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Abstract. This paper is a contribution to the ”revision” project of Gorenstein,
Lyons and Solomon, whose goal is to produce a unified proof of the Classification
of Finite Simple Groups.

§1.

This paper is a contribution to the “revision” project of Gorenstein,

Lyons and Solomon, whose goal is to produce a unified proof of the Classi-

fication Theorem of Finite Simple Groups [GLS]. Theorem C2 [GLS2] is the

part of the proof of the Classification Theorem which deals with the “small

odd cases”. One case of this theorem is the following result:

Theorem. If G is a finite simple group of odd type and of 2-rank 3
(where the 2-rank of G is a 2-rank of a Sylow 2-subgroup of G), then one

of the following holds:

(1) G ∼=2 G2(q) for some q = 32n+1, n ≥ 1;

(2) G ∼= G2(q) for some odd q with q > 3;

(3) G ∼=3 D4(q) for some odd q; or

(4) G ∼= M12, J1 or ON .

In order to prove this theorem, one begins by showing that G ≈ G∗ for

some G∗ ∈ {2G2(q), G2(q),
3D4(q),M12, J1, ON} with q odd, which means

that the following conditions hold:

(1) G and G∗ have isomorphic Sylow 2-subgroups;

(2) G has exactly one class of involutions zG; and

(3) If C = CG(z), then C ∼= CG∗(z∗) for z∗ an involution of G∗.

Received February 25, 2002.
2000 Mathematics Subject Classification: 20E32.

https://doi.org/10.1017/S0027763000025575 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000025575


198 I.KORCHAGINA

At this time the proof splits into two major cases. The first one deals

with the situation G∗ =2 G2(q). In the second case, CG(z) has a subgroup

K of index 2 with K = K1 ◦ K2 and Ki
∼= SL2(ri) (i.e., [K1,K2] = 1,

K1 ∩ K2 = Z(K) = Z(Ki) = 〈z〉), where r2 = q and r1 = q or q3. The

analysis depends on the values of the parameters r1 and r2. If r1 > r2 or

r1 = r2 6= 3n, then local analysis shows that G ∼=3 D4(q) or G2(q). Finally,

suppose that q = r1 = r2 = 3n with n ≥ 2. The crucial point of the analysis

is to show that the centralizer of the central involution does not contain a

Sylow 3-subgroup of G. If q > 9, this is a fairly easy application of an

order formula obtained by Brauer using modular character theory. This

was proved by Fong and Wong [FW]. Unfortunately for the case q = 9, this

proof does not work. One has to try to come up with a different trick. This

is achieved in the theorem which we state:

Theorem 1.1. There is no finite group G satisfying the following con-

ditions :

(1) G has a unique conjugacy class of involutions;

(2) If z is an involution of G, then CG(z) = (L1 ◦ L2)T , where Li
∼=

SL2(9), T ∼= Z2 (i.e., [L1, L2] = 1 and L1∩L2 = 〈z〉) and CG(z)/Li
∼=

PGL2(9) for i = 1, 2;

(3) For every nontrivial 3-subgroup P ≤ CG(z), we have NG(P ) ≤ CG(z);

(4) Every nontrivial 5-element of G is conjugate to some nontrivial 5-
element of L1 ∪ L2 and CG(s) ≤ CG(z) for all nontrivial 5-elements

s ∈ L1 ∪ L2; and

(5) 7 divides the order of G.

We remark that (3), (4) and (5) follow by local group theory method

from (1), (2) and the hypothesis that CG(z) contains a Sylow 3-subgroup of

G [GLS2]. Thus Theorem 1.1 leads one to the desired goal: G ∼= G2(9). This

result was first announced by P. Fong in [F1]. If G ≈ G2(9), then his proof,

an elaborate exercise in exceptional character theory, occupies 25 pages of

unpublished notes [F2]. In this paper we give a considerably shorter proof

of this result. We begin in the same way as Fong by establishing a group

order formula (equation (5) below) using the work of M. Suzuki, but then we

apply a theorem of Frobenius in the manner of Lyons [L]. Combining those
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two results with the Chinese Remainder Theorem and Sylow’s Theorem,

we obtain an easy contradiction, proving the result. We refer the reader to

[Co] for the basic terminology and results of exceptional character theory.

We now begin the proof. We assume the contrary and proceed to a

contradiction in a sequence of lemmas. Fix a nontrivial involution z ∈ G

and let C = CG(z).

Consider the set S ⊆ C which consists of the following elements:

(S1) roots of z;

(S2) 3-singular elements; and

(S3) non-trivial 5-elements of L1 ∪ L2.

For s ∈ S, we let C∗
G(s) = {g ∈ G|sg = s} ∪ {g ∈ G|sg = s−1}.

Lemma 1.2. If s ∈ S, then C∗
G(s) ≤ C.

Proof. There are three types of elements in S. Let us deal with them
one by one. If s is a root of z, then clearly C∗

G(s) ≤ C. If s is a 3-
element, then the result follows from the hypothesis of the theorem. But
this immediately implies the result for all 3-singular elements. Finally if
s ∈ S is a 5-element, we have the following:

C∗
G(s) ≥ C∗

C(s) ≥ CC(s) = CG(s).

But |C∗
G(s) : CG(s)| ≤ 2, while |C∗

C(s) : CC(s)| = 2. Thus C∗
G(s) ≤ C.

Lemma 1.3. S is a closed set of special classes.

Proof. There are four things that we must check:
(1) S is a normal subset of C;
(2) Whenever s ∈ S, every generator of 〈s〉 also lies in S;
(3) Whenever s1 and s2 are elements of S which are conjugate in G,
then s1 and s2 are conjugate in C; and
(4) If s ∈ S, then CG(s) ≤ C.
Clearly conditions (1) and (2) follow immediately from the definition

of S. Condition (4) follows from Lemma 1.2. Finally let us deal with the
condition (3). If s1, s2 are the roots of z and h ∈ G is such that s1 = sh

2 ,
then zh = z, and so h ∈ C.

Finally suppose that either s1, s2 are nontrivial G-conjugate 3-singular
elements of S, or s1 and s2 are nontrivial G-conjugate 5-elements of S.
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Then there exists h ∈ G with s1 = sh
2 and so CG(s1) = CG(sh

2) = CG(s2)
h.

In both cases 〈z〉 is the unique Sylow 2-subgroup of Z(CG(si)). Hence 〈z〉
is a characteristic subgroup of CG(si) for i = 1, 2. Therefore 〈z〉h = 〈z〉,
and so h ∈ C.

Corollary 1.4. Induction is an isometry from the set MC(S) of

class functions of C which vanish outside of S to the character ring Ch(G)
of G.

Proof. Since S is a closed set of special classes of C, the result follows
immediately from Theorem 9 in [Co].

Lemma 1.5. There exists a class function θ of C such that θ ∈ MC(S)
and the following conditions hold:

(1) (θ, θ)C = 3;
(2) (θ, θ)C = (θG, θG)G; and

(3) (θG, 1G) = 1.

Proof. Let us simply construct such a class function. Consider X1×X2

with Xi
∼= PGL2(9), i = 1, 2. Let χi be a Steinberg character of Xi,

i = 1, 2. Then χ1 × χ2 is an irreducible character of a group isomorphic to
PGL2(9)×PGL2(9) (4.21 [Is]). Take the lift of χ1×χ2 to the double cover
C∗ of PGL2(9) × PGL2(9), which contains C as a subgroup of index 2.
Now define α to be the restriction of this lift to C, i.e., α is an irreducible
character of C of degree 81 with ker(α) = 〈z〉.

Let ρ be an irreducible character of L1◦L2 of degree 8 with ker(ρ) = L2

and λ be one of the two irreducible characters of L1 ◦ L2 of degree 5 with
ker(λ) = L1. Denote β = (ρ · λ)C . Then β is an irreducible character of C
of degree 80 such that ker(β) = 〈z〉 and β|L1◦L2

= ρ · (λ + λ′) where λ′ is
the other character of L1 ◦ L2 of degree 5 with L1 in its kernel.

Finally consider the following class function: θ = 1C + β − α. By
direct calculations, we see that θ vanishes outside of S. Let us study some
properties of θ. Clearly (θ, θ)C = (1C + β − α, 1C + β − α)C = 3. Also by
Corollary 1.4, (θ, θ)C = (θG, θG)G. Finally, by Frobenius Reciprocity (p.62,
[Is]), (θG, 1G) = (θ, 1H) = 1.

This lemma has very important consequences:

Corollary 1.6. There exist irreducible complex characters Ψ, Φ of

G such that θG = 1G + Ψ − Φ, and the following conditions hold:
(1) Φ(1) = 1 + Ψ(1) and Φ(z) = 1 + Ψ(z); and

(2) |Ψ(z)| ≤ 509.

https://doi.org/10.1017/S0027763000025575 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000025575


ON A THEOREM OF P.FONG 201

Proof. Since θG(1) = 0, Lemma 1.5 implies the existence of irreducible
complex characters Ψ, Φ of G such that θG = 1G + Ψ − Φ. Moreover since
θG(z) = 0, condition (1) of the corollary obviously holds.

Finally, 1 + Ψ(z)2 + Φ(z)2 ≤
∑

χ χ(z)2, where the summation is taken

over all the irreducible characters of G. But
∑

χ χ(z)2 = |C| by Or-
thogonality Relations (p.21, [Is]). Applying condition (1), we obtain that
1 + Ψ(z)2 + (Ψ(z) + 1)2 ≤ |C| which implies that |Ψ(z)| ≤ 509.

Next define a complex-valued class function ξ of G by

(1.1) ξ(h) =
∑

χ

χ(z)2

χ(1)
χ(h)

where the summation is taken over all the irreducible characters of G. Let

us use a simple manipulation to present ξ in a slightly different way:

(1.2) ξ(h) =
|G|

|C|2

∑

χ

χ(z)2

χ(1)
χ(h)

|C|2

|G|
= azzh

|C|2

|G|
= azz(h)

|C|2

|G|

where azz : G → C is the class function defined for all h ∈ G by

azz(h) = azzh = |{(h1, h2) ∈ zG × zG : h1h2 = h}|

Since ξ is a complex-valued class function on G, we may calculate

(θG, ξ)G:

(θG, ξ)G =

(

1G + Ψ − Φ,
∑

χ

χ(z)2

χ(1)
χ

)

G

= 1 +
Ψ(z)2

Ψ(1)
−

Φ(z)2

Φ(1)

Using Corollary 1.6(1), we obtain the following formula:

(1.3) (θG, ξ)G = 1 +
Ψ(z)2

Ψ(1)
−

(Ψ(z) + 1)2

Ψ(1) + 1
=

(Ψ(1) − Ψ(z))2

Ψ(1) · (Ψ(1) + 1)

On the other hand using Frobenius Reciprocity and formula (1.2), we

have:

(θG, ξ)G = (θ, ξ|C)C =

(

θ,
|C|2

|G|
azz|C

)

C

=
|C|2

|G|
(θ, azz|C)C

Since θ vanishes outside of S, we basically are dealing with azz|S . Since

hishi = s−1 for i = 1, 2, we have that hi ∈ C∗
G(s). But by Lemma 1.2, if
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s ∈ S, then C∗
G(s) ≤ C and so for every s ∈ S we have that azzs can be

written as

azzs = a′zzs + a′zts + a′zls + a′tts + a′tzs + a′tls + a′lls + a′lzs + a′lts

where a′zzs, . . . , a
′
lts are algebra constants of C with z, t, l being the rep-

resentatives of all the conjugacy classes of involutions in C, for zG|C =

{z} ∪ tC ∪ lC . Notice that the only element of S inverted by z is z itself.

Clearly a′zhz = 0 for all h ∈ C − {1}. So we must have a′
zzs = a′zts = a′zls =

a′tzs = a′lzs = 0. Therefore

azzs = a′tts + a′tls + a′lls + a′lts.

All this allows us to reduce the situation to the calculations inside C. So

we obtain the following result:

(1.4) (θG, ξ)G =
214 · 38 · 53 · 412

|G|

Finally combining (1.3) and (1.4) we obtain:

|G| = 214 · 38 · 53 · 412 ·
Ψ(1) · (Ψ(1) + 1)

(Ψ(1) − Ψ(z))2

Set x = Ψ(1) and a = Ψ(z). Let us recall all that we know about |G|:

Lemma 1.7. The following conditions hold:
(1) |G|2 = 28;
(2) |G|3 = 34;
(3) |G|5 = 52; and

(4) |G| is divisible by 7.

Let g = |G|
28·34·52 . Thus g is an integer which is coprime to 2 · 3 · 5,

divisible by 7 and most importantly, g can be written in the following form:

(1.5) g = 26 · 34 · 5 · 412 ·
x · (x + 1)

(x − a)2

Corollary 1.8. The following inequality is correct:

26 · 34 · 5 · 412 ·
x(x + 1)

(x + 509)2
< g < 26 · 34 · 5 · 412 ·

x(x + 1)

(x − 509)2
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Proof. Since |a| ≤ 509, we have the following inequality:

x − 509 ≤ x − a ≤ x + 509

Using this together with definition of g, we immediately obtain the desired
result.

Let f1(x) = 26 · 34 · 5 · 412 · x(x+1)
(x+509)2

and f2(x) = 26 · 34 · 5 · 412 · x(x+1)
(x−509)2

.

Then Corollary 1.8 can be rewritten as:

(1.6) f1(x) < g < f2(x)

Since g is not divisible by either 2, 3 or 5, their powers must cancel out

in (1.5). Also 2 must divide x(x + 1). Therefore 24 · 32 · 5 divides x − a.

So the natural question is : what about 41? Does it at all influence the

picture?

Lemma 1.9. Suppose that 41 divides x−a. Then the following inequal-

ity holds:

81|C| < g < 88|C|

Proof. If 41 divides x−a, then 24 ·32 ·5 ·41 divides x−a. In particular
24 · 32 · 5 · 41 ≤ x − a. But x − a ≤ x + 509 and so x ≥ 29011.

Consider the functions f1(x) and f2(x) for x ≥ 29011. Since f1(x)
increases on this interval, we have f1(x) ≥ f1(29011) > 42083356. Since
f2(x) decreases on this interval, f2(x) ≤ f2(29011) < 45143207. These
estimates together with (1.6) show that 42083356 < g < 45143207, i.e.,
81|C| < g < 88|C|.

Lemma 1.10. Suppose that 41 does not divide x−a. Then 412 divides

|G| and g < 981|C|.

Proof. Clearly, if (41, x − a) = 1, then 412 must divide |G|. So let us
prove the inequality. Recall that |a| ≤ 509. Suppose that a ≥ 0 . Then
24 · 32 · 5 ≤ x − a ≤ x, i.e., x ≥ 720. Consider the function f2(x) when
x ≥ 720. Since f2(x) decreases on this interval, f2(x) ≤ f2(720). This
estimate together with (1.6) implies that g < 508048954, i.e., g < 981|C|.

If a < 0, then from the formula (1.5) it follows that g ≤ 26 · 34 · 5 · 412 ·
x·(x+1)
(x+1)2

and so g < 26 · 34 · 5 · 412, i.e., g < 85|C| and the result follows.
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Lemma 1.11. g ≡ 45523 (mod |C|).

Proof. For every prime divisor p of |G|, let gp = |G|p. Then the
Theorem of Frobenius asserts that

(1.7) |{h ∈ G|hgp = 1}| ≡ 0 (mod gp).

The left side of the congruence is nothing else but 1 +
∑

i
|G|

|CG(hi)|
, where

the sum ranges over the representatives hi’s of conjugacy classes of non-
identity p-elements. Let p ∈ {2, 3, 5}. Since |G| = g · |C|, Formula (1.7) can
be rewritten in the following way:

(1.8) 1 + g ·
∑

i

|C|

|CG(hi)|
≡ 0 (mod gp)

In order to continue the calculations, we will need the following table:

The Orders of the Centralizers of p-elements

p Class Order of the Centralizer

p = 2 21 28 · 34 · 52

41, 42 27 · 32 · 5
81, 82, 83, 84 27 · 32 · 5

85, 86 26

161, 162, 163, 164 24 · 5

p = 3 31, 32 24 · 34 · 5
33, 34 2 · 34

p = 5 51, 52, 53, 54 25 · 32 · 52

Substituting the data from the table into the Formula (1.8) for p ∈
{2, 3, 5}, we obtain the following congruences:

g ≡ 211 (mod 28), g ≡ 1 (mod 34), g ≡ 23 (mod 52)

Finally applying the Chinese Remainder Theorem, we obtain that

g ≡ 45523 (mod 28 · 34 · 52)

which is precisely what we wanted to show.

Lemma 1.12. If 41 divides x − a, then g = 7 · 1039 · 5851.
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Proof. Since 41 divides x − a, Lemma 1.9 gives that 81|C| < g <
88|C|. On the other hand g ≡ 45523 (mod |C|). Recall that 7 divides
g. Putting together all this information, we obtain the unique solution:
g = 7 · 1039 · 5851.

Corollary 1.13. 41 does not divide x − a.

Proof. Assume the contrary. Then as we just proved, g = 7 ·1039 ·5851
and so |G| = 28 ·34 ·52 ·7 ·1039 ·5851. Let Q ∈ Syl1039(G) and N = NG(Q).
By Sylow Theorem, |G : Q| ≡ |N : Q| (mod 1039). Thus |N : Q| ≡ 418
(mod 1039). Since the centralizer of Q is a {2, 3, 5}′-group and 1038 =
2 · 3 · 173, we obtain that |N : Q| divides 2 · 3 · 7 · 5851. Therefore there exist
integers t ≥ 1, r ≥ 1 such that

(1.9) (1039t + 418)r = 2 · 3 · 7 · 5851

Solving it modulo 1039, we obtain that r ≡ 51 (mod 1039). If r > 51, then
the left side of (1.9) becomes strictly larger than the right side. Therefore
r = 51, which is a contradiction.

Therefore we are now in the conditions of Lemma 1.10. So let us sum-

marize all that we know about g:

g < 981|C|, g ≡ 45523 (mod |C|) and g ≡ 0 (mod 7 · 412)

Putting the last two together with the help of the Chinese Remainder The-

orem, we obtain that g ≡ 4651130323 (mod 7 · 412 · |C|). But this means

that g > 8972|C|, which is an obvious contradiction proving the result.
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