and only if
it has degree of imperfection 0. In this case, if K = F(X1, . . . ,Xm), where X1, . . . ,Xm

are algebraically independent over F, then K has degree of imperfection m.
It was shown by Steinitz [St] that every finite extension of an imperfect field of

degree of imperfection 1 has a primitive element. For a generalization of Steinitz’
result see [BM]. It is easy to see that every imperfect field whose degree of imperfec-
tion is greater than 1 has a finite extension with no primitive element. In particular,
Theorem 3.1 does not apply to any of these fields.

Suppose F is imperfect. We claim that there is a commutative and associative
F-algebra A of dimension 2p with a faithful uniserial A-module V of dimension 2p
and no x ∈ A such A = F[x]. The key underlying factor here is that the uniqueness
part of the Jordan–Chevalley decomposition fails over an imperfect field.

To prove the claim, observe that, by hypothesis, there exists a ∈ F such that
a /∈ Fp. Therefore (see [M, §1.4, Theorem 9]) the polynomial f = Xp − a ∈ F[X]
is irreducible. Let C be the companion matrix to f and consider the matrices in
D, E ∈ M2p(F) defined in terms of p × p blocks as follows:

D =

(
C 0
0 C

)
, E =

(
0 Ip

0 0

)
.

It is clear that the subalgebra A of M2p(F) generated by D and E is commutative of
dimension 2p with F-basis DiE j , where 0 ≤ i < p, 0 ≤ j < 1. Moreover, the
column space V = F2p is a faithful uniserial A-module of dimension 2p. Let x ∈ A.
Then there are αi j ∈ F such that x is the sum of all αi jDiE j , 0 ≤ i < p, 0 ≤ j < 1.
Since E2 = 0 and Dp = aI2p, it follows that xp is the sum of all αp

i0aiI2p, 0 ≤ i < p.
Thus, xp = sI2p, where s ∈ F, so x is a root of Xp − s ∈ F[X]. In particular, F[x] has
dimension ≤ p, so F[x] is a proper subalgebra of A. Note, finally, that B = D + E
satisfies

Bp = (D + E)p = Dp + Ep = aI2p,

so the minimal polynomial of B is f . In particular, B is semisimple and has two
different Jordan–Chevalley decompositions.

Note 3.6 Let A be a commutative associative algebra over a field F and let V be a
finite dimensional faithful uniserial A-module. It is not difficult to see that V = Av
must be cyclic, where the annihilator of v is trivial. Then A ∼= Av = V , so A is unis-
erial as A-module. The argument is taken from the proof of [SL, Proposition 2.1].
However, the fact that A itself is uniserial in no way implies the results of this section,
as shown in Note 3.5.

Note 3.7 The condition |F| > N− 1 is essential in Theorem 3.1 and Corollary 3.3,
as the irreducible module F[x, y] of Theorem 2.7 shows.
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Note 3.8 The condition that V be finite dimensional in Theorem 3.1 is essential.
Let F be a field and let K = F(X). The regular module of K is irreducible, but there
is no x ∈ K such that K = F[x].

Note 3.9 The use of uniserial modules in Theorem 3.1 and Corollary 3.3 cannot
be extended to more general indecomposable modules. Indeed, let F be a field and
let V be a finite dimensional indecomposable but not uniserial module for a Lie or
associative algebra. Then there is no x in this algebra such that V is an indecompos-
able F[x]-module, for in that case, V will be a uniserial F[x]-module and hence a
uniserial module for the given algebra.

Note 3.10 The theorem of the primitive element for finite field extensions of per-
fect fields is a special case of Theorem 3.1.
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