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Aberration-corrected scanning transmission electron microscopes (STEM) use a series of multipole magnets 

to generate a sub-Ångstrom-sized electron beam for atomic resolution imaging and chemical composition 

mapping1. A new scheme for aberration corrector alignment is proposed, including both new ways of beam 

quality measurement and aberration corrector control. The new scheme targets fully automated corrector 

alignment to achieve microscope tuning with greater speed and less human bias. 

For beam quality measurements, we trained a convolutional neural network (CNN) to determine the beam 

emittance2 ⁠ from a single Ronchigram, as shown in Figure 1(a). Beam emittance is a single variable that 

characterizes the volume occupied by the beam in the phase space. Emittance is convex against the aberration 

coefficients, and proportional to the root mean square of the phase error, as shown in Figure 1(b). Both indicate 

that beam emittance is a single robust objective for aberration correction, and avoids the cusp-like instabilities 

of the individual aberration coefficients3. The emittance would be a conserved quantity without the 

introduction of aberrations, and aberration correction can be guided by minimizing the emittance growth. We 

trained a CNN with a VGG16 architecture using simulated Ronchigram-emittance pairs to predict emittance 

from a single Ronchigram. The Ronchigrams are simulated using a random phase plate following ref4, with 

emittance calculated from the probe profile. Validation results of the CNN shown in Figure 1(c) suggest that 

it can predict the correct emittance value down to about 0.1 pm·rad except when the noise level is high as a 

result of too-short an exposure time (~0.1 ms). 

We applied Gaussian Processes (GP)5⁠, a Bayesian approach, to search for optimal corrector parameters. A 

general particle tracer (GPT)6 simulation model was used to simulate the electron probe at the sample for 

STEM column with a simple hexapole corrector7. The ray diagram of the GPT model with components marked 

is shown in Figure 2(a). The beam emittance calculated from the phase space distribution of all the electrons 

in the GPT output has been used as GP’s objective function to be minimized. Figure 2(b) shows the emittance 

evolution over 100 iterations during the GP optimization of a partial alignment controlling the current of the 

two hexapole elements, for 10 random starting points. The beam quality improvement from uncorrected state 

to the corrected state guided by GP can be seen in the Ronchigram shown in Figure 2(c) and (d), where the 

half-angle of the flat area increased from about 10 mrad to about 27 mrad. 

Overall, we have shown a new method to tune the aberration corrector using emittance as an alternate metric 

to measure beam quality and a combination of machine learning tools to monitor and optimize the beam. The 

emittance prediction by CNN was tested on simulated Ronchigrams and found to be robust over a wide range 

of experimental conditions. Corrector tuning with GP has been tested on a GPT simulation model and 

effectively tuned the corrector to eliminate spherical aberration in the system8. 
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Figure 1. (a) simulated Ronchigram with noise, (b) relationship between emittance and mean phase difference, 

(c) emittance predicted by CNN vs. the truth emittance under different noise levels from different acquisition 

time. 

 
Figure 2. (a) Ray diagram of GPT simulation model contains condenser lenses (CD), hexapole elements (HP), 

transfer lenses (TL), adapter lens (ADL), and objective lens (OBJ). (b) emittance minimization performed by 

GP over 100 iterations starting from 30 random starting points. (c) and (d) comparison of GPT simulated 

Ronchigrams without HPs and with HP currents optimized by GP. 

References 

1. Muller, D. A. Structure and bonding at the atomic scale by scanning transmission electron microscopy. Nat. 

Mater. 8, 263–270 (2009). 

2. Floettmann, K. Some basic features of the beam emittance. Phys. Rev. Spec. Top. - Accel. Beams 6, 80–86 

(2003). 

https://doi.org/10.1017/S1431927621003214 Published online by Cambridge University Press

https://doi.org/10.1017/S1431927621003214


812  Microsc. Microanal. 27 (Suppl 1), 2021 

 

 

3. Schramm, S. M., Van Der Molen, S. J. & Tromp, R. M. Intrinsic instability of aberration-corrected electron 

microscopes. Phys. Rev. Lett. 109, 1–5 (2012). 

4. Schnitzer, N., Sung, S. H. & Hovden, R. Optimal STEM Convergence Angle Selection Using a 

Convolutional Neural Network and the Strehl Ratio. Microsc. Microanal. 26, 921–928 (2020). 

5. Duris, J. et al. Supplemental Material for Bayesian Optimization of a Free-Electron Laser Gaussian fit Raster 

scan. 1–4 (2020). 

6. van der Geer, S. B. & de Loos, M. J. General Particle Tracer (v3.1). 1–202 (2009). 

7. Müller, H., Uhlemann, S., Hartel, P. & Haider, M. Advancing the hexapole Cs-corrector for the scanning 

transmission electron microscope. Microsc. Microanal. 12, 442–455 (2006). 

8. Funded by the Center for Bright Beams, an NSF STC (NSF PHY-1549132). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://doi.org/10.1017/S1431927621003214 Published online by Cambridge University Press

https://doi.org/10.1017/S1431927621003214



