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ON A THEOREM OF P. FONG

INNA KORCHAGINA

Abstract. This paper is a contribution to the ”revision” project of Gorenstein,
Lyons and Solomon, whose goal is to produce a unified proof of the Classification
of Finite Simple Groups.

§1.

This paper is a contribution to the “revision” project of Gorenstein,
Lyons and Solomon, whose goal is to produce a unified proof of the Classi-
fication Theorem of Finite Simple Groups [GLS]. Theorem Cy [GLS2] is the
part of the proof of the Classification Theorem which deals with the “small
odd cases”. One case of this theorem is the following result:

THEOREM. If G is a finite simple group of odd type and of 2-rank 3

(where the 2-rank of G is a 2-rank of a Sylow 2-subgroup of G), then one
of the following holds:

1) G =2Gy(q) for some q¢ = 32"+ n > 1;

)
2) G =2 Gy(q) for some odd q with q > 3;
3) G 223 Dy(q) for some odd q; or

)

4

(
(
(
(4) G = My, J; or ON.

In order to prove this theorem, one begins by showing that G ~ G* for
some G* € {%G2(q),G2(q),>D4(q), M12, J1,ON} with ¢ odd, which means
that the following conditions hold:

(1) G and G* have isomorphic Sylow 2-subgroups;

(2) G has exactly one class of involutions z%; and

(3) If C = Cg(z), then C = Cg+(2*) for z* an involution of G*.
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At this time the proof splits into two major cases. The first one deals
with the situation G* =2 Ga(q). In the second case, C(z) has a subgroup
K of index 2 with K = Kl o KQ and Kz = SLQ(TZ) (i.e., [Kl,KQ] = 1,
KiNKy = Z(K) = Z(K;) = (z)), where ro = g and 71 = q or ¢>. The
analysis depends on the values of the parameters r1 and ro. If 1 > ro or
r1 = 73 # 3", then local analysis shows that G =3 Dy(q) or Ga(q). Finally,
suppose that ¢ = ry = ro = 3™ with n > 2. The crucial point of the analysis
is to show that the centralizer of the central involution does not contain a
Sylow 3-subgroup of G. If ¢ > 9, this is a fairly easy application of an
order formula obtained by Brauer using modular character theory. This
was proved by Fong and Wong [FW]. Unfortunately for the case ¢ = 9, this
proof does not work. One has to try to come up with a different trick. This
is achieved in the theorem which we state:

THEOREM 1.1. There is no finite group G satisfying the following con-
ditions:

(1) G has a unique conjugacy class of involutions;

(2) If z is an involution of G, then Cg(z) = (L1 o L2)T', where L;
SLQ(Q), T =79 (i.@., [Ll,LQ] =1and L1NLy = <Z>) and Cg(Z)/LZ
PGL5(9) fori=1,2;

[raie

(3) For every nontrivial 3-subgroup P < Cq(z), we have Ng(P) < Cg(z);

(4) Every nontrivial 5-element of G is conjugate to some nontrivial 5-
element of L1 U Ly and Cq(s) < Cq(z) for all nontrivial 5-elements
s € L1 U Ly; and

(5) 7 divides the order of G.

We remark that (3), (4) and (5) follow by local group theory method
from (1), (2) and the hypothesis that C'(z) contains a Sylow 3-subgroup of
G [GLS2]. Thus Theorem 1.1 leads one to the desired goal: G = G3(9). This
result was first announced by P. Fong in [F1]. If G = G3(9), then his proof,
an elaborate exercise in exceptional character theory, occupies 25 pages of
unpublished notes [F2]. In this paper we give a considerably shorter proof
of this result. We begin in the same way as Fong by establishing a group
order formula (equation (5) below) using the work of M. Suzuki, but then we
apply a theorem of Frobenius in the manner of Lyons [L]. Combining those
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two results with the Chinese Remainder Theorem and Sylow’s Theorem,
we obtain an easy contradiction, proving the result. We refer the reader to
[Co] for the basic terminology and results of exceptional character theory.
We now begin the proof. We assume the contrary and proceed to a
contradiction in a sequence of lemmas. Fix a nontrivial involution z € G
and let C' = Cg(2).
Consider the set S C C which consists of the following elements:

(81) roots of z;
(82) 3-singular elements; and
(83) non-trivial 5-elements of Ly U Lo.
For s € S, we let Cfi(s) = {g € G|s? = s} U{g € G|s? = s71}.

LEMMA 1.2. If s€ S, then Cf(s) < C.

Proof. There are three types of elements in S. Let us deal with them
one by one. If s is a root of z, then clearly Ci(s) < C. If s is a 3-
element, then the result follows from the hypothesis of the theorem. But
this immediately implies the result for all 3-singular elements. Finally if
s € S is a H-element, we have the following:

Cg(s) 2 Co(s) =z Co(s) = Cals).
But |C&(s) : Ca(s)| < 2, while [Cf(s) : Ce(s)] = 2. Thus Ci(s) < C.
LEMMA 1.3. S is a closed set of special classes.

Proof. There are four things that we must check:

(1) S is a normal subset of C;

(2) Whenever s € S, every generator of (s) also lies in S;

(3) Whenever s; and sg are elements of S which are conjugate in G,

then s; and sy are conjugate in C'; and

(4) If s€ S, then Cg(s) < C.

Clearly conditions (1) and (2) follow immediately from the definition
of S. Condition (4) follows from Lemma 1.2. Finally let us deal with the
condition (3). If s1, s are the roots of z and h € G is such that s; = s5,
then 2" = z, and so h € C.

Finally suppose that either si, ss are nontrivial G-conjugate 3-singular
elements of S, or s; and s are nontrivial G-conjugate 5-elements of S.
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Then there exists h € G with s1 = s& and so Cg(s1) = Cg(sh) = Ca(s2)™.
In both cases (z) is the unique Sylow 2-subgroup of Z(Cg(s;)). Hence (z)

is a characteristic subgroup of Cg(s;) for i = 1,2. Therefore (2)" = (2),
and so h € C.

COROLLARY 1.4. Induction is an isometry from the set Mc(S) of
class functions of C which vanish outside of S to the character ring Ch(Q)
of G.

Proof. Since S is a closed set of special classes of C, the result follows
immediately from Theorem 9 in [Co].

LEMMA 1.5. There exists a class function 6 of C such that € Mc(S)
and the following conditions hold:

(1) (0,0)c = 3;

(2) (8,0)c = (09,0%)q; and

(3) (0%,1¢) = 1.

Proof. Let us simply construct such a class function. Consider X x Xs
with X; &2 PGL2(9), i = 1,2. Let x; be a Steinberg character of Xj,
1 =1,2. Then 1 X x2 is an irreducible character of a group isomorphic to
PGLy(9) x PGL2(9) (4.21 [Is]). Take the lift of x1 X x2 to the double cover
C* of PGL2(9) x PGL2(9), which contains C as a subgroup of index 2.
Now define « to be the restriction of this lift to C, i.e., a is an irreducible
character of C' of degree 81 with ker(a) = (z).

Let p be an irreducible character of Lo Lo of degree 8 with ker(p) = Lo
and X be one of the two irreducible characters of L o Ly of degree 5 with
ker(\) = L1. Denote 3 = (p- \). Then 3 is an irreducible character of C
of degree 80 such that ker(8) = (z) and B|r,on, = p- (A + ') where X is
the other character of Ly o Lo of degree 5 with L; in its kernel.

Finally consider the following class function: # = 1¢ + 8 — a. By
direct calculations, we see that 6 vanishes outside of S. Let us study some
properties of 6. Clearly (0,60)c = (1¢ + 5 — a,1¢ + 5 — a)c = 3. Also by
Corollary 1.4, (0,0)c = (09,0%)q. Finally, by Frobenius Reciprocity (p.62,
[1s]), (6%, 1¢) = (0,1y) = 1.

This lemma has very important consequences:

COROLLARY 1.6. There exist irreducible complex characters ¥, ® of
G such that 0¢ = 1 + U — ®, and the following conditions hold:

(1) (1) =1+ Y(1) and ®(z) =1+ ¥(z); and

(2) |¥(2)| < 509.
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Proof. Since §9(1) = 0, Lemma 1.5 implies the existence of irreducible
complex characters ¥, ® of G such that ¢ = 15 + ¥ — ®. Moreover since
0%(z) = 0, condition (1) of the corollary obviously holds.

Finally, 1+ ¥(2)2 4+ ®(2)? < dox x(2)?, where the summation is taken
over all the irreducible characters of G. But }_ x(2)2 = |C] by Or-
thogonality Relations (p.21, [Is]). Applying condition (1), we obtain that
1+ W(2)?+ (¥(2) + 1) < |C| which implies that |¥(z)| < 509.

Next define a complex-valued class function £ of G by

~ 2
(1) e =3 X w)

where the summation is taken over all the irreducible characters of G. Let
us use a simple manipulation to present £ in a slightly different way:

G x(z |0|2 of o lcp
- zz h T~
= 10F 2 X gy = e ~ =g

(1.2)
where a,, : G — C is the class function defined for all h € G by
azz(h) = Qzzh = |{(h17h2) € ZG X ZG . h1h2 — h}|

Since £ is a complex-valued class function on G, we may calculate

(erg)G:

09,8 = (1G +T -0 X(Z)2X> — 14 V() 2(2)?
X a

x(1)
Using Corollary 1.6(1), we obtain the following formula:

U(z)? (W) + 1) (T(1) - 9(2))?
U() e +1 W) (e)+1)

(1.3) (09,6 =1+

On the other hand using Frobenius Reciprocity and formula (1.2), we
have:

6 e — t0.elore (517 lop
%906 = 0.8lo)e = (0.1 50alc) =1Tr0aiore

Since 6 vanishes outside of S, we basically are dealing with a,,|s. Since
hish; = s~ ! for i = 1,2, we have that h; € C¢(s). But by Lemma 1.2, if
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s € S, then Cf(s) < C and so for every s € S we have that a..s can be
written as

! / ! ! / / / / /
QAzzs = Qypg + QArts + Qyls + Qits + QAizs + ys + ays + Qs + s

where a’_,,...,a}, are algebra constants of C' with z,t,1 being the rep-
resentatives of all the conjugacy classes of involutions in C, for 2%|c =
{z} Ut UI®. Notice that the only element of S inverted by z is z itself.
Clearly a’; =0 for all h € C — {1}. So we must have a/,,, = a},, = a,,, =

zls
/ _ ! i
ay,s = a;,, = 0. Therefore
0 ! / /
Qzzs = Qs + Ay + s + QAgs-

All this allows us to reduce the situation to the calculations inside C. So
we obtain the following result:

_214'38_53_412

G
(149) (0%, €)c e

Finally combining (1.3) and (1.4) we obtain:

w(L) - (1) + 1)
(W(1) = ¥(2))

|G| =2 .3%.5%.41%.

Set x = ¥(1) and a = ¥(z). Let us recall all that we know about |G/:

LEMMA 1.7.  The following conditions hold:
(1) 1Gl = 2

(2) |G| = 3%

(3) |G|5 = 5% and

(4) |G| is divisible by 7.

Let g = 28—@? Thus ¢ is an integer which is coprime to 2 -3 - 5,
divisible by 7 and most importantly, g can be written in the following form:

z-(x+1)

1. —96.34.5.412.
(1.5) g 35 @ a?

COROLLARY 1.8. The following inequality is correct:

2.3t 5.412. 2EED g6 g1 5 g2, 2@H D)

(x + 509)2 (x — 509)2
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Proof. Since |a| < 509, we have the following inequality:
r—509 <z —a<ax+509

Using this together with definition of g, we immediately obtain the desired
result.

Let fi(z) = 20-3.5-412 . s and fo(x) = 20315412 2

Then Corollary 1.8 can be rewritten as:

(1.6) fi(z) < g < fa(x)

Since g is not divisible by either 2, 3 or 5, their powers must cancel out
in (1.5). Also 2 must divide x(x + 1). Therefore 24 - 3% . 5 divides = — a.
So the natural question is: what about 417 Does it at all influence the
picture?

LEMMA 1.9. Suppose that 41 divides x—a. Then the following inequal-
ity holds:

81|C| < g < 88|C

Proof. If 41 divides z — a, then 2%-32.5.41 divides z — a. In particular
24.32.5.41<z—a. But z —a < z+ 509 and so z > 29011.

Consider the functions fi(x) and fa(z) for z > 29011. Since fi(z)
increases on this interval, we have fi(z) > f1(29011) > 42083356. Since
fa(x) decreases on this interval, fa(z) < f2(29011) < 45143207. These
estimates together with (1.6) show that 42083356 < g < 45143207, i.e.,
81|C| < g < 88|C].

LEMMA 1.10. Suppose that 41 does not divide x —a. Then 412 divides
|G| and g < 981|C].

Proof. Clearly, if (41,7 — a) = 1, then 412 must divide |G|. So let us
prove the inequality. Recall that |a| < 509. Suppose that a > 0 . Then
24.32.5 <z —a <z ie, x> 720. Consider the function fo(x) when
x > 720. Since fa(x) decreases on this interval, fo(x) < f2(720). This
estimate together with (1.6) implies that g < 508048954, i.e., g < 981|C].

If a < 0, then from the formula (1.5) it follows that g < 26.3%.5.41%.

gfx(ﬁr)lg) and so g < 26.3%*.5.412  i.e., g < 85/C| and the result follows.
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LEMMA 1.11. g = 45523 (mod |C|).

Proof. For every prime divisor p of |G|, let g, = |G|,. Then the
Theorem of Frobenius asserts that

(1.7) {h € GIh" =1} =0 (mod g,).

The left side of the congruence is nothing else but 1 + ). %, where
the sum ranges over the representatives h;’s of conjugacy classes of non-
identity p-elements. Let p € {2,3,5}. Since |G| = ¢g-|C|, Formula (1.7) can
be rewritten in the following way:

(1.8) l—f—g-Z%EO (mod gp)

In order to continue the calculations, we will need the following table:

The Orders of the Centralizers of p-elements

P Class Order of the Centralizer
p=2 21 28.3%1. 52
41,45 27.32.5
81,89, 83,84 27.3%2.5
85,86 26
161,162, 165, 164 2.5
p=3 31,32 21.31.5
33,34 2.34
p=>5 51,52, 53, b4 2°.32. 52

Substituting the data from the table into the Formula (1.8) for p €
{2,3,5}, we obtain the following congruences:

g=211 (mod2®), g=1 (mod3'), g=23 (mod 5?)
Finally applying the Chinese Remainder Theorem, we obtain that
g =45523 (mod 28 -3%.5?)
which is precisely what we wanted to show.

LEmMA 1.12. If 41 divides © — a, then g =7 - 1039 - 5851.
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Proof.  Since 41 divides z — a, Lemma 1.9 gives that 81|C| < g <
88|C|. On the other hand g = 45523 (mod |C|). Recall that 7 divides
g. Putting together all this information, we obtain the unique solution:
g ="T7-1039 - 5851.

COROLLARY 1.13. 41 does not divide © — a.

Proof. Assume the contrary. Then as we just proved, g = 7-1039-5851
and so |G| = 28.3%.52.7.1039-5851. Let Q € Syljp39(G) and N = Ng(Q).
By Sylow Theorem, |G : Q| = |N : Q| (mod 1039). Thus |N : Q| = 418
(mod 1039). Since the centralizer of @ is a {2,3,5}'-group and 1038 =
2-3-173, we obtain that |N : Q| divides 2-3-7-5851. Therefore there exist
integers ¢ > 1,7 > 1 such that

(1.9) (1039t 4 418)r =2 -3 -7- 5851

Solving it modulo 1039, we obtain that » = 51 (mod 1039). If » > 51, then
the left side of (1.9) becomes strictly larger than the right side. Therefore
r = 51, which is a contradiction.

Therefore we are now in the conditions of Lemma 1.10. So let us sum-
marize all that we know about g:

g < 981|C|, g = 45523 (mod |C|)and g =0 (mod 7-41?)

Putting the last two together with the help of the Chinese Remainder The-
orem, we obtain that g = 4651130323 (mod 7 - 412 - |C|). But this means
that g > 8972|C|, which is an obvious contradiction proving the result.
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