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Irregular perverse sheaves

Tatsuki Kuwagaki

ABSTRACT

We introduce irregular constructible sheaves, which are C-constructible with coeffi-
cients in a finite version of the Novikov ring A and special gradings. We show that
the bounded derived category of cohomologically irregular constructible complexes is
equivalent to the bounded derived category of holonomic D-modules by a modification
of D’Agnolo and Kashiwara’s irregular Riemann—Hilbert correspondence. The bounded
derived category of cohomologically irregular constructible complexes is equipped with
the irregular perverse t-structure, which is a straightforward generalization of usual
perverse t-structure, and we prove that its heart is equivalent to the abelian category
of holonomic D-modules. We also develop the algebraic version of the theory.

1. Introduction

The regular Riemann-Hilbert correspondence (formulated and proved by Kashiwara [Kas84],
and another proof given by Mebkhout [Meb84]) states that the derived category of regular
holonomic D-modules is equivalent to the derived category of C-constructible sheaves. Under
this equivalence, the abelian category of regular holonomic D-modules is mapped to the abelian
category of perverse sheaves introduced by Beilinson, Bernstein, Deligne and Gabber [KasT75,
BBD8&2, GMS0).

After many efforts including understanding of formal and asymptotic structures [Maj84,
Sab00, Mocll, Kedl11], Stokes phenomena and Riemann—Hilbert correspondence for mero-
morphic connections [Mal83, Sib90, DMRO07, Mocll, Sab13], sophistication of the regular
Riemann—Hilbert correspondence [KSO01], and developments of ind-sheaves and the discovery
of its relation to asymptotic behavior [KS01, KS03], in a seminal paper [DK16], D’Agnolo and
Kashiwara formulated and proved the irregular Riemann—Hilbert correspondence for holonomic
D-modules.

THEOREM 1.1 (D’Agnolo and Kashiwara [DK16]). For a complex manifold X, there exists a
fully faithful embedding

Dyo)(Dx) = Ef(ICx), (1.1)
where the left-hand side is the derived category of cohomologically holonomic D-modules and

the right-hand side is the category of R-constructible C-valued enhanced ind-sheaves. There
also exists an explicit construction of a right quasi-inverse of the above embedding.
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T. KUWAGAKI

In the sequel [DK19], they also introduced the notion of enhanced perverse t-structure on
the right-hand side of the embedding and proved that the embedding is t-exact in a slightly
generalized sense. Moreover, Mochizuki [Moc16] proved that the image of the equivalence can
be characterized by testing on curves.

In this paper, we modify the right-hand side of the equivalence and make it closer to the
form of the regular Riemann—Hilbert correspondence.

As mentioned in their paper, D’Agnolo and Kashiwara’s clever definition and use of enhanced
sheaves are inspired from the construction of Tamarkin [Tam18]. Tamarkin’s idea of adding one
extra variable originally aimed to realize the Novikov ring action in sheaf theory as in Fukaya
category [FOOOO09]. In this paper, we take a way which is closer to this original idea instead
of the use of enhanced sheaves. The replacement for the right-hand side of (1.1) is expressed as
graded modules (sheaves) over the ‘finite Novikov ring’ A := k[R>¢] where k C C is a field. An
element of A is expressed as a finite sum ) a€R g coT® where T is the indeterminate. A priori,
the hom-spaces Hom(V, W) of A-modules are defined over A. By taking the tensor product
Hom(V, W) ®@p k where A — k is defined by T* — 1, we obtain a new category Modfm(AX).
We will further modify this category to obtain Mod”(Ax). We can consider ModgTe(A Xx) as an
approximate description of Mod?(Ay).

The category Modj(A x) is abelian and has enough injective and flat objects. We define an
abelian subcategory of Mod?(Ay): the category of irregular constructible sheaves Mod;e(Ax).
Then we set DY (Ax) as the full subcategory of the bounded derived category D°(Mod”(Ax))
consisting of cohomologically irregular constructible sheaves. The meaning of irregular con-
structibility is as follows. As usual, there exists a C-Whitney stratification and we have a
sheaf which is locally constant as A-module over each stratum, but moreover with particular
gradings coming from Sabbah, Mochizuki and Kedlaya’s Hukuhara—Levelt—Turrittin theorem
[Sab00, Moc11, Ked11]. Then we have the following.

THEOREM 1.2.

(i) The category D% (Ax) has functors Hom,®, f~1, f' for any morphism f and f for

proper f.
(ii) If k = C, there exists an equivalence

Diol(Dx) = Di(Ax). (1.2)

In our formulation, the data of exponential factors of solutions of irregular differential equa-
tions are encoded in the grading of A-modules. We would like to apply the following trivial
fact to our setting. For a graded ring R, the grading-forgetful functor from the abelian cate-
gory of graded R-modules to the abelian category of R-modules is exact. Although our category
Mod;.(Ax) has a modification of hom-spaces, we still have the following.

THEOREM 1.3. There exists an exact functor § from Mod;.(Ax) to the abelian category of
C-constructible sheaves Mod.(kx) such that, on the level of stalks, this is the composition of
the grading-forgetful map and tensoring k over A.

By using §, we can define the support of an irregular constructible sheaf V by suppV :=
supp§(V). By using this definition, we can define the irregular perverse t-structure by the
same formula as in usual perverse sheaves. Let prcO (Ax) (respectively pDiO(A x)) be the full
subcategory of D? (Ax) spanned by objects satisfying

ic

dim{supp H’ (V)} < —j (respectively dim{supp H’(DV)} < —j) for any j € Z. (1.3)
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THEOREM 1.4.

(i) The pair (prCO(AX),pDiO(AX)) defines a t-structure of DY (Ax), which we call irregular
perverse t-structure.

(ii) The heart of irregular perverse t-structure Perv;.(Cx) over C is equivalent to the abelian
category of holonomic D-modules under the equivalence (1.2).

We also prove the corresponding results in the algebraic setting. Mostly, the statements are
corollaries of analytic cases, although we also have f, and f) for any morphism and can prove
stronger commutativity results for the Riemann—Hilbert functor (as in the case of algebraic
regular Riemann—Hilbert correspondence).

In the rest of this section, we would like to shortly discuss a conjectural explanation of
the appearance of the Novikov ring. Recall that Tamarkin’s introduction of additional R was
motivated by Floer theory/Fukaya category. Fukaya category is naturally enriched with the
Novikov ring by estimating disk areas (Gromov’s compactness theorem for holomorphic disks).
We expect this appearance of the Novikov ring and the one in our construction can be identified
as follows.

We denote the derived category of regular holonomic D-modules by Dfeghol(D x ). Combining
the regular Riemann—Hilbert correspondence with the Nadler—Zaslow equivalence [NZ09], we
have an embedding Dfeghol(DX) — Db FueNZ(T*X), where the right-hand side is Nadler and
Zaslow’s Fukaya category of conic Lagrangians in 7% X.

We expect a similar claim for the holonomic case: there exists a Fukaya category
D Futd (T*X) enriched over A of T*X with nonconic Lagrangians which has a fully faithful
embedding from the category ng A(Ax) which is a version of ch(A x) enriched over A. After
the reduction of coefficient from A to k, we will obtain an embedding of D?.(Ay) into a ver-
sion of Fukaya category. On the level of objects, the exponential Dx-module associated to a
meromorphic function f will correspond to the Lagrangian Graph(df).

If this expectation is true, one can imagine K-theory classes of objects of D Fu;.(T*X) :=
D Fubl (T*X) @, k as an irregular version of characteristic cycle. In the same vein, their supports
can be considered as an irregular version of microsupports, which are no longer conic. Hence one
can also imagine a generalization of microlocal analysis. Note that a version (real blown-up
version) of the equivalence without A is already appeared if one fixes a formal type [STWZ15].
Also, another connection between Riemann—Hilbert correspondence and holomorphic Fukaya
category is conjectured by Kontsevich [Kon16], whose relation to our conjecture is also of interest.

The organization of this paper is as follows. In §2, we define and discuss the preliminary
version of the category of sheaves with coefficients in A. In §§3 and 4, we define the (derived)
category of sheaves with coefficients in A over topological spaces with boundary and consider
various (derived) functorial operations as in usual sheaf theory. In § 5, we define our main objects
irregular constructible sheaves and again see various functorial operations. We also note that
irregular constructible sheaves are actually sheaves. In §6, we construct the functor § which
relates irregular to usual sheaves. In § 7, we see the relationship between enhanced sheaves and
our A-modules, which enables us to establish our version of Riemann—Hilbert correspondence
using D’Agnolo and Kashiwara’s theorem in §8. We also prove some commutativity results for
Riemann—Hilbert functor in § 8. In § 9, we define irregular perverse sheaves by using § and import
results in the theory of perverse sheaves to irregular perverse sheaves. In § 10, we discuss algebraic
version of the above story.
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2. A x-modules

In this section, we introduce the ‘finite Novikov ring’ A and its modules. We fix a field k C C
once and for all.

2.1 The ring A
Let us consider the set of nonnegative real numbers R>o as a semigroup by the addition.
We denote the associated polynomial ring by A := Ay := k[R>o]. For a € R>g, let us denote
the corresponding indeterminate by 7% We set Gr* A :=k-T% C A for a > 0, which gives an
R-grading on A.

Let Mod®(A) be the abelian category of R-graded A-modules with degree 0 morphisms. For
an R-graded A-module V, let V{a) be the grading shift of M i.e. Gr’V{a) := Gr*T® V. We set

Homy gz () (V. W) = @ Homyjoq04)(V: W{a)) (2.1)
acR
for R~-graded A-modules. The category Mod]R(A) is consisting of R-graded modules with the
hom-spaces defined by (2.1). We set

H (V, W) := Homyoq0 () (V, W{@)). (2.2)

a
Oy [oqR (A)

2.2 A x-modules
Let X be a complex manifold. Let Ax be the constant sheaf valued in A.

DEFINITION 2.1. A sheaf of R-graded Ax-module is a sheaf valued in Mod?(A).

Let V be a sheaf of R-graded Ax-modules. For an open subset U C X, we have an
R-graded A-module V(U). For an inclusion U < V, we have a map V(V) — V(U) which respects
the grading Gr® V(V) — Gr®V(U). Hence we have a sheaf of k-vector spaces Gr®) and an
isomorphism V & P, Gr* YV as sheaves valued in k-vector spaces.

We denote the category of R-graded A x-modules by Mod®(Ax).

PROPOSITION 2.2. The category Mod®(Ax) is abelian.
Proof. This is because Mod’(A) is abelian. O

NOTATION 2.1. V{a) for a € R is a-shift of V as in the previous subsection. For f:V — W,
f{a) means the shifted morphism V{(a) — W{a).

We set
Hom,; r (AX)(V, W) = @ HomModo(AX)(V, W(a)) (2.3)
acR
and
Homy, iz (4 ,y(V, W) i= Homyg,go(n ) (V, W(@)).- (2.4)

Note that Hom,;_,r (AX)(f), W) is a A-module. We see k as a A-module by setting f - ¢ := f|r—1c
for f € A and ¢ € k. We set

Te

DEFINITION 2.3. The category Mod?,(Ax) is defined by the following data. The set of objects

pre s
is the set of R-graded A x-modules. For an R-graded A x-module V, the corresponding object in

Mod?,.(Ax) is denoted by [V].

pre
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The hom-space between [V] and [W)] is Hom,; ( AX)(D}], [W]) defined in the above.
pre

There is a canonical functor [-]: Mod®(Ax) — Modgre(A x) which is the identity on objects
and takes a morphism f to f ® 1.

Remark 2.4. Here we would like to explain some motivations of Definition 2.3. We would like to
consider usual sheaves endowed with a filtration indexed by R. A typical example is a sheaf
ke p(z)>—a (@ € R) where ¢ is a continuous function on X\D where D is a divisor of X.
A typical ¢ is a meromorphic function with poles in D only determined up to adding a holo-
morphic function. This leads to considering R-filtrations up to a shift. Making the category of
R-filtered vector spaces abelian is realized by the Rees trick which gives us A-modules. Flat
modules are R-filtered vector spaces. Instead of ignoring shifts of gradings, we modify the notion
of morphisms: the multiplication by 7% € k[R>o] becomes the identity to identify an object with
its a-shift.

DEFINITION 2.5. For an object V in Mod? . (Ax), a lift is a pair of an object V € Mod®(Ax) and

pre
an isomorphism DN/] — V. In the following, we usually do not write this isomorphism explicitly
for simplicity.

PROPOSITION 2.6. The category Mod?,.(Ax) is an abelian category.

pre

To prove this proposition, we prepare some lemmas.

LEMMA 2.7. Let V be an R-graded A-module. Let s be a homogeneous element of V. If T - s # 0
for any a € R > 0, then s ® 1 is nonzero in V ®j k.

Proof. Note that [ - s is nonzero for any [ € A\{0}. We have an inclusion A -s < V. Since the
left-hand side is a free A-module, the tensoring (—) ®x k preserves the inclusion. Hence s ® 1 is
nonzero in V ®x k. O

From Lemma 2.8 to Lemma 2.12, we will use the following notation: V = [V], W = [W)].

LEMMA 2.8. For f € HomIC\AOdR(AX)(f/, W), ifT*f # 0 for any a € R>o, then f is nonzero as an

element in Homyg 45y (V,W).
pre

Proof. This is a case of Lemma 2.7 by setting V = HomModR(AX)(f), W) and s := f. ]

LEMMA 2.9. For f € Hom,; 4o (AX)(V’ W), there exists b € R such that there exists
pre

e Hom&odm (AX)(D’ W) (2.6)
which is a lift of f.
Proof. Take alift f =P, .f. € @, Homy, » (AX)(YJ,W). Since f, is zero except for finite ¢, we

can take b to be a real number which is greater than or equal to the maximum of ¢ for which f.
is nonzero. Then we set

f/ — @becfc € HomiAod]R (AX)(]}’ W) (27)
Since 7% ¢ =1 on HomMOdgre(Ax)(V, W), the element f’ represents f. O
LEMMA 2.10. Let f; € Homijlodk(AX)(f/, W) (i=1,2) be lifts of f e HomModgm(Ax)(V,W).

Then there exists b; € R>q such that Th fi= Tb2 fo.
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Proof. By multiplying some T'* values we can assume that by = bs. Since f; — f5 represents 0 in
Homy,43 5y (V, W), there exists b € Rxo such that T(f1 — f2) = 0 by Lemma 2.8. O
pre

LEMMA 2.11. For f € Hom,; ;5 (AX)(V,W) let f' € Hom Mod® (Ax )(f),W) be a lift. We view
pre

f" as a degree 0 morphism between V and W(b) in Mod®(Ax). The objects [ker(f")], [im(f")],
[coker(f")], and [coim(f")] in Mod2,.(Ax) only depend on f.

pre

Proof. By Lemma 2.10, it suffices to prove the objects defined for f' and T°f’ are isomorphic.
We have morphisms f': V — W(b) and T*f": V — W{a + b) in Mod’(Ax). Note that ker f' <
ker 7% f'. Hence for any P € Mod®(Ay), we have

(})}hnnNIdR ?’kerf 6})IhnandR (¢>ker1ﬂf) (2.8)
beR beR

which induces a comparison morphism
c:IhnnMo#LJAX)Qfﬂ,&erfq)—»IhnnMo#;AAx)ﬂfﬂ,&erT“fq)

It suffices to show that ¢ is an isomorphism.

For any g € HomM R (A X)(75, ker 7% f"), consider T%g € Homiﬂ&m (Ax)(ﬁ’ ker T f'). Since

fla+b)oT =T"(b)og=0, T factors through ker f'{a + b) i.e.

T € Homi/l";lzi]R (AX)(ﬁ,ker .

Hence T%¢ is in the image of ¢. Since g and T'%g represents the same morphism in Modpre (Ax),
we have the surjectivity of c. . 3
On the other hand, let g€ HomModg,,e(Ax)([P]a [ker f']) be zero in Homyy g5y ([P,

pre

[ker T%f"]). For a lift ¢’ of g, we have T’¢' =0 for some b€ Rxp by Lemma 2.8. Hence
g =0 € Homy; o (5 ([P], [ker /’])- This gives the injectivity of c.
pre

Similar arguments prove the claims for im(f’), coker(f’), and coim(f’). O

LEMMA 2.12. The objects defined in Lemma 2.11 actually give kernel, image, cokernel, and
coimage in Modpre(AX).

Proof. Again, we will only prove for kernel and the others can be proved by similar arguments.

U%PHV—HNGMMjOu)mefog:Q“@MWh%

pre

PLyLw (2.9)
in Mod" (Ax). By replacing W with W{(e) with sufficiently large ¢ and f with T f, we can take

so that f o g =0 by Lemma 2.8. Then there exists a morphism P — ker f by the universality of
the kernel. The commutative diagram

ker f

N L
Fh (2.10)
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descends to the commutative diagram

e f
ker f] —=V — W

‘\hgT (2.11)

P
in Modg,,e(A x ), hence we only have to check the uniqueness of the morphism h.
Let h': P — [ker f'] be another morphism in Mody,(Ax) which fits into the following
diagram.

S f
ker f] —=V — W

‘\h’gT (2.12)

P

We can lift &’ to h': P — ker f(a) for some a € Rxg. Take b € R so that TV (a) o b’ = Tt
is satisfied. Then we again get a commutative diagram.

y atb) Fla+b)
ker f{a +b) —= V{a+b) —= W(a+b)

P

On the other hand, we have the following commutative diagram.

. Hatb) Flatb)
ker f(a +b) — V(a+b) — W(a +b)

KWL T Ta+b§ (214)

P

By the universality of ker f (a + by, we have Toth = TPh'. Hence h = h'/. This completes the
proof. O

Proof of Proposition 2.0. 1t remains to show that the isomorphism between im and coim. Let
f be a morphism in Modg,,e(AX) and f be a lift of f. As shown in Lemma 2.12, imf is given
by [imf] and coimf is given by [coim f]. Since Mod®(Ax) is abelian, there exists a canonical

isomorphism imf 2 coimf. This also induces an isomorphism between imf and coimf. This

completes the proof. O
COROLLARY 2.13. The functor []: Mod®(Ax) — Modgre(AX) is exact.
Proof. This is obvious from Lemma 2.12. O

It is useful to state a kind of the converse of the above corollary.

LEMMA 2.14. Let
0-viwoax o (2.15)
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be an exact sequence of Modgre(A x ). Then there exists an exact sequence

0—-vLwilx_o (2.16)

in Mod®(Ax) which is a lift of the above sequence.

Proof. Take a lift V' T 2, X such that G of =0.SetV:=kerg and X :=img. Then we
have an exact sequence

0—-vLwixo (2.17)
Here f and § are canonical morphisms. We have an associated morphism V' — V. In Modgm(A X)s

this associates a morphism V — [V] = [ker §’] = ker g. By the exactness of the given sequence,

we have V = [V]. Hence V is a lift of V. In a similar way, one can see that X is a lift of X'. This
completes the proof. O

3. The category Modj(A()‘(,D))

In this section, we glue up ModgTe(A x) to obtain a modified category, especially for noncompact

manifolds.

3.1 Topological space with boundary

We say a topological space is good if it is Hausdorff, locally compact, countable at infinity and
has finite flabby dimension. In this paper, a topological space with boundary is a pair (X, Dx)
of a good topological space X with a closed subset Dx of X. We say Dy is the boundary of
(X,Dyx) and X\Dx is the interior of (X, Dx). A morphism between (X,Dx) and (Y, Dy)
is a continuous map f between X and Y preserving the interiors. We denote the interiors by
X := X\Dx and Y := Y\ Dy. We also denote the induced map between interiors by f: X — Y
by the abuse of notation.

Ezample 3.1. (i) Our primary examples of topological spaces with boundaries are of the following
class. For a topological space Z, consider a locally closed subset S. Let S be the closure of S.
Then (S, S\S) is a topological space with boundary. We have a canonical map (S, S\S) — (Z, @)
induced by the inclusion S — Z.

(ii) By the definition of morphisms of topological spaces with boundary, we have canonical
maps (X,9) — (X,Dy) and (X, Dx) — (X, @) induced by the identity id: X — X. On the
other hand, such a canonical map does not exist from (X, Dx) to (X, ).

Let (X, Dy) be a topological space with boundary. The site Open()-(yDX) is defined by the
following data: the underlying category is the category of open subsets of X\ Dy, a collection of
open subsets {U; };e; in X\ Dx is said to define a cover of U if there exists a subset J of I such
that the subcollection {U;};c still defines an open covering of U and is locally finite over X.

Remark 3.2. Here we explain some motivations of the definition of Open g p ). The essential
point is the local finiteness at Dx. If one does not introduce this finiteness, after the stackifica-
tion below, all objects have trivial grading around Dyx. Since our grading encodes asymptotic
behaviors of solutions of irregular D-modules, we have to keep nontrivial gradings at Dx.

A similar thing occurs even if you consider ind-sheaves. Since ind-sheaves are ind-objects of
compactly supported sheaves, ind-sheaves on X cannot encode the data around Dx. To consider
the data around Dy, one has to consider compactly supported sheaves on X whose stalks can
be nonzero only in X.
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The following is clear.

LEMMA 3.3. The cover defined just before Remark 3.2 gives a Grothendieck topology on
Open x p,)-

Remark 3.4. If X is compact and Dx = & then Open x p, coincides with the usual site of X.

LEMMA 3.5. Let f: (X, Dx) — (Y, Dy) is a morphism between topological spaces with bound-
ary. Then there exists an induced morphism Openy p y — Open g p.)-

Proof. Let {Ui}ier be a cover of U in Openy p,y. Let J C I be as in the definition of the
cover. Then {f~1(U;)} is an open covering of f~1(U) in X. Take x € X, then there exists a
small neighborhood V' of f(y) such that V only intersects with a finite subset of {U;};c;. Then
f7H(V) also only intersects with a finite subset of {f~1(U;)}jes. Hence {f~1(U;)}ier is a cover
of f~1(U) in Open g p,)- O

Remark 3.6. The reader may consider the notion of topological spaces with boundary is similar
to the notion of bordered spaces in [DK16]. However, the role of these two notions are different:
the former is about the base space and the latter is about the additional variable R.

3.2 The category Modj(A(X,DX))
Let (X, Dx) be a topological space with boundary. We set X := X\Dx. Let U D V be open
subsets of X. Then we have a restriction functor

Mod?,.(Ay) — Mod3,.(Ay). (3.1)

pre pre
LEMMA 3.7. This restriction functor is exact.
J

ore(Ar) can be lifted to a short exact sequence in Mod®(Ay)

Proof. A short exact sequence in Mod
by Corollary 2.13. Then we can restrict it to an exact sequence in Mod’(Ay). By Lemma 2.12,

this also gives an exact sequence in Modgm(Av). O

These maps form a presheaf of categories over the site Open g p. ). This is not always a stack
(even a prestack) because the tensor product ®k on the hom-space breaks the sheaf property.

Take the stackification (respectively prestackification) of this stack with respect to
Open x p,)- We denote it by MOdEJX,DX) (respectively MOd;gS()’(,DX))'

DEFINITION 3.8. The global section category of Mod(ijDX) is denoted by Modj(A(XDX)). For
a manifold X, we set Mod”(Ax) := Modj(A(X’@)).

ProrosITION 3.9. The category Mod(j)—( DX)(U) is an abelian category for any U € Open g p -

Proof. We will only consider the case of kernels. A similar argument holds for cokernels, images
and coimages.

Let f: V — W be a morphism in Mod(j)—( DX)(U). Then there exists a covering {U;} of U such

that we have a descent data f;: V; — W, in Modgs(X Dx)(
the covering with a finer covering so that each f|y, is represented by a morphism f;: V; —

W; in Mod? _(U;). On each intersection U; N U;, we have a further covering {U;;}, such that

(i — £l = 0.

Then we have ker(f;) since Modgm(AUi) is an abelian category. Since the restric-

tion functors are exact (Lemma 3.7), we have ker(fi|v;;)|v,,, = ker(filv,;,) = ker(filu,;,) =

7

ker(fj‘Uij”Uijk’ in MOdgre(AUijk)' Hence we have ker(fi)‘Uij:ker<fi’Uij):ker(fj’Uij):

U;). If it is necessary, we can replace
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ker(f;)|u,; in Mod(X Dy )(U ;). This further gives a descent data and glues up to an object
K e MOd(X,DX)(U)'
For a morphism ¢g: X — V with fog =0, by taking a sufficiently fine cover {U;}, we can

represent f,g, X,V in Modp,,e(AUi). Then one gets a unique factorizing morphism X|y, — ker f;.

Again by taking a finer covering as in the previous part of the proof and the universality, the
set of these factorizing morphisms gives a descent data and can be glued up into the unique
factorizing X — K. This shows K is ker f. U

Let U be an open subset of X . Let ay : MOdee (Apy) — Mod?X D) (U) be the canonical functor.

LEMMA 3.10. The functor oy is an exact functor.

Proof. Since kernels, cokernels, images, and coimages are defined locally, the assertion is
obvious. O

LEMMA 3.11. If U is compact, the functor oy is fully faithful.
Proof. We set Dy := Dx NU. To show the claim, it is enough to prove Homy,; 45 (AU)(V,W)
pre

a sheaf over the site Open(aDU). Since U is compact, any cover in Open(UyDU) has a finite
subcover.

We first assume that there exists a finite cover {U;} of U such that the restriction of f €

HomModgre(AX)(V W) to each open subset is zero. Let f € Homyoq0(5 )(V W) be a lift. Then

the restriction of f to each open subset Uj; is represented by f |lu,. Since f|y, = 0, there exists a T
such that T“f\Ui = 0 by Lemma 2.8. Let A be the maximum of those a values. Then TAf = 0.
Hence f = 0.

Let {fi} € HHomMOdgm( Aui)(V’Ui’ W]y,) satisfy the descent condition. Depending on i, we

have a set of lifts fi: V|, — W]y, (a;) in Mod’(Ag,). In our situation, we can take a; = a; for
any 4, j, since the indexes are finite. Then we replace W with W(az) by Lemma 2.12. On U; N Uj,
f; and f] may not coincide, but f; = | fz] coincides with f; = | fj] Hence there exists 7% such
that T% f; = T% f By taking the maximum among a;;, we replace f] with T f] then the set
{T°f;} satisfies the descent condition in Mod®(Ay). Hence we get a glued morphism. O

COROLLARY 3.12. If X is compact, Modpre(AX) is an abelian subcategory of Mod”(Ax).

Proof. The embedding is given by the proof of Lemma 3.11. 0
Let us denote the derived category by D'(Modj(A(KDX))) (e =b,+).

3.3 Forgetting shifts

Recall that we have the canonical functor [-]: Mod®(Ax) — Modee(AX). There also exists a

canonical functor ax o []: Mod®(Ax) — Mod? (Ax,py))-

LEMMA 3.13. The functor ax o []: Mod®(A) — Modj(A(X’DX)) is an exact functor.

Proof. This is a consequence of Lemma 3.10 and Corollary 2.13. O
For simplicity, we will denote ax o [] by []. We denote the exact functor D*(Mod®(Ax)) —

D*(Mod”(A % p,)) induced by [-] by the same notation.

3.4 Finite limits and finite colimits
Since Mod”(A(g py)) is an abelian category, it admits finite limits and finite colimits.
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LEMMA 3.14. Let F': 4 — Mod®(Ax) be a finite diagram without loops in Mod"(Ax). We have

[t 7] = [ 1,
e 1t

[t F] = i), .
1t )1

Proof. We will only prove the first equivalence. The second equivalence can be proved in a similar
manner.

It is enough to show that the left-hand side satisfies the universality of the right-hand side.
Let V be an object which is over [F]. Locally, we have a lift V- F. By the universality, we get
a morphism V — limF', which induces a morphism V — [@F ] locally. The uniqueness of this

It U
morphism can be shown by a method similar to the proof of Lemma 2.12. The uniqueness glue
up these local morphisms to obtain the desired result. O

Remark 3.15. Contrary to the finite case, infinite (co)limits do not commute with [-] in gen-
eral. We give one example in the following. Let us set X = [0,00) and Dx = {0}. Consider
V1= @uer Rl —a,00) K{i21/2) and Vo := D cr R [—a,00) {11722} As we can see in the discus-
sion of §5 below, we have Homyo43( ([V2], 1]) = 0. Let ip: (b, 00) < [0,00) be the open
embedding for b € Rxg.

If [-] and colimits commute, we have [V & ligl[ib!z'b_lVQ]. Again, from the discussion of §5,
b—0

Ax,py))

we can conclude

HomModj(A ~ )([VQ], [Vl]) = liLnHomModﬁ(A ~ X))(VQ‘(b_OO), Vl’(b,oo)) = k. (3.3)

(X.Dx) b0 (X,D

This is a contradiction.

3.5 Operations

In this section, we will develop the six functors. As above, (X, Dx), (Y, Dy) are topological
spaces with boundaries. We set X := X\ Dy and Y := Y\ Dy. In the rest of this section, we use
the following notation.

NOTATION 3.1.

~ VW, X € Mod’(A % py))-

- y S MOdj(A(Y7Dy))

— Vu, Wy, Xy € Mod®(Ay) are lifts of V, W, X over U. ) ) o

— {U,}ier is a covering in Open g p,) with lifts {Vitier, Wi tier, {Xi}icr. Here Vi, W;, X; are
abbreviations of Vy,, Wy, Xy, respectively. . . .

~ {Vj}jes is a covering in Opengy p ) with lifts {V;};c;. Here Y; are abbreviations of Vi,
respectively.

The internal hom sheaf is defined by the assignment
Hom(V,W): U — @5 Homyyo0(s,) Vv, Wio (@) (3.4)
for an open subset U C X. This is canonically an R-graded A x-module.

There exists an open covering {U; };c; of X in the site Open(XDX) with lifts )}i, V~VZ over each
U;. Then one has an R-graded Ay,-module Hom(f/i, VNVZ) over each Uj.
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LEMMA 3.16. The set {[Hom(V;,W;)]} satisfies the descent and gives an object of
?/;Odj(A(X’DX)% which we will denote by Hom(V, W). This is independent of the choice of local
ifts.

Proof. On Uj; := U; N Uj, we have the isomorphism f: D)Z|U”] — D}j|U¢J] in Mod Ps(X, DX)(UZ-J-).
Then there exists an open covering {Uj;i } of U;; where there exists a descent data f;j, : Vi U] =
Vilu,,,] for the isomorphism f: [Vi|u,;] — [Vjlu,,]-

We can take a lift fir: Vilu,,

ik = 9]"Uijk<a> of this morphism and that of the inverse

Gijk f)j|Uijk — f}i|Uijk<b> for some a,b. The difference g;;i(a) o ﬁjk — Tt and fijk(b> ° Gijk —
T+ becomes 0 after multiplying 7¢ for sufficiently big ¢ by Lemma 2.8.

For simplicity, let us assume that WV has a global lift, i.e. W = [W], although we can do the
same for general WW. We have the following induced morphisms:

gzgk)

Hom(V |U”k7W|U”k) — Ho m(v |Uzjk7W|Uz]k)< >

(3.5)

p(fzjk)

Hom(Vjlu,, Wlo,, ), ——— Hom(Vilu,,.. Wlu,,, ) (—a),

where p(f”k) and p(gi;jr) are precompositions of f and g. Since p(f”k)< ) © D(Giji) — Totbid
and  p(gijk) o p( fzjk)< ) —T%"id vanish by multiplying 7¢ for big ¢, we can conclude
[Hom(Vilu,,,. W|U ] = [Hom(V; U, 10 W|U”k)}. A similar argument as was done in Proposition

3.9 gives a gluing of these isomorphisms to give a global object in Mod”(Ax ). The independence
of the choice of local lifts is also clear. D

Let us consider the assignment
V= Vu(V) o k (3.6)

for V.C U € Openx, Dx) Then this assignment does not depend on the choice of the lift V.
Hence one can associate a sheaf over Open g p. ). We write it V @ k.

LEMMA 3.17. The sheal Hom(V,W)®k over Open g p.) Is canonically isomorphic to
Homyoq43 vV, w).

(X,Dx)

Proof. This is obvious from the construction. O
For R-graded A-modules V' and W, their tensor product is defined as follows:

Gr' (Ve W)= P G*V @ Gr*W/~, (3.7)
b+c=a

where the equivalence relations are generated by
VR qw ~ av Qf w, (3.8)

where o € A, v € V,w € W are homogeneous and deg a 4+ degv + deg w = a. The tensor product
VoaW:=g,Gr*(V o I/V)~ is canonically equipped with a A-module structure.
Then the tensor product V ® W is defined by the sheafification of the assignment

Vo, W: U = V(U) @A W), (3.9)
One has another R-graded Ay,-module V; ® Ax W; over each U;.

LEMMA 3.18. The set {[V; @4, Wi|} satisfies the descent and gives an object ofModj(A(X’DX)),
which we will denote by V ® W. This is independent of the choice of local lifts.
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Proof. We can prove in a similar manner as in the proof of Lemma 3.16. O

ProroOsSITION 3.19. We have the following:

Homy;oq5 (V, Hom(W, X)). (3.10)

(X.Dx))

(V@W, &) = Homyoqa s ¢, )
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Proof. We have a canonical isomorphism

Hom(f/, & WZ; /?Z) = Hom(f/i, Hom(Wi, /\N/Z)) (3.11)
By tensoring k and taking sheafification over Open(ﬁi TinDy)» We have an isomorphism
HomMOde,Dx) VoW, x) = HomMOd?X,DX) (V, Hom(W, X)) (3.12)

as a sheaf over Open(ﬁi TinDx)" The isomorphisms over the U; are glued up and give a desired
result. O

COROLLARY 3.20. In the same setting as above, we have the following:

Hom(V @ W, X) = Hom(V, Hom(W, X)). (3.13)
Proof. From the above proposition, we have
Homy 42 (A(X,Dxﬂ(y’ Hom(V ® W, X)) = Homyo g2 (A(X',Dx))(y VW, X)
= HomModj(A(x,DXQ(y ® VYV, Hom(W, X))
= HomMOdJ(A(XyDX))(y,Hom(V,'Hom(W,X))). (3.14)
Yoneda’s lemma implies the desired statement. O

We will define push-forwards for a class of morphisms.
In the following, we only consider the following class of maps.

DEFINITION 3.21. We say a morphism f: (X, Dyx) — (Y, Dy) is tame if the underlying map
f: X — Y is proper.

Remark 3.22. For a locally closed subset U C X, a canonical morphism (U, @) — (X, ©) is not
tame in general. However (U,U\U) — (X, @) is tame. In this sense, we will consider the latter
one as a standard inclusion morphism.

Let f be a tame map (X, Dx) — (Y, Dy). We first assume that V has V with [V] = V. In
this case, we simply set

V= [fV), (3.15)
where push-forward of R-graded A x-module V is defined by Gr® f,V := f, Gr* V.
LEMMA 3.23. This is well defined.
Proof. Let V' be another lift. Take a covering {U;} of Open g p,) such that we have lifts of the
isomorphisms g; : V|, — V'{a)|y, and h;: V'|y, — V|p, (b) over each U;. Hence §;(b) o hy — T+
and h;(a) o §; — T**® vanish by large T°. By pushing forward these equations, we have
0= fu(T(G(b) o h — T**idy)) = T(£.4(b) o fh — T**0id, 3). (3.16)

Hence we have [furixV|v,] 22 [fatixV'|v;] where t;: U; — X is the inclusion map.

Let 4 be the Cech nerve of {U;} and ¢y for U € U the inclusion map. Since f is tame, {f(U;)}
is locally finite in Y i.e. there exists a covering of Y in Open(i Dy) such that there are only finite
U; in each open subset. Hence we have

liin[f*LU*f/U] = [@f*LU*]}U] > [fV] (3.17)
Ued Ued
by Lemma 3.14. Combining with the first part of the proof, we get an isomorphism [ f:V] =
£V, O
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Since f is tame, there exists a covering {V;} of Y and a finite cover {Uj;} of each ()
with lifts V;; of V.
Let 4l; be the Cech nerve of {U;;}. We set

(f*V)z = 1(&11 [f*LU*f)U]. (3.18)

Uey;

LEMMA 3.24. The collection {(f.V);} gives an object of Mod”(Ay ), denoted by f.V. Moreover,
it does not depend on the choice of coordinates and lifts.

Proof. Tt can be proved by a similar argument as in Lemma 3.23. g

Over f~1(V;), we assign a sheaf [f~');] and these can glue up together. We will denote the
resulting object by =Y.

LEMMA 3.25. We have the following natural isomorphism:
fe Hom(f 1Y, V) ~ Hom(Y, f.V). (3.19)

Proof. It is enough to prove the statement over each V;. There exists a finite covering {U;} of
f7H(V;) with lifts {W;}. Then Hom(f~'V, W) is represented by {Hom(f~'Vilu,, W;)}.
Let Y be the Cech nerve of {U;}. By the definition of the push forward, we have

fe Hom(f71 Y, V)lv; = lim ([fuive Hom((f ™' Vi)lw, VIv)).- (3.20)
vey

Here V| means V;|y for some U C U;. We also have
Feivs Hom((f~Vi)lv, VIv) = fu Hom(f Vs, ivu V)
~ Hom(V;, fetv«V|vr) (3.21)
for U € 4. Hence
Lim([fuiv. Hom((f ™ Vi)lv, Vi) = lim Hom (Y], [fursVIv])

U 3t
= Hom(D}i]v lﬂl[f*LU*WWD
I
~ Hom([Vi], [f«(V|;-1v;))])
~ Hom(Y, fV)|v;. (3.22)
This completes the proof. ]
LEMMA 3.26. We have
HomMOds(A(Y’Dy))(fflv,W) = HomMOda(A(X,DX))(V, f V). (3.23)

Proof. Taking ®k and the global sections (as in the paragraph above Lemma 3.17) of both sides
of Lemma 3.25, the right-hand side becomes Homy 4 (V, f«W) and the left-hand side

AO_(,DX))
becomes
(f« Hom(f 7V, W) @ k)(Y) & fo(Hom(f ™'V, W) @ k)(Y)
(o] -1
= HomMOng,DX) (fT VY, W). (3.24)
This completes the proof. O
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We first assume that V has V with [V] 2 V. In this case, we simply set
AV = [fV]. (3.25)
LEmMA 3.27. This is well defined.
Proof. This can be proved in the same way as the proof of Lemma 3.23. O

Again by the same construction as in the case of push-forwards, we can define f|V in general
under the assumption of tameness.

AssuMPTION 3.28. In the following, when we consider f, or fi, we always assume the tameness
of f.

4. Derived category of Modj(A(X-’DX))

4.1 Injectives and flats
In this section, we develop fundamentals about derived operations for Mod” (A(x,py))- In this
section, we will use Notation 3.1.

LEMMA 4.1. Let F be an R-graded A-module. For = € X, the skyscraper sheaf [F,] is an
injective object. Moreover, the product [[[ ¢ Fz] for a subset V' C X is also an injective object.

Proof. The first part is almost trivial. Let us prove the second part.

Let 0 — V L W be an injection in the category Modj(A()-QDX)) with a map V % I Lex Fel-

Let us take a locally finite covering {U;} of X with lifts 0 — Vi %, W; and V; &, erUi Fulas).

We also get a lift W; i, [Lcy Falas).
For each x € V', we choose i, from finite candidates of ¢ values satisfying x € U;. We set W, 1=
(W, )e. Over each U, the morphism h; gives an element of (Ducr [eer, Hom®(W,, Fy)) @ k =2

Hom(W |y, [[[,ev Fz]) which is zero on i, # 4. Then they are trivially glued up to give a desired
lift of g. O

PROPOSITION 4.2. The category Modj(A(X’DX)) has enough injectives.

Proof. As usual, one can embed V; to an injective object Z; which is a product of skyscraper
sheaves.

Hence we have the inclusion [V;] < [Z;]. This induces the inclusion V < @[1;+Z;], where the
latter is a locally finite direct sum hence it exits. By Lemma 4.1, @[1;+Z;] is also an injective
object. This completes the proof. O

The above proof also shows the following.

COROLLARY 4.3. There exists an injective resolution 7*:=7% 7' — ... of V giving an
injective resolution [Z°] of [V].

Proof. This follows from the fact that [-] is an exact functor (Lemma 3.13) and Lemma 4.1. [
LEMMA 4.4. Let F be a flat R-graded A-module. Then [F] is a flat object.
Proof. Let V — W € Modj(A(X’DX)) be an injection. Let us take an open covering {U;} of X

with lifts (Vi}, (Wi} and f;: )}z — W;. Here one can take fi as an injection by Lemma 2.14. Then
V @ [F] (respectively W @ [F]) is represented by V; ® Fly, — W; ® F|y,, which is an injection.

Then by Lemma 2.12, the morphism f ® [F] is also an injection. This completes the proof. [
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PROPOSITION 4.5. The category Modj(A(XyDX)) has enough flats.

Proof. By the same construction as in [KS90, Proposition 2.4.12], there exists a flat object Fi
with a surjection F; — V;. Let ¢;: U; — X be the open imbedding. Hence [14F;] is also a flat
object by Lemma 4.4 and we have a surjection &,[tiF;] — V. This completes the proof. O

By a similar argument as in Corollary 4.3, we get the following.
COROLLARY 4.6. For V € Mod’(Ax), a flat resolution F® := FO « F~' « ... of V gives a flat
resolution [F*] of [V].

4.2 Derived functors
Note that right and left exactness of various functors fi, fi, f~!, Hom, ® are the same as in the
case of k-modules, according to Lemma 2.8.

We will use the following ‘derived’ notation of Notation 3.1.

NoTATION 4.1.
~ VW, X € D*(Mod’(A (g, py)))s Y, V1, V2 € DP(Mod” (A py)))-
~ VW, X € D*(Mod®(Ax)), Y € D*(Mod®(Ay)).
LEMMA 4.7. We have
R V] ~ R[], [RAV]~RAV] and [RHom(WV, V)] ~ RHom(]W], V).

Proof. Since [] is an exact functor, it suffices to show the statements for an object Mod"(Ax)
by a standard argument in homological algebra. Then V has an injective resolution Z* such that

[Z°] is an injective resolution of [V] by Corollary 4.3. For F' € { fs, fi, Hom([W], —)}, we have

[RF(V)] ~ [F(Z®)] ~ F[Z°] ~ RF(]V]). (4.1)
This completes the proof. ]
LEMMA 4.8. We have [f~1Y] ~ f~1[)].
Proof. Tt follows from the definition of f~! and its exactness on Mod"(Ay). O

LEMMA 4.9. We have [V @ W] ~ [V] @ [W].
Proof. One can prove by the same argument as in Lemma 4.7 by using Corollary 4.6. g
LEMMA 4.10. There exists the following isomorphism

RHom(V @ W, X) ~ RHom(V, RHom(W, X)). (4.2)

Proof. This can be proved by a standard argument. Let us take a flat resolution F of W and
an injective resolution Z of X. Then RHom(F,T) ~ Hom(F,Z) is again an injective object.
Actually, we have

Hom(—, Hom(F,T))) = Hom((—) @ F,T) (4.3)
by Proposition 3.19. Then both sides of the equality in the statement is quasi-isomorphic to
Hom(V ® F,T). This completes the proof. O

LEMMA 4.11. There exists the following isomorphism
Rf.RHom(f1Y,V) ~ RHom(Y,Rf.V). (4.4)

Proof. By Lemma 3.26 and the exactness of f~! imply that push-forward of an injective is again
injective. Also, pull-back of a flat object is again flat. Let F be a flat resolution of ) and Z be
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an injective resolution of V. By replacing with these resolutions, we can work with underived
functors, then Lemma 3.25 completes the proof. O

To construct exceptional inverse image, we follow the argument in [KS90, 3.1]. }
Assume that fi: Mod(Zx) — Mod(Zy) has finite cohomological dimension. Let Z be an
object of Mod®(Ay) and K be a flat f-soft Zx-module. We define a presheaf by

(Gr*(fx2)(U) =D (U, Hom§ (fi(Ax ®zx Ku), 2)). (4.5)
This is actually a sheaf by [KS90, Lemma 3.1.3]. We set frV = @,.g Gr*(fkV) which is an
object of ModO(A x ). Let us moreover suppose Z be an injective object.
LEMMA 4.12. Under the above assumption, we have the following.

(i) The object f} Z is an injective object of Mod®(Ax).
(ii) For any A € Mod®(Ax). we have a canonical isomorphism
Homy,0(a, ) (fi(A ®z K), Z) = Homyy, 000 oy (A, fic 2). (4.6)
Proof. This is done by the same argument as in the proof of [KS90, Lemma 3.1.3]. U
In the following, we will use K for the following complex.

LEMMA 4.13 [KS90, Proposition 3.1.4|. The sheaf Zyx admits a finite flat f-soft resolution K.

Let K*t(Mod’(Ay)) be the homotopy category of injective complexes bounded below of
objects in Mod®(Ax). Then we have an equivalence D (Mod®(Ay)) = K+(Mod’(Ay)). We set
the composition

f': D°(Mod®(Ax)) — K+ (Mod®(Ax)) i, Kt (Mod®(Ay)) = DT (Mod®(Ay)). (4.7)
LEMMA 4.14. The functor f' is the right adjoint of Rf;. We moreover have
RHom(RAV, W) = Rf.RHom(V, f'W). (4.8)
Proof. For W € K*(Mod®(Ax)) = Dt (Mod’(Ax)), we have
Hom e+ (vioq0 (ax ) (1Y @2y K), V) = Hom e (roqo a0y (Vs fV) (4.9)

by the above lemma. Since fiW ® K ~ RfiW, we complete the proof of the first assertion.
The second assertion can also be proved by the argument of the proof of [KS90, Proposition
3.1.10]. .
Let us now discuss the exceptional inverse image in Db(Modj(A( %.Dy)))- Let Z be an object
of Modj(A(Y’Dy)) and K be a Zx-module.
Take a locally finite covering {V;} of Y with lifts {Z;}. Hence we get f} Z;

LEMMA 4.15. The data {[f-Zi]} gives an object of Modj(A()-QDX)). We denote the resulting
object by f}(Z.

Proof. Over V; :=V; NV;, we have fi;: | ~-]\V =2 [ ~~”V We can lift this map to fi;: Z; lvi, —
Z]<a”>\vw (by taking a refined covering if necessary). We also have a lift of the inverse

map fﬂ Then f” o fﬂ T%i+4%i id vanishes by multlplylng some 7. The map fw induces a
map fow frZi v, — frZ; lv;;- Then we also have fiefii- Then fi, fij o frfji — T%F%iid =
f K( f” fﬂ — T%3i*%iid) also vanishes by multiplying 7%. This completes the proof. O
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Since D’(Mod”(Ay)) has injective resolutions, we have an equivalence K7T(Ay) =
D+ (Mod?(Ay)) where the left-hand side is the homotopy category of complexes bounded below

of injective objects. We denote the composition D?(Mod”(Ay)) < KT (Ay) Ik, pt (Mod?(Ax))
by the notation f'.

PROPOSITION 4.16. The functor f' is an exact functor.
Proof. The exactness easily follows from the exactness of f' on D®(Mod®(Ay)). O
PROPOSITION 4.17. We have f'[V] = [f'V)].

Proof. Replace V be an injective complex given in Lemma 4.1. Then [f/] is also an injective
complex. By the definition of f' for Mod(Ax) and Modj(A(XyDX)), we have [f'V] = [fV] =
fr[V] = f'[V]. This completes the proof. O

PROPOSITION 4.18. There exists a functorial isomorphism:
~ !
Home(MOdJ (A(Y,DY))) (lRqu, y) = Home(Modj (A(X,DX))) (V, f y) (410)

Proof. First, note that RfiV ~ fi(V ® K) which is deduced from the local consideration. Let 7
be an injective resolution of Y and C (Modj(A( %.Dy))) be the category of bounded complexes of

Modj(A( X,Dy))- Then the left-hand side of the desired equality is

Homc(Modj’ (A(?,Dy))(ﬁ(V & K),I) = HOme(MOdj (A(}?,DX)))(V’ f'I) (411)
We also have a morphism
! !
Home(Modj (A(X,DX)))(V’ f y) — Home(Modj (A(X,DX)))(V’ f I) (412)

coming from the morphism ) — 7. We would like to prove this is an isomorphism. Let us work
locally on Y. From the construction in Proposition 4.2, the complex 7 is coming from an injective
object 7 locally. Hence we have an isomorphism

~ |

Hom([V], f'1Z]) = [Hom(V, f'I)] = [RHom(V, f'T)] = RHom(V, V). (4.13)
Here we used the fact that [] is exact and f'Z is injective. Then Lemma 4.21 completes the
proof. O

PRrROPOSITION 4.19. There exists a functorial isomorphism:
RHom(RAV,Y) ~ Rf.RHom(V, f'Y). (4.14)

Proof. As usual sheaves, we have a canonical morphism Rf,RHom(V, f'Y) — RHom(RAYV,
Rfif'Y). By the adjunction (Proposition 4.18), we have a morphism RHom(RfV,Rfif'Y) —
RHom(RfiV,Y). We would like to see the composition is an isomorphism. By a local
consideration, this can be deduced from the usual case. O

LEMMA 4.20. Let §: X — X x X be the diagonal embedding. We have
STy REw) v et w.

Proof. We can apply the same formula for usual sheaves to local representatives. Then we get
the desired formula. O

As in Lemma 3.17, we can relate R Hom and usual Hom as follows. From R Hom(V, W) €
Modj(A(XDX)), we can construct a complex of sheaves R Hom(V, W) ® k as in the paragraph
before Lemma 3.17.
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LEMMA 4.21. The space of global sections of RHom(V, W) ® k is canonically isomorphic to

Hom po(vod? (45 ) (V) WW)-

Proof. Let Z be an injective resolution of W and F be a flat resolution of V. Then we have

Home(Modj(A(— >))(Va W) = Homg o3 ¢ (Vo T)

X,Dx (X,Dx)

= H'(Homyoq (V. T)(X))

(X,Dx)
>~ HY(Hom(F,T) ® k(X)). (4.15)
Actually ®k is exact, as we will see in the proof of Lemma 6.1. This completes the proof. O

LEMMA 4.22. For a tame morphism f: (X, Dx) — (Y, Dy), the following hold:
A(XDXQ)(V,RHOW(W, X));
V', RfV);

(1) Hom o yoqaa 5 ) (VY @ W, &) = Hom s 00

(X,Dx)

(11) Home(MOdj(A()’QDX)))(f_ly’ W) = Home(MOdj(A(Y,Dy)))

(i) Hom oo vtoq2 (a g, ) (Vs V) = HOM o (4 ¢, Vs fY):
Proof. This follows from Lemmas 4.21, 4.10, 4.11, Proposition 4.19. ([l
LEmMA 4.23. We have the following:
Rf(V QY 1Y) ~RAV QT Y, (4.16)
FRHom(V1, V) ~ RHom(f ' V1, '), (4.17)
FHO " Yo) ~ Iy @ . (4.18)
Proof. The assertions follow easily from Yoneda’s Lemma. O

We would like to state a useful lemma. Let U be an open subset of X and U be the closure
inside X. Consider the map i: (U, Dy := U\U) — (X, Dx). We denote the closed complement
of U in X by V. We denote the map j: (V,V N Dx) — (X, Dx).

LEMMA 4.24. There exists an exact triangle in Db(Modj(A(XDX))):

1
Wiy =V - v (4.19)
Proof. Note that i and j are tame maps. Again, the statement follows from the corresponding
statement for usual sheaves and the commutativity results for [-] proved early in this subsection.
O

5. Irregular constructibility

In this section, we introduce the notion of C-constructibility for objects in Modj(A( X,Dx))-
It is defined in the same way for stratifications as in the case of usual constructible sheaves
but with a strong assumption on gradings coming from Sabbah, Mochizuki and Kedlaya’s
Hukuhara-Levelt-Turrittin theorem. In this section, we consider (X,Dx) = (X, @) where X
is a complex manifold. We denote Modj(A(XVDX)) by Mod”(Ax).

5.1 Formal structure

In this subsection, we recall as a motivation the theory of formal structures of meromorphic
connections initiated by Sabbah [Sab00] and developed by Mochizuki (algebraic case) [Mocl1]
and Kedlaya (analytic case) [Ked11].
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Let Z be a divisor in a complex manifold X and O, be the formal completlon of Ox at x € X.
Let M be a meromorphic connection over X with poles along Z. We set My =M, ®o, O, and
O(x2)y := O(x2)x @0, O

DEFINITION 5.1.

(i) For ¢ € O(xZ),, we set £(¢p) to be O(xZ), as a Op-module with a connection V over O,
such that

Vs :=90(¢)-s (5.1)
for the generator s.
(ii) We assume that Z is a normal crossing divisor and take a local coordinate {z;}?_; such that

Z is defined by [[;*, z; = 0. An @(*Z)—module R with a connection V is regular if there
exists an O,-submodule £ such that £ ®p, O(Z)y =R and V(L) C @z, L.

DEFINITION 5.2. We continue the notation in Definition 5.1(ii).

(i) A good decomposition of M, is an isomorphism

Mo = P E($a) @p(.z), Ras (5.2)

ael

where ¢, € @(*Z ) and each 7@,& is regular with the following conditions.
(a) Each ¢, has the form u][7", z; " for some unit u € O, and nonnegative integers

i, i A
(b) For a, 8 €I, if ¢po — ¢g & Oy, then ¢, — ¢pg has the form ungnzl xi_zj for some unit
u € Oy and nonnegative integers i1, ..., %m.

(ii)) We say M admits a good decomposition at z € Z if M, admits a good decomposition.

In general, meromorphic connections do not have good decompositions as explained in
[Sab00]. Sabbah’s conjecture says that they do after modifications, which is proved by Mochizuki
and Kedlaya.

THEOREM 5.3 [Kedll, Theorem 8.2.2]. For a point x € Z, there exists an open neighborhood
U of z and a map f: Y — U which is a proper modification, and at each point of f~'(z), there
exists a local covering m ramified at f~'(Z) such that ©* f*£ admits a good decomposition at
each point of y € 7~ f~1(2).

As explained in [Sab11], using Mochizuki’s result, we have additional results. For M, which
admits a good decomposition, let ®, be the subset of O(xZ2), /O, consisting of the classes of ¢,
values.

THEOREM 5.4 [Sabll, Theorem 2.2.1]. The subset ®, is actually a subset of O(xZ)/O,. More-
over, there exists a neighborhood U of x such that for any ' € U, M has a good decomposition
and @, is given by the restriction of representatives of ®,.

Let w: X(Z) — X be the real blow-up of X along Z (with real analytic structure spec-
ified in [DK16]). Let C';(O’temp(Z) be the subsheaf of the sheaf of C°°-functions consisting of
functions which are tempered at the exceptional divisor. Let further AX(Z) be the subsheaf

of C}o’temp(Z) consisting of functions whose restrictions on X\Z are holomorphic. We set

D;i((z) = Az (7) @105 Dx. For a D-module N on X, we set w*\ := D;}(Z) —ip, @ IN
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Suppose that M has a good decomposition @agc‘f(qﬁa) ® R at z. For each ¢q, by taking
a lift locally around x, we set £(¢,) to be a meromorphic connection (O(xZ), V) defined by
Vs := 0(¢)s for the generator s. We also set R, to be a regular meromorphic connection defined
locally around z corresponding to Re.

The following theorem is proved in [Mocl1] and explained in [Sab13].

THEOREM 5.5 [Sabl13, Theorem 12.5], [Mocl1, §3]. There exists an open covering {U;} of a
neighborhood of w™! (z) such that each restriction (ww*M)|y, is isomorphic to (w* (B e ;€ (¢a) @
Ra))lv;-

5.2 Irregular constant sheaf A¢
In this subsection, we prepare some preliminary lemmas concerning a class of modules.

Let (S, Dg) be a topological space with boundary. Let ¢ be a C-valued continuous function
over S := S\Dg. We set

Gr* A? = p*FSx[—a,oo)IktZ%e ol

Aﬁ = @ Pl gx [—a,oo)]kt29“9¢7
acR

(5.3)

where k> ¢ is the constant sheaf supported on the set {(s,t) € S x R |t > Re¢(s)} and p: S x
R — S is the projection.

LEMMA 5.6. The sheang defines an object ofMod]R(AS). In particular, an object ofA?)g Ds) =
[AZ] € Mod? (A p))-
Proof. Since the sheaf is globally presented as a direct sum, the restriction morphism preserves
grading. The A-action is given as follows. For b € R>(, we have a canonical morphism
Lsxi—a,00)ktzme¢ = Doxj—a—b,c0) Kt=meo- (5.4)
This action gives the action of T°. O
We would like to understand the structure of Ag.

LEMMA 5.7. Let U be a connected open subset of S such that ¢|y is bounded. Set b := infy Re .
Then AG(U) = A - TP,

Proof. Note that Gr® AQSS(U) = Ty y—a,00) (U X R, kyzme ). This is the kernel of the restriction
morphism I'(U x R, kismeg) — I'(U x (=00, —a), ki>meg). Since U is connected, the set defined
by t > PRe ¢ is also connected. Hence we have I'(U x R, ki>me) = k. On the other hand, T'(U x
(=00, —a), kizmep) = 0if and only if U x (—o0, —a) N {t > Re ¢} = @. This is equivalent to —a <
infy PRe ¢. This completes the proof. U

For given z € S, let us set

@ k if z is a local minimum,

A9 = § mosTeol) (5.5)
@ k otherwise.
—a<Red(x)

These are R-graded A-modules with obvious gradings. Note that these are torsion-free A-modules
and the ring A has a valuation. Hence these modules are flat.
From this lemma, the following is clear.
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COROLLARY 5.8. For z € S, the stalk (A%), = A9®).

d AP ~
COROLLARY 5.9. We have Gr AS’ = E{Intm'

Proof. Let x be a point with PRe ¢(z) = —d. The point z is a local minimum if and only if x is
in the interior of the closure of {—z| — d < Re ¢(x)}. This completes the proof. O
Also, the module A?g Ds) plays the role similar to the constant sheaves in the usual theory

of sheaves. The following lemma explains this similarity.

LEMMA 5.10. The module A?

(5.Ds) is a flat object in Modj(A(SDS)).

Proof. Let V — W be an injective morphism in Modj(A(ngS)). We would like to show the

induced morphism V ® A% Ds) W® A((i)g Dg) 18 again injective. There exists a covering {U;}

of S which is locally finite in S such that there exist lifts V;, W; of ¥ and W over each U;. It is
enough to prove the injectivity over each U;.

By Lemma 2.14, one can assume the restriction V; — W; is still injective. Since the tensor
product commutes with taking stalks, it reduces to show that V, ® (A‘g)m - W, ® (Ag)z is
injective. Since (Ag)x >~ A®@) (Corollary 5.8) is a torsion-free A-module, this completes the
proof. O

LEMMA 5.11. Let ¢1 and ¢o be C-valued continuous functions over connected S such that
Re Pp1 — Re @9 is bounded from above. Then there exists a canonical identification

( h1 A¢2

A(S,DS)’ (5‘,Ds)) = k. (5.6)

HOmMOdJ (A(S‘,DS))

If moreover Re ¢p1 — Re ¢ is bounded, the two objects are isomorphic.

Proof. Since max{0,Re ¢; — Re Po} is bounded, there exists a large ¢ € R such that Re ¢2 + ¢ >
e p1. The nonzero map Kmep, >t — Kotepote>t coming from the inclusion {FReps +c >t} C
{Re 1 >t} induces a morphism Agl — A? (c) of R-graded Ag-modules. If max{0,Re ps —
MRe ¢1} is also bounded, in the same way, we also have a morphism A? — Agl (d) for some
d > 0. The composition A?l — A?(c%— d) is given by T¢t?. This is the identity of A((ﬁé—,’ De) in
Modj(A x ). The same for the other direction. This completes the proof of the second part of the
statement. We call morphism A?l — Agg of this kind as well as their scalar multiples standard
morphisms. In the below, we will see there are only standard morphisms.

. . N (Jbl ¢)2
Let f be a nonzero morphism in HomMOdJ(A (A(S,Ds)’A(S,DS)

f Agl — Aﬁﬁc as a morphism of R-graded A-modules locally on U C S. We can take ¢ such
that ¢4 PRe o > Re ¢ and replace ¢o with ¢o + ¢ We consider d € R such that the grading
d-part of f is nonzero. To see this part more explicitly, let us prepare some notation.

Let us set Int{z € U| —d < Re¢;(z)} = LSy, to be the decomposition into connected

we have Gr? A(gi = D, ksa . We have

). Let us take a lift

(S,DS))

components. Since Gr? A(g = ]klntm,

fa @Iksg’l — @ﬂ{%. (5.7)
a a
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There exists d’ € R such that there exists a connected component S; of Int{z | — d’ < Re ¢;(x)}
for each i such that S; D Int{z| — d < Re ¢;(z)}. Then we have a commutative diagram.

fd/
]ksl —_— ]1{52

T 7d' —d T 7d' —d (5.8)
®a ]kSgJ - 6911 ]ksg,Q

fa

Since 57 and Sy are connected, the hom-space between them is one-dimensional. Hence fd is
induced by a standard morphism. This completes the proof. ]

We prepare the following crucial lemma. The corresponding observation in the theory of
enhanced ind-sheaves is a key to the formulation of irregular Riemann—Hilbert correspondence
[DK16].

LEMMA 5.12. Let (S, Dg) be a topological space with boundary with S connected. Let ¢1, ¢o
be C-valued continuous functions on S. Assume that there exists an open subset V of S such
that V N Dg is nonempty and Eﬁe P2 — S)fie ¢1 is divergent to —oo on V N Dg. Then there exists

no nonzero morphisms from A% (5.0s) to A( ; D)’

¢ ¢ p2tc
(A(g,DS))(A(SD ¥ A(2 )) let us take a lift f: A ! pg) A(é,DS) as a

morphism between R-graded Ag-modules. Since JRe po — Re ¢y is negatlvely divergent, there
exists a neighborhood U of Dg such that e ¢2 + ¢ — Re ¢y is negative on U\Dg. Hence over
U\Dg, the restriction of f is zero there. By Lemma 5.11 and the connectedness of S, f is zero
everywhere. O

Proof. For f € Homy; 43

We also give the following.
LEMMA 5.13. For A7; | € Mod (Ag py)) (i = 1,2), we have AT} |, @ A7Z ) = AT In

QA2

particular, A(SD ) (5.D5) = = A5,pg)-

Proof. We have Gr? Asi = k(2| Rep(2)>—a} for i =1,2. Hence we have a map Gr“ Ag”m —

Gr® Agl ® Gre A? for a=b+c Hence we get a map m: A‘gﬁ(b2 — Agl ® A?. By

Corollary 5.8, the stalks of both sides at =z € X are ®7a<9%¢1(:1:)+9‘ie¢2(x)A¢1(x)+¢2(x)

o1(z)+p2(
Asl() 2(z)

or
D_ocne 61 (2)+Re b () . Hence the kernel and cokernel of m vanishes by multiplying
T for any a € R~q. Therefore the kernel and cokernel are zero in Modj(A( §,Dg))- This completes

the proof. O
Similarly, we have

LEMMA 5.14. For A‘(bé Dg) € Modj(A(g pg)) (i =1,2), we have

#1 P2 $2—¢1
Hom(A s pey Asps) = As,pey
Proof. One can prove in a similar way as in the proof of Lemma 5.13. O
The following will be repeatedly used later.

¢ @ ~ NP2—0
COROLLARY 5.15. We have IRHom(A(S{D ),A(é DS)) ~ A(;Dsl).
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Proof. Let Z be an injective resolution of A2 We have the following:

(8.Ds)"

J(V,RHom(AT A% )

Hom s (o2 (5,Ds)" *X(5,Ds)

A(g,Ds))

~ ¢ P2
= Homponiod? (4 g g, ) (Y © A 0s) M3.Ds))

~ ¢
= HomC(Modj (A(E,DS))) (V & A(Sl‘,DS)’I)

Y d)
= HomC(MOdJ (A(S‘,DS))) (V, HOm(A(é,DS) 5 Z)) (59)

Here we used flatness of A%

(8,Ds)’

First, note that Hom(A‘(z’S De)? T)= A(S‘bb ) ®7Z in C(Modj(A(gDS))). Second, Z is
locally given by [[[,F»] where F, is a skyscraper sheaf. Since Hom(A¢é Dg)? [l Fz) =
1L Hom(A‘ég b ),fx), the object Hom(A‘(lg b ),I) is also injective. Hence we have

¢ ¢

Home(Modj(A@Ds)))(V ]RHom(A(éD ),A(;DS)))
=~ Home(MOdj(A(gyDS)))(V A(S D ) ®I)
~ @ L
= Home(MOdj(A(S',DS)))(V A(S 1D ) & I)
o~ —¢ @
= Home(MOdj(A(S’,DS)))(V’ A(§71D ) A(; DS))

This completes the proof. O

5.3 Irregular local systems
Let V' be a neighborhood of 0 € C" and consider a simple normal crossing D; = | J;c;{z =
0}NV. For A:={a;} € Z!, 4: C* — C" is defined by (2]*,...,2%") where a; = 0 for i ¢ I.

? 7L
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DEFINITION 5.16.

(i) A correspondence f: V\D; — C is a multi-valued meromorphic function if there exists
A :={a;} € Z' and a meromorphic function f’ on ®,*(V) with poles in ®,*(D;) such that
fis equal to z — {f'(2') |2 € (®4)"(2)}.

(ii) A finite set of multi-valued meromorphic function is said to be good, if it satisfies the
conditions in Definition 5.2 after taking the pull-backs along & 4.

For a multi-valued meromorphic function ¢ and an open subset U on which ¢ is represented
by a set of single-valued holomorphic functions {¢y }rex, we set A? := P ke A%

For S a locally closed complex submanifold X, consider (S, Dg := S\S) as a topological
space with boundary.

DEFINITION 5.17. Let V be an object of Modj(A(QDS)). We call V a good irreqular local system
if the following hold.

(i) The boundary Dg is normal crossing.
(ii) For any point = € Dg, there exists a neighborhood U of x such that the restriction V|y €
Modj(A(U@)) is isomorphic to a finite direct sum of the constant sheaf Ay .
(iii) For any point = € S\S, there exist:
(a) a neighborhood U of x;
(b) a finite good set of multi-valued meromorphic functions {¢;};cs over U with poles in
Dg; and
(c) a finite cover {Uy}rerx of U\U N Dg
such that we have both the following.
o There exists an open covering {U] }yck of the real blow-up of U along Dg (in the sense
of [DK16]) with Uy = Ul; N (U\Dg).

e Each restriction of V|y, = V| 7rnps) Ve MOdj(A(ﬁk,ﬁkmDs)) is iso-

= [/ii
' (Uk,UkﬂDs)

morphic to the finite direct sum € e JA?(%,UTO De)’ Here Uy, means Uy, U (Ds N Uy) and

LU TrnDs) is the canonical map induced by the inclusion Uy, — S.

If the set of multi-valued functions is actually the set of meromorphic functions, we call it a
unramified good irregular local system.

LEMMA 5.18. Definition 5.17(iii) is equivalent to the following. For any point x € S\S, there
exist:

(a) a neighborhood U of x =: 0 (with the notation used in Definition 5.16);

(b) A:={a;} € Z!;

(c) a finite set of meromorphic functions {¢;}jcs over U':=®,*(U) with poles in D' :=
&, '(Dy); and

(d) a finite cover {Uy}rex of U\U' N D’

such that we have both the following.

e There exists an open covering {U} }xex of the real blow-up of U along D' with Uy, =
U.n(U\D").

e FEach restriction of (<I>j‘4V)|(U—k TanDr) = L(_Ui TenD)
’ k>Vk

¢j o : .

7j€JA(U7k,U7kﬂD’)' Here LT TenD’) 18 the canonical map

induced by the inclusion Uy, < S.

(®3V) € Modj(A(U—ka—knD,)) is isomor-

phic to the finite direct sum €
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Proof. This is just from the definition of multi-valued meromorphic functions. O

DEFINITION 5.19. For a complex manifold U with a divisor D, a modification of (U, D) is a
morphism f: (U, D') — (U, D) where (U’, D’) is another complex manifold with a divisor and f
is a projective map between U’ and U preserving divisors and induces the identity map between
U\D and U'\D'".

DEFINITION 5.20. An object V € Modj(A(§7DS)) is said to be an irreqular local system if the
following hold.

(i) For any point x € S, there exists a neighborhood U of = such that the restriction V|y €
Modj(A(U’ )) is isomorphic to a finite direct sum of the constant sheaf Ay .

(ii) For any point x € Dg, there exists a neighborhood U of z and a modification p: (U’, D’) —
(U,DsNU) such that p_l(V|(U7DSmU)) is a good irregular local system.

Let V be an irregular local system on (S, Dg). Take a point 2 € Dg. Then by the definition
of irregular local systems, there exists a relatively compact open neighborhood U of x with a
modification p: U’ — U such that for any y € p~!(Dg) =: D', there exists a finite cover {Uy}x
of U'\D' given in the definition of good irregular local systems. We have V|y, = @ZA‘ZZT TnDr):

Since U"\D" = U\ Dg. we get a finite covering U of U\ Dg such that V|g p_ g is isorﬁorphic
to a direct sum of irregular constant sheaves for each U € U.

DEFINITION 5.21. We call a finite covering U of U\Dg given above a sectorial covering for V
around x.

LEMMA 5.22. For V, W € Modj(A(g’DS)) and x € Dg, there exists a neighborhood U of x with
a modification (U',D') — (U, D) such that p~'(V|w,unps)) and p~'(W|w.unps)) are irregular
local systems. In particular, V and VW have a common sectorial covering.

Proof. This is standard. O
Next we would like to define one of the fundamental objects in this paper.

DEFINITION 5.23. Let V be an object of Modj(AX). We say V is irregular constructible if the fol-
lowing hold. There exists a C-analytic stratification S of X such that the restriction V| (g pg.—g\g)

to each stratum S € § is an irregular local system as an object of Modj(A(&DS)).

It is clear that the definition remains valid after refining the stratification. Let us denote the
full subcategory of Mod”(Ax) spanned by irregular constructible sheaves by Mod;.(Ax).

PROPOSITION 5.24. The category Mod;.(Ax) is abelian.

Remark 5.25. This statement is a little bit interesting since the category of filtered vectors spaces
is not abelian (see Remark 2.4).

Proof of Proposition 5.24. Since Modj(AX) is abelian, it suffices to show kernels, cokernels,
images, and coimages of morphisms between irregular constructible sheaves are also irregular
constructible sheaves. Let f: ¥V — W be a morphism between irregular constructible sheaves.
One can take a common C-Whitney stratification for V and W. Then it suffices to show
Lemma 5.26 below. O

LEMMA 5.26. Kernels, cokernels, images, coimages of morphisms between irregular local systems
are irregular local systems.

To prove Lemma 5.26, we prepare some notions and lemmas.
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DEFINITION 5.27. Let ¢; (i = 1,2) be meromorphic functions over U with poles in D. We say
¢1 and ¢9 are equivalent if there exists a bounded holomorphic function ¢ over U such that
¢1 = P2 + ¢. We denote the set of meromorphic functions over (U, D) modulo this equivalence
relation by M(U, D).

Recall that A‘(% py and A‘g’é py are canonically isomorphic for ¢1 =¢o€ M(U,D) by
Lemma 5.11.

Proof of Lemma 5.26. Let V and W be irregular local systems over (U, D). Since the definition
of irregular local systems is local, we can consider locally on a open subset U. There exists
a modification p: (U’, D’) — (U, D) such that p~'V and p~'W are both good irregular local
systems by Lemma 5.22.

A morphism f:V — W induces a morphism over U and we pull-back f by p. Then by the
exactness of the pull-back, kernel cokernel, image, coimage (we denote those by A) of p~!f are
pull-backs of those for f i.e. p~LA(f) = A(p~1f).

Furthermore, we can pull-back more by a covering map ® 4 to make p~'V and p~'WW unram-
ified irregular local systems. Then again, q)glp_lA(f) = A(@Zl op~Lf). It suffices to show that
this is an irregular local system.

So we reset the notation. Let V and W be unramified good irregular local systems and
f:V — W be a morphism. Then there exist sets of meromorphic functions ®y and ®yy over
(U, D) which are appeared in the definition of irregular local system.

Take a point € D, a neighborhood U of x, and a sectorial covering U of U\D for V and W.
On each U € U, we have isomorphisms V| = ®¢€<I>VA?U,UHD) and W|y = @¢€¢WAI(%’UQD).

Suppose the following: there exists a sector U € U such that the restriction of f to the

component A(U ) A?’U 7nD) is nonzero where ¢ € ®y, 1) € ®yy with ¢ # .
Let U’ be the adjacent sector of U. Then the restriction of f to A((b 7 i) A?W,WHD) is

nonzero again. This implies max{9Re ¢ — Re 1} is bounded by Lemma 5.11. We can continue this
procedure and we eventually will arrive at a sector on which ¢ — 1 is negatively divergent since
¢ # 1. This contradicts the supposition.
Hence we cannot have such a morphism. This means f|y is diagonal with respect to indices
M(U, D) x M(U, D). Hence the morphism f|y is represented by a sum of ¢-T%: A?-

(@, UOD) -
A?U onD) where ¢ € k by Lemma 5.11. The A(c-T*?) ia again of the form of a sum of A(U onD)-
This completes the proof.
We prepare the following lemma for the next subsection.
LEMMA 5.28. The category Mod,.(Ax) is a thick subcategory of Mod”(Ax).
Proof. Let
0—-V—-X—-W-=0 (5.11)

be an exact sequence in Mod?(Ax) with V, W € Mod;.(Ax). Let S be a common stratification
of V and W. Since pull-backs are exact, we can reduce to the case that V, VW are irregular
local systems on (5, Dg). For any point x € Dg, there exists a neighborhood U of z such that

U\Djs has a finite sectorial covering {U;} and V (respectively W) is isomorphic to P A%

(T:,U:NDs)
(respectively @kAI(% oD )) Hence we have an exact sequence
0— EBA (U;.0;nDs) — Xy, — EBA (U;.U:nDs) —0 (5.12)
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on each U;.
P ¢ ~ N :
We have already seen that RHom/(A (T T DS),A (TTn Ds)) ~ A (T TinDg) 1 Corollary 5.15.
Then
1 P ¢
EXtDb(MOdj (As,pg))) <A(7i,7iﬂDS)’ A(ﬁzvﬁiﬁDs))
~ P o
= Hompiaiod? (45,5 ) A @ 05m0) Az )
~ o o=
- HOInDb(MOdj (A(S‘,DS)))(A(UivUimDS)’ A(ﬁ-,ﬁmDS)[lD
=, (5.13)
since A(ﬁ,ﬁm D) is free. This completes the proof. O

5.4 Derived category and six operations
DEFINITION 5.29. A cohomologically irregular constructible A g p y-module is an object of

Db(Modj(A( X.D X))) such that all the cohomologies are irregular constructible sheaves. We denote
the full subcategory spanned by those objects by DY (Ax).

C
PROPOSITION 5.30. The category DY.(Ax) is a triangulated category.
Proof. This is a standard consequence of the thickness (Lemma 5.28). O

We will now see Grothendieck six operations on this category. In the rest of subsection, V, W
will be always objects of D?.(Ax).

PROPOSITION 5.31. We have V @ W € D! (Ax).
Proof. This is obvious from (4.18) and Lemma 5.13. O

LEMMA 5.32. For an irregular constructible sheaf X on (U, Dy) (respectively (V,V N Dg)), i1 X
(respectively j.X ) is irregular constructible.

Proof. By considering a stratification compatible with U (respectively V') and a stratification of
X, the constructibility of X implies the statement. O

For the constant map ax: X — *, we set wﬁ\( = a!XA ~ A @i wyx € D2 (Ay) as usual. We
also set

DV := RHom(V,w) € D*(Mod”(Ax)). (5.14)

First note the following.

LEMMA 5.33. We have DAG 2 A% @5 wy.
Proof. This is a special case of Corollary 5.15. g

Then we have the following.

LEMMA 5.34. We have DV € D% (Ax).

Proof. Let S be a stratification of V. Let U be the union of open subsets of S. By applying
Lemma 4.24, we have an exact triangle

RHom(iyi'V,wh) — RHom(V,w%) — RHom(jij "'V, wh) — . (5.15)
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Then we have

RHom(iyi'V,wh) ~ iRHom(i~'V, i 1w¥), (5.16)
IR’Hom(j!j_IV,wé\() ~ j*lRHom(j_lV,j!wﬁ}). '

By Lemma 5.32, we can prove the desired result by induction of the dimension of the strata and
Lemma 5.33. g

LEMMA 5.35. The canonical morphism V — DDV is an isomorphism.

Proof. Tt is also enough to show the statement for irregular local systems. Then the statement
is clear from ID]DA?( = Ag)(. O

LEMMA 5.36. We have
Hompp (4 ) (V, W) = Hompy (4 (DWW, DV). (5.17)
Proof. This is easy and the proof is left to the reader. O

COROLLARY 5.37. The contravariant functor D: D% (Ax) — D% (Ax) is a contravariant equiv-
alence.

Proof. The fully faithfulness of D is Lemma 5.36 and the essential surjectivity is Lemma 5.35. [J
ProproOSITION 5.38. We have a natural isomorphism
flfoD~Do fL. (5.18)
Proof. This is easy and the proof is left to the reader. O
PROPOSITION 5.39. We have RHom(V, W), f~'V, f'V € D? (Ax).
Proof. This is easy and the proof is left to the reader. O
Let i(x py): (X,Dx) — (X, 2) be the canonical morphism.

LEMMA 5.40. The functor i(x p,y: Modj(A(XDX)) — Mod?(A ) is fully faithful embedding

onto the full subcategory spanned by objects satisfying iB;V ~ 0. The functor U(X,Dx)x 1S also
fully faithful. In both cases, the left quasi-inverses are given by z(}% Dy)’
Proof. This simply follows from Lemma 4.24 O

6. Forgetting grading

In this section, we discuss the relationship between irregular constructible sheaves and
constructible sheaves. For a topological space with boundary (X, Dx), we set X := X\ Dx.
6.1 Forgetting grading
LEMMA 6.1. There exists an exact functor

§: Mod”(A(g.p,y)) — Mod(kx) (6.1)
satisfying the following. For an object V € Modj(A(xDX)), take a local lift V on an open subset
U C X. Let Vy be the underlying ungraded A-module of V. Then FV)|y = Volu @4 k.
Proof. For an object V, let us take a locally finite covering {U;} of X with lifts {f/z} C

Modg,,e(AX). There exists an isomorphism f;;: D}iHUmU]- — D}j”UmU]- in MOng(X,DX)(Uij)' We
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can take a covering {U;j;} on which we have a descent data fij: D}l”Uka — D}j”Uijk for f;; in
Modpre(U ). Let fije: Viluy, — Viluy,,(a) be alift of fijp.

Then  fijk|v,nv,; = f,]l|U”an”l means there exists b€ Rso such that 7T° ((fzjk —
fijl)’UijkﬂUijz) 0. This means fwk nk = fUl ®a k. Hence the set {f”k} gives an isomorphism
fij @ k: f/z’|Uij Ak — Vj|Uij A k. Again, these morphisms can be glued up and give a k-
module sheaf V ®, k. By a similar argument, one can actually see this does not depend on the
choice of lifts.

For f € Homy;,q3 (5 ) (V, W), there exists a covering {U;} of X with lifts {fi} € Mod®(Ay;,).

Then we get a set of morphisms { fz ®Ay kx}. One can see these are glued up to a morphism
in Mod(kx) depending only on f by a similar argument as above. The resulting morphism is
denoted by §F(f). It is clear that this correspondence preserves the compositions. Hence § gives
a functor.

We would like to see the functor § is exact. Let

0-viwox o (6.2)

be an exact sequence in Modj(A( X, Dx))' It is equivalent to that there exists a locally finite open
covering {U;} of X such that we have an exact sequence

0=V, LLw, %ox o (6.3)
over each U;. By Lemma 2.14, it can be lifted to an exact sequence of R-graded A x-modules

0—>]>1£>V~Vz§—z>)ez—>0 (6.4)
Since tensor product is left exact, we get an exact sequence

V ®Ax IkX —> W ®Ax IkX —> X ®ryx kx — 0. (6.5)

It remains to show f; ®id is injective. Let us take a homogeneous section of the kernel of
f@ ® k. Since it is a subsheaf of V; @, x kx, it is locally represented by the form s ® 1. If s ® 1
is nonzero, it means that 7% - s # 0 in V;. Hence we have Ay - s < V;|yy where U is the open set
on which s is defined. If fi(s) ® 1 = 0, we have some T® such that T%f;(s) = 0 by Lemma 2.7.
Hence we have a sequence of morphisms over U of R-graded A-modules

Ay - s—>V—>W<> (6.6)
whose composition is zero. Since Ay - s is nonzero in Mod”(U;), the morphism [T fl=1fil=f
has a nontrivial kernel. This contradicts the injectivity of f;. Hence f; ® id is injective. 0

LEMMA 6.2. Let f: (X,Dx) — (Y, Dy) be a map between topological spaces with boundaries.
Then we have

oftxflog. (6.7)

Proof. For an R-graded Ax-module V, let us consider f~'V. The sheaf § o f~!V(U) is a sheaf
associated with the presheaf

U f~Y(0U) @4 k. (6.8)
On the other hand, the sheaf f~! o §(V) is a sheaf associated with the presheaf
U f1(Vea, kx)U). (6.9)
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By the definition,
FVU) @ K ( lim v<v>> on Kk
Vo f(U)
= lim (V(V)@rk)
Vof(U)
= 71V @ay kx)(U). (6.10)
Hence they are the same. ([l

LEMMA 6.3. Let V € Modj(A(XDX)) be an irregular local system. Then §(V) is a local system.

Proof. There exists an open covering of U such that V is represented by a direct sum of irreg-
ular constant sheaves A?. Hence the statement follows from that A? ®, k is a rank 1 constant
k-module on any enough small open subset. O
LEMMA 6.4. Let G: Mod”(A(x p.y) — Mod”(A(y p,y) and G: Mod(kx) — Mod(ky) be right
(respectively left) exact functors such that §oG = GoF. Then we have §oRG ~ RGoF
(respectively § o LG ~ LG o §).

Proof. Let V € Modj(A( X, Dx)) and take an injective resolution Z°® by using Proposition 4.2.
Note that skyscraper sheaves A, used in this injective resolution are mapped to skyscraper
sheaves k,. Combining with the exactness of § (Lemma 6.1), we can conclude that §(Z°®) is an
injective resolution of §(V). Hence we have

FoRG(V) ~FoG(I*) ~GoF(IT%) ~RGoF(V). (6.11)

Similarly, for a free R-graded A-module F, the module §(Fy) is a direct sum of k7, and hence
is flat. By Lemma 4.4, we can do a similar argument as above. This completes the proof. O

LEMMA 6.5. Let f be a proper map X — Y. We have an equality
FoRfi~RfioF (6.12)
of functors Db(Modj(A(XDX))) — Db(ky).

Proof. By Lemma 6.4, it is enough to show the underived version. For V € MOdR(Ax) and
an open subset U, both fioF(V) and o fi have V(f~1(U)) ® k over U. This completes the
proof. O

LEMMA 6.6. Let i p): (X,Dx) — (X,@) be the canonical map and ix: X — X be the
inclusion. We have an equality

SO Ri(X,Dx)! ~ R’LXI OS. (613)
Proof. Again, we only prove the underived version. One can prove in a similar way to
Lemma 6.5. g

6.2 The case of irregular constructible sheaves
PROPOSITION 6.7. The functor § restricts to a functor Mod;.(Ax) — Mod.(kx).

Proof. For V € Mod;.(Ax), let us take a stratification S of X. For each S € S, let us denote the
inclusions by i(g p: (S,Ds) — (X,2) and ig: S — X. Then we have ig'F(V) = S(i(_ngS)(V))
by Lemma 6.2. By Lemma 6.3, this is a local system. Hence §(V) is a constructible sheaf with

respect to S. g
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We also denote the induced functor D®(Mod”(Ax)) — D*(Mod(kx)) by 3.
COROLLARY 6.8. The functor § restricts to D%, (Ax) — Db(kx).

Proof. For V* € D?(Mod;.(Ax)), since § is exact on the abelian categories (Lemma 6.1), we have
H{(F(V*)) = F(H (V*)). By Proposition 6.7, we have F(H*(V*)) € Mod.(kx). O

LEMMA 6.9. If we have §(F) ~ 0 for an irregular constructible sheaf E, we have E ~ 0.

Proof. We will argue on each stratum of a stratification of £. On the interior of a stratum, the
irregular local system is locally isomorphic to @, ;A% for some ¢;’s. Since F(ED,A?") = Kl
§(E) =0 is equivalent to |/| = 0. This means E = 0. This completes the proof. O

We also would like to discuss the functor in the other direction. We consider the following
functor

(=) @k A: Mod,(kx) — Mod’(Ax) (6.14)

equipped with the trivial grading. We define &: Mod.(kx) — Mod;.(Ax) as the composition
of the above with []: Mod®(Ay) — Mod”(Ax). It is clear that this induces an exact func-
tor &: Mod.(kyx) — Mod;.(Ax). We will denote its derived functor by the same notation
®: Db(ky) — DL(Ax).

PRrROPOSITION 6.10. We have § o ® ~ id.

Proof. This again follows from the fact that F(A?) is a rank 1 constant k-module. O

7. Enhanced sheaves and A-modules

7.1 R-constructible enhanced ind-sheaves

In this section, we recall the definition of R~constructible enhanced ind-sheaves. For more detailed
accounts, we refer to the original [DK16] and the survey [KS16]. Let M be a real analytic
manifold. Let R be the two point compactification of Ri.e. R 2 (0,1) — [0, 1] = R. The category
of enhanced ind-sheaves is defined in two steps. First, we set

Db(I]kMx(R,IR)) = Db(IkMXIR)/Db(I]kMXIR\IR) (7.1)
where D?(Ik,y) is the bounded derived category of ind-sheaves over M [KS01]. We set k,<, =
>

+
Ik{(x,t)eMxlmte]R,t;O}' The definition of the convolution product ® can be extended to the objects

in Db(IIkMX(R]R)). We set
+ +
ICt*:O = {K | K ® Ikgo ~ O,K X ]k;o ~ 0} (72)
The category of enhanced ind-sheaves over X is defined by

E’(Ikyr) == D(Ikpsxr., )/ICH—o. (7.3)

+
The triangulated category E°(Ikjs) has monoidal operations ® and Zhom™. For a morphism
M — N of real analytic manifolds, there are associated functors

Efy, Ef.: E*(Iky) — E°(Iky), (7.4)
Ef~YL Ef': E'(Iky) — E°(Ika). (7.5)
They form adjoint pairs Efy 4 Ef' and Ef~! 4 Ef,.
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We further set
Kl = Um’ ks, (7.6)

a—0o0
as an object of E®(Ikys). As usual, ‘lim’ means Ind-colimit.
DEFINITION 7.1.

(i) An object £ of Eb(Ikys) is said to be R-constructible if there exists an open covering
{Ui} of M such that there exists an R-constructible sheaf & over each U x R such that
+
Elyxr ~ v @ k.
(ii) An enhanced R-constructible ind-sheaf £ of E’(Iky;) is said to be C-constructible if the
following holds. There exists an open covering {U} of M and a C-stratification Sy for each

+
U such that: (i) there exists an R-constructible sheaf &y, such that €|yxr ~ &y @ kE; (ii)
each cohomology sheaf H!(£y|s) for each S € Sy is isomorphic to a direct sum of sheaves
of the form k;>4(,) for some continuous function ¢.

We denote the full subcategory spanned by R-constructible (respectively C-constructible)
enhanced ind-sheaves by E% .(Ikas) (respectively E2, .(Ikas)). The category Ef .(Ikps) has a
contravariant autoequivalence ID, analogous to the Verdier duality.

7.2 From enhanced sheaves to A-modules

For a sheaf £ on X x IR, let us consider the object D _serPl—a,00)€ Where p: X x R — X is the
projection. It is equipped with the action of A as follows. The action of 7% on @_aeﬂ{p*lj[_aﬁoo)é’
is the product of

p*r[—a,oo)g - p*F[—b—a,oo)g (77)
induced by the canonical map k{44 00) = K[—g,00)-

Recall that D®(Ik,,, g ) is the derived category of Mod(Ik,,yg) := Ind(Mod.(k,,. g )) where
c means compactly supported sheaves. The left exact functor

Mode (ko)) — Mod?(Ax); € — [ &y p*r[m)é’] (7.8)
—a€ceR
induces
M : Mod(Ik . 5) — Ind(Mod”(Ax)) (7.9)

by taking Ind of all of them. This is again left exact [KS06].
We denote the right derived functor of M by RM: D’(Iky,.g) — D°(Ind(Mod”(Ax))).
Recall that there exist embeddings

+
(—) ® kizo: E*(Ikx) — D*(Ik(x i xxm)) (7.10)
and
(=) @ kxxr: Db(lk(Xx]R,XxR)) - Db(I]kXxIR)‘ (7.11)
Composing these with RM, we get
~ + o
M :=RM(((-) ® kso) ® kxxr): E’(Ikx) — D’(Ind(Mod”(Ax))). (7.12)

+
LEMMA 7.2. Let €& be an R-constructible sheaf over X x R. Then we have M(£ @ k%) €
Db(Mod?(Ax)).
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Proof. By the definition of M and Ik;E(, it is enough to show that the natural morphisms

[ P Rp. R, ) 5} — [ P Rp. R4 5} (7.13)

—a€R —a€eR

are isomorphisms for any ¢ € R>o. The cone is given by

[ P Rp«RI_o o) 5} . (7.14)

—a€R
Since T € A vanishes on this object, this is zero. Hence the morphisms are isomorphisms. [J

LEMMA 7.3. The functor M restricts to a functor E%_.(Tkx) — D?(Mod”(Ax)), which is also
denoted by M.

Proof. For an R-constructible enhanced ind-sheaf &, there exists a locally finite covering U of
+
X such that we have €|pxr ~ &y @ k& and (n + 2)-fold covers are empty where n = dim X. By
+
the Cech construction, £ is represented by a result of mapping cones of i(Ey ® Ikg) This implies

- . +
M (&) is obtained as a finite mapping cones of M (i\(&y ® kE)). By Lemma 7.2, this means that
M (&) is in D*(Mod?(Ax)). This completes the proof. O

Let S be a locally closed subset in X and S be the closure of S in X and set Dg := S\S. Let
¢ be a continuous C-valued function on S. The inclusion 1(3,Dg) (S,Dg) — X is a tame map,

Jr
we get i(S,Ds)!A((bS,DS) € Mod?(Ax). We also set £ := kgt @ k5 € Eb(Tkx).

LEMMA 7.4. We have M(E?) =5 p A

Proof. By the definition of M, M (£9) = ‘(liinoo’ (@_CGRRp* RI ¢, —0) kme¢<t+a). From the proof

of Lemma 7.2, this colimit stabilizes. In particular, M (%) = @_ ..z Rps RT ¢, —o0) ke gt =
i(s,p5)A? O

LEMMA 7.5. There exists a canonical isomorphism
HomModj(Ax)(i(g,Ds)!A¢’ i(S,DS)!A¢ ) = HOHlEb(HkX)(g(b, g¢ ) (715)

Proof. By Lemmas 5.11 and 5.12, we have

k max{0,9Rep — Re '} is bounded,

. (7.16)
0 otherwise.

HomModj(AX) (i(S,DS)!A¢a i(S‘,DS)!A(b,) = {

It is easy to see that the right-hand side of (7.15) also has the same formula. In the case that
max{0,Red — Re ¢’} is bounded, there exists ¢ € Rxp such that Red < Re ¢’ + ¢ everywhere.
For a map f € HomEb(IkX)(5¢,8¢/), we have a lift f: Kii>med(2)) — K{t>Re ¢/ (2)+c) Of usual
R-constructible sheaves. Then f induces a morphism i($,0 S)!A¢ — i3, DS)!Ad’,. It is easy to see
that the induced morphism only depends on the choice of f. By the proof of Lemma 5.11, this
gives an isomorphism. O

8. Irregular Riemann—Hilbert correspondence

In this section, we will prove our version of the irregular Riemann—Hilbert correspondence as a
corollary of D’Agnolo and Kashiwara’s one. In this section, we will work over C.
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8.1 An example

Before going to the general case, we would like to see some examples of the correspondence in
dim = 1. We will freely use the standard language of Stokes phenomenon, for which one can refer
to the standard reference, for example, [Sib90)].

We will consider the case when X =D a disk around 0 € C. Let M be a meromorphic
connection with poles in 0 € D. For the simplicity of the exposition, we assume that the formal
completion of M at 0 is decomposed as ¢e¢5 (¢) where @ is a set of meromorphic functions with
poles in 0 € D, £(¢) is a connection defined by d + ¢. The set ® give a sectorial decomposition
D\0 = | JS; by the Stokes rays and there exists a complete set of solutions {525} on each S;. On
each Stokes ray, we have a transformation matrix between the sets of solutions. The transformed
s4 can have a component of sy only if Re ¢ > Re ¢’ on the ray. We denote the transformation
matrix on the Stokes ray r by S,.

Since

Hom(A?, A?) = k, Hom(A® ,A®) = 0 (8.1)

if Me¢ < Me¢’, we can represent the transposition of S, in End(@A?), as an isomorphism,
locally around the ray r. Gluing up @ ¢A¢ by the these morphisms, we get the Riemann—Hilbert
dual object (i.e. the image of the ‘de Rham’ functor) of M in terms of irregular constructible
sheaves.

Of course, by the same procedure just replacing A? with £% produces an enhanced ind-sheaf
corresponding £ to by D’Agnolo and Kashiwara’s functor [DK16].

8.2 Notation for analytic D-modules
We refer the theory of analytic D-modules to [Kas03]. In this subsection, we simply recall the
notation. For a complex manifold, Dx is the sheaf of differential operators, Mod(Dx) is the
category of left D-modules, and D*(Dx) is the bounded derived category of D-modules. We
denote the full subcategory of D®(Dy) spanned by cohomologically holonomic D-modules by
D ﬁol(DX ) :

The duality functor D is a contravariant autoequivalence of Dﬁol(DX). For a morphism of
complex manifolds f: X — Y, we can define the following functors,

/f: Db(Dx) — Db(Dy);M — Rf«(Dx—y ®%X M), (8.2)

f1: D"(Dy) — D*(Dx); N — Dy _.x @ 1p, [~ N[dim X — dim Y7, (8.3)

by using transfer D-modules Dx.y and Dx_.y. The functor fJr always preserves cohomo-
logically holonomic modules. If f is proper, [ 7 also preserves cohomologically holonomic

modules. For a proper f, the pair of functors form an adjoint pair [ f - ff. We also set
f*:=Do ftoD: Dﬁol(Dy) — Dflol(DX) and f,:=Do ff oD. Then f* - f,

8.3 Irregular Riemann—Hilbert correspondence using enhanced sheaves
We recall the irregular Riemann-Hilbert correspondence by the result of D’Agnolo and
Kashiwara.

THEOREM 8.1 [DK16]. There exists a contravariant embedding
Sol?: D! [(Dx) — E%_(ICx). (8.4)

Our convention is slightly different from the original one in [DK16]. Let Sol® be the original
one. We set Sol” := Sol®[dim X] We have Sol? := D o DR where DR¥ is the same as the
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original one. We collect some properties of the irregular Riemann—Hilbert correspondence as
follows.

PrOPOSITION 8.2 [DK16, Theorem 9.4.8, Proposition 9.4.10].

(i) There exists a canonical isomorphism ID o DR¥ ~ DR” o .
(ii) For a morphism f: X — Y of complex manifolds, there exists an isomorphism DRP o ff ~
Ef'oDRF.
(iii) For a proper map f: X — Y, we have DR¥ o ff ~ Ef, o DRP.

+
(iv) There exists an isomorphism Sol” (M X N') ~ Sol¥” (M) K Sol¥(N) for M € D! (Dx) and
N e Dgol(DY)'

We will also use the following fundamental result. Let Y be an analytic hypersurface of the
complex manifold X. Take a meromorphic function ¢ with poles in Y; ¢ € Ox(xY). We set
E(¢) = (Dx - e?)(xY).

Our convention for Sol” is shifted from D’Agnolo and Kashiwara’s one so that the following
holds.

ProPOSITION 8.3 [DK16, Lemma 9.3.1]. There exists an isomorphism
+ .
Sol”(£(¢)) = k% @ kysore oo [dim X]. (8.5)

8.4 Irregular Riemann—Hilbert correspondence
Let us denote the essential image of Sol” by EY(ICx).

LEMMA 8.4. The object M () is irregular constructible for £ € E2(ICx).

Proof. We will prove by induction on the dimension of the support.

Let us take a holonomic D-module M and consider £ := Sol(M).

If the dimension of the support of M (&) is zero-dimensional, it is irregular constructible. We
suppose that the statement is true for any £ with dim supp M (€’) < dimsupp M (€).

Since the question is local, we work locally. We set Y := supp (M (£)). Let 7: Y/ — Y be
a resolution of singularities of Y. Let D be the inverse image of the union of singularities of
Y and M. Then there exists a canonical morphism

M1 — M| = m (7 M) (xD). (8.6)

Since (7*M)(*D) is a meromorphic connection, M (SolZ(7* M (xD))) is irregular constructible.
Note that Sol® (7* M (*D)) has its support in the complement of D. Hence M (Sol? (M})) has its
support in the complement of 7(D) and is irregular constructible. The cone C' of this morphism
is living on a divisor of Y. By the induction hypothesis, M (Sol¥(C)) is irregular constructible.
This completes the proof. ]

LEMMA 8.5. For an irregular local system V), there exists an enhanced ind-sheaf N (V) such that
M(NV)) = V.
Proof. For an irregular local system V), one can find a sectorial covering (Definition 5.21). On
each open subset in the covering, we have @V = A?. By Lemma 7.5, we can glue up @E? by
the corresponding morphisms gluing @A? up to make V. We denote the resulting enhanced
ind-sheaf by N (V).

Since the functor M maps £ to A? (Lemma 7.4) and the gluing maps are translated by
Lemma 7.5, the enhanced ind-sheaf N (V) satisfies MN (V) = V. O
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Our version of an irregular Riemann—Hilbert correspondence is the following.
THEOREM 8.6. The functor M is a contravariant exact equivalence:
M: Ep(ICx) = Di.(Ax). (8.7)
In particular, there exists a contravariant equivalence
Sol* := M o Sol¥: Db (Dx) = DL(Ax). (8.8)

Proof. First, we will prove the full faithfulness. Let M, N be holonomic Dx-modules. Set £ :=
Sol?(M) and F := Sol¥(N). Then we have

Hom(M, N) = Hom(F, E). (8.9)

We would like to prove
Hom(F, &) = Hom(M(F), M(E)). (8.10)

Take a common stratification for £, F and i: U — X be the open stratum and j: V — X
be the complement. Then by Lemma 4.24, we have an exact triangle

Hom(j'M(F),j7'M(&)) — Hom(M(F), M(E)) — Hom(i 'M(F),i *M(&)) — . (8.11)

We also have the corresponding recollement for enhanced ind-sheaves

+ +
Hom(Ej~'F, Ej~'€) — Hom(F, £) — Hom(F ® kyxk. s € @ kuxroy) — (8.12)

which is a direct consequence of the recollement on X x R. By the construction, this is the image
of (8.11) under M. Hence, it is enough to show the full faithfulness for irregular local systems.

For an irregular local system, we have locally a sectorial covering such that £, F have the
form @E?, M(E), M(F) have the form @A?, and these are related by Lemma 7.4. Hence we
have the full faithfulness on each open cover by Lemma 7.5. Note also that M is a morphism
between stacks, which is clear from the definition. Hence we can glue up these isomorphisms to
get the global full faithfulness.

To prove the essential surjectivity, we will use Mochizuki’s curve test criterion [Moc16]. Since
Sol? is a fully faithful exact functor, by the recollement 4.24, it is enough to see Sol* hits each
irregular local system.

Let V be an irregular local system on (S, Dg) C X. Let ¢: D — X be a holomorphic disk
satisfying ¢~1(Dg) = {0}. We set = := ¢(0).

By the construction, N (V) of Lemma 8.5 has a sectorial covering around x equipped with a
set of multi-valued meromorphic functions. The pull-back of a sectorial covering is again sectorial.
Hence E¢~'N(V) has a sectorial covering on which E¢~!N (V) restricts to the form @E? and
the gluing data is the Stokes data. Since the situation is now one-dimensional, it is standard to
see this is in the image of Sol” (e.g. by the discussion of [DK19, 9.8]). Then Mochizuki’s theorem
[Moc16] tells us that there exists an object in D?_ (Dx) such that Sol”(M) = N(V). Hence we

have Sol*(M) = M o N(V) = V. This proves the essential surjectivity. O
COROLLARY 8.7. There exists an exact equivalence

DRA := Do Sol*: DY ,(Dx) = Db(Ax). (8.13)
Proof. This is the composition of equivalences from Theorem 8.6 and Corollary 5.37. O

In [DK16], it is proved that the composition of iyeg: Dfeghol(DX) — D? (Dx) and Sol” is

the same as the composition of the regular Riemann-Hilbert solution functor Sol and D%(Cx) —
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+ —
EP(ICx). Here the last inclusion is obtained as (77(—) ® Cxxp,,) ® CE¥ where m: M x R —
M. By the definition of M, the following corollary is clear. ]

COROLLARY 8.8. We have an identification & o Sol 2 Sol® o Treg-
8.5 Functors

In this subsection, we prove the commutativity between Sol* and various functors. We assume
that all the spaces are without boundary in this subsection.

ProprosiTION 8.9. Let f: X — Y. We have

MoEf*~ floM. (8.14)
In particular,

Sol* o fi~f=1 o Sol?. (8.15)

Proof. Since we know E f* commutes with Sol?, it is enough to see the commutativity with the
functor M. Let us take an R-constructible sheaf £ on X x R. Let f be the direct product of
f: X - Y and id: R — R. Then we have

P« RE X a.00)(fT1E) = e Ry f,00) €. (8.16)

Hence we have M(f~1€) ~ f~'M(&). This proves the first line. O
LEMMA 8.10. We have

M(—X—)~M(—)X M(-). (8.17)

For M € D} (Dx) and N € D} (Dy), we have
Sol* (M K N) ~ Sol* (M) K Sol* (). (8.18)

Proof. By [DK16], we have Sol?(M X N) ~ Solf (M) %SOIE(N). Hence it suffices to prove
M (Sol® (M) % SolZ(N)) ~ M (Sol? (M)) K M (Solf (N)).
First, note that we have p. RI'| o) (€ % F) =~ pe Ry, 445, 20(E W F). We also have a map
P R [ 00) x[e,00) (€ B F) = pu RT3 3040(E W F). (8.19)

+
By combining these, we get a map M (€)X M (F) — M(E X F). It suffices to show that this

+
map is locally an isomorphism. For enhanced ind-sheaves £%1,£92, we have £91 ) £92 ~ £$1992,
We also have A%t [ A?? = A?1992 from Lemma 5.13. Hence the morphism M (£%1) X M (£92) —
M (E%1992) is an isomorphism. The general case can be reduced to this case by considering on

each stratum. n
PROPOSITION 8.11. For M,N € D! (Dx), we have
Sol* (M @ N) =~ Sol* (M) @ Sol* (V) [~ dim X]. (8.20)
We also have
M o Hom®(—, =) ~ Hom(M (=), M(-)) (8.21)
on EY(Ikx)
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Proof. Let §: X — X x X be the diagonal embedding. Then M @ N 22 §T(M K N). Then we

have,
SolM (6T (M B N)) ~ 6~ H(Sol* (M K N))[— dim X]

~ 57 1(Sol* (M) K Sol*(N))[— dim X]

~ Sol* (M) @ Sol*(N)[— dim X], (8.22)
where we used Lemmas 4.20 and 8.10. This proves the first claim. The second claim follows from
the adjunction. O
PROPOSITION 8.12. Let f: X — Y. We have

Sol* o f*~f' o Sol?, (8.23)

Sol* o D ~ D o Sol*. (8.24)

Proof. The first equation is followed by the second one and Proposition 8.9.
We have

D o Sol*(€) ~ Hom(Sol* (&), w¥)
~ M o Hom®(Sol”(€),w¥)
~ M o Sol®(D(£))
~ Sol* 0 D(E), (8.25)

where we used Proposition 8.11 and the commutativity of Sol” with D [DK16]. This completes
the proof of the third line. O

ProprosiTION 8.13. Let f: X — Y be a proper map. Then we have
DRA o/ ~ fi o DRM. (8.26)
1

Proof. By various adjunctions, we have

Hom <DRA</ﬂM>,DRA(N)> ~ Hom /f!M,N)

8.6 Corollaries

PROPOSITION 8.14. Let f: X —Y be a proper morphism. Then f.V € D% (Ay) for V€
ch(AX)

Proof. For V € D% (Ax), take V' :=V @y C. We set M := (Sol*)~*(}'). Then ff! DM is holo-

nomic. Proposition 8.13 tells us DRA(ff! DM) =~ f 0 DRMD o M) =~ f,Sol*(M) =~ £, V' @ C
is irregular constructible. Since the irregular constructibility is preserved under ®iC. This
completes the proof. O
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Remark 8.15. To work with more general base fields, it is desirable to have a direct proof of the
above result, which we do not have yet.

The following proposition says ‘an object of DSC(A x) is actually a sheaf over X .’ It is logically

not important, but conceptually makes us feel easy with irregular constructible sheaves. We use
some results from the later sections to prove the following.

PROPOSITION 8.16. The essential image of []: D*(Mod’(Ax)) — D*(Mod”(Ay)) contains
D'IL)C(AX)

Proof. Let V be an irregular constructible sheaf. Then we have [RM'(M~1(V))]~
Ve D’(Mod?(Ax)) by §7.2 and Theorem 8.6. Since [£]€ DY(Mod’(Ax)) for & ¢
D(Ind(Mod®(Ax))) if and only if £ € D*(Mod®(Ax)), we have RM'(M~(V)) € D*(Mod®(Ax)).
This completes the proof. O

9. Irregular perverse sheaves

In this section, we define the irregular perverse t-structure on the category of irregular con-
structible complexes. Over C, the heart is equivalent to the category of holonomic D-modules.
We also prove t-exactness of various functors.

9.1 Irregular perverse sheaves
For an object V of D% (Ax), we define the support by

supp(V) := Usupp(%(Hj(V))) C X. (9.1)

Let us define the irregular perverse t-structure.

DEFINITION 9.1. Let PD’(Ax) (respectively pDi,O(AX)) be the full subcategory of D% (Ax)
spanned by objects satisfying

dim{supp H?(V)} < —j (9.2)
(respectively dim{supp H’(DV)} < —j) for each j € Z. '
Let (PDS(kx),?D?"(kx)) be the perverse t-structure of D2(kx).

iz e e g<pD§CO(AX)) C ngO(IkX)- Conversely, if §(V) € PDSO(]kX) for V€
D! (Ax), we have V € PD°(Ax).

Proof. Since § is t-exact with respect to the standard t-structure (Lemma 6.1), we have
H'(F(V)) = 5(H' (V). m
PROPOSITION 9.3. The pair (PDS’(Ax),?D2°(Ax)) forms a t-structure.

To prove this proposition, we first prepare the following lemma.
LEMMA 9.4. We have
Hji(_S%Ds)

for F € ?’DE°(Ax) and G € PD} (Ax).

F=~0(j>—dimS), Hf'z"(gps)g ~0(j <1—dim§), (9.3)

Proof. Note that the same statement for the usual perverse t-structure is known (e.g. [HTTOS,
Proposition 8.1.22]). By the commutativity proved in §6, the first statement follows from
Lemma 6.9. The second statement follows from the Verdier duality. O
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Proof of Proposition 9.3. First, we will prove that for F € prCO(AX) and G € pDil(AX), the
vanishing

Hom(F,G) = 0. (9.4)

One can prove this just by mimicking the proof of [KS90, Proposition 10.2.7].

It remains to show that there is a decomposition of objects in D% (Ax). One can prove this

by a usual argument for perverse sheaves as in [HTTO08, Theorem 8.1.27]. U

DEFINITION 9.5. The heart of the t-structure is called the category of irregular perverse sheaves
and denoted by Perv;.(kx).

THEOREM 9.6. The functor Sol” restrict to a contravariant equivalence
MOdhol(DX) i Pervic(CX). (95)

LEMMA 9.7. Let D; (i =1,2) be triangulated categories with t-structures (DfO,D?O). Let
F': Dy — Dy be a t-exact equivalence. Then F' gives an equivalence between t-structures.

Proof. We have to show that F': Dfo — D2<0 is essentially surjective. Let £ be an object of D;O.
Then we have a standard triangle

reoF 1 E) = F1E) = ro FYE) I (9.6)

By applying F again, we have F (751 F~1(£)) =0 since £ € D;O. Since F' is an equivalence,
we have 75 F~1(€) = 0. Hence F1(€) € DS’. We can prove for the positive part in a similar
manner. This completes the proof. O

Proof of Theorem 9.6. By Lemma 9.7, it is enough to show that Sol® is t-exact. We only show
the condition

dim{supp H’ (Sol*(M))} < —7, (9.7)

for any holonomic D-module M. The other case follows from the Verdier duality.

We will prove by induction on the dimension of the support of M. Let Z’ be the support of
M and Z be the union of the component of the maximal dimension of Z’. Take x € Z and we
will argue locally around z.

Take a divisor D in X such that D does not contain any component of Z but the singularities
of M. We set M; :=im(M — M(xD)). Then we have two exact sequences

0—)M1HM(*D)—>C[]—>O,

0—-Ci —>M—>M;—0. (9-8)

Since the supports of Cy, Cy are in D N Z, the dimensions are less than dim Z. By induction,
(9.2) holds for Cy, C;. Hence it suffices to show (9.2) for M(xD).

Let p1: (Z1,D1) — (Z, D N Z) be aresolution of singularities of (Z, D N Z) and py be a proper
modification given by Theorem 5.3 for pJ{M(*D). Then pf M(xD) (p := p2 o p1) satisfies (9.2),
since its image under Sol® is an irregular local system. Now we note the following inequalities:

—j > dimsupp H? (Sol* (pT M(xD))) = dim supp H’ (p~!Sol* (M (xD)))
= dim supp p ' H’ (Sol* (M(xD))) > dim supp H? (Sol* (M (xD))). (9.9)
This shows M(xD) also satisfies (9.2). This completes the proof. O

We would like to make a comparison with usual perverse sheaves.
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PROPOSITION 9.8. We have &(Perv(X)) C Perv;.(X), By Proposition 6.10, §o® =id on
Perv(X).

Proof. Since & is an exact functor, the condition in Definition 9.1 for &(&) is equivalent to the
condition for £ to be a perverse sheaf. Hence we have &(Perv(X)) C Perv;.(X). O

9.2 t-exactness of various operations
By using the functor §, we can prove various t-exactness properties in parallel with the theory
of usual perverse t-structure. We only discuss some of them for illustration.

PROPOSITION 9.9. The Verdier duality functor D interchanges PD"(Ax) and prCO(AX). In

c
particular, D restricts to a contravariant autoequivalence of Perv;.(kx).

Proof. Since D? 2 id, the condition in Definition 9.1 for DV is equivalent to that of V. g

ProprosITION 9.10. Let f: X — Y be a morphism of complex manifolds. We assume that f is
proper for 3 and 4. The following hold.

(i) For any V € PDZ°(Ay), we have f~1y ¢ pDSImX—dimY (g
(ii) For any V € PDSY(Ay), we have f'V e P2~ dmXHdim¥ (5 )

( ic
(iti) For any V € PD2°(Ax), we have Rf,V € PDZ~ dmXHtdimY (y, )
(

(iv) For any V € prO Ax), we have RfiV € prc(dimX_dim Y) (Ay).

C

Proof. The statements (i), (iii) and (iv) can also be proved easily by using the commutativities
of § with f~! and f, (§6) and Lemma 9.2. The statement (ii) is the Verdier dual of (i). O

Remark 9.11. Other right/left t-exactness for various functors known in the theory of perverse
sheaves can be also proved by using the argument used in Proposition 9.10.

Remark 9.12. Here we assumed the properness for (iii) and (iv) for simplicity. One can remove
the assumption by working with ind/pro objects to define push-forwards for nontame morphisms.

10. Algebraic case

In this section, we deduce the algebraic version of the results.

10.1 Notation for algebraic D-modules

For the theory of algebraic D-modules, we refer to [HTT08]. For a smooth quasi-projective variety
X, we denote the sheaf of algebraic differential operators by Dx. We denote the category of left
Dx-modules by Mod(Dx), the bounded derived category by D?(Dx), and the full subcategory
of cohomologically holonomic modules by Dﬁol(D X)-

We denote the Verdier duality functor by ID. For a morphism of algebraic varieties f: X — Y,
we define [ f and f! by the same formula as in the analytic case. In the algebraic case, both
functors preserve holonomic objects without properness assumption. We set f* :=Do ff oD
and ff! =Do ff oD. Then we have two adjoint pairs f* - ff and ff! - f1.

Let X3 be the complex manifold associated with X. The analytification functor is an
exact functor (-)*": Mod(Dx) — Mod(Dxan). We also denote the induced functor on the derived
categories by the same notation (-)*". It preserves the holonomicity. We note the following.
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LEMMA 10.1 [HTTO8, Proposition 4.7.2]. Let f: X — Y be a morphism between algebraic vari-
eties and f*': X?" — Y?" be the associated morphisms between complex manifolds. Then the
following hold.

(i) For M € D?_(Dy), we have a canonical isomorphism (fTM)a" ~ (fan)f(M)an
(ii) If f is proper, we have a canonical isomorphism (ff N)™ Jran N)* for N € Db (Dx).

10.2 Algebraic irregular constructible sheaves

To consider irregular constructible sheaves, we will equip quasi-projective algebraic varieties with
analytic topology. Let X be a smooth quasi-projective variety. Let X be a smooth projective
variety with a Zariski open embedding ix: X — X. We set jx: Dx := X\X — X.
DEFINITION 10.2. An object V € Modj(A(X’DX)) is algebraic irregular constructible if the fol-
lowing holds: there exists an algebraic stratification S of X refining X = X Ll Dx such that each
restriction of V to S € § is an irregular local system.

We denote the full subcategory of irregular constructible sheaves by MOdic(A(KDX))-
Let iz py): (X,Dx) — (X,9) be the canonical morphism, which is tame. We also denote
the inclusion by ipy : (Dx, @) — (X,@). The functors i p ) ix py). are fully faithful by
Lemma 5.40.

LEMMA 10.3. The category MOdic(A(XpX)) does not depend on the choice of X.

Proof. We will prove the assertion in two steps. Let us first assume that p: X’ — X is a map
between two projective compactifications of X extending id: X — X. Then it is clear that p,
induces the desired equivalence of categories.

Now let X’ be an arbitrary projective compactification of X . Then there exists X” with maps
X" — X and X" — X' extending id: X — X. This can be done by taking a smooth blow-up
replacement of the closure of the diagonal embedding X — X x X’. From the first part of this
proof, we complete the proof. O

We will denote the category of algebraic irregular constructible sheaves by Mod;.(Ax).
LEMMA 10.4. The abelian subcategory Mod;.(Ax) is thick in Modj(A(XyDX)).
Proof. One can prove the lemma by mimicking the proof of Lemma 5.28. 0

Let us denote the triangulated subcategory of D? (Modj(A( X,Dy))) formed by cohomologically

algebraic irregular constructible sheaves by D? (Ax).
Let D%(ky) be the category of cohomologically algebraic constructible complexes.

PROPOSITION 10.5. The functor § restricts to a functor §: D% (Ax) — Dl(kx).
Proof. The proof of proposition 6.7 works for this case. g

It is also clear that the results we proved in § 5.4 also hold for D®(Ax). In addition to these,
we have the following.

Let f: X — Y be a morphism between algebraic varieties. There exist compactifications
X,Y such that f admits an extension f: X — Y. Hence, considering the analytic topology,

f extends as a map f: (X,Dx) — (Y, Dy). We set
fe = i(}l’DY) o fuifx pyye: D'(Mod”(Arx py)) — DP(Mod”(Ay b)), 10.)
fii= i(—Y{Dy) o fri(x.pyy: D' Mod”(A(x pyy)) = DP(Mod”(Ay p,))-
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ProprosITION 10.6. Let f: X — Y be a morphism between algebraic varieties. Then f,V, iV €
Db (Ay) for V € Db (Ax).

Proof. This can be proved by the same argument used in Proposition 8.14 by using
Proposition 10.10. 0

10.3 Algebraic Riemann—Hilbert correspondence
We first recall the following result due to Malgrange.

THEOREM 10.7 [Mal04]. If X is a smooth projective variety, analytic holonomic Dx-modules
are algebraic.

By wusing this, we have the following algebraic version of irregular Riemann—Hilbert
correspondence.

THEOREM 10.8. There exists an exact equivalence

Sol} : D! [(Dx) = DL(Ax). (10.2)

Proof. If X is projective, there is nothing to prove by Theorem 10.7. We suppose X is quasi-
projective and X be a compactification of X. For M € D? (Dx), we have f M e D} (D)

where iy : X < X is the inclusion. Then we get a functor

8011}( = Z(_)%,DX) o) SOIE\@“ . / DhOl DX — Db (AXan)
il
(X,Dx)
= D}, (Ag) == Di(Ax.py))- (10.3)

The middle equality is Chow’s lemma. Note that the first three compositions are fully faithful.
Hence, to prove the full faithfulness of Sol’)\(, it suffices to show that the image of Sol%,, o
()2 o fix is zero under iE); by Lemma 5.40. Let S be a stratification of Dx such that each

stratum is smooth. For S € S, we have zg(flx M) ~ 0 where ig: S — X is the inclusion. Hence
we have

ig'Soly (M) ~ig! o Solk,, o (1) o/ M
~ SolXan oig o </ M>
ix
~ Sol

San (ﬁso/ M) ~ 0. (10.4)
[5'e

Hence we can conclude that ¢ Dl Sol%an (M) ~ 0. Then the full faithfulness of Sol& is evident
from Lemma 5.40.
To see the essential surjectivity, let us take an object V € Db ' (Ax) and consider it as

an object of DY (Ag) = D2(Aga). Then we have M := (Solé\(an)_l()}) € Db (Dgan). We set

M .= ((.)2)~1(M). Take a stratification S of Dx with smooth strata. To prove M?® is iso-
morphic to [; N for N € D? (Dx), it is enough to see iTSMalg ~ 0 for each S € S. Note that
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ig/\/lalg ~ () is equivalent to (ig/\/lalg)‘m ~ 0. The latter can be shown as follows:

S0l (i M€)2 ~ Solb., (il M)
~ ig'Sol},. (M)
o~ i;lV ~ 0. (10.5)

This completes the proof. ]
For the next subsection, we also prepare the following: we set DR% := Dz py)© Sol%, which
is an equivalence.
LEMMA 10.9. There exist isomorphisms
A o A . A
DRy ~ Z()%,DX) ©o DR 0 (1) o /Z = Z(Xl',DX) o DR%an 0 ()™ O/i - (10.6)
X X!
Proof. We have
A .— A
DRY = D(xpy) © (% py) © Solgan © ()™ 0 /z
X
- A
~ i3y © Dx © S0l 0 ()™ 0 [
X

- 2()%7DX) © DR%&H o (')an © / ‘ (107)
ix

10.4 Comparisons of the functors
Let X,Y be smooth quasi-projective varieties and f: X — Y be a morphism. Recall that
holonomicity of algebraic D-modules is preserved by the six operations.

ProprosITION 10.10. There exist canonical isomorphisms:

f« o DR ~ DR% o / (10.8)
!

fioDRY ~ DR$ o /ﬂ, (10.9)

f 1o DR% ~ DR% o f*, (10.10)

f'oDRY ~ DRY o fT. (10.11)

Proof. The third and fourth lines follow from the analytic cases. To prove the first and second
lines, let us take a projective compactification ix: X — X andiy:Y — Y andamap f: X — Y
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extending f. We have

A ~ 1 A .

DRYO/ﬂ _1(5—,7Dy)oDRYano()ano/iy!o/!
~ 41 A J)an
—Z(Y,DY)ODRYHDO() O/fo/ix!
~ 1 f, A .)an
_’L(Y7Dy)of!oDRYano() o/iX!

1X
~ fi o DRY. (10.12)

By using Lemma 10.9, one can prove the first formula in the same way. O

10.5 Algebraic irregular perverse sheaves
In the same way as in Definition 9.1, we define (prCO(AX),pDiO(AX)) on DY (Ax).

ProrosiTION 10.11. The following hold.

(i) The pair (pDio(AX),”D?CO(AX)) forms a t-structure on D%, (Ax).
(ii) The heart Perv;.(kx) of the t-structure (PDS°(Ax),? D2 (Ax)) is equivalent to Modyel (Dx )
under the Riemann—-Hilbert correspondence (Theorem 10.8).
(iii) The heart Perv,.(kyx) is stable under the Verdier duality. The t-exactness in Proposition
9.10 also holds in this setting without the properness assumption.

Proof. One can prove this in the same way as in the analytic setting except for nonproper setting
of (iii). Let f be a morphism X — Y and a compactification X — Y. Then we have

Fofir=Fo0fiocixpy=fioixioF~fioF (10.13)
by Lemmas 6.5 and 6.6. This proves the desired statement for fi. The statement for f, is obtained
by taking the Verdier dual. O
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