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Irregular perverse sheaves

Tatsuki Kuwagaki

Abstract

We introduce irregular constructible sheaves, which are C-constructible with coeffi-
cients in a finite version of the Novikov ring Λ and special gradings. We show that
the bounded derived category of cohomologically irregular constructible complexes is
equivalent to the bounded derived category of holonomic D-modules by a modification
of D’Agnolo and Kashiwara’s irregular Riemann–Hilbert correspondence. The bounded
derived category of cohomologically irregular constructible complexes is equipped with
the irregular perverse t-structure, which is a straightforward generalization of usual
perverse t-structure, and we prove that its heart is equivalent to the abelian category
of holonomic D-modules. We also develop the algebraic version of the theory.

1. Introduction

The regular Riemann–Hilbert correspondence (formulated and proved by Kashiwara [Kas84],
and another proof given by Mebkhout [Meb84]) states that the derived category of regular
holonomic D-modules is equivalent to the derived category of C-constructible sheaves. Under
this equivalence, the abelian category of regular holonomic D-modules is mapped to the abelian
category of perverse sheaves introduced by Beilinson, Bernstein, Deligne and Gabber [Kas75,
BBD82, GM80].

After many efforts including understanding of formal and asymptotic structures [Maj84,
Sab00, Moc11, Ked11], Stokes phenomena and Riemann–Hilbert correspondence for mero-
morphic connections [Mal83, Sib90, DMR07, Moc11, Sab13], sophistication of the regular
Riemann–Hilbert correspondence [KS01], and developments of ind-sheaves and the discovery
of its relation to asymptotic behavior [KS01, KS03], in a seminal paper [DK16], D’Agnolo and
Kashiwara formulated and proved the irregular Riemann–Hilbert correspondence for holonomic
D-modules.

Theorem 1.1 (D’Agnolo and Kashiwara [DK16]). For a complex manifold X, there exists a
fully faithful embedding

Db
hol(DX) ↪→ EbR-c(ICX), (1.1)

where the left-hand side is the derived category of cohomologically holonomic D-modules and
the right-hand side is the category of R-constructible C-valued enhanced ind-sheaves. There
also exists an explicit construction of a right quasi-inverse of the above embedding.
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In the sequel [DK19], they also introduced the notion of enhanced perverse t-structure on
the right-hand side of the embedding and proved that the embedding is t-exact in a slightly
generalized sense. Moreover, Mochizuki [Moc16] proved that the image of the equivalence can
be characterized by testing on curves.

In this paper, we modify the right-hand side of the equivalence and make it closer to the
form of the regular Riemann–Hilbert correspondence.

As mentioned in their paper, D’Agnolo and Kashiwara’s clever definition and use of enhanced
sheaves are inspired from the construction of Tamarkin [Tam18]. Tamarkin’s idea of adding one
extra variable originally aimed to realize the Novikov ring action in sheaf theory as in Fukaya
category [FOOO09]. In this paper, we take a way which is closer to this original idea instead
of the use of enhanced sheaves. The replacement for the right-hand side of (1.1) is expressed as
graded modules (sheaves) over the ‘finite Novikov ring’ Λ := k[R�0] where k ⊂ C is a field. An
element of Λ is expressed as a finite sum

∑
a∈R�0

caT
a where T is the indeterminate. A priori,

the hom-spaces Hom(V,W) of Λ-modules are defined over Λ. By taking the tensor product
Hom(V,W)⊗Λ k where Λ→ k is defined by T a �→ 1, we obtain a new category ModI

pre(ΛX).
We will further modify this category to obtain ModI(ΛX). We can consider ModI

pre(ΛX) as an
approximate description of ModI(ΛX).

The category ModI(ΛX) is abelian and has enough injective and flat objects. We define an
abelian subcategory of ModI(ΛX): the category of irregular constructible sheaves Modic(ΛX).
Then we set Db

ic(ΛX) as the full subcategory of the bounded derived category Db(ModI(ΛX))
consisting of cohomologically irregular constructible sheaves. The meaning of irregular con-
structibility is as follows. As usual, there exists a C-Whitney stratification and we have a
sheaf which is locally constant as Λ-module over each stratum, but moreover with particular
gradings coming from Sabbah, Mochizuki and Kedlaya’s Hukuhara–Levelt–Turrittin theorem
[Sab00, Moc11, Ked11]. Then we have the following.

Theorem 1.2.

(i) The category Db
ic(ΛX) has functors Hom,⊗, f−1, f ! for any morphism f and f! for

proper f .
(ii) If k = C, there exists an equivalence

Db
hol(DX) �−→ Db

ic(ΛX). (1.2)

In our formulation, the data of exponential factors of solutions of irregular differential equa-
tions are encoded in the grading of Λ-modules. We would like to apply the following trivial
fact to our setting. For a graded ring R, the grading-forgetful functor from the abelian cate-
gory of graded R-modules to the abelian category of R-modules is exact. Although our category
Modic(ΛX) has a modification of hom-spaces, we still have the following.

Theorem 1.3. There exists an exact functor F from Modic(ΛX) to the abelian category of
C-constructible sheaves Modc(kX) such that, on the level of stalks, this is the composition of
the grading-forgetful map and tensoring k over Λ.

By using F, we can define the support of an irregular constructible sheaf V by suppV :=
supp F(V). By using this definition, we can define the irregular perverse t-structure by the
same formula as in usual perverse sheaves. Let pD�0

ic (ΛX) (respectively pD�0
ic (ΛX)) be the full

subcategory of Db
ic(ΛX) spanned by objects satisfying

dim{suppHj(V)} � −j (respectively dim{suppHj(DV)} � −j) for any j ∈ Z. (1.3)
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Theorem 1.4.

(i) The pair (pD�0
ic (ΛX), pD�0

ic (ΛX)) defines a t-structure of Db
ic(ΛX), which we call irregular

perverse t-structure.
(ii) The heart of irregular perverse t-structure Pervic(CX) over C is equivalent to the abelian

category of holonomic D-modules under the equivalence (1.2).

We also prove the corresponding results in the algebraic setting. Mostly, the statements are
corollaries of analytic cases, although we also have f∗ and f! for any morphism and can prove
stronger commutativity results for the Riemann–Hilbert functor (as in the case of algebraic
regular Riemann–Hilbert correspondence).

In the rest of this section, we would like to shortly discuss a conjectural explanation of
the appearance of the Novikov ring. Recall that Tamarkin’s introduction of additional R was
motivated by Floer theory/Fukaya category. Fukaya category is naturally enriched with the
Novikov ring by estimating disk areas (Gromov’s compactness theorem for holomorphic disks).
We expect this appearance of the Novikov ring and the one in our construction can be identified
as follows.

We denote the derived category of regular holonomic D-modules by Db
reghol(DX). Combining

the regular Riemann–Hilbert correspondence with the Nadler–Zaslow equivalence [NZ09], we
have an embedding Db

reghol(DX) ↪→ Db FukNZ(T ∗X), where the right-hand side is Nadler and
Zaslow’s Fukaya category of conic Lagrangians in T ∗X.

We expect a similar claim for the holonomic case: there exists a Fukaya category
D FukΛic(T

∗X) enriched over Λ of T ∗X with nonconic Lagrangians which has a fully faithful
embedding from the category Db

ic,Λ(ΛX) which is a version of Db
ic(ΛX) enriched over Λ. After

the reduction of coefficient from Λ to k, we will obtain an embedding of Db
ic(ΛX) into a ver-

sion of Fukaya category. On the level of objects, the exponential DX -module associated to a
meromorphic function f will correspond to the Lagrangian Graph(df).

If this expectation is true, one can imagine K-theory classes of objects of D Fukic(T ∗X) :=
D FukΛic(T

∗X)⊗Λ k as an irregular version of characteristic cycle. In the same vein, their supports
can be considered as an irregular version of microsupports, which are no longer conic. Hence one
can also imagine a generalization of microlocal analysis. Note that a version (real blown-up
version) of the equivalence without Λ is already appeared if one fixes a formal type [STWZ15].
Also, another connection between Riemann–Hilbert correspondence and holomorphic Fukaya
category is conjectured by Kontsevich [Kon16], whose relation to our conjecture is also of interest.

The organization of this paper is as follows. In § 2, we define and discuss the preliminary
version of the category of sheaves with coefficients in Λ. In §§ 3 and 4, we define the (derived)
category of sheaves with coefficients in Λ over topological spaces with boundary and consider
various (derived) functorial operations as in usual sheaf theory. In § 5, we define our main objects
irregular constructible sheaves and again see various functorial operations. We also note that
irregular constructible sheaves are actually sheaves. In § 6, we construct the functor F which
relates irregular to usual sheaves. In § 7, we see the relationship between enhanced sheaves and
our Λ-modules, which enables us to establish our version of Riemann–Hilbert correspondence
using D’Agnolo and Kashiwara’s theorem in § 8. We also prove some commutativity results for
Riemann–Hilbert functor in § 8. In § 9, we define irregular perverse sheaves by using F and import
results in the theory of perverse sheaves to irregular perverse sheaves. In § 10, we discuss algebraic
version of the above story.
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2. ΛX-modules

In this section, we introduce the ‘finite Novikov ring’ Λ and its modules. We fix a field k ⊂ C
once and for all.

2.1 The ring Λ
Let us consider the set of nonnegative real numbers R�0 as a semigroup by the addition.
We denote the associated polynomial ring by Λ := Λk := k[R�0]. For a ∈ R�0, let us denote
the corresponding indeterminate by T a. We set Gra Λ := k · T a ⊂ Λ for a � 0, which gives an
R-grading on Λ.

Let Mod0(Λ) be the abelian category of R-graded Λ-modules with degree 0 morphisms. For
an R-graded Λ-module V , let V 〈a〉 be the grading shift of M i.e. Grb V 〈a〉 := Gra+b V . We set

HomModR (Λ)(V,W ) :=
⊕
a∈R

HomMod0(Λ)(V,W 〈a〉) (2.1)

for R-graded Λ-modules. The category ModR(Λ) is consisting of R-graded modules with the
hom-spaces defined by (2.1). We set

Homa
ModR (Λ)

(V,W ) := HomMod0(Λ)(V,W 〈a〉). (2.2)

2.2 ΛX-modules
Let X be a complex manifold. Let ΛX be the constant sheaf valued in Λ.

Definition 2.1. A sheaf of R-graded ΛX -module is a sheaf valued in Mod0(Λ).

Let Ṽ be a sheaf of R-graded ΛX -modules. For an open subset U ⊂ X, we have an
R-graded Λ-module Ṽ(U). For an inclusion U ↪→ V , we have a map Ṽ(V )→ Ṽ(U) which respects
the grading Gra Ṽ(V )→ Gra Ṽ(U). Hence we have a sheaf of k-vector spaces Gra Ṽ and an
isomorphism Ṽ ∼= ⊕

a Gra Ṽ as sheaves valued in k-vector spaces.
We denote the category of R-graded ΛX -modules by Mod0(ΛX).

Proposition 2.2. The category Mod0(ΛX) is abelian.

Proof. This is because Mod0(Λ) is abelian. �
Notation 2.1. Ṽ〈a〉 for a ∈ R is a-shift of Ṽ as in the previous subsection. For f : Ṽ → W̃,
f〈a〉 means the shifted morphism Ṽ〈a〉 → W̃〈a〉.

We set
HomModR (ΛX)(Ṽ, W̃) :=

⊕
a∈R

HomMod0(ΛX)(Ṽ, W̃〈a〉) (2.3)

and
Homa

ModR (ΛX)
(Ṽ, W̃) := HomMod0(ΛX)(Ṽ, W̃〈a〉). (2.4)

Note that HomModR (ΛX)(Ṽ, W̃) is a Λ-module. We see k as a Λ-module by setting f · c := f |T=1c
for f ∈ Λ and c ∈ k. We set

HomModI
pre(ΛX)([Ṽ], [W̃]) := HomModR (ΛX)(Ṽ, W̃)⊗Λ k. (2.5)

Definition 2.3. The category ModI
pre(ΛX) is defined by the following data. The set of objects

is the set of R-graded ΛX -modules. For an R-graded ΛX -module Ṽ, the corresponding object in
ModI

pre(ΛX) is denoted by [Ṽ].
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The hom-space between [Ṽ] and [W̃] is HomModI
pre(ΛX)([Ṽ], [W̃]) defined in the above.

There is a canonical functor [·] : Mod0(ΛX)→ ModI
pre(ΛX) which is the identity on objects

and takes a morphism f to f ⊗ 1.

Remark 2.4. Here we would like to explain some motivations of Definition 2.3. We would like to
consider usual sheaves endowed with a filtration indexed by R. A typical example is a sheaf
kReφ(x)�−a (a ∈ R) where φ is a continuous function on X\D where D is a divisor of X.
A typical φ is a meromorphic function with poles in D only determined up to adding a holo-
morphic function. This leads to considering R-filtrations up to a shift. Making the category of
R-filtered vector spaces abelian is realized by the Rees trick which gives us Λ-modules. Flat
modules are R-filtered vector spaces. Instead of ignoring shifts of gradings, we modify the notion
of morphisms: the multiplication by T a ∈ k[R�0] becomes the identity to identify an object with
its a-shift.

Definition 2.5. For an object V in ModI
pre(ΛX), a lift is a pair of an object Ṽ ∈ Mod0(ΛX) and

an isomorphism [Ṽ]
∼=−→ V. In the following, we usually do not write this isomorphism explicitly

for simplicity.

Proposition 2.6. The category ModI
pre(ΛX) is an abelian category.

To prove this proposition, we prepare some lemmas.

Lemma 2.7. Let V be an R-graded Λ-module. Let s be a homogeneous element of V . If T a · s 
= 0
for any a ∈ R � 0, then s⊗ 1 is nonzero in V ⊗Λ k.

Proof. Note that l · s is nonzero for any l ∈ Λ\{0}. We have an inclusion Λ · s ↪→ V . Since the
left-hand side is a free Λ-module, the tensoring (−)⊗Λ k preserves the inclusion. Hence s⊗ 1 is
nonzero in V ⊗Λ k. �

From Lemma 2.8 to Lemma 2.12, we will use the following notation: V = [Ṽ],W = [W̃].

Lemma 2.8. For f ∈ Homc
ModR (ΛX)

(Ṽ, W̃), if T af 
= 0 for any a ∈ R�0, then f is nonzero as an

element in HomModI
pre(ΛX)(V,W).

Proof. This is a case of Lemma 2.7 by setting V = HomModR (ΛX)(Ṽ, W̃) and s := f . �

Lemma 2.9. For f ∈ HomModI
pre(ΛX)(V,W), there exists b ∈ R such that there exists

f ′ ∈ Homb
ModR (ΛX)

(Ṽ, W̃) (2.6)

which is a lift of f .

Proof. Take a lift f =
⊕

cfc ∈
⊕

c Homc
ModR (ΛX)

(Ṽ, W̃). Since fc is zero except for finite c, we
can take b to be a real number which is greater than or equal to the maximum of c for which fc
is nonzero. Then we set

f ′ :=
⊕
c

T b−cfc ∈ Homb
ModR (ΛX)

(Ṽ, W̃). (2.7)

Since T b−c = 1 on HomModI
pre(ΛX)(V,W), the element f ′ represents f . �

Lemma 2.10. Let fi ∈ Hombi
ModR (ΛX)

(Ṽ, W̃) (i = 1, 2) be lifts of f ∈ HomModI
pre(ΛX)(V,W).

Then there exists bi ∈ R�0 such that T b1f1 = T b2f2.
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Proof. By multiplying some T a values we can assume that b1 = b2. Since f1 − f2 represents 0 in
HomModI

pre(ΛX)(V,W), there exists b ∈ R�0 such that T b(f1 − f2) = 0 by Lemma 2.8. �

Lemma 2.11. For f ∈ HomModI
pre(ΛX)(V,W), let f ′ ∈ Homb

ModR (ΛX)
(Ṽ, W̃) be a lift. We view

f ′ as a degree 0 morphism between Ṽ and W̃〈b〉 in Mod0(ΛX). The objects [ker(f ′)], [im(f ′)],
[coker(f ′)], and [coim(f ′)] in ModI

pre(ΛX) only depend on f .

Proof. By Lemma 2.10, it suffices to prove the objects defined for f ′ and T af ′ are isomorphic.
We have morphisms f ′ : Ṽ → W̃〈b〉 and T af ′ : Ṽ → W̃〈a+ b〉 in Mod0(ΛX). Note that ker f ′ ↪→
kerT af ′. Hence for any P̃ ∈ Mod0(ΛX), we have

c̃ :
⊕
b∈R

Homb
ModR (ΛX)

(P̃, ker f ′) ↪→
⊕
b∈R

Homb
ModR (ΛX)

(P̃, kerT af ′), (2.8)

which induces a comparison morphism

c : HomModI
pre(ΛX)([P̃], [ker f ′])→ HomModI

pre(ΛX)([P̃], [kerT af ′])

It suffices to show that c is an isomorphism.
For any g ∈ Homb

ModR (ΛX)
(P̃, kerT af ′), consider T ag ∈ Homa+b

ModR (ΛX)
(P̃, kerT af ′). Since

f ′〈a+ b〉 ◦ T ag = T af ′〈b〉 ◦ g = 0, T ag factors through ker f ′〈a+ b〉 i.e.

T ag ∈ Homa+b
ModR (ΛX)

(P̃, ker f ′).

Hence T ag is in the image of c̃. Since g and T ag represents the same morphism in ModI
pre(ΛX),

we have the surjectivity of c.
On the other hand, let g ∈ HomModI

pre(ΛX)([P̃], [ker f ′]) be zero in HomModI
pre(ΛX)([P̃],

[kerT af ′]). For a lift g′ of g, we have T bg′ = 0 for some b ∈ R�0 by Lemma 2.8. Hence
g = 0 ∈ HomModI

pre(ΛX)([P ], [ker f ′]). This gives the injectivity of c.
Similar arguments prove the claims for im(f ′), coker(f ′), and coim(f ′). �

Lemma 2.12. The objects defined in Lemma 2.11 actually give kernel, image, cokernel, and
coimage in ModI

pre(ΛX).

Proof. Again, we will only prove for kernel and the others can be proved by similar arguments.
Let P g−→ V f−→W ∈ ModI

pre(ΛX) satisfy f ◦ g = 0. We have lifts

P̃ g̃−→ Ṽ f̃−→ W̃ (2.9)

in Mod0(ΛX). By replacing W̃ with W̃〈c〉 with sufficiently large c and f̃ with T cf̃ , we can take
so that f̃ ◦ g̃ = 0 by Lemma 2.8. Then there exists a morphism P̃ → ker f̃ by the universality of
the kernel. The commutative diagram

ker f̃
ι̃ �� Ṽ

f̃
�� W̃

P̃

g̃

��
∃!h̃����������

(2.10)
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descends to the commutative diagram

[ker f̃ ]
ι �� V

f
�� W

P

g

��
h

����������
(2.11)

in ModI
pre(ΛX), hence we only have to check the uniqueness of the morphism h.

Let h′ : P → [ker f ′] be another morphism in ModI
pre(ΛX) which fits into the following

diagram.

[ker f̃ ]
ι �� V

f
�� W

P

g

��
h′

����������
(2.12)

We can lift h′ to h̃′ : P̃ → ker f̃〈a〉 for some a ∈ R�0. Take b ∈ R�0 so that T bι̃〈a〉 ◦ h̃′ = T a+bg̃
is satisfied. Then we again get a commutative diagram.

ker f̃〈a+ b〉
ι̃〈a+b〉

�� Ṽ〈a+ b〉
f̃〈a+b〉

�� W̃〈a+ b〉

P̃

Ta+bg̃

��
T bh̃′

��������������

(2.13)

On the other hand, we have the following commutative diagram.

ker f̃〈a+ b〉
ι̃〈a+b〉

�� Ṽ〈a+ b〉
f̃〈a+b〉

�� W̃〈a+ b〉

P̃

Ta+bg̃

��
Ta+bh̃

��������������

(2.14)

By the universality of ker f̃〈a+ b〉, we have T a+bh̃ = T bh̃′. Hence h = h′. This completes the
proof. �
Proof of Proposition 2.6. It remains to show that the isomorphism between im and coim. Let
f be a morphism in ModI

pre(ΛX) and f̃ be a lift of f . As shown in Lemma 2.12, imf is given
by [imf̃ ] and coimf is given by [coimf̃ ]. Since Mod0(ΛX) is abelian, there exists a canonical
isomorphism imf̃ ∼= coimf̃ . This also induces an isomorphism between imf and coimf . This
completes the proof. �
Corollary 2.13. The functor [·] : Mod0(ΛX)→ ModI

pre(ΛX) is exact.

Proof. This is obvious from Lemma 2.12. �
It is useful to state a kind of the converse of the above corollary.

Lemma 2.14. Let

0→ V f−→W g−→ X → 0 (2.15)
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be an exact sequence of ModI
pre(ΛX). Then there exists an exact sequence

0→ Ṽ f̃−→ W̃ g̃−→ X̃ → 0 (2.16)

in Mod0(ΛX) which is a lift of the above sequence.

Proof. Take a lift Ṽ ′ f̃
′
−→ W̃ g̃′−→ X̃ ′ such that g̃′ ◦ f̃ ′ = 0. Set Ṽ := ker g̃′ and X̃ := im g̃′. Then we

have an exact sequence

0→ Ṽ f̃−→ W̃ g̃−→ X̃ → 0. (2.17)

Here f̃ and g̃ are canonical morphisms. We have an associated morphism Ṽ ′ → Ṽ. In ModI
pre(ΛX),

this associates a morphism V → [Ṽ] = [ker g̃′] = ker g. By the exactness of the given sequence,
we have V ∼=−→ [Ṽ]. Hence Ṽ is a lift of V. In a similar way, one can see that X̃ is a lift of X . This
completes the proof. �

3. The category ModI(Λ(X̄,D))

In this section, we glue up ModI
pre(ΛX) to obtain a modified category, especially for noncompact

manifolds.

3.1 Topological space with boundary
We say a topological space is good if it is Hausdorff, locally compact, countable at infinity and
has finite flabby dimension. In this paper, a topological space with boundary is a pair (X̄,DX)
of a good topological space X̄ with a closed subset DX of X̄. We say DX is the boundary of
(X̄,DX) and X̄\DX is the interior of (X̄,DX). A morphism between (X̄,DX) and (Ȳ , DY )
is a continuous map f between X̄ and Ȳ preserving the interiors. We denote the interiors by
X := X̄\DX and Y := Ȳ \DY . We also denote the induced map between interiors by f : X → Y
by the abuse of notation.

Example 3.1. (i) Our primary examples of topological spaces with boundaries are of the following
class. For a topological space Z, consider a locally closed subset S. Let S̄ be the closure of S.
Then (S̄, S̄\S) is a topological space with boundary. We have a canonical map (S̄, S̄\S)→ (Z,∅)
induced by the inclusion S̄ ↪→ Z.

(ii) By the definition of morphisms of topological spaces with boundary, we have canonical
maps (X,∅)→ (X̄,DX) and (X̄,DX)→ (X̄,∅) induced by the identity id: X̄ → X̄. On the
other hand, such a canonical map does not exist from (X̄,DX) to (X,∅).

Let (X̄,DX) be a topological space with boundary. The site Open(X̄,DX) is defined by the
following data: the underlying category is the category of open subsets of X̄\DX , a collection of
open subsets {Ui}i∈I in X̄\DX is said to define a cover of U if there exists a subset J of I such
that the subcollection {Ui}i∈J still defines an open covering of U and is locally finite over X̄.

Remark 3.2. Here we explain some motivations of the definition of Open(X̄,DX). The essential
point is the local finiteness at DX . If one does not introduce this finiteness, after the stackifica-
tion below, all objects have trivial grading around DX . Since our grading encodes asymptotic
behaviors of solutions of irregular D-modules, we have to keep nontrivial gradings at DX .

A similar thing occurs even if you consider ind-sheaves. Since ind-sheaves are ind-objects of
compactly supported sheaves, ind-sheaves on X cannot encode the data around DX . To consider
the data around DX , one has to consider compactly supported sheaves on X̄ whose stalks can
be nonzero only in X.
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The following is clear.

Lemma 3.3. The cover defined just before Remark 3.2 gives a Grothendieck topology on
Open(X̄,DX).

Remark 3.4. If X̄ is compact and DX = ∅ then Open(X̄,DX) coincides with the usual site of X̄.

Lemma 3.5. Let f : (X̄,DX)→ (Ȳ , DY ) is a morphism between topological spaces with bound-
ary. Then there exists an induced morphism Open(Ȳ ,DY ) → Open(X̄,DX).

Proof. Let {Ui}i∈I be a cover of U in Open(Ȳ ,DY ). Let J ⊂ I be as in the definition of the
cover. Then {f−1(Ui)} is an open covering of f−1(U) in X̄. Take x ∈ X̄, then there exists a
small neighborhood V of f(y) such that V only intersects with a finite subset of {Uj}j∈J . Then
f−1(V ) also only intersects with a finite subset of {f−1(Uj)}j∈J . Hence {f−1(Ui)}i∈I is a cover
of f−1(U) in Open(X̄,DX). �
Remark 3.6. The reader may consider the notion of topological spaces with boundary is similar
to the notion of bordered spaces in [DK16]. However, the role of these two notions are different:
the former is about the base space and the latter is about the additional variable R.

3.2 The category ModI(Λ(X̄,DX))
Let (X̄,DX) be a topological space with boundary. We set X := X̄\DX . Let U ⊃ V be open
subsets of X. Then we have a restriction functor

ModI
pre(ΛU )→ ModI

pre(ΛV ). (3.1)

Lemma 3.7. This restriction functor is exact.

Proof. A short exact sequence in ModI
pre(ΛU ) can be lifted to a short exact sequence in Mod0(ΛU )

by Corollary 2.13. Then we can restrict it to an exact sequence in Mod0(ΛV ). By Lemma 2.12,
this also gives an exact sequence in ModI

pre(ΛV ). �
These maps form a presheaf of categories over the site Open(X̄,DX). This is not always a stack

(even a prestack) because the tensor product ⊗k on the hom-space breaks the sheaf property.
Take the stackification (respectively prestackification) of this stack with respect to

Open(X̄,DX). We denote it by ModI
(X̄,DX) (respectively ModI

ps(X̄,DX)
).

Definition 3.8. The global section category of ModI
(X̄,DX) is denoted by ModI(Λ(X̄,DX)). For

a manifold X, we set ModI(ΛX) := ModI(Λ(X,∅)).

Proposition 3.9. The category ModI
(X̄,DX)(U) is an abelian category for any U ∈ Open(X̄,DX).

Proof. We will only consider the case of kernels. A similar argument holds for cokernels, images
and coimages.

Let f : V → W be a morphism in ModI
(X̄,DX)(U). Then there exists a covering {Ui} of U such

that we have a descent data fi : Vi →Wi in ModI
ps(X̄,DX)

(Ui). If it is necessary, we can replace
the covering with a finer covering so that each f |Ui is represented by a morphism fi : Vi →
Wi in ModI

pre(Ui). On each intersection Ui ∩ Uj , we have a further covering {Uijk}k such that
(fi − fj)|Uijk

= 0.
Then we have ker(fi) since ModI

pre(ΛUi) is an abelian category. Since the restric-
tion functors are exact (Lemma 3.7), we have ker(fi|Uij )|Uijk

= ker(fi|Uijk
) = ker(fj |Uijk

) =
ker(fj |Uij )|Uijk

in ModI
pre(ΛUijk

). Hence we have ker(fi)|Uij = ker(fi|Uij ) = ker(fj |Uij ) =
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ker(fj)|Uij in ModI
(X̄,DX)(Uij). This further gives a descent data and glues up to an object

K ∈ ModI
(X̄,DX)(U).

For a morphism g : X → V with f ◦ g = 0, by taking a sufficiently fine cover {Ui}, we can
represent f, g,X ,V in ModI

pre(ΛUi). Then one gets a unique factorizing morphism X|Ui → ker fi.
Again by taking a finer covering as in the previous part of the proof and the universality, the
set of these factorizing morphisms gives a descent data and can be glued up into the unique
factorizing X → K. This shows K is ker f . �

Let U be an open subset ofX. Let αU : ModI
pre(ΛU )→ ModI

(X̄,D)(U) be the canonical functor.

Lemma 3.10. The functor αU is an exact functor.

Proof. Since kernels, cokernels, images, and coimages are defined locally, the assertion is
obvious. �
Lemma 3.11. If Ū is compact, the functor αU is fully faithful.

Proof. We set DU := DX ∩ Ū . To show the claim, it is enough to prove HomModI
pre(ΛU )(V,W)

is a sheaf over the site Open(Ū ,DU ). Since Ū is compact, any cover in Open(Ū ,DU ) has a finite
subcover.

We first assume that there exists a finite cover {Ui} of U such that the restriction of f ∈
HomModI

pre(ΛX)(V,W) to each open subset is zero. Let f̃ ∈ HomMod0(ΛX)(Ṽ, W̃) be a lift. Then

the restriction of f to each open subset Ui is represented by f̃ |Ui . Since f |Ui = 0, there exists a T a

such that T af̃ |Ui = 0 by Lemma 2.8. Let A be the maximum of those a values. Then TAf̃ = 0.
Hence f = 0.

Let {fi} ∈
∏

HomModI
pre(ΛUi

)(V|Ui ,W|Ui) satisfy the descent condition. Depending on i, we

have a set of lifts f̃i : Ṽ|Ui → W̃|Ui〈ai〉 in Mod0(ΛUi). In our situation, we can take ai = aj for
any i, j, since the indexes are finite. Then we replace W̃ with W̃〈ai〉 by Lemma 2.12. On Ui ∩ Uj ,
f̃i and f̃j may not coincide, but fi = [f̃i] coincides with fj = [f̃j ]. Hence there exists T aij such
that T aij f̃i = T aij f̃j . By taking the maximum among aij , we replace f̃j with T af̃j then the set
{T af̃i} satisfies the descent condition in Mod0(ΛU ). Hence we get a glued morphism. �
Corollary 3.12. If X is compact, ModI

pre(ΛX) is an abelian subcategory of ModI(ΛX).

Proof. The embedding is given by the proof of Lemma 3.11. �
Let us denote the derived category by D•(ModI(Λ(X̄,DX))) (• = b,±).

3.3 Forgetting shifts
Recall that we have the canonical functor [·] : Mod0(ΛX)→ ModI

pre(ΛX). There also exists a
canonical functor αX ◦ [·] : Mod0(ΛX)→ ModI(Λ(X̄,DX)).

Lemma 3.13. The functor αX ◦ [·] : Mod0(Λ)→ ModI(Λ(X̄,DX)) is an exact functor.

Proof. This is a consequence of Lemma 3.10 and Corollary 2.13. �

For simplicity, we will denote αX ◦ [·] by [·]. We denote the exact functor D•(Mod0(ΛX))→
D•(ModI(Λ(X̄,DX))) induced by [·] by the same notation.

3.4 Finite limits and finite colimits
Since ModI(Λ(X̄,DX)) is an abelian category, it admits finite limits and finite colimits.
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Lemma 3.14. Let F : U→ Mod0(ΛX) be a finite diagram without loops in Mod0(ΛX). We have[
lim←−
U

F
] ∼= lim←−

U

[F ],

[
lim−→
U

F
] ∼= lim−→

U

[F ].
(3.2)

Proof. We will only prove the first equivalence. The second equivalence can be proved in a similar
manner.

It is enough to show that the left-hand side satisfies the universality of the right-hand side.
Let V be an object which is over [F ]. Locally, we have a lift Ṽ → F . By the universality, we get
a morphism Ṽ → lim←−

U

F , which induces a morphism V → [lim←−
U

F ] locally. The uniqueness of this

morphism can be shown by a method similar to the proof of Lemma 2.12. The uniqueness glue
up these local morphisms to obtain the desired result. �
Remark 3.15. Contrary to the finite case, infinite (co)limits do not commute with [·] in gen-
eral. We give one example in the following. Let us set X̄ = [0,∞) and DX = {0}. Consider
V1 :=

⊕
a∈R RΓ[−a,∞) k{t�1/x} and V2 :=

⊕
a∈R RΓ[−a,∞) k{t�1/x2}. As we can see in the discus-

sion of § 5 below, we have HomModI(Λ(X̄,DX ))
([V2], [V1]) = 0. Let ib : (b,∞) ↪→ [0,∞) be the open

embedding for b ∈ R>0.
If [·] and colimits commute, we have [V2] ∼= lim−→

b→0

[ib!i−1
b V2]. Again, from the discussion of § 5,

we can conclude

HomModI(Λ(X̄,DX ))
([V2], [V1]) ∼= lim←−

b→0

HomModI(Λ(X̄,DX ))
(V2|(b.∞),V1|(b,∞)) ∼= k. (3.3)

This is a contradiction.

3.5 Operations
In this section, we will develop the six functors. As above, (X̄,DX), (Ȳ , DY ) are topological
spaces with boundaries. We set X := X̄\DX and Y := Ȳ \DY . In the rest of this section, we use
the following notation.

Notation 3.1.

– V,W,X ∈ ModI(Λ(X̄,DX)).
– Y ∈ ModI(Λ(Ȳ ,DY )).
– ṼU , W̃U , X̃U ∈ Mod0(ΛU ) are lifts of V,W,X over U .
– {Ui}i∈I is a covering in Open(X̄,DX) with lifts {Ṽi}i∈I , {W̃i}i∈I , {X̃i}i∈I . Here Ṽi, W̃i, X̃i are

abbreviations of ṼUi , W̃Ui , X̃Ui respectively.
– {Vj}j∈J is a covering in Open(Ȳ ,DY ) with lifts {Ỹj}j∈J . Here Ỹj are abbreviations of ṼUj

respectively.

The internal hom sheaf is defined by the assignment

Hom(Ṽ, W̃) : U �→
⊕
a

HomMod0(ΛU )(V|U ,W|U 〈a〉) (3.4)

for an open subset U ⊂ X. This is canonically an R-graded ΛX -module.
There exists an open covering {Ui}i∈I of X in the site Open(X̄,DX) with lifts Ṽi, W̃i over each

Ui. Then one has an R-graded ΛUi-module Hom(Ṽi, W̃i) over each Ui.
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Lemma 3.16. The set {[Hom(Ṽi, W̃i)]} satisfies the descent and gives an object of
ModI(Λ(X̄,DX)), which we will denote by Hom(V,W). This is independent of the choice of local
lifts.

Proof. On Uij := Ui ∩ Uj , we have the isomorphism f : [Ṽi|Uij ]→ [Ṽj |Uij ] in ModI
ps(X̄,DX)

(Uij).

Then there exists an open covering {Uijk} of Uij where there exists a descent data fijk : [Ṽi|Uijk
]→

[Ṽj |Uijk
] for the isomorphism f : [Ṽi|Uij ]→ [Ṽj |Uij ].

We can take a lift f̃ijk : Ṽi|Uijk
→ Ṽj |Uijk

〈a〉 of this morphism and that of the inverse
g̃ijk : Ṽj |Uijk

→ Ṽi|Uijk
〈b〉 for some a, b. The difference g̃ijk〈a〉 ◦ f̃ijk − T a+b and f̃ijk〈b〉 ◦ g̃ijk −

T a+b becomes 0 after multiplying T c for sufficiently big c by Lemma 2.8.
For simplicity, let us assume that W has a global lift, i.e. W = [W̃], although we can do the

same for general W. We have the following induced morphisms:

Hom(Ṽi|Uijk
, W̃|Uijk

)
p(g̃ijk)−−−−→ Hom(Ṽj |Uijk

, W̃|Uijk
)〈−b〉,

Hom(Ṽj |Uijk
, W̃|Uijk

),
p(f̃ijk)−−−−→ Hom(Ṽi|Uijk

, W̃|Uijk
)〈−a〉,

(3.5)

where p(f̃ijk) and p(g̃ijk) are precompositions of f and g. Since p(f̃ijk)〈a〉 ◦ p(g̃ijk)− T a+b id
and p(g̃ijk) ◦ p(f̃ijk)〈b〉 − T a+b id vanish by multiplying T c for big c, we can conclude
[Hom(Ṽi|Uijk

, W̃|Uijk
)] ∼= [Hom(Ṽj |Uijk

, W̃|Uijk
)]. A similar argument as was done in Proposition

3.9 gives a gluing of these isomorphisms to give a global object in ModI(ΛX). The independence
of the choice of local lifts is also clear. �

Let us consider the assignment

V �→ ṼU (V )⊗Λ k (3.6)

for V ⊂ U ∈ Open(X̄,DX). Then this assignment does not depend on the choice of the lift ṼU .
Hence one can associate a sheaf over Open(X̄,DX). We write it V ⊗ k.

Lemma 3.17. The sheaf Hom(V,W)⊗ k over Open(X̄,DX) is canonically isomorphic to
HomModI

Λ(X̄,DX )

(V,W).

Proof. This is obvious from the construction. �
For R-graded Λ-modules V and W , their tensor product is defined as follows:

Gra(V ⊗Λ W ) :=
⊕
b+c=a

Grb V ⊗k GrcW/∼, (3.7)

where the equivalence relations are generated by

v ⊗k αw ∼ αv ⊗k w, (3.8)

where α ∈ Λ, v ∈ V,w ∈W are homogeneous and degα+ deg v + degw = a. The tensor product
V ⊗Λ W :=

⊕
a Gra(V ⊗Λ W ) is canonically equipped with a Λ-module structure.

Then the tensor product Ṽ ⊗ W̃ is defined by the sheafification of the assignment

Ṽ ⊗ΛX
W̃ : U �→ Ṽ(U)⊗Λ W̃(U). (3.9)

One has another R-graded ΛUi-module Ṽi ⊗ΛX
W̃i over each Ui.

Lemma 3.18. The set {[Ṽi ⊗ΛX
W̃i]} satisfies the descent and gives an object of ModI(Λ(X̄,DX)),

which we will denote by V ⊗W. This is independent of the choice of local lifts.
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Proof. We can prove in a similar manner as in the proof of Lemma 3.16. �
Proposition 3.19. We have the following:

HomModI(Λ(X̄,DX ))
(V ⊗W,X ) ∼= HomModI(Λ(X̄,DX ))

(V,Hom(W,X )). (3.10)
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Proof. We have a canonical isomorphism

Hom(Ṽi ⊗ W̃i, X̃i) ∼= Hom(Ṽi,Hom(W̃i, X̃i)). (3.11)

By tensoring k and taking sheafification over Open(Ui,Ui∩DX), we have an isomorphism

HomModI
(X̄,DX )

(V ⊗W,X ) ∼= HomModI
(X̄,DX )

(V,Hom(W,X )) (3.12)

as a sheaf over Open(Ui,Ui∩DX). The isomorphisms over the Ui are glued up and give a desired
result. �
Corollary 3.20. In the same setting as above, we have the following:

Hom(V ⊗W,X ) ∼= Hom(V,Hom(W,X )). (3.13)

Proof. From the above proposition, we have

HomModI(Λ(X̄,DX ))
(Y,Hom(V ⊗W,X )) ∼= HomModI(Λ(X̄,DX ))

(Y ⊗ V ⊗W,X )

∼= HomModI(Λ(X̄,DX ))
(Y ⊗ V,Hom(W,X ))

∼= HomModI(Λ(X̄,DX ))
(Y,Hom(V,Hom(W,X ))). (3.14)

Yoneda’s lemma implies the desired statement. �
We will define push-forwards for a class of morphisms.
In the following, we only consider the following class of maps.

Definition 3.21. We say a morphism f : (X̄,DX)→ (Ȳ , DY ) is tame if the underlying map
f : X̄ → Ȳ is proper.

Remark 3.22. For a locally closed subset U ⊂ X, a canonical morphism (U,∅)→ (X,∅) is not
tame in general. However (Ū , Ū\U)→ (X,∅) is tame. In this sense, we will consider the latter
one as a standard inclusion morphism.

Let f be a tame map (X̄,DX)→ (Ȳ , DY ). We first assume that V has Ṽ with [Ṽ] ∼= V. In
this case, we simply set

f∗V := [f∗Ṽ], (3.15)

where push-forward of R-graded ΛX -module Ṽ is defined by Gra f∗Ṽ := f∗Gra Ṽ.

Lemma 3.23. This is well defined.

Proof. Let Ṽ ′ be another lift. Take a covering {Ui} of Open(X̄,DX) such that we have lifts of the
isomorphisms g̃i : Ṽ|Ui → Ṽ ′〈ai〉|Ui and h̃i : Ṽ ′|Ui → Ṽ|Ui〈b〉 over each Ui. Hence g̃i〈b〉 ◦ h̃i − T a+b
and h̃i〈a〉 ◦ g̃i − T a+b vanish by large T c. By pushing forward these equations, we have

0 = f∗(T c(g̃〈b〉 ◦ h̃− T a+b idṼ)) = T c(f∗g̃〈b〉 ◦ f∗h̃− T a+b idf∗Ṽ). (3.16)

Hence we have [f∗ιi∗Ṽ|Ui ] ∼= [f∗ιi∗Ṽ ′|Ui ] where ιi : Ui → X is the inclusion map.
Let U be the Cech nerve of {Ui} and ιU for U ∈ U the inclusion map. Since f is tame, {f(Ui)}

is locally finite in Ȳ i.e. there exists a covering of Y in Open(Ȳ ,DY ) such that there are only finite
Ui in each open subset. Hence we have

lim←−
U∈U

[f∗ιU∗ṼU ] ∼= [
lim←−
U∈U

f∗ιU∗ṼU
] ∼= [f∗Ṽ] (3.17)

by Lemma 3.14. Combining with the first part of the proof, we get an isomorphism [f∗Ṽ] ∼=
[f∗Ṽ ′]. �
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Since f is tame, there exists a covering {Vi} of Y and a finite cover {Uij} of each f−1(Vi)
with lifts Ṽij of V.

Let Ui be the Cech nerve of {Uij}. We set

(f∗V)i := lim←−
U∈Ui

[f∗ιU∗ṼU ]. (3.18)

Lemma 3.24. The collection {(f∗V)i} gives an object of ModI(ΛY ), denoted by f∗V. Moreover,
it does not depend on the choice of coordinates and lifts.

Proof. It can be proved by a similar argument as in Lemma 3.23. �
Over f−1(Vi), we assign a sheaf [f−1Ỹi] and these can glue up together. We will denote the

resulting object by f−1Y.

Lemma 3.25. We have the following natural isomorphism:

f∗Hom(f−1Y,V) � Hom(Y, f∗V). (3.19)

Proof. It is enough to prove the statement over each Vi. There exists a finite covering {Uj} of
f−1(Vi) with lifts {W̃j}. Then Hom(f−1V,W) is represented by {Hom(f−1Ṽi|Uj , W̃j)}.

Let U be the Cech nerve of {Uj}. By the definition of the push forward, we have

f∗Hom(f−1Y,V)|Vi � lim←−
U∈V

([f∗iU∗Hom((f−1Ỹi)|U , Ṽ|U )]). (3.20)

Here Ṽ|U means Ṽi|U for some U ⊂ Ui. We also have

f∗iU∗Hom((f−1Ỹi)|U , Ṽ|U ) � f∗Hom(f−1Ỹi, iU∗Ṽ|U )

� Hom(Ỹi, f∗ιU∗Ṽ|U ) (3.21)

for U ∈ U. Hence

lim←−
U

([f∗iU∗Hom((f−1Ỹi)|U , Ṽ|U )]) � lim←−
U

Hom([Ỹi], [f∗ιU∗Ṽ|U ])

� Hom([Ỹi], lim←−
U

[f∗ιU∗W̃|U ])

� Hom([Ỹi], [f∗(Ṽ|f−1(Vi))])

� Hom(Y, f∗V)|Vi . (3.22)

This completes the proof. �
Lemma 3.26. We have

HomModI(Λ(Ȳ ,DY ))
(f−1V,W) ∼= HomModI(Λ(X̄,DX ))

(V, f∗W). (3.23)

Proof. Taking ⊗k and the global sections (as in the paragraph above Lemma 3.17) of both sides
of Lemma 3.25, the right-hand side becomes HomModI(Λ(X̄,DX ))

(V, f∗W) and the left-hand side
becomes

(f∗Hom(f−1V,W)⊗ k)(Y ) ∼= f∗(Hom(f−1V,W)⊗ k)(Y )

∼= HomModI
(X̄,DX )

(f−1V,W). (3.24)

This completes the proof. �
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We first assume that V has Ṽ with [Ṽ] ∼= V. In this case, we simply set

f!V := [f!Ṽ]. (3.25)

Lemma 3.27. This is well defined.

Proof. This can be proved in the same way as the proof of Lemma 3.23. �
Again by the same construction as in the case of push-forwards, we can define f!V in general

under the assumption of tameness.

Assumption 3.28. In the following, when we consider f∗ or f!, we always assume the tameness
of f .

4. Derived category of ModI(Λ(X̄,DX))

4.1 Injectives and flats
In this section, we develop fundamentals about derived operations for ModI(Λ(X̄,DX)). In this
section, we will use Notation 3.1.

Lemma 4.1. Let F be an R-graded Λ-module. For x ∈ X, the skyscraper sheaf [Fx] is an
injective object. Moreover, the product [

∏
x∈V Fx] for a subset V ⊂ X is also an injective object.

Proof. The first part is almost trivial. Let us prove the second part.
Let 0→ V f−→W be an injection in the category ModI(Λ(X̄,DX)) with a map V g−→ [

∏
x∈X Fx].

Let us take a locally finite covering {Ui} of X with lifts 0→ Ṽi f̃i−→ W̃i and Ṽi g̃i−→∏
x∈Ui
Fx〈ai〉.

We also get a lift W̃i
h̃i−→∏

x∈U Fx〈ai〉.
For each x ∈ V , we choose ix from finite candidates of i values satisfying x ∈ Ui. We set W̃x :=

(W̃ix)x. Over each Ui, the morphism h̃i gives an element of (
⊕

a∈R
∏
x∈Ui

Homa(W̃x,Fx))⊗Λ k ∼=
Hom(W |Ui , [

∏
x∈V Fx]) which is zero on ix 
= i. Then they are trivially glued up to give a desired

lift of g. �
Proposition 4.2. The category ModI(Λ(X̄,DX)) has enough injectives.

Proof. As usual, one can embed Ṽi to an injective object Ĩi which is a product of skyscraper
sheaves.

Hence we have the inclusion [Ṽi] ↪→ [Ĩi]. This induces the inclusion V ↪→⊕
[ιi∗Ĩi], where the

latter is a locally finite direct sum hence it exits. By Lemma 4.1,
⊕

[ιi∗Ĩi] is also an injective
object. This completes the proof. �

The above proof also shows the following.

Corollary 4.3. There exists an injective resolution Ĩ• := Ĩ0 → Ĩ1 → · · · of Ṽ giving an
injective resolution [Ĩ•] of [Ṽ].

Proof. This follows from the fact that [·] is an exact functor (Lemma 3.13) and Lemma 4.1. �
Lemma 4.4. Let F̃ be a flat R-graded Λ-module. Then [F̃ ] is a flat object.

Proof. Let V → W ∈ ModI(Λ(X̄,DX)) be an injection. Let us take an open covering {Ui} of X
with lifts {Ṽi}, {W̃i} and f̃i : Ṽi → W̃i. Here one can take f̃i as an injection by Lemma 2.14. Then
V ⊗ [F̃ ] (respectively W ⊗ [F̃ ]) is represented by Ṽi ⊗ F̃|Ui → W̃i ⊗ F̃|Ui , which is an injection.
Then by Lemma 2.12, the morphism f ⊗ [F̃ ] is also an injection. This completes the proof. �
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Proposition 4.5. The category ModI(Λ(X̄,DX)) has enough flats.

Proof. By the same construction as in [KS90, Proposition 2.4.12], there exists a flat object F̃i
with a surjection F̃i → Ṽi. Let ιi : Ui ↪→ X be the open imbedding. Hence [ιi!F̃i] is also a flat
object by Lemma 4.4 and we have a surjection

⊕
i[ιi!F̃i]→ V. This completes the proof. �

By a similar argument as in Corollary 4.3, we get the following.

Corollary 4.6. For Ṽ ∈ Mod0(ΛX), a flat resolution F̃• := F̃0 ← F̃−1 ← · · · of Ṽ gives a flat
resolution [F̃•] of [Ṽ].

4.2 Derived functors
Note that right and left exactness of various functors f∗, f!, f

−1,Hom,⊗ are the same as in the
case of k-modules, according to Lemma 2.8.

We will use the following ‘derived’ notation of Notation 3.1.

Notation 4.1.

– V,W,X ∈ Db(ModI(Λ(X̄,DX))), Y,Y1,Y2 ∈ Db(ModI(Λ(Ȳ ,DY ))).
– Ṽ, W̃, X̃ ∈ Db(Mod0(ΛX)), Ỹ ∈ Db(Mod0(ΛY )).

Lemma 4.7. We have

[Rf∗Ṽ] � Rf∗[Ṽ], [Rf!Ṽ] � Rf![Ṽ] and [RHom(W̃, Ṽ)] � RHom([W̃], [Ṽ]).

Proof. Since [·] is an exact functor, it suffices to show the statements for an object Mod0(ΛX)
by a standard argument in homological algebra. Then Ṽ has an injective resolution Ĩ• such that
[Ĩ•] is an injective resolution of [Ṽ] by Corollary 4.3. For F ∈ {f∗, f!,Hom([W̃],−)}, we have

[RF (Ṽ)] � [F (Ĩ•)] � F [Ĩ•] � RF ([Ṽ]). (4.1)

This completes the proof. �
Lemma 4.8. We have [f−1Ỹ] � f−1[Ỹ].

Proof. It follows from the definition of f−1 and its exactness on Mod0(ΛY ). �
Lemma 4.9. We have [Ṽ ⊗L W̃] � [Ṽ]⊗L [W̃].

Proof. One can prove by the same argument as in Lemma 4.7 by using Corollary 4.6. �
Lemma 4.10. There exists the following isomorphism

RHom(V ⊗LW,X ) � RHom(V,RHom(W,X )). (4.2)

Proof. This can be proved by a standard argument. Let us take a flat resolution F of W and
an injective resolution I of X . Then RHom(F , I) � Hom(F , I) is again an injective object.
Actually, we have

Hom(−,Hom(F , I))) ∼= Hom((−)⊗F , I) (4.3)

by Proposition 3.19. Then both sides of the equality in the statement is quasi-isomorphic to
Hom(V ⊗ F , I). This completes the proof. �
Lemma 4.11. There exists the following isomorphism

Rf∗RHom(f−1Y,V) � RHom(Y,Rf∗V). (4.4)

Proof. By Lemma 3.26 and the exactness of f−1 imply that push-forward of an injective is again
injective. Also, pull-back of a flat object is again flat. Let F be a flat resolution of Y and I be
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an injective resolution of V. By replacing with these resolutions, we can work with underived
functors, then Lemma 3.25 completes the proof. �

To construct exceptional inverse image, we follow the argument in [KS90, 3.1].
Assume that f! : Mod(ZX)→ Mod(ZY ) has finite cohomological dimension. Let Z̃ be an

object of Mod0(ΛY ) and K be a flat f -soft ZX -module. We define a presheaf by

(Gra(f !
KZ̃))(U) := Γ(U,Homa

ΛX
(f!(ΛX ⊗ZX

KU ), Z̃)). (4.5)

This is actually a sheaf by [KS90, Lemma 3.1.3]. We set f !
K Ṽ :=

⊕
a∈R Gra(f !

K Ṽ) which is an
object of Mod0(ΛX). Let us moreover suppose Z̃ be an injective object.

Lemma 4.12. Under the above assumption, we have the following.

(i) The object f !
KZ̃ is an injective object of Mod0(ΛX).

(ii) For any Ã ∈ Mod0(ΛX). we have a canonical isomorphism

HomMod0(ΛY )(f!(Ã ⊗Z K), Z̃) �−→ HomMod0(ΛX)(Ã, f !
KZ̃). (4.6)

Proof. This is done by the same argument as in the proof of [KS90, Lemma 3.1.3]. �
In the following, we will use K for the following complex.

Lemma 4.13 [KS90, Proposition 3.1.4]. The sheaf ZX admits a finite flat f -soft resolution K.

Let K+(Mod0(ΛX)) be the homotopy category of injective complexes bounded below of
objects in Mod0(ΛX). Then we have an equivalence D+(Mod0(ΛX)) ∼= K+(Mod0(ΛX)). We set
the composition

f ! : Db(Mod0(ΛX)) ↪→ K+(Mod0(ΛX))
f !

K−−→ K+(Mod0(ΛY ))
∼=−→ D+(Mod0(ΛY )). (4.7)

Lemma 4.14. The functor f ! is the right adjoint of Rf!. We moreover have

RHom(Rf!Ṽ, W̃) ∼= Rf∗RHom(Ṽ, f !W̃). (4.8)

Proof. For W̃ ∈ K+(Mod0(ΛX)) ∼= D+(Mod0(ΛX)), we have

HomK+(Mod0(ΛX))(f!(W̃ ⊗ZY
K), Ṽ) ∼= HomK+(Mod0(ΛX))(W̃, f !Ṽ) (4.9)

by the above lemma. Since f!W̃ ⊗K � Rf!W̃, we complete the proof of the first assertion.
The second assertion can also be proved by the argument of the proof of [KS90, Proposition
3.1.10]. �

Let us now discuss the exceptional inverse image in Db(ModI(Λ(X̄,DX))). Let Z be an object
of ModI(Λ(Ȳ ,DY )) and K be a ZX -module.

Take a locally finite covering {Vi} of Y with lifts {Z̃i}. Hence we get f !
KZ̃i.

Lemma 4.15. The data {[f !
KZ̃i]} gives an object of ModI(Λ(X̄,DX)). We denote the resulting

object by f !
KZ.

Proof. Over Vij := Vi ∩ Vj , we have fij : [Z̃i]|Vij

∼=−→ [Z̃j ]|Vij . We can lift this map to f̃ij : Z̃i|Vij →
Z̃j〈aij〉|Vij (by taking a refined covering if necessary). We also have a lift of the inverse
map f̃ji. Then f̃ij ◦ f̃ji − T aij+aji id vanishes by multiplying some T a. The map f̃ij induces a
map f !

K f̃ij : f
!
KZ̃i|Vij → f !

KZ̃j |Vij . Then we also have f !
K f̃ji. Then f !

K f̃ij ◦ f !
K f̃ji − T aij+aji id =

f !
K(f̃ij f̃ji − T aij+aji id) also vanishes by multiplying T a. This completes the proof. �
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Since Db(ModI(ΛY )) has injective resolutions, we have an equivalence K+(ΛY ) ∼=
D+(ModI(ΛY )) where the left-hand side is the homotopy category of complexes bounded below

of injective objects. We denote the composition Db(ModI(ΛY )) ↪→ K+(ΛY )
f !

K−−→ D+(ModI(ΛX))
by the notation f !.

Proposition 4.16. The functor f ! is an exact functor.

Proof. The exactness easily follows from the exactness of f ! on Db(Mod0(ΛY )). �
Proposition 4.17. We have f ![Ṽ] ∼= [f !Ṽ].

Proof. Replace Ṽ be an injective complex given in Lemma 4.1. Then [Ṽ] is also an injective
complex. By the definition of f ! for Mod0(ΛX) and ModI(Λ(X̄,DX)), we have [f !Ṽ] ∼= [f !

K Ṽ] ∼=
f !
K [Ṽ] ∼= f ![Ṽ]. This completes the proof. �

Proposition 4.18. There exists a functorial isomorphism:

HomDb(ModI(Λ(Ȳ ,DY )))
(Rf!V,Y) ∼= HomDb(ModI(Λ(X̄,DX )))

(V, f !Y). (4.10)

Proof. First, note that Rf!V � f!(V ⊗K) which is deduced from the local consideration. Let I
be an injective resolution of Y and C(ModI(Λ(X̄,DX))) be the category of bounded complexes of
ModI(Λ(X̄,DX)). Then the left-hand side of the desired equality is

HomC(ModI(Λ(Ȳ ,DY ))
(f!(V ⊗K), I) ∼= HomDb(ModI(Λ(X̄,DX )))

(V, f !I). (4.11)

We also have a morphism

HomDb(ModI(Λ(X̄,DX )))
(V, f !Y)→ HomDb(ModI(Λ(X̄,DX )))

(V, f !I) (4.12)

coming from the morphism Y → I. We would like to prove this is an isomorphism. Let us work
locally on Y . From the construction in Proposition 4.2, the complex I is coming from an injective
object Ĩ locally. Hence we have an isomorphism

Hom([Ṽ], f ![Ĩ]) ∼= [Hom(Ṽ, f !Ĩ)] ∼= [RHom(Ṽ, f !Ĩ)] ∼= RHom(V, f !Y). (4.13)

Here we used the fact that [·] is exact and f !Ĩ is injective. Then Lemma 4.21 completes the
proof. �
Proposition 4.19. There exists a functorial isomorphism:

RHom(Rf!V,Y) � Rf∗RHom(V, f !Y). (4.14)

Proof. As usual sheaves, we have a canonical morphism Rf∗RHom(V, f !Y)→ RHom(Rf!V,
Rf!f

!Y). By the adjunction (Proposition 4.18), we have a morphism RHom(Rf!V,Rf!f
!Y)→

RHom(Rf!V,Y). We would like to see the composition is an isomorphism. By a local
consideration, this can be deduced from the usual case. �
Lemma 4.20. Let δ : X → X ×X be the diagonal embedding. We have

δ−1(V �LW) � V ⊗LW.

Proof. We can apply the same formula for usual sheaves to local representatives. Then we get
the desired formula. �

As in Lemma 3.17, we can relate RHom and usual Hom as follows. From RHom(V,W) ∈
ModI(Λ(X̄,DX)), we can construct a complex of sheaves RHom(V,W)⊗ k as in the paragraph
before Lemma 3.17.
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Lemma 4.21. The space of global sections of RHom(V,W)⊗ k is canonically isomorphic to
HomDb(ModI(Λ(X̄,DX )))

(V,W).

Proof. Let I be an injective resolution of W and F be a flat resolution of V. Then we have

HomDb(ModI(Λ(X̄,DX )))
(V,W) ∼= HomC(ModI(Λ(X̄,DX )))

(V, I)
∼= H0(HomModI

Λ(X̄,DX )

(V, I)(X))

∼= H0(Hom(F , I)⊗ k(X)). (4.15)

Actually ⊗k is exact, as we will see in the proof of Lemma 6.1. This completes the proof. �
Lemma 4.22. For a tame morphism f : (X̄,DX)→ (Ȳ , DY ), the following hold:

(i) HomDb(ModI(Λ(X̄,DX )))
(V ⊗LW,X ) ∼= HomDb(ModI(Λ(X̄,DX )))

(V,RHom(W,X ));

(ii) HomDb(ModI(Λ(X̄,DX )))
(f−1Y,W) ∼= HomDb(ModI(Λ(Ȳ ,DY )))

(V ′,Rf∗V);

(iii) HomDb(ModI(Λ(Ȳ ,DY )))
(f!V,Y) ∼= HomDb(ModI(Λ(X̄,DX )))

(V, f !Y).

Proof. This follows from Lemmas 4.21, 4.10, 4.11, Proposition 4.19. �
Lemma 4.23. We have the following:

Rf!(V ⊗L f−1Y) � Rf!V ⊗L Y, (4.16)

f !RHom(Y1,Y2) � RHom(f−1Y1, f
!Y2), (4.17)

f−1(Y1 ⊗L Y2) � f−1Y1 ⊗L f−1Y2. (4.18)

Proof. The assertions follow easily from Yoneda’s Lemma. �
We would like to state a useful lemma. Let U be an open subset of X and Ū be the closure

inside X̄. Consider the map i : (Ū ,DU := Ū\U)→ (X̄,DX). We denote the closed complement
of U in X̄ by V . We denote the map j : (V, V ∩DX)→ (X̄,DX).

Lemma 4.24. There exists an exact triangle in Db(ModI(Λ(X̄,DX))):

i!i
−1V → V → j∗j∗V [1]−→ . (4.19)

Proof. Note that i and j are tame maps. Again, the statement follows from the corresponding
statement for usual sheaves and the commutativity results for [·] proved early in this subsection.

�

5. Irregular constructibility

In this section, we introduce the notion of C-constructibility for objects in ModI(Λ(X̄,DX)).
It is defined in the same way for stratifications as in the case of usual constructible sheaves
but with a strong assumption on gradings coming from Sabbah, Mochizuki and Kedlaya’s
Hukuhara–Levelt–Turrittin theorem. In this section, we consider (X̄,DX) = (X,∅) where X
is a complex manifold. We denote ModI(Λ(X̄,DX)) by ModI(ΛX).

5.1 Formal structure
In this subsection, we recall as a motivation the theory of formal structures of meromorphic
connections initiated by Sabbah [Sab00] and developed by Mochizuki (algebraic case) [Moc11]
and Kedlaya (analytic case) [Ked11].
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Let Z be a divisor in a complex manifoldX and Ôx be the formal completion of OX at x ∈ X.
LetM be a meromorphic connection over X with poles along Z. We set M̂x =Mx ⊗Ox Ôx and
Ô(∗Z)x := O(∗Z)x ⊗Ox Ôx.
Definition 5.1.

(i) For φ ∈ Ô(∗Z)x, we set Ê(φ) to be Ô(∗Z)x as a Ôx-module with a connection ∇ over Ôx
such that

∇s := ∂(φ) · s (5.1)

for the generator s.
(ii) We assume that Z is a normal crossing divisor and take a local coordinate {xi}ni=1 such that

Z is defined by
∏m
i=1 xi = 0. An Ô(∗Z)-module R̂ with a connection ∇ is regular if there

exists an Ôx-submodule L such that L ⊗Ôx
Ô(∗Z)x ∼= R̂ and ∇(L) ⊂⊕m

i=1x
−1
i L.

Definition 5.2. We continue the notation in Definition 5.1(ii).

(i) A good decomposition of M̂x is an isomorphism

M̂x
∼=

⊕
α∈I
Ê(φα)⊗Ô(∗Z)x

R̂α, (5.2)

where φα ∈ Ô(∗Z)x and each R̂α is regular with the following conditions.
(a) Each φα has the form u

∏m
j=1 x

−ij
i for some unit u ∈ Ôx and nonnegative integers

i1, . . . , im.
(b) For α, β ∈ I, if φa − φβ 
∈ Ôx, then φα − φβ has the form u

∏m
j=1 x

−ij
i for some unit

u ∈ Ôx and nonnegative integers i1, . . . , im.
(ii) We say M admits a good decomposition at x ∈ Z if M̂x admits a good decomposition.

In general, meromorphic connections do not have good decompositions as explained in
[Sab00]. Sabbah’s conjecture says that they do after modifications, which is proved by Mochizuki
and Kedlaya.

Theorem 5.3 [Ked11, Theorem 8.2.2]. For a point x ∈ Z, there exists an open neighborhood
U of z and a map f : Y → U which is a proper modification, and at each point of f−1(z), there
exists a local covering π ramified at f−1(Z) such that π∗f∗E admits a good decomposition at
each point of y ∈ π−1f−1(Z).

As explained in [Sab11], using Mochizuki’s result, we have additional results. For M̂x which
admits a good decomposition, let Φx be the subset of Ô(∗Z)x/Ôx consisting of the classes of φα
values.

Theorem 5.4 [Sab11, Theorem 2.2.1]. The subset Φx is actually a subset of O(∗Z)z/Ox. More-
over, there exists a neighborhood U of x such that for any x′ ∈ U , M̂x′ has a good decomposition
and Φx′ is given by the restriction of representatives of Φx.

Let 
 : X̃(Z)→ X be the real blow-up of X along Z (with real analytic structure spec-
ified in [DK16]). Let C∞,temp

X̃
(Z) be the subsheaf of the sheaf of C∞-functions consisting of

functions which are tempered at the exceptional divisor. Let further AX̃(Z) be the subsheaf

of C∞,temp

X̃
(Z) consisting of functions whose restrictions on X\Z are holomorphic. We set

DA
X̃(Z)

:= AX̃(Z) ⊗�−1OX
DX . For a D-module N on X, we set 
∗N := DA

X̃(Z)
⊗�−1DX


−1N .
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Suppose that M has a good decomposition
⊕

α∈I Ê(φα)⊗ R̂α at x. For each φα, by taking
a lift locally around x, we set E(φα) to be a meromorphic connection (O(∗Z),∇) defined by
∇s := ∂(φ)s for the generator s. We also set Rα to be a regular meromorphic connection defined
locally around x corresponding to R̂α.

The following theorem is proved in [Moc11] and explained in [Sab13].

Theorem 5.5 [Sab13, Theorem 12.5], [Moc11, § 3]. There exists an open covering {Ui} of a
neighborhood of 
−1(x) such that each restriction (
∗M)|Ui is isomorphic to (
∗(

⊕
α∈IE(φα)⊗

Rα))|Ui .

5.2 Irregular constant sheaf Λφ

In this subsection, we prepare some preliminary lemmas concerning a class of modules.
Let (S̄,DS) be a topological space with boundary. Let φ be a C-valued continuous function

over S := S̄\DS . We set

Gra ΛφS := p∗ΓS×[−a,∞)kt�Reφ,

ΛφS :=
⊕
a∈R

p∗ΓS×[−a,∞)kt�Reφ,
(5.3)

where kt�Reφ is the constant sheaf supported on the set {(s, t) ∈ S ×R | t � Reφ(s)} and p : S ×
R→ S is the projection.

Lemma 5.6. The sheaf ΛφS defines an object of ModR(ΛS). In particular, an object of Λφ
(S̄,DS)

:=

[ΛφS ] ∈ ModI(Λ(S̄,DS)).

Proof. Since the sheaf is globally presented as a direct sum, the restriction morphism preserves
grading. The Λ-action is given as follows. For b ∈ R�0, we have a canonical morphism

ΓS×[−a,∞)kt�Reφ → ΓS×[−a−b,∞)kt�Reφ. (5.4)

This action gives the action of T b. �
We would like to understand the structure of ΛφS .

Lemma 5.7. Let U be a connected open subset of S such that φ|U is bounded. Set b := infU Reφ.

Then ΛφS(U) ∼= Λ · T b.
Proof. Note that Gra ΛφS(U) ∼= ΓU×[−a,∞)(U ×R,kt�Reφ). This is the kernel of the restriction
morphism Γ(U ×R,kt�Reφ)→ Γ(U × (−∞,−a),kt�Reφ). Since U is connected, the set defined
by t � Reφ is also connected. Hence we have Γ(U ×R,kt�Reφ) ∼= k. On the other hand, Γ(U ×
(−∞,−a),kt�Reφ) ∼= 0 if and only if U × (−∞,−a) ∩ {t � Reφ} = ∅. This is equivalent to−a <
infU Reφ. This completes the proof. �

For given x ∈ S, let us set

Λφ(x) :=

⎧⎪⎪⎨
⎪⎪⎩

⊕
−a�Reφ(x)

k if x is a local minimum,

⊕
−a<Reφ(x)

k otherwise.
(5.5)

These are R-graded Λ-modules with obvious gradings. Note that these are torsion-free Λ-modules
and the ring Λ has a valuation. Hence these modules are flat.

From this lemma, the following is clear.
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Corollary 5.8. For x ∈ S, the stalk (ΛφS)x ∼= Λφ(x).

Corollary 5.9. We have Grd ΛφS ∼= k
Int{x|−d<Reφ(x)}.

Proof. Let x be a point with Reφ(x) = −d. The point x is a local minimum if and only if x is
in the interior of the closure of {−x | − d < Reφ(x)}. This completes the proof. �

Also, the module Λφ
(S̄,DS)

plays the role similar to the constant sheaves in the usual theory

of sheaves. The following lemma explains this similarity.

Lemma 5.10. The module Λφ
(S̄,DS)

is a flat object in ModI(Λ(S̄,DS)).

Proof. Let V → W be an injective morphism in ModI(Λ(S̄,DS)). We would like to show the

induced morphism V ⊗ Λφ
(S̄,DS)

→W ⊗ Λφ
(S̄,DS)

is again injective. There exists a covering {Ui}
of S which is locally finite in S̄ such that there exist lifts Vi,Wi of V and W over each Ui. It is
enough to prove the injectivity over each Ui.

By Lemma 2.14, one can assume the restriction Vi →Wi is still injective. Since the tensor
product commutes with taking stalks, it reduces to show that Vx ⊗ (ΛφS)x →Wx ⊗ (ΛφS)x is
injective. Since (ΛφS)x ∼= Λφ(x) (Corollary 5.8) is a torsion-free Λ-module, this completes the
proof. �
Lemma 5.11. Let φ1 and φ2 be C-valued continuous functions over connected S such that
Reφ1 −Reφ2 is bounded from above. Then there exists a canonical identification

HomModI(Λ(S̄,DS))
(Λφ1

(S̄,DS)
,Λφ2

(S̄,DS)
) ∼= k. (5.6)

If moreover Reφ1 −Reφ2 is bounded, the two objects are isomorphic.

Proof. Since max{0,Reφ1 −Reφ2} is bounded, there exists a large c ∈ R such that Reφ2 + c �
Reφ1. The nonzero map kReφ1�t → kReφ2+c�t coming from the inclusion {Reφ2 + c � t} ⊂
{Reφ1 � t} induces a morphism Λφ1

S → Λφ2

S 〈c〉 of R-graded ΛS-modules. If max{0,Reφ2 −
Reφ1} is also bounded, in the same way, we also have a morphism Λφ2

S → Λφ1

S 〈d〉 for some
d � 0. The composition Λφ1

S → Λφ1

S 〈c+ d〉 is given by T c+d. This is the identity of Λφ
(S̄,DS)

in

ModI(ΛX). The same for the other direction. This completes the proof of the second part of the
statement. We call morphism Λφ1

S → Λφ2

S of this kind as well as their scalar multiples standard
morphisms. In the below, we will see there are only standard morphisms.

Let f be a nonzero morphism in HomModI(Λ(S̄,DS))
(Λφ1

(S̄,DS)
,Λφ2

(S̄,DS)
). Let us take a lift

f̃ : Λφ1

S → Λφ2+c
S as a morphism of R-graded Λ-modules locally on U ⊂ S. We can take c such

that c+ Reφ2 > Reφ1 and replace φ2 with φ2 + c We consider d ∈ R such that the grading
d-part of f̃ is nonzero. To see this part more explicitly, let us prepare some notation.

Let us set Int{x ∈ U | − d < Reφi(x)} = �aSad,i to be the decomposition into connected

components. Since Grd ΛφU = k
Int{x|−d<Reφ(x)}, we have Grd Λφi

U =
⊕

akSa
d,i

. We have

f̃d :
⊕
a

kSa
d,1
→

⊕
a

kSa
d,2
. (5.7)
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There exists d′ ∈ R�0 such that there exists a connected component Si of Int{x | − d′ < Reφi(x)}
for each i such that Si ⊃ Int{x | − d < Reφi(x)}. Then we have a commutative diagram.

kS1

f̃d′ �� kS2

⊕
a kSa

d,1

T d′−d

��

f̃d

��
⊕

a kSa
d,2

T d′−d

��

(5.8)

Since S1 and S2 are connected, the hom-space between them is one-dimensional. Hence f̃d is
induced by a standard morphism. This completes the proof. �

We prepare the following crucial lemma. The corresponding observation in the theory of
enhanced ind-sheaves is a key to the formulation of irregular Riemann–Hilbert correspondence
[DK16].

Lemma 5.12. Let (S̄,DS) be a topological space with boundary with S connected. Let φ1, φ2

be C-valued continuous functions on S. Assume that there exists an open subset V of S such
that V̄ ∩DS is nonempty and Reφ2 −Reφ1 is divergent to −∞ on V̄ ∩DS . Then there exists
no nonzero morphisms from Λφ1

(S̄,DS)
to Λφ2

(S̄,DS)
.

Proof. For f ∈ HomModI(Λ(S̄,DS))
(Λφ1

(S̄,DS)
,Λφ2

(S̄,DS)
), let us take a lift f̃ : Λφ1

(S̄,DS)
→ Λφ2+c

(S̄,DS)
as a

morphism between R-graded ΛS-modules. Since Reφ2 −Reφ1 is negatively divergent, there
exists a neighborhood U of DS such that Reφ2 + c−Reφ1 is negative on U\DS . Hence over
U\DS , the restriction of f̃ is zero there. By Lemma 5.11 and the connectedness of S, f is zero
everywhere. �

We also give the following.

Lemma 5.13. For Λφi

(S̄,DS)
∈ ModI(Λ(S̄,DS)) (i = 1, 2), we have Λφ1

(S̄,DS)
⊗ Λφ2

(S̄,DS)
∼= Λφ1+φ2

(S̄,DS)
. In

particular, Λφ
(S̄,DS)

⊗ Λ−φ
(S̄,DS)

∼= Λ(S̄,DS).

Proof. We have Gra Λφi

S = k{x|Reφ(x)>−a} for i = 1, 2. Hence we have a map Gra Λφ1+φ2

S →
Grb Λφ1

S ⊗k Grc Λφ2

S for a = b+ c. Hence we get a map m : Λφ1+φ2

S → Λφ1

S ⊗ Λφ2

S . By
Corollary 5.8, the stalks of both sides at x ∈ X are

⊕
−a�Reφ1(x)+Reφ2(x)Λ

φ1(x)+φ2(x)
S or⊕

−a<Reφ1(x)+Reφ2(x)Λ
φ1(x)+φ2(x)
S . Hence the kernel and cokernel of m vanishes by multiplying

T a for any a ∈ R>0. Therefore the kernel and cokernel are zero in ModI(Λ(S̄,DS)). This completes
the proof. �

Similarly, we have

Lemma 5.14. For Λφi

(S̄,DS)
∈ ModI(Λ(S̄,DS)) (i = 1, 2), we have

Hom(Λφ1

(S̄,DS)
,Λφ2

(S̄,DS)
) ∼= Λφ2−φ1

(S̄,DS)
.

Proof. One can prove in a similar way as in the proof of Lemma 5.13. �
The following will be repeatedly used later.

Corollary 5.15. We have RHom(Λφ1

(S̄,DS)
,Λφ2

(S̄,DS)
) � Λφ2−φ1

(S̄,DS)
.
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Proof. Let I be an injective resolution of Λφ2

(S̄,DS)
. We have the following:

HomDb(ModI(Λ(S̄,DS)))
(V,RHom(Λφ1

(S̄,DS)
,Λφ2

(S̄,DS)
))

∼= HomDb(ModI(Λ(S̄,DS)))
(V ⊗ Λφ1

(S̄,DS)
,Λφ2

(S̄,DS)
)

∼= HomC(ModI(Λ(S̄,DS)))
(V ⊗ Λφ1

(S̄,DS)
, I)

∼= HomC(ModI(Λ(S̄,DS)))
(V,Hom(Λφ1

(S̄,DS)
, I)). (5.9)

Here we used flatness of Λφ1

(S̄,DS)
.

First, note that Hom(Λφ1

(S̄,DS)
, I) ∼= Λ−φ1

(S̄,DS)
⊗ I in C(ModI(Λ(S̄,DS))). Second, I is

locally given by [
∏
xFx] where Fx is a skyscraper sheaf. Since Hom(Λφ1

(S̄,DS)
,
∏
xFx) ∼=∏

xHom(Λφ1

(S̄,DS)
,Fx), the object Hom(Λφ1

(S̄,DS)
, I) is also injective. Hence we have

HomDb(ModI(Λ(S̄,DS)))
(V,RHom(Λφ1

(S̄,DS)
,Λφ2

(S̄,DS)
))

∼= HomDb(ModI(Λ(S̄,DS)))
(V,Λ−φ1

(S̄,DS)
⊗ I)

∼= HomDb(ModI(Λ(S̄,DS)))
(V,Λ−φ1

(S̄,DS)
⊗L I)

∼= HomDb(ModI(Λ(S̄,DS)))
(V,Λ−φ1

(S̄,DS)
⊗L Λφ2

(S̄,DS)
)

∼= HomDb(ModI(Λ(S̄,DS)))
(V,Λφ2−φ1

(S̄,DS)
). (5.10)

This completes the proof. �

5.3 Irregular local systems
Let V be a neighborhood of 0 ∈ Cn and consider a simple normal crossing DI =

⋃
i∈I{zi =

0} ∩ V . For A := {ai} ∈ ZI , ΦA : Cn → Cn is defined by (za1
1 , . . . , zan

n ) where ai = 0 for i 
∈ I.
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Definition 5.16.

(i) A correspondence f : V \DI → C is a multi-valued meromorphic function if there exists
A := {ai} ∈ ZI and a meromorphic function f ′ on Φ−1

A (V ) with poles in Φ−1
A (DI) such that

f is equal to z �→ {f ′(z′) | z′ ∈ (ΦA)−1(z)}.
(ii) A finite set of multi-valued meromorphic function is said to be good, if it satisfies the

conditions in Definition 5.2 after taking the pull-backs along ΦA.

For a multi-valued meromorphic function φ and an open subset U on which φ is represented
by a set of single-valued holomorphic functions {φk}k∈K , we set Λφ :=

⊕
k∈KΛφk .

For S a locally closed complex submanifold X, consider (S̄,DS := S̄\S) as a topological
space with boundary.

Definition 5.17. Let V be an object of ModI(Λ(S̄,DS)). We call V a good irregular local system
if the following hold.

(i) The boundary DS is normal crossing.
(ii) For any point x ∈ DS , there exists a neighborhood U of x such that the restriction V|U ∈

ModI(Λ(U,∅)) is isomorphic to a finite direct sum of the constant sheaf ΛU .
(iii) For any point x ∈ S̄\S, there exist:

(a) a neighborhood U of x;
(b) a finite good set of multi-valued meromorphic functions {φj}j∈J over U with poles in

DS ; and
(c) a finite cover {Uk}k∈K of U\U ∩DS

such that we have both the following.
• There exists an open covering {U ′k}k∈K of the real blow-up of U along DS (in the sense

of [DK16]) with Uk = U ′k ∩ (U\DS).
• Each restriction of V|Uk

:= V|(Uk,Uk∩DS) := ι−1
(Uk,Uk∩DS)

V ∈ ModI(Λ(Uk,Uk∩DS)) is iso-

morphic to the finite direct sum
⊕

j∈JΛ
φj

(Uk,Uk∩DS)
. Here Uk means Uk ∪ (DS ∩ Uk) and

ι(Uk,Uk∩DS) is the canonical map induced by the inclusion Uk ↪→ S̄.

If the set of multi-valued functions is actually the set of meromorphic functions, we call it a
unramified good irregular local system.

Lemma 5.18. Definition 5.17(iii) is equivalent to the following. For any point x ∈ S̄\S, there
exist:

(a) a neighborhood U of x =: 0 (with the notation used in Definition 5.16);
(b) A := {ai} ∈ ZI ;
(c) a finite set of meromorphic functions {φj}j∈J over U ′ := Φ−1

A (U) with poles in D′ :=
Φ−1
A (DI); and

(d) a finite cover {Uk}k∈K of U ′\U ′ ∩D′
such that we have both the following.

• There exists an open covering {U ′k}k∈K of the real blow-up of U along D′ with Uk =
U ′k ∩ (U\D′).

• Each restriction of (Φ∗AV)|(Uk,Uk∩D′) := ι−1
(Uk,Uk∩D′)

(Φ∗AV) ∈ ModI(Λ(Uk,Uk∩D′)) is isomor-

phic to the finite direct sum
⊕

j∈JΛ
φj

(Uk,Uk∩D′)
. Here ι(Uk,Uk∩D′) is the canonical map

induced by the inclusion Uk ↪→ S̄.
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Proof. This is just from the definition of multi-valued meromorphic functions. �
Definition 5.19. For a complex manifold U with a divisor D, a modification of (U,D) is a
morphism f : (U ′, D′)→ (U,D) where (U ′, D′) is another complex manifold with a divisor and f
is a projective map between U ′ and U preserving divisors and induces the identity map between
U\D and U ′\D′.
Definition 5.20. An object V ∈ ModI(Λ(S̄,DS)) is said to be an irregular local system if the
following hold.

(i) For any point x ∈ S, there exists a neighborhood U of x such that the restriction V|U ∈
ModI(Λ(U,∅)) is isomorphic to a finite direct sum of the constant sheaf ΛU .

(ii) For any point x ∈ DS , there exists a neighborhood U of x and a modification p : (U ′, D′)→
(U,DS ∩ U) such that p−1(V|(U,DS∩U)) is a good irregular local system.

Let V be an irregular local system on (S̄,DS). Take a point x ∈ DS . Then by the definition
of irregular local systems, there exists a relatively compact open neighborhood U of x with a
modification p : U ′ → U such that for any y ∈ p−1(DS) =: D′, there exists a finite cover {Uk}k
of U ′\D′ given in the definition of good irregular local systems. We have V|Uk

∼= ⊕
iΛ
φi

(Uk,Uk∩D′)
.

Since U ′\D′ ∼= U\DS . we get a finite covering U of U\DS such that V|Ū ,DS∩Ū is isomorphic
to a direct sum of irregular constant sheaves for each U ∈ U .

Definition 5.21. We call a finite covering U of U\DS given above a sectorial covering for V
around x.

Lemma 5.22. For V,W ∈ ModI(Λ(S̄,DS)) and x ∈ DS , there exists a neighborhood U of x with

a modification (U ′, D′)→ (U,D) such that p−1(V|(U,U∩DS)) and p−1(W|(U,U∩DS)) are irregular
local systems. In particular, V and W have a common sectorial covering.

Proof. This is standard. �
Next we would like to define one of the fundamental objects in this paper.

Definition 5.23. Let V be an object of ModI(ΛX). We say V is irregular constructible if the fol-
lowing hold. There exists a C-analytic stratification S ofX such that the restriction V|(S̄,DS :=S̄\S)

to each stratum S ∈ S is an irregular local system as an object of ModI(Λ(S̄,DS)).

It is clear that the definition remains valid after refining the stratification. Let us denote the
full subcategory of ModI(ΛX) spanned by irregular constructible sheaves by Modic(ΛX).

Proposition 5.24. The category Modic(ΛX) is abelian.

Remark 5.25. This statement is a little bit interesting since the category of filtered vectors spaces
is not abelian (see Remark 2.4).

Proof of Proposition 5.24. Since ModI(ΛX) is abelian, it suffices to show kernels, cokernels,
images, and coimages of morphisms between irregular constructible sheaves are also irregular
constructible sheaves. Let f : V → W be a morphism between irregular constructible sheaves.
One can take a common C-Whitney stratification for V and W. Then it suffices to show
Lemma 5.26 below. �
Lemma 5.26. Kernels, cokernels, images, coimages of morphisms between irregular local systems
are irregular local systems.

To prove Lemma 5.26, we prepare some notions and lemmas.
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Definition 5.27. Let φi (i = 1, 2) be meromorphic functions over U with poles in D. We say
φ1 and φ2 are equivalent if there exists a bounded holomorphic function φ over U such that
φ1 = φ2 + φ. We denote the set of meromorphic functions over (U,D) modulo this equivalence
relation by M(U,D).

Recall that Λφ1

(U,D) and Λφ2

(U,D) are canonically isomorphic for φ1 = φ2 ∈M(U,D) by
Lemma 5.11.

Proof of Lemma 5.26. Let V and W be irregular local systems over (U,D). Since the definition
of irregular local systems is local, we can consider locally on a open subset U . There exists
a modification p : (U ′, D′)→ (U,D) such that p−1V and p−1W are both good irregular local
systems by Lemma 5.22.

A morphism f : V → W induces a morphism over U and we pull-back f by p. Then by the
exactness of the pull-back, kernel cokernel, image, coimage (we denote those by A) of p−1f are
pull-backs of those for f i.e. p−1A(f) ∼= A(p−1f).

Furthermore, we can pull-back more by a covering map ΦA to make p−1V and p−1W unram-
ified irregular local systems. Then again, Φ−1

A p−1A(f) ∼= A(Φ−1
A ◦ p−1f). It suffices to show that

this is an irregular local system.
So we reset the notation. Let V and W be unramified good irregular local systems and

f : V → W be a morphism. Then there exist sets of meromorphic functions ΦV and ΦW over
(U,D) which are appeared in the definition of irregular local system.

Take a point x ∈ D, a neighborhood U of x, and a sectorial covering U of U\D for V andW.
On each U ∈ U , we have isomorphisms V|U ∼=

⊕
φ∈ΦVΛφ

(Ū ,Ū∩D)
and W|U ∼=

⊕
ψ∈ΦWΛψ

(Ū ,Ū∩D)
.

Suppose the following: there exists a sector U ∈ U such that the restriction of f to the
component Λφ

(Ū ,Ū∩D)
→ Λψ

(Ū ,Ū∩D)
is nonzero where φ ∈ ΦV , ψ ∈ ΦW with φ 
= ψ.

Let U ′ be the adjacent sector of U . Then the restriction of f to Λφ
(U ′,U ′∩D)

→ Λψ
(U ′,U ′∩D)

is
nonzero again. This implies max{Reφ−Reψ} is bounded by Lemma 5.11. We can continue this
procedure and we eventually will arrive at a sector on which φ− ψ is negatively divergent since
φ 
= ψ. This contradicts the supposition.

Hence we cannot have such a morphism. This means f |U is diagonal with respect to indices
M(U,D)×M(U,D). Hence the morphism f |U is represented by a sum of c · T a : Λφ

(Ū ,Ū∩D)
→

Λφ
(Ū ,Ū∩D)

where c ∈ k by Lemma 5.11. The A(c · T a) ia again of the form of a sum of Λφ
(Ū ,Ū∩D)

.
This completes the proof. �

We prepare the following lemma for the next subsection.

Lemma 5.28. The category Modic(ΛX) is a thick subcategory of ModI(ΛX).

Proof. Let
0→ V → X →W → 0 (5.11)

be an exact sequence in ModI(ΛX) with V,W ∈ Modic(ΛX). Let S be a common stratification
of V and W. Since pull-backs are exact, we can reduce to the case that V,W are irregular
local systems on (S̄,DS). For any point x ∈ DS , there exists a neighborhood U of x such that
U\DS has a finite sectorial covering {Ui} and V (respectivelyW) is isomorphic to

⊕
jΛ

φj

(Ui,Ui∩DS)

(respectively
⊕

kΛ
ψk

(Ui,Ui∩DS)
). Hence we have an exact sequence

0→
⊕
j

Λφj

(Ui,Ui∩DS)
→ X|Ui →

⊕
k

Λψk

(Ui,Ui∩DS)
→ 0 (5.12)
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on each Ui.
We have already seen that RHom(Λψ

(Ui,Ui∩DS)
,Λφ

(Ui,Ui∩DS)
) � Λφ−ψ

(Ui,Ui∩DS)
in Corollary 5.15.

Then

Ext1
Db(ModI(Λ(S̄,DS)))

(Λψ
(Ui,Ui∩DS)

,Λφ
(Ui,Ui∩DS)

)

∼= HomDb(ModI(Λ(S̄,DS)))
(Λψ

(Ui,Ui∩DS)
,Λφ

(Ui,Ui∩DS)
[1])

∼= HomDb(ModI(Λ(S̄,DS)))
(Λ(Ui,Ui∩DS),Λ

φ−ψ
(Ui,Ui∩DS)

[1])

∼= 0, (5.13)

since Λ(Ui,Ui∩DS) is free. This completes the proof. �

5.4 Derived category and six operations
Definition 5.29. A cohomologically irregular constructible Λ(X̄,DX)-module is an object of
Db(ModI(Λ(X̄,DX))) such that all the cohomologies are irregular constructible sheaves. We denote
the full subcategory spanned by those objects by Db

ic(ΛX).

Proposition 5.30. The category Db
ic(ΛX) is a triangulated category.

Proof. This is a standard consequence of the thickness (Lemma 5.28). �
We will now see Grothendieck six operations on this category. In the rest of subsection, V,W

will be always objects of Db
ic(ΛX).

Proposition 5.31. We have V ⊗LW ∈ Db
ic(ΛX).

Proof. This is obvious from (4.18) and Lemma 5.13. �
Lemma 5.32. For an irregular constructible sheaf X on (Ū ,DU ) (respectively (V, V ∩DS)), i!X
(respectively j∗X ) is irregular constructible.

Proof. By considering a stratification compatible with U (respectively V ) and a stratification of
X , the constructibility of X implies the statement. �

For the constant map aX : X → ∗, we set ωΛ
X := a!

XΛ ∼= Λ⊗k ωX ∈ Db
ic(ΛX) as usual. We

also set

DV := RHom(V, ωΛ
X) ∈ Db(ModI(ΛX)). (5.14)

First note the following.

Lemma 5.33. We have DΛφX ∼= Λ−φX ⊗k ωX .

Proof. This is a special case of Corollary 5.15. �
Then we have the following.

Lemma 5.34. We have DV ∈ Db
ic(ΛX).

Proof. Let S be a stratification of V. Let U be the union of open subsets of S. By applying
Lemma 4.24, we have an exact triangle

RHom(i!i!V, ωΛ
X)← RHom(V, ωΛ

X)← RHom(j!j−1V, ωΛ
X)← . (5.15)
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Then we have
RHom(i!i!V, ωΛ

X) � i!RHom(i−1V, i−1ωΛ
X),

RHom(j!j−1V, ωΛ
X) � j∗RHom(j−1V, j!ωΛ

X).
(5.16)

By Lemma 5.32, we can prove the desired result by induction of the dimension of the strata and
Lemma 5.33. �
Lemma 5.35. The canonical morphism V → DDV is an isomorphism.

Proof. It is also enough to show the statement for irregular local systems. Then the statement
is clear from DDΛφX = ΛφX . �
Lemma 5.36. We have

HomDb
ic(ΛX)(V,W) ∼= HomDb

ic(ΛX)(DW,DV). (5.17)

Proof. This is easy and the proof is left to the reader. �
Corollary 5.37. The contravariant functor D : Db

ic(ΛX)→ Db
ic(ΛX) is a contravariant equiv-

alence.

Proof. The fully faithfulness of D is Lemma 5.36 and the essential surjectivity is Lemma 5.35. �
Proposition 5.38. We have a natural isomorphism

f ! ◦D ∼= D ◦ f−1. (5.18)

Proof. This is easy and the proof is left to the reader. �
Proposition 5.39. We have RHom(V,W), f−1V, f !V ∈ Db

ic(ΛX).

Proof. This is easy and the proof is left to the reader. �
Let i(X̄,DX) : (X̄,DX)→ (X,∅) be the canonical morphism.

Lemma 5.40. The functor i(X̄,DX)! : ModI(Λ(X̄,DX))→ ModI(ΛX̄) is fully faithful embedding

onto the full subcategory spanned by objects satisfying i−1
DX
V � 0. The functor i(X̄,DX)∗ is also

fully faithful. In both cases, the left quasi-inverses are given by i−1
(X̄,DX)

.

Proof. This simply follows from Lemma 4.24 �

6. Forgetting grading

In this section, we discuss the relationship between irregular constructible sheaves and
constructible sheaves. For a topological space with boundary (X̄,DX), we set X := X̄\DX .

6.1 Forgetting grading
Lemma 6.1. There exists an exact functor

F : ModI(Λ(X̄,DX))→ Mod(kX) (6.1)

satisfying the following. For an object V ∈ ModI(Λ(X̄,DX)), take a local lift Ṽ on an open subset

U ⊂ X. Let Ṽ0 be the underlying ungraded Λ-module of Ṽ. Then F(V)|U ∼= Ṽ0|U ⊗Λ k.

Proof. For an object V, let us take a locally finite covering {Ui} of X with lifts {Ṽi} ⊂
ModI

pre(ΛX). There exists an isomorphism fij : [Ṽi]|Ui∩Uj

∼=−→ [Ṽj ]|Ui∩Uj in ModI
ps(X̄,DX)

(Uij). We

602

https://doi.org/10.1112/S0010437X20007678 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X20007678


Irregular perverse sheaves

can take a covering {Uijk} on which we have a descent data fijk : [Ṽi]|Uijk
→ [Ṽj ]|Uijk

for fij in
ModI

pre(Uij). Let f̃ijk : Ṽi|Uijk
→ Ṽj |Uijk

〈a〉 be a lift of fijk.
Then fijk|Uijk∩Uijl

= fijl|Uijk∩Uijl
means there exists b ∈ R>0 such that T b · ((f̃ijk −

f̃ijl)|Uijk∩Uijl
) = 0. This means f̃ijk ⊗Λ k = f̃ijl ⊗Λ k. Hence the set {f̃ijk} gives an isomorphism

fij ⊗Λ k : Ṽi|Uij ⊗Λ k→ Ṽj |Uij ⊗Λ k. Again, these morphisms can be glued up and give a k-
module sheaf V ⊗Λ k. By a similar argument, one can actually see this does not depend on the
choice of lifts.

For f ∈ HomModI(ΛX)(V,W), there exists a covering {Ui} of X with lifts {f̃i} ⊂ ModR(ΛUi).
Then we get a set of morphisms {f̃i ⊗ΛX

kX}. One can see these are glued up to a morphism
in Mod(kX) depending only on f by a similar argument as above. The resulting morphism is
denoted by F(f). It is clear that this correspondence preserves the compositions. Hence F gives
a functor.

We would like to see the functor F is exact. Let

0→ V f−→W g−→ X → 0 (6.2)

be an exact sequence in ModI(Λ(X̄,DX)). It is equivalent to that there exists a locally finite open
covering {Ui} of X such that we have an exact sequence

0→ Vi fi−→Wi
gi−→ Xi → 0 (6.3)

over each Ui. By Lemma 2.14, it can be lifted to an exact sequence of R-graded ΛX -modules

0→ Ṽi f̃i−→ W̃i
g̃i−→ X̃i → 0. (6.4)

Since tensor product is left exact, we get an exact sequence

Ṽi ⊗ΛX
kX

f̃i⊗id−−−→ W̃i ⊗ΛX
kX

g̃i⊗id−−−→ X̃i ⊗ΛX
kX → 0. (6.5)

It remains to show f̃i ⊗ id is injective. Let us take a homogeneous section of the kernel of
f̃i ⊗ k. Since it is a subsheaf of Ṽi ⊗ΛX

kX , it is locally represented by the form s⊗ 1. If s⊗ 1
is nonzero, it means that T a · s 
= 0 in Ṽi. Hence we have ΛU · s ↪→ Ṽi|U where U is the open set
on which s is defined. If f̃i(s)⊗ 1 = 0, we have some T a such that T af̃i(s) = 0 by Lemma 2.7.
Hence we have a sequence of morphisms over U of R-graded Λ-modules

ΛU · s→ Ṽi Taf̃i−−−→ W̃i〈a〉 (6.6)

whose composition is zero. Since ΛU · s is nonzero in ModI(Ui), the morphism [T af̃i] = [f̃i] = fi
has a nontrivial kernel. This contradicts the injectivity of fi. Hence f̃i ⊗ id is injective. �
Lemma 6.2. Let f : (X̄,DX)→ (Ȳ , DY ) be a map between topological spaces with boundaries.
Then we have

F ◦ f−1 ∼= f−1 ◦ F. (6.7)

Proof. For an R-graded ΛX -module V, let us consider f−1V. The sheaf F ◦ f−1V(U) is a sheaf
associated with the presheaf

U �→ f−1V(U)⊗Λ k. (6.8)

On the other hand, the sheaf f−1 ◦ F(V) is a sheaf associated with the presheaf

U �→ f−1(V ⊗ΛX
kX)(U). (6.9)
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By the definition,

f−1V(U)⊗Λ k ∼=
(

lim−→
V⊃f(U)

V(V )
)
⊗Λ k

∼= lim−→
V⊃f(U)

(V(V )⊗Λ k)

∼= f−1(V ⊗ΛX
kX)(U). (6.10)

Hence they are the same. �
Lemma 6.3. Let V ∈ ModI(Λ(X̄,DX)) be an irregular local system. Then F(V) is a local system.

Proof. There exists an open covering of U such that V is represented by a direct sum of irreg-
ular constant sheaves Λφ. Hence the statement follows from that Λφ ⊗Λ k is a rank 1 constant
k-module on any enough small open subset. �
Lemma 6.4. Let G : ModI(Λ(X̄,DX))→ ModI(Λ(Ȳ ,DY )) and G̃ : Mod(kX)→ Mod(kY ) be right

(respectively left) exact functors such that F ◦G ∼= G ◦ F. Then we have F ◦RG � RG̃ ◦ F

(respectively F ◦ LG � LG̃ ◦ F).

Proof. Let V ∈ ModI(Λ(X̄,DX)) and take an injective resolution I• by using Proposition 4.2.
Note that skyscraper sheaves Λx used in this injective resolution are mapped to skyscraper
sheaves kx. Combining with the exactness of F (Lemma 6.1), we can conclude that F(I•) is an
injective resolution of F(V). Hence we have

F ◦RG(V) � F ◦G(I•) � G̃ ◦ F(I•) � RG̃ ◦ F(V). (6.11)

Similarly, for a free R-graded Λ-module F , the module F(FU ) is a direct sum of kU , and hence
is flat. By Lemma 4.4, we can do a similar argument as above. This completes the proof. �
Lemma 6.5. Let f be a proper map X → Y . We have an equality

F ◦Rf! � Rf! ◦ F (6.12)

of functors Db(ModI(Λ(X̄,DX)))→ Db(kY ).

Proof. By Lemma 6.4, it is enough to show the underived version. For V ∈ ModR(ΛX) and
an open subset U , both f! ◦ F(V) and F ◦ f! have V(f−1(U))⊗ k over U . This completes the
proof. �
Lemma 6.6. Let i(X̄,DX) : (X̄,DX)→ (X̄,∅) be the canonical map and iX : X ↪→ X̄ be the
inclusion. We have an equality

F ◦Ri(X̄,DX)! � RiX! ◦ F. (6.13)

Proof. Again, we only prove the underived version. One can prove in a similar way to
Lemma 6.5. �

6.2 The case of irregular constructible sheaves
Proposition 6.7. The functor F restricts to a functor Modic(ΛX)→ Modc(kX).

Proof. For V ∈ Modic(ΛX), let us take a stratification S of X. For each S ∈ S, let us denote the
inclusions by i(S̄,DS) : (S̄,DS) ↪→ (X,∅) and iS : S ↪→ X. Then we have i−1

S F(V) ∼= F(i−1
(S̄,DS)

(V))
by Lemma 6.2. By Lemma 6.3, this is a local system. Hence F(V) is a constructible sheaf with
respect to S. �
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We also denote the induced functor Db(ModI(ΛX))→ Db(Mod(kX)) by F.

Corollary 6.8. The functor F restricts to Db
ic(ΛX)→ Db

c(kX).

Proof. For V• ∈ Db(Modic(ΛX)), since F is exact on the abelian categories (Lemma 6.1), we have
H i(F(V•)) ∼= F(H i(V•)). By Proposition 6.7, we have F(H i(V•)) ∈ Modc(kX). �
Lemma 6.9. If we have F(E) � 0 for an irregular constructible sheaf E, we have E � 0.

Proof. We will argue on each stratum of a stratification of E. On the interior of a stratum, the
irregular local system is locally isomorphic to

⊕
i∈IΛ

φi for some φi’s. Since F(
⊕

iΛ
φi) ∼= k|I|,

F(E) ∼= 0 is equivalent to |I| = 0. This means E ∼= 0. This completes the proof. �
We also would like to discuss the functor in the other direction. We consider the following

functor

(−)⊗k Λ: Modc(kX)→ Mod0(ΛX) (6.14)

equipped with the trivial grading. We define G : Modc(kX)→ Modic(ΛX) as the composition
of the above with [·] : Mod0(ΛX)→ ModI(ΛX). It is clear that this induces an exact func-
tor G : Modc(kX)→ Modic(ΛX). We will denote its derived functor by the same notation
G : Db

c(kX)→ Db
ic(ΛX).

Proposition 6.10. We have F ◦G � id.

Proof. This again follows from the fact that F(Λφ) is a rank 1 constant k-module. �

7. Enhanced sheaves and Λ-modules

7.1 R-constructible enhanced ind-sheaves
In this section, we recall the definition of R-constructible enhanced ind-sheaves. For more detailed
accounts, we refer to the original [DK16] and the survey [KS16]. Let M be a real analytic
manifold. Let R̄ be the two point compactification of R i.e. R ∼= (0, 1) ↪→ [0, 1] = R̄. The category
of enhanced ind-sheaves is defined in two steps. First, we set

Db(IkM×(R̄,R)) := Db(IkM×R̄)/Db(IkM×R̄\R) (7.1)

where Db(IkM ) is the bounded derived category of ind-sheaves over M [KS01]. We set kt�0 :=

k{(x,t)∈M×R̄|t∈R,t�0}. The definition of the convolution product
+⊗ can be extended to the objects

in Db(IkM×(R̄,R)). We set

ICt∗=0 :=
{
K |K +⊗ k�0 � 0,K

+⊗ k�0 � 0
}
. (7.2)

The category of enhanced ind-sheaves over X is defined by

Eb(IkM ) := Db(IkM×R∞)/ICt∗=0. (7.3)

The triangulated category Eb(IkM ) has monoidal operations
+⊗ and Ihom+. For a morphism

M → N of real analytic manifolds, there are associated functors

Ef!!, Ef∗ : Eb(IkM )→ Eb(IkN ), (7.4)

Ef−1, Ef ! : Eb(IkN )→ Eb(IkM ). (7.5)

They form adjoint pairs Ef!! � Ef ! and Ef−1 � Ef∗.
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We further set
kEM := ‘lim’

a→∞kt�a (7.6)

as an object of Eb(IkM ). As usual, ‘ lim ’ means Ind-colimit.

Definition 7.1.

(i) An object E of Eb(IkM ) is said to be R-constructible if there exists an open covering
{Ui} of M such that there exists an R-constructible sheaf EU over each U ×R such that

E|U×R̄ � EU
+⊗ kEU .

(ii) An enhanced R-constructible ind-sheaf E of Eb(IkM ) is said to be C-constructible if the
following holds. There exists an open covering {U} of M and a C-stratification SU for each

U such that: (i) there exists an R-constructible sheaf EUi such that E|U×R � EU
+⊗ kEU ; (ii)

each cohomology sheaf Hi(EU |S) for each S ∈ SU is isomorphic to a direct sum of sheaves
of the form kt�φ(x) for some continuous function φ.

We denote the full subcategory spanned by R-constructible (respectively C-constructible)
enhanced ind-sheaves by EbR-c(IkM ) (respectively EbC-c(IkM )). The category EbR-c(IkM ) has a
contravariant autoequivalence D, analogous to the Verdier duality.

7.2 From enhanced sheaves to Λ-modules
For a sheaf E onX × R̄, let us consider the object

⊕
−a∈Rp∗Γ[−a,∞)E where p : X ×R→ X is the

projection. It is equipped with the action of Λ as follows. The action of T b on
⊕
−a∈Rp∗Γ[−a,∞)E

is the product of
p∗Γ[−a,∞)E → p∗Γ[−b−a,∞)E (7.7)

induced by the canonical map k[−b−a,∞) → k[−a,∞).
Recall thatDb(IkM×R̄) is the derived category of Mod(IkM×R̄) := Ind(Modc(kM×R̄)) where

c means compactly supported sheaves. The left exact functor

Modc(kM×R̄)→ ModI(ΛX); E �→
[ ⊕
−a∈R

p∗Γ[−a,∞)E
]

(7.8)

induces
M̃ : Mod(IkX×R̄)→ Ind(ModI(ΛX)) (7.9)

by taking Ind of all of them. This is again left exact [KS06].
We denote the right derived functor of M̃ by RM̃ : Db(IkX×R̄)→ Db(Ind(ModI(ΛX))).

Recall that there exist embeddings

(−)
+⊗ kt�0 : Eb(IkX)→ Db(Ik(X×R̄,X×R)) (7.10)

and
(−)⊗ kX×R : Db(Ik(X×R̄,X×R))→ Db(IkX×R̄). (7.11)

Composing these with RM̃ , we get

M := RM̃(((−)
+⊗ k�0)⊗ kX×R) : Eb(IkX)→ Db(Ind(ModI(ΛX))). (7.12)

Lemma 7.2. Let E be an R-constructible sheaf over X ×R. Then we have M(E +⊗ kEX) ∈
Db(ModI(ΛX)).

606

https://doi.org/10.1112/S0010437X20007678 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X20007678


Irregular perverse sheaves

Proof. By the definition of M and kEX , it is enough to show that the natural morphisms[ ⊕
−a∈R

Rp∗RΓ[−a,∞) E
]
→

[ ⊕
−a∈R

Rp∗RΓ[−a−c,∞) E
]

(7.13)

are isomorphisms for any c ∈ R�0. The cone is given by[ ⊕
−a∈R

Rp∗RΓ[−a−c,−a) E
]
. (7.14)

Since T c ∈ Λ vanishes on this object, this is zero. Hence the morphisms are isomorphisms. �
Lemma 7.3. The functor M restricts to a functor EbR-c(IkX)→ Db(ModI(ΛX)), which is also
denoted by M .

Proof. For an R-constructible enhanced ind-sheaf E , there exists a locally finite covering U of

X such that we have E|U×R � EU
+⊗ kEU and (n+ 2)-fold covers are empty where n = dimX. By

the Cech construction, E is represented by a result of mapping cones of i!(EU
+⊗ kEU ). This implies

M̃(E) is obtained as a finite mapping cones of M̃(i!(EU
+⊗ kEU )). By Lemma 7.2, this means that

M̃(E) is in Db(ModI(ΛX)). This completes the proof. �
Let S be a locally closed subset in X and S̄ be the closure of S in X and set DS := S̄\S. Let

φ be a continuous C-valued function on S. The inclusion i(S̄,DS) : (S̄,DS)→ X is a tame map,

we get i(S̄,DS)!Λ
φ
(S̄,DS)

∈ ModI(ΛX). We also set Eφ := kReφ�t
+⊗ kEX ∈ Eb(IkX).

Lemma 7.4. We have M(Eφ) ∼= i(S̄,DS)!Λ
φ.

Proof. By the definition ofM ,M(Eφ) ∼= ‘lim ’
a→∞

(⊕
−c∈RRp∗RΓ[−c,−∞) kReφ�t+a

)
. From the proof

of Lemma 7.2, this colimit stabilizes. In particular, M(Eφ) ∼= ⊕
−c∈RRp∗RΓ[−c,−∞) kReφ�t =:

i(S̄,DS)!Λ
φ �

Lemma 7.5. There exists a canonical isomorphism

HomModI(ΛX)(i(S̄,DS)!Λ
φ, i(S̄,DS)!Λ

φ′) ∼= HomEb(IkX)(Eφ, Eφ
′
). (7.15)

Proof. By Lemmas 5.11 and 5.12, we have

HomModI(ΛX)(i(S̄,DS)!Λ
φ, i(S̄,DS)!Λ

φ′) ∼=
{
k max{0,Reφ−Reφ′} is bounded,
0 otherwise.

(7.16)

It is easy to see that the right-hand side of (7.15) also has the same formula. In the case that
max{0,Reφ−Reφ′} is bounded, there exists c ∈ R�0 such that Reφ < Reφ′ + c everywhere.
For a map f ∈ HomEb(IkX)(Eφ, Eφ′), we have a lift f̃ : k{t�Reφ(x)} → k{t�Reφ′(x)+c} of usual
R-constructible sheaves. Then f̃ induces a morphism i(S̄,DS)!Λ

φ → i(S̄,DS)!Λ
φ′ . It is easy to see

that the induced morphism only depends on the choice of f . By the proof of Lemma 5.11, this
gives an isomorphism. �

8. Irregular Riemann–Hilbert correspondence

In this section, we will prove our version of the irregular Riemann–Hilbert correspondence as a
corollary of D’Agnolo and Kashiwara’s one. In this section, we will work over C.
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8.1 An example
Before going to the general case, we would like to see some examples of the correspondence in
dim = 1. We will freely use the standard language of Stokes phenomenon, for which one can refer
to the standard reference, for example, [Sib90].

We will consider the case when X = D a disk around 0 ∈ C. Let M be a meromorphic
connection with poles in 0 ∈ D. For the simplicity of the exposition, we assume that the formal
completion ofM at 0 is decomposed as

⊕
φ∈ΦE(φ) where Φ is a set of meromorphic functions with

poles in 0 ∈ D, E(φ) is a connection defined by d+ φ. The set Φ give a sectorial decomposition
D\0 =

⋃
Si by the Stokes rays and there exists a complete set of solutions {siφ} on each Si. On

each Stokes ray, we have a transformation matrix between the sets of solutions. The transformed
sφ can have a component of sφ′ only if Reφ � Reφ′ on the ray. We denote the transformation
matrix on the Stokes ray r by Sr.

Since
Hom(Λφ,Λφ

′
) = k,Hom(Λφ

′
,Λφ) = 0 (8.1)

if Reφ � Reφ′, we can represent the transposition of Sr in End(
⊕

Λφ), as an isomorphism,
locally around the ray r. Gluing up

⊕
φΛ

φ by the these morphisms, we get the Riemann–Hilbert
dual object (i.e. the image of the ‘de Rham’ functor) of M in terms of irregular constructible
sheaves.

Of course, by the same procedure just replacing Λφ with Eφ produces an enhanced ind-sheaf
corresponding E to by D’Agnolo and Kashiwara’s functor [DK16].

8.2 Notation for analytic D-modules
We refer the theory of analytic D-modules to [Kas03]. In this subsection, we simply recall the
notation. For a complex manifold, DX is the sheaf of differential operators, Mod(DX) is the
category of left D-modules, and Db(DX) is the bounded derived category of D-modules. We
denote the full subcategory of Db(DX) spanned by cohomologically holonomic D-modules by
Db

hol(DX).
The duality functor D is a contravariant autoequivalence of Db

hol(DX). For a morphism of
complex manifolds f : X → Y , we can define the following functors,∫

f
: Db(DX)→ Db(DY );M �→ Rf∗(DX←Y ⊗L

DX
M), (8.2)

f † : Db(DY )→ Db(DX);N �→ DY→X ⊗L
f−1DY

f−1N [dimX − dimY ], (8.3)

by using transfer D-modules DX←Y and DX→Y . The functor f † always preserves cohomo-
logically holonomic modules. If f is proper,

∫
f also preserves cohomologically holonomic

modules. For a proper f , the pair of functors form an adjoint pair
∫
f � f †. We also set

f� := D ◦ f † ◦D : Db
hol(DY )→ Db

hol(DX) and f� := D ◦ ∫
f ◦D. Then f� � f�

8.3 Irregular Riemann–Hilbert correspondence using enhanced sheaves
We recall the irregular Riemann–Hilbert correspondence by the result of D’Agnolo and
Kashiwara.

Theorem 8.1 [DK16]. There exists a contravariant embedding

SolE : Db
hol(DX) ↪→ EbR-c(ICX). (8.4)

Our convention is slightly different from the original one in [DK16]. Let SolE be the original
one. We set SolE := SolE[dimX] We have SolE := D ◦DRE where DRE is the same as the
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original one. We collect some properties of the irregular Riemann–Hilbert correspondence as
follows.

Proposition 8.2 [DK16, Theorem 9.4.8, Proposition 9.4.10].

(i) There exists a canonical isomorphism D ◦DRE � DRE ◦D.
(ii) For a morphism f : X → Y of complex manifolds, there exists an isomorphism DRE ◦ f † �

Ef ! ◦DRE .
(iii) For a proper map f : X → Y , we have DRE ◦ ∫

f � Ef∗ ◦DRE .

(iv) There exists an isomorphism SolE(M�N ) � SolE(M)
+
� SolE(N ) forM∈ Db

hol(DX) and
N ∈ Db

hol(DY ).

We will also use the following fundamental result. Let Y be an analytic hypersurface of the
complex manifold X. Take a meromorphic function φ with poles in Y ; φ ∈ OX(∗Y ). We set
E(φ) := (DX · eφ)(∗Y ).

Our convention for SolE is shifted from D’Agnolo and Kashiwara’s one so that the following
holds.

Proposition 8.3 [DK16, Lemma 9.3.1]. There exists an isomorphism

SolE(E(φ)) � kEX
+⊗ kt�Reφ(x)[dimX]. (8.5)

8.4 Irregular Riemann–Hilbert correspondence
Let us denote the essential image of SolE by EbD(ICX).

Lemma 8.4. The object M(E) is irregular constructible for E ∈ EbD(ICX).

Proof. We will prove by induction on the dimension of the support.
Let us take a holonomic D-module M and consider E := SolE(M).
If the dimension of the support of M(E) is zero-dimensional, it is irregular constructible. We

suppose that the statement is true for any E ′ with dim suppM(E ′) < dim suppM(E).
Since the question is local, we work locally. We set Y := supp (M(E)). Let π : Y ′ → Y be

a resolution of singularities of Y . Let D be the inverse image of the union of singularities of
Y andM. Then there exists a canonical morphism

M1 →M′1 := π�(π�M)(∗D). (8.6)

Since (π�M)(∗D) is a meromorphic connection, M(SolE(π�M(∗D))) is irregular constructible.
Note that SolE(π�M(∗D)) has its support in the complement of D. Hence M(SolE(M′1)) has its
support in the complement of π(D) and is irregular constructible. The cone C of this morphism
is living on a divisor of Y . By the induction hypothesis, M(SolE(C)) is irregular constructible.
This completes the proof. �
Lemma 8.5. For an irregular local system V, there exists an enhanced ind-sheaf N(V) such that
M(N(V)) ∼= V.

Proof. For an irregular local system V, one can find a sectorial covering (Definition 5.21). On
each open subset in the covering, we have

⊕V ∼= Λφ. By Lemma 7.5, we can glue up
⊕Eφ by

the corresponding morphisms gluing
⊕

Λφ up to make V. We denote the resulting enhanced
ind-sheaf by N(V).

Since the functor M maps Eφ to Λφ (Lemma 7.4) and the gluing maps are translated by
Lemma 7.5, the enhanced ind-sheaf N(V) satisfies MN(V) ∼= V. �
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Our version of an irregular Riemann–Hilbert correspondence is the following.

Theorem 8.6. The functor M is a contravariant exact equivalence:

M : EbD(ICX) �−→ Db
ic(ΛX). (8.7)

In particular, there exists a contravariant equivalence

SolΛ := M ◦ SolE : Db
hol(DX) �−→ Db

ic(ΛX). (8.8)

Proof. First, we will prove the full faithfulness. Let M,N be holonomic DX -modules. Set E :=
SolE(M) and F := SolE(N ). Then we have

Hom(M,N ) ∼= Hom(F , E). (8.9)

We would like to prove

Hom(F , E) ∼= Hom(M(F),M(E)). (8.10)

Take a common stratification for E ,F and i : U ↪→ X be the open stratum and j : V ↪→ X
be the complement. Then by Lemma 4.24, we have an exact triangle

Hom(j−1M(F), j−1M(E))→ Hom(M(F),M(E))→ Hom(i−1M(F), i−1M(E))→ . (8.11)

We also have the corresponding recollement for enhanced ind-sheaves

Hom(Ej−1F , Ej−1E)→ Hom(F , E)→ Hom(F +⊗ kU×R�0
, E +⊗ kU×R�0

)→ (8.12)

which is a direct consequence of the recollement on X ×R. By the construction, this is the image
of (8.11) under M . Hence, it is enough to show the full faithfulness for irregular local systems.

For an irregular local system, we have locally a sectorial covering such that E ,F have the
form

⊕Eφ, M(E),M(F) have the form
⊕

Λφ, and these are related by Lemma 7.4. Hence we
have the full faithfulness on each open cover by Lemma 7.5. Note also that M is a morphism
between stacks, which is clear from the definition. Hence we can glue up these isomorphisms to
get the global full faithfulness.

To prove the essential surjectivity, we will use Mochizuki’s curve test criterion [Moc16]. Since
SolΛ is a fully faithful exact functor, by the recollement 4.24, it is enough to see SolΛ hits each
irregular local system.

Let V be an irregular local system on (S̄,DS) ⊂ X. Let φ : D→ X be a holomorphic disk
satisfying φ−1(DS) = {0}. We set x := φ(0).

By the construction, N(V) of Lemma 8.5 has a sectorial covering around x equipped with a
set of multi-valued meromorphic functions. The pull-back of a sectorial covering is again sectorial.
Hence Eφ−1N(V) has a sectorial covering on which Eφ−1N(V) restricts to the form

⊕Eφ and
the gluing data is the Stokes data. Since the situation is now one-dimensional, it is standard to
see this is in the image of SolE (e.g. by the discussion of [DK19, 9.8]). Then Mochizuki’s theorem
[Moc16] tells us that there exists an object in Db

hol(DX) such that SolE(M) = N(V). Hence we
have SolΛ(M) = M ◦N(V) = V. This proves the essential surjectivity. �
Corollary 8.7. There exists an exact equivalence

DRΛ := D ◦ SolΛ : Db
hol(DX) �−→ Db

ic(ΛX). (8.13)

Proof. This is the composition of equivalences from Theorem 8.6 and Corollary 5.37. �
In [DK16], it is proved that the composition of ireg : Db

reghol(DX) ↪→ Db
hol(DX) and SolE is

the same as the composition of the regular Riemann–Hilbert solution functor Sol and Db
c(CX) ↪→
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Eb(ICX). Here the last inclusion is obtained as (π−1(−)⊗CX×R�0
)

+⊗CE
X where π : M × R̄→

M . By the definition of M , the following corollary is clear.

Corollary 8.8. We have an identification G ◦ Sol ∼= SolΛ ◦ ireg.

8.5 Functors
In this subsection, we prove the commutativity between SolΛ and various functors. We assume
that all the spaces are without boundary in this subsection.

Proposition 8.9. Let f : X → Y . We have

M ◦ Ef∗ � f−1 ◦M. (8.14)

In particular,

SolΛ ◦ f †�f−1 ◦ SolΛ. (8.15)

Proof. Since we know Ef∗ commutes with SolE , it is enough to see the commutativity with the
functor M . Let us take an R-constructible sheaf E on X × R̄. Let f̄ be the direct product of
f : X → Y and id: R̄→ R̄. Then we have

p∗RΓX×[a,∞)(f̄
−1E) � f−1p∗RΓY×[a,∞) E . (8.16)

Hence we have M(f̄−1E) � f−1M(E). This proves the first line. �
Lemma 8.10. We have

M(−�−) �M(−) �M(−). (8.17)

For M∈ Db
hol(DX) and N ∈ Db

hol(DY ), we have

SolΛ(M�N ) � SolΛ(M) � SolΛ(N ). (8.18)

Proof. By [DK16], we have SolE(M�N ) � SolE(M)
+
� SolE(N ). Hence it suffices to prove

M(SolE(M)
+
� SolE(N )) �M(SolE(M)) �M(SolE(N )).

First, note that we have p∗RΓ[a,∞)(E
+
� F) � p∗RΓt1+t2�a(E � F). We also have a map

p∗RΓ[b,∞)×[c,∞)(E � F)→ p∗RΓt1+t2�b+c(E � F). (8.19)

By combining these, we get a map M(E) �M(F)→M(E
+
� F). It suffices to show that this

map is locally an isomorphism. For enhanced ind-sheaves Eφ1 , Eφ2 , we have Eφ1
+
� Eφ2 � Eφ1⊕φ2 .

We also have Λφ1 � Λφ2 ∼= Λφ1⊕φ2 from Lemma 5.13. Hence the morphism M(Eφ1) �M(Eφ2)→
M(Eφ1⊕φ2) is an isomorphism. The general case can be reduced to this case by considering on
each stratum. �
Proposition 8.11. ForM,N ∈ Db

hol(DX), we have

SolΛ(M⊗N ) � SolΛ(M)⊗ SolΛ(N )[−dimX]. (8.20)

We also have

M ◦ HomE(−,−) � Hom(M(−),M(−)) (8.21)

on EbD(IkX)
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Proof. Let δ : X → X ×X be the diagonal embedding. Then M⊗N ∼= δ†(M�N ). Then we
have,

SolΛ(δ†(M�N )) � δ−1(SolΛ(M�N ))[−dimX]

� δ−1(SolΛ(M) � SolΛ(N ))[−dimX]

� SolΛ(M)⊗ SolΛ(N )[−dimX], (8.22)

where we used Lemmas 4.20 and 8.10. This proves the first claim. The second claim follows from
the adjunction. �
Proposition 8.12. Let f : X → Y . We have

SolΛ ◦ f��f ! ◦ SolΛ, (8.23)

SolΛ ◦D � D ◦ SolΛ. (8.24)

Proof. The first equation is followed by the second one and Proposition 8.9.
We have

D ◦ SolΛ(E) � Hom(SolΛ(E), ωΛ
X)

�M ◦ HomE(SolE(E), ωEX)

�M ◦ SolE(D(E))
� SolΛ ◦D(E), (8.25)

where we used Proposition 8.11 and the commutativity of SolE with D [DK16]. This completes
the proof of the third line. �
Proposition 8.13. Let f : X → Y be a proper map. Then we have

DRΛ ◦
∫
f !
� f! ◦DRΛ. (8.26)

Proof. By various adjunctions, we have

Hom
(

DRΛ

(∫
f !
M

)
,DRΛ(N )

)
∼= Hom

( ∫
f !
M,N

)
∼= Hom(M, f †N )

∼= Hom(DRΛ(M),DRΛ(f †N ))

∼= Hom(DRΛ(M), f !DRΛ(N ))

∼= Hom(f!DRΛ(E),DRΛF). (8.27)

�

8.6 Corollaries
Proposition 8.14. Let f : X → Y be a proper morphism. Then f∗V ∈ Db

ic(ΛY ) for V ∈
Db
ic(ΛX).

Proof. For V ∈ Db
ic(ΛX), take V ′ := V ⊗k C. We set M := (SolΛ)−1(V ′). Then

∫
f ! DM is holo-

nomic. Proposition 8.13 tells us DRΛ(
∫
f ! DM) � f! ◦DRΛ(D ◦M) � f∗SolΛ(M) � f∗V ′ ⊗k C

is irregular constructible. Since the irregular constructibility is preserved under ⊗kC. This
completes the proof. �
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Remark 8.15. To work with more general base fields, it is desirable to have a direct proof of the
above result, which we do not have yet.

The following proposition says ‘an object of Db
ic(ΛX) is actually a sheaf over X.’ It is logically

not important, but conceptually makes us feel easy with irregular constructible sheaves. We use
some results from the later sections to prove the following.

Proposition 8.16. The essential image of [·] : Db(Mod0(ΛX))→ Db(ModI(ΛX)) contains
Db
ic(ΛX).

Proof. Let V be an irregular constructible sheaf. Then we have [RM̃ ′(M−1(V))] �
V ∈ Db(ModI(ΛX)) by § 7.2 and Theorem 8.6. Since [E ] ∈ Db(ModI(ΛX)) for E ∈
Db(Ind(Mod0(ΛX))) if and only if E ∈ Db(Mod0(ΛX)), we have RM̃ ′(M−1(V)) ∈ Db(Mod0(ΛX)).
This completes the proof. �

9. Irregular perverse sheaves

In this section, we define the irregular perverse t-structure on the category of irregular con-
structible complexes. Over C, the heart is equivalent to the category of holonomic D-modules.
We also prove t-exactness of various functors.

9.1 Irregular perverse sheaves
For an object V of Db

ic(ΛX), we define the support by

supp(V) :=
⋃
j

supp(F(Hj(V))) ⊂ X. (9.1)

Let us define the irregular perverse t-structure.

Definition 9.1. Let pD�0
ic (ΛX) (respectively pD�0

ic (ΛX)) be the full subcategory of Db
ic(ΛX)

spanned by objects satisfying

dim{suppHj(V)} � −j
(respectively dim{suppHj(DV)} � −j) for each j ∈ Z.

(9.2)

Let (pD�0(kX), pD�0(kX)) be the perverse t-structure of Db
c(kX).

Lemma 9.2. We have F(pD�0
ic (ΛX)) ⊂ pD�0(kX). Conversely, if F(V) ∈ pD�0(kX) for V ∈

Db
ic(ΛX), we have V ∈ pD�0

ic (ΛX).

Proof. Since F is t-exact with respect to the standard t-structure (Lemma 6.1), we have
H i(F(V)) ∼= F(H i(V)). �
Proposition 9.3. The pair (pD�0

ic (ΛX), pD�0
ic (ΛX)) forms a t-structure.

To prove this proposition, we first prepare the following lemma.

Lemma 9.4. We have

Hji−1
(S̄,DS)

F � 0 (j > −dimS) , Hji!(S̄,DS)G � 0 (j < 1− dimS), (9.3)

for F ∈ pD�0
ic (ΛX) and G ∈ pD�1

ic (ΛX).

Proof. Note that the same statement for the usual perverse t-structure is known (e.g. [HTT08,
Proposition 8.1.22]). By the commutativity proved in § 6, the first statement follows from
Lemma 6.9. The second statement follows from the Verdier duality. �
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Proof of Proposition 9.3. First, we will prove that for F ∈ pD�0
ic (ΛX) and G ∈ pD�1

ic (ΛX), the
vanishing

Hom(F ,G) = 0. (9.4)

One can prove this just by mimicking the proof of [KS90, Proposition 10.2.7].
It remains to show that there is a decomposition of objects in Db

ic(ΛX). One can prove this
by a usual argument for perverse sheaves as in [HTT08, Theorem 8.1.27]. �
Definition 9.5. The heart of the t-structure is called the category of irregular perverse sheaves
and denoted by Pervic(kX).

Theorem 9.6. The functor SolΛ restrict to a contravariant equivalence

Modhol(DX) �−→ Pervic(CX). (9.5)

Lemma 9.7. Let Di (i = 1, 2) be triangulated categories with t-structures (D�0
i , D�0

i ). Let
F : D1 → D2 be a t-exact equivalence. Then F gives an equivalence between t-structures.

Proof. We have to show that F : D�0
1 → D�0

2 is essentially surjective. Let E be an object of D�0
2 .

Then we have a standard triangle

τ�0F
−1(E)→ F−1(E)→ τ�1F

−1(E) [1]−→ . (9.6)

By applying F again, we have F (τ�1F
−1(E)) ∼= 0 since E ∈ D�0

2 . Since F is an equivalence,
we have τ�1F

−1(E) ∼= 0. Hence F−1(E) ∈ D�0
1 . We can prove for the positive part in a similar

manner. This completes the proof. �
Proof of Theorem 9.6. By Lemma 9.7, it is enough to show that SolΛ is t-exact. We only show
the condition

dim{suppHj(SolΛ(M))} � −j, (9.7)

for any holonomic D-module M. The other case follows from the Verdier duality.
We will prove by induction on the dimension of the support ofM. Let Z ′ be the support of

M and Z be the union of the component of the maximal dimension of Z ′. Take x ∈ Z and we
will argue locally around x.

Take a divisor D in X such that D does not contain any component of Z but the singularities
ofM. We set M1 := im(M→M(∗D)). Then we have two exact sequences

0→M1 →M(∗D)→ C0 → 0,
0→ C1 →M→M1 → 0.

(9.8)

Since the supports of C0, C1 are in D ∩ Z, the dimensions are less than dimZ. By induction,
(9.2) holds for C0, C1. Hence it suffices to show (9.2) for M(∗D).

Let p1 : (Z1, D1)→ (Z,D ∩ Z) be a resolution of singularities of (Z,D ∩ Z) and p2 be a proper
modification given by Theorem 5.3 for p†1M(∗D). Then p†M(∗D) (p := p2 ◦ p1) satisfies (9.2),
since its image under SolΛ is an irregular local system. Now we note the following inequalities:

−j � dim suppHj(SolΛ(p†M(∗D))) = dim suppHj(p−1SolΛ(M(∗D)))

= dim supp p−1Hj(SolΛ(M(∗D))) � dim suppHj(SolΛ(M(∗D))). (9.9)

This shows M(∗D) also satisfies (9.2). This completes the proof. �
We would like to make a comparison with usual perverse sheaves.
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Proposition 9.8. We have G(Perv(X)) ⊂ Pervic(X), By Proposition 6.10, F ◦G = id on
Perv(X).

Proof. Since G is an exact functor, the condition in Definition 9.1 for G(E) is equivalent to the
condition for E to be a perverse sheaf. Hence we have G(Perv(X)) ⊂ Pervic(X). �

9.2 t-exactness of various operations
By using the functor F, we can prove various t-exactness properties in parallel with the theory
of usual perverse t-structure. We only discuss some of them for illustration.

Proposition 9.9. The Verdier duality functor D interchanges pD�0
ic (ΛX) and pD�0

ic (ΛX). In
particular, D restricts to a contravariant autoequivalence of Pervic(kX).

Proof. Since D2 ∼= id, the condition in Definition 9.1 for DV is equivalent to that of V. �
Proposition 9.10. Let f : X → Y be a morphism of complex manifolds. We assume that f is
proper for 3 and 4. The following hold.

(i) For any V ∈ pD�0
ic (ΛY ), we have f−1V ∈ pD�dimX−dimY

ic (ΛX).

(ii) For any V ∈ pD�0
ic (ΛY ), we have f !V ∈ pD�−dimX+dimY

ic (ΛX).

(iii) For any V ∈ pD�0
ic (ΛX), we have Rf∗V ∈ pD�−dimX+dimY

ic (ΛY ).

(iv) For any V ∈ pD�0
ic (ΛX), we have Rf!V ∈ pD

�(dimX−dimY )
ic (ΛY ).

Proof. The statements (i), (iii) and (iv) can also be proved easily by using the commutativities
of F with f−1 and f! (§ 6) and Lemma 9.2. The statement (ii) is the Verdier dual of (i). �
Remark 9.11. Other right/left t-exactness for various functors known in the theory of perverse
sheaves can be also proved by using the argument used in Proposition 9.10.

Remark 9.12. Here we assumed the properness for (iii) and (iv) for simplicity. One can remove
the assumption by working with ind/pro objects to define push-forwards for nontame morphisms.

10. Algebraic case

In this section, we deduce the algebraic version of the results.

10.1 Notation for algebraic D-modules
For the theory of algebraic D-modules, we refer to [HTT08]. For a smooth quasi-projective variety
X, we denote the sheaf of algebraic differential operators by DX . We denote the category of left
DX -modules by Mod(DX), the bounded derived category by Db(DX), and the full subcategory
of cohomologically holonomic modules by Db

hol(DX).
We denote the Verdier duality functor by D. For a morphism of algebraic varieties f : X → Y ,

we define
∫
f and f † by the same formula as in the analytic case. In the algebraic case, both

functors preserve holonomic objects without properness assumption. We set f� := D ◦ f † ◦D
and

∫
f ! := D ◦ ∫

f ◦D. Then we have two adjoint pairs f� � ∫
f and

∫
f ! � f †.

Let Xan be the complex manifold associated with X. The analytification functor is an
exact functor (·)an : Mod(DX)→ Mod(DXan). We also denote the induced functor on the derived
categories by the same notation (·)an. It preserves the holonomicity. We note the following.
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Lemma 10.1 [HTT08, Proposition 4.7.2]. Let f : X → Y be a morphism between algebraic vari-
eties and fan : Xan → Y an be the associated morphisms between complex manifolds. Then the
following hold.

(i) ForM∈ Db
hol(DY ), we have a canonical isomorphism (f †M)an � (fan)†(M)an.

(ii) If f is proper, we have a canonical isomorphism
( ∫

f N
)an � ∫

fan(N )an for N ∈ Db
hol(DX).

10.2 Algebraic irregular constructible sheaves
To consider irregular constructible sheaves, we will equip quasi-projective algebraic varieties with
analytic topology. Let X be a smooth quasi-projective variety. Let X̄ be a smooth projective
variety with a Zariski open embedding iX : X → X̄. We set jX : DX := X̄\X ↪→ X.

Definition 10.2. An object V ∈ ModI(Λ(X̄,DX)) is algebraic irregular constructible if the fol-
lowing holds: there exists an algebraic stratification S of X̄ refining X̄ = X �DX such that each
restriction of V to S ∈ S is an irregular local system.

We denote the full subcategory of irregular constructible sheaves by Modic(Λ(X̄,DX)).
Let i(X̄,DX) : (X̄,DX)→ (X̄,∅) be the canonical morphism, which is tame. We also denote
the inclusion by iDX

: (DX ,∅)→ (X̄,∅). The functors i(X̄,DX)!, i(X̄,DX)∗ are fully faithful by
Lemma 5.40.

Lemma 10.3. The category Modic(Λ(X̄,DX)) does not depend on the choice of X̄.

Proof. We will prove the assertion in two steps. Let us first assume that p : X̄ ′ → X̄ is a map
between two projective compactifications of X extending id: X → X. Then it is clear that p∗
induces the desired equivalence of categories.

Now let X̄ ′ be an arbitrary projective compactification of X. Then there exists X̄ ′′ with maps
X̄ ′′ → X̄ and X̄ ′′ → X̄ ′ extending id: X → X. This can be done by taking a smooth blow-up
replacement of the closure of the diagonal embedding X → X̄ × X̄ ′. From the first part of this
proof, we complete the proof. �

We will denote the category of algebraic irregular constructible sheaves by Modic(ΛX).

Lemma 10.4. The abelian subcategory Modic(ΛX) is thick in ModI(Λ(X̄,DX)).

Proof. One can prove the lemma by mimicking the proof of Lemma 5.28. �
Let us denote the triangulated subcategory ofDb(ModI(Λ(X̄,DX))) formed by cohomologically

algebraic irregular constructible sheaves by Db
ic(ΛX).

Let Db
c(kX) be the category of cohomologically algebraic constructible complexes.

Proposition 10.5. The functor F restricts to a functor F : Db
ic(ΛX)→ Db

c(kX).

Proof. The proof of proposition 6.7 works for this case. �
It is also clear that the results we proved in § 5.4 also hold for Db(ΛX). In addition to these,

we have the following.
Let f : X → Y be a morphism between algebraic varieties. There exist compactifications

X̄, Ȳ such that f admits an extension f : X̄ → Ȳ . Hence, considering the analytic topology,
f extends as a map f : (X̄,DX)→ (Ȳ , DY ). We set

f∗ := i−1
(Ȳ ,DY )

◦ f∗i(X̄,DX)∗ : D
b(ModI(Λ(X̄,DX)))→ Db(ModI(Λ(Ȳ ,DY ))),

f! := i−1
(Ȳ ,DY )

◦ f!i(X̄,DX)! : D
b(ModI(Λ(X̄,DX)))→ Db(ModI(Λ(Ȳ ,DY ))).

(10.1)
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Proposition 10.6. Let f : X → Y be a morphism between algebraic varieties. Then f∗V, f!V ∈
Db
ic(ΛY ) for V ∈ Db

ic(ΛX).

Proof. This can be proved by the same argument used in Proposition 8.14 by using
Proposition 10.10. �

10.3 Algebraic Riemann–Hilbert correspondence
We first recall the following result due to Malgrange.

Theorem 10.7 [Mal04]. If X is a smooth projective variety, analytic holonomic DX -modules
are algebraic.

By using this, we have the following algebraic version of irregular Riemann–Hilbert
correspondence.

Theorem 10.8. There exists an exact equivalence

SolΛX : Db
hol(DX)

∼=−→ Db
ic(ΛX). (10.2)

Proof. If X is projective, there is nothing to prove by Theorem 10.7. We suppose X is quasi-
projective and X̄ be a compactification of X. For M∈ Db

hol(DX), we have
∫
iX
M∈ Db

hol(DX̄)
where iX : X ↪→ X̄ is the inclusion. Then we get a functor

SolΛX := i−1
(X̄,DX)

◦ SolΛX̄an ◦ (·)an ◦
∫
iX

: Db
hol(DX)→ Db

ic(ΛX̄an)

= Db
ic(ΛX̄)

i−1
(X̄,DX )−−−−−→ Db

ic(Λ(X̄,DX)). (10.3)

The middle equality is Chow’s lemma. Note that the first three compositions are fully faithful.
Hence, to prove the full faithfulness of SolΛX , it suffices to show that the image of SolΛX̄an ◦

(·)an ◦ ∫
iX

is zero under i−1
DX

by Lemma 5.40. Let S be a stratification of DX such that each

stratum is smooth. For S ∈ S, we have i†S(
∫
iX
M) � 0 where iS : S ↪→ X̄ is the inclusion. Hence

we have

i−1
S SolΛX(M) � i−1

S ◦ SolΛX̄an ◦ (·)an ◦
∫
iX

M

� SolΛX̄an ◦ i†S ◦
( ∫

iX

M
)an

� SolΛX̄an ◦
(
i†S ◦

∫
iX

M
)an

� 0. (10.4)

Hence we can conclude that i−1
DX

SolΛX̄an(M) � 0. Then the full faithfulness of SolΛX is evident
from Lemma 5.40.

To see the essential surjectivity, let us take an object V ∈ Db
ic(ΛX) and consider it as

an object of Db
ic(ΛX̄) = Db

ic(ΛX̄an). Then we have M := (SolΛX̄an)−1(V) ∈ Db
hol(DX̄an). We set

Malg := ((·)an)−1(M). Take a stratification S of DX with smooth strata. To prove Malg is iso-
morphic to

∫
iX
N for N ∈ Db

hol(DX), it is enough to see i†SMalg � 0 for each S ∈ S. Note that
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i†SMalg � 0 is equivalent to (i†SMalg)an � 0. The latter can be shown as follows:

SolΛSan(i†SMalg)an � SolΛSan(i†SanM)

� i−1
S SolΛX̄an(M)

� i−1
S V � 0. (10.5)

This completes the proof. �
For the next subsection, we also prepare the following: we set DRΛ

X := D(X̄,DX) ◦ SolΛX , which
is an equivalence.

Lemma 10.9. There exist isomorphisms

DRΛ
X � i−1

(X̄,DX)
◦DRΛ

X̄an ◦ (·)an ◦
∫
iX

� i−1
(X̄,DX)

◦DRΛ
X̄an ◦ (·)an ◦

∫
iX !

. (10.6)

Proof. We have

DRΛ
X � D(X̄,DX) ◦ i−1

(X̄,DX)
◦ SolΛX̄an ◦ (·)an ◦

∫
iX

� i−1
(X̄,DX)

◦DX̄ ◦ SolΛX̄an ◦ (·)an ◦
∫
iX

= i−1
(X̄,DX)

◦DRΛ
X̄an ◦ (·)an ◦

∫
iX

. (10.7)

�

10.4 Comparisons of the functors
Let X,Y be smooth quasi-projective varieties and f : X → Y be a morphism. Recall that
holonomicity of algebraic D-modules is preserved by the six operations.

Proposition 10.10. There exist canonical isomorphisms:

f∗ ◦DRΛ
X � DRΛ

Y ◦
∫
f
, (10.8)

f! ◦DRΛ
X � DRΛ

Y ◦
∫
f !
, (10.9)

f−1 ◦DRΛ
Y � DRΛ

X ◦ f�, (10.10)

f ! ◦DRΛ
Y � DRΛ

X ◦ f †. (10.11)

Proof. The third and fourth lines follow from the analytic cases. To prove the first and second
lines, let us take a projective compactification iX : X ↪→ X̄ and iY : Y ↪→ Ȳ and a map f̄ : X̄ → Ȳ
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extending f . We have

DRΛ
Y ◦

∫
f !
� i−1

(Ȳ ,DY )
◦DRΛ

Ȳ an ◦ (·)an ◦
∫
iY !
◦

∫
f !

� i−1
(Ȳ ,DY )

◦DRΛ
Ȳ an ◦ (·)an ◦

∫
f̄
◦

∫
iX !

� i−1
(Ȳ ,DY )

◦ f̄! ◦DRΛ
Ȳ an ◦ (·)an ◦

∫
iX !

� f! ◦ i−1
(X̄,DX)

◦DRΛ
X̄an ◦ (·)an ◦

∫
iX !

� f! ◦DRΛ
X . (10.12)

By using Lemma 10.9, one can prove the first formula in the same way. �

10.5 Algebraic irregular perverse sheaves
In the same way as in Definition 9.1, we define (pD�0

ic (ΛX), pD�0
ic (ΛX)) on Db

ic(ΛX).

Proposition 10.11. The following hold.

(i) The pair (pD�0
ic (ΛX), pD�0

ic (ΛX)) forms a t-structure on Db
ic(ΛX).

(ii) The heart Pervic(kX) of the t-structure (pD�0
ic (ΛX), pD�0

ic (ΛX)) is equivalent to Modhol(DX)
under the Riemann–Hilbert correspondence (Theorem 10.8).

(iii) The heart Pervic(kX) is stable under the Verdier duality. The t-exactness in Proposition
9.10 also holds in this setting without the properness assumption.

Proof. One can prove this in the same way as in the analytic setting except for nonproper setting
of (iii). Let f be a morphism X → Y and a compactification X̄ → Ȳ . Then we have

F ◦ f! := F ◦ f̄! ◦ i(X̄,DX)! � f̄! ◦ iX! ◦ F � f! ◦ F (10.13)

by Lemmas 6.5 and 6.6. This proves the desired statement for f!. The statement for f∗ is obtained
by taking the Verdier dual. �
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ory, Progress in Mathematics, vol. 236 (Birkhäuser, Boston, MA, 2008), translation of 1995
Japanese edition; MR 2357361.

Kas75 M. Kashiwara, On the maximally overdetermined system of linear differential equations. I,
Publ. Res. Inst. Math. Sci. 10 (1975), 563–579; MR 0370665.

Kas84 M. Kashiwara, The Riemann–Hilbert problem for holonomic systems, Publ. Res. Inst. Math.
Sci. 20 (1984), 319–365; MR 743382.

Kas03 M. Kashiwara, D-modules and microlocal calculus, Translations of Mathematical Monographs,
vol. 217 (American Mathematical Society, Providence, RI, 2003), translation of Japanese
original of 2000; MR 1943036.

KS90 M. Kashiwara and P. Schapira, Sheaves on manifolds, Grundlehren der Mathematischen
Wissenschaften, vol. 292 (Springer, Berlin, 1990); MR 1299726 (95g:58222).

KS01 M. Kashiwara and P. Schapira, Ind-sheaves, Astérisque 271 (2001), 1–136; MR 1827714
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