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Abstract

We study finite orbits of non-elementary groups of automorphisms of compact projective
surfaces. We prove that if the surface and the group are defined over a number field k
and the group contains parabolic elements, then the set of finite orbits is not Zariski
dense, except in certain very rigid situations, known as Kummer examples. Related
results are also established when k = C. An application is given to the description of
‘canonical vector heights’ associated to such automorphism groups.
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1. Introduction

1.1 Setting
Let X be a complex projective surface. Denote by Aut(X) its group of automorphisms. The
action of this group on the Néron–Severi group NS(X;Z) (respectively, on the cohomology group
H2(X;Z)) gives a linear representation f �→ f∗ from Aut(X) to GL(NS(X;Z)) (respectively,
GL(H2(X;Z))). By definition, a subgroup Γ of Aut(X) is non-elementary if its image Γ∗ ⊂
GL(NS(X;Z)) (respectively, ⊂ GL(H2(X;Z))) contains a free group of rank ≥ 2; equivalently,
Γ∗ does not contain any abelian subgroup of finite index (see [CD23c, CD23a] for details and
examples).

Our purpose is to study the existence and abundance of finite (or ‘periodic’) orbits under
such non-elementary group actions. Several possible scenarios can be imagined:

(a) a large (that is, dense or Zariski dense) set of finite orbits;
(b) finitely many finite orbits;
(c) no finite orbit at all.

For a cyclic group generated by a single automorphism, the situation is well understood:
in many cases the set of periodic points is large (see [Can14] for an introduction to this topic
and [Xie15] for the case of birational transformations). On the other hand, for non-elementary
groups, we expect the existence of a dense set of periodic points to be a rare phenomenon; this
expectation will be confirmed by our results.
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The only examples we know for situation (a) are given by abelian surfaces and their siblings,
Kummer surfaces. Here, by Kummer surface we mean a smooth surface X which is a (not
necessarily minimal) desingularization of the quotient A/G of an abelian surface A = C2/Λ
by a finite group G ⊂ Aut(A). If G is generated by the involution (x, y) �→ (−x,−y) of A, we
find the classical Kummer surfaces and their blow-ups (see [BHPV04]). Given a subgroup Γ ⊂
Aut(X), we say that the pair (X,Γ) is a Kummer group if X is a Kummer surface and Γ comes
from a subgroup of Aut(A) which normalizes G; precise definitions are given in § 5.7. If Γ is a
group of automorphisms of an abelian surface A fixing the origin 0 ∈ A, then all torsion points
are Γ-periodic. This implies that most Kummer groups have a dense set of finite orbits (see
Proposition 4.5).

1.2 Main results
We first illustrate property (c) in the family of Wehler surfaces, that is for smooth surfaces
X ⊂ P

1 × P
1 × P

1 defined by a polynomial equation of degree (2, 2, 2). Such an X is a K3
surface. Generically, the three projections X → P

1 × P
1 are 2-to-1 ramified covers and Aut(X)

is generated by the corresponding involutions. These examples occupy a central position in the
dynamical study of surface automorphisms, both from the ergodic and arithmetic points of view
(see, e.g., [Sil91, Kaw06, McM02]).

Theorem A. For a very general Wehler surface X, every orbit under Aut(X) is Zariski dense.
In particular there is no finite orbit under the action of Aut(X).

Unfortunately, the proof of this theorem has an obvious limitation: it does not single out any
explicit example defined over Q satisfying property (c).

Our main theorem concerns property (b). To state it, recall that there are three types of
automorphisms, characterized by the behavior of the linear endomorphism f∗ (see [Can14]).
If f∗ has finite order, then f is elliptic. It is parabolic if f∗ has infinite order, but none of its
eigenvalues has modulus >1; it is loxodromic if some eigenvalue λ(f) of f∗ has modulus |λ(f)| > 1
(in that case λ(f) is unique and λ(f) ∈ (1,+∞)). A non-elementary group of automorphisms
contains a non-abelian free group all of whose non-trivial elements are loxodromic, and a group
containing both loxodromic and parabolic elements is automatically non-elementary.

Theorem B. Let X be a smooth projective surface, defined over some number field k. Let
Γ be a subgroup of Aut(X), also defined over k, containing both parabolic and loxodromic
automorphisms. If the set of finite orbits of Γ is Zariski dense in X, then (X,Γ) is a Kummer
group.

In the setting of the theorem, and more generally when Γ is any group of automorphisms of
a complex projective surface X containing a loxodromic element, there is a maximal Γ-invariant
curve DΓ; more precisely, either Γ does not preserve any curve, or there exists a unique, maximal,
Γ-invariant, Zariski-closed subset of pure dimension 1. This curve DΓ can be contracted to yield
a (singular) complex analytic surface X0 and a Γ-equivariant birational morphism

π0 : X → X0. (1.1)

Moreover, when Γ contains a parabolic automorphism, X0 is projective (see Proposition 3.9).
Another important result towards Theorem B states that any non-elementary subgroup Γ ⊂
Aut(X) contains a loxodromic element whose maximal invariant curve is equal to DΓ (see
Theorem D in § 3). With this notation, Theorem B says that property (b) holds on X0 if (X,Γ)
is defined over a number field and is not a Kummer group.
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Let us stress that even if X and Γ are defined over k, Theorem B deals with orbits of
Γ in X(C). This is different from the results of [Sil91, Kaw08], in which a finiteness theorem
is obtained for periodic orbits of loxodromic automorphisms in X(k′), where k′ is some fixed
number field containing k (it ultimately relies on Northcott’s finiteness theorem).

Under the assumptions of Theorem B, we obtain the following corollaries (see Corollaries 6.1,
and 6.2 and Proposition 4.5 for details).

– If Γ does not preserve any algebraic curve and X is not an abelian surface, then Γ admits at
most finitely many finite orbits.

– If C is an irreducible curve containing infinitely many Γ-periodic points, then either C is
Γ-periodic or (X,Γ) is a Kummer group and C comes from a translate of an abelian subvariety.
If C has genus ≥2, it contains at most finitely many Γ-periodic points.

– If Γ has a Zariski-dense set of finite orbits, then its finite orbits are dense in X(C) for
the Euclidean topology; furthermore, if f1 and f2 are two loxodromic automorphisms in Γ,
their periodic points coincide, except for at most finitely many of them which are located on
Γ-invariant curves.

As we shall see in Remark 6.6, the last statement provides a partial answer to a question of
Kawaguchi.

1.3 Proof strategy and extension to complex coefficients
Let us say a few words about the proof of Theorem B (a more detailed outline is given
in § 5.1). Given two ‘typical’ loxodromic elements f, g in Γ, intuition suggests that Per(f) ∩
Per(g) cannot be Zariski dense unless some ‘special’ phenomenon happens. This situation has
been referred to as an unlikely intersection problem in the algebraic dynamics literature
(see, e.g., [Zan12, § 3.4]). Previous work on this topic suggests to handle this problem using
methods from arithmetic geometry (see, e.g., [BD11, DF17]). In this respect a key idea would
be to use arithmetic equidistribution (see [Yua08, BB10]) to derive an equality μf = μg between
the measures of maximal entropy of f and g. Unfortunately we do not know how to infer rigidity
results directly from this equality, so the proof of Theorem B is not based on this sole argument.
To reach a conclusion, we make use of the dynamics of the whole group Γ, in particular of the
classification of Γ-invariant measures (see [Can01b, CD23b]), together with the classification of
loxodromic automorphisms f whose measure of maximal entropy μf is absolutely continuous
with respect to the Lebesgue measure (see [CD20, FT21]). The existence of parabolic elements
in Γ is required at three important stages, including the arithmetic step; in particular, we are
not able to prove Theorem B without assuming that Γ contains parabolic elements (see § 6.3 for
a more precise discussion).

Even if arithmetic methods lie at the core of the proof of Theorem B, it is natural to expect
that the assumption that X and Γ be defined over a number field is superfluous. We are indeed
able to get rid of it when Γ has no invariant curve.

Theorem C. Let X be a compact Kähler surface which is not a torus. Let Γ be a subgroup of
Aut(X) which contains a parabolic element and does not preserve any algebraic curve. Then Γ
admits only finitely many periodic points.

The proof of Theorem C is based on specialization arguments, inspired notably by the
approach of [DF17] (see § 7). It applies, for instance, to the action of Γ = Aut(X) on any unn-
odal Enriques surface X, and to the foldings of euclidean pentagons with generic side lengths
(see [CD23a] for details on these examples).
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1.4 Canonical vector heights
Theorem B will be applied to answer a question of Baragar on the existence of certain canonical
heights (see [Bar04, BvL07, Kaw13]).

Let X be a projective surface, defined over a number field k. Denote by Pic(X) the Picard
group of XQ. The Weil height machine provides, for every line bundle L on X, a height
function hL : X(Q) → R, defined up to a bounded error O(1). This construction is additive,
haL+bL′ = ahL + bhL′ +O(1) for all pairs (L,L′) ∈ Pic(X)2 and all coefficients (a, b) ∈ Z2. When
L = OX(1) for some embedding X ⊂ P

N
k , then hL coincides with the usual logarithmic Weil

height.
If f is a regular endomorphism of X defined over k and L is an ample line bundle such that

f∗L = L⊗d for some integer d > 1, then hL ◦ f = dhL +O(1). Tate’s renormalization trick

ĥL(x) := lim
n→+∞

1
dn
hL(fn(x)) (1.2)

provides a canonical height for f and L, that is, a function ĥL : X(Q) → R+ such that ĥL =
hL +O(1) and ĥL ◦ f = dĥL exactly, with no error term. This construction was extended to
loxodromic automorphisms of surfaces by Silverman, Call, and Kawaguchi (see [Sil91, CS93,
Kaw08]): in this case one obtains a pair of canonical heights ĥ±f satisfying ĥ±f ◦ f±1 = λ(f)±ĥ±f .
(Here ĥ+

f and ĥ−f are Weil heights associated to R-divisors.)
If Γ is an infinite subgroup of Aut(X), also defined over k, it is natural to ask whether

a Γ-equivariant family of heights can be constructed. Specifically, one looks for a family
of representatives ĥL of the Weil height functions, i.e. ĥL = hL +O(1) for every L in
Pic(X;R) := Pic(X) ⊗Z R, depending linearly on L, and satisfying the exact relation

ĥL(f(x)) = ĥf∗L(x) (∀x ∈ X(Q)) (1.3)

for every pair (f, L) ∈ Γ × Pic(X;R) (see § 8 for details). A prototypical example is given by
the Néron–Tate height, when Γ is the group of automorphisms of an abelian surface preserving
the origin. Such objects were named canonical vector heights1 by Baragar in [Bar03]. He proved
their existence when X is a K3 surface with Picard number 2, in which case Aut(X) is virtually
cyclic. He also gave evidence for their non-existence on certain Wehler surfaces (see [BvL07]).
In [Kaw13] Kawaguchi obtained a complete proof of this non-existence for an explicit family of
Wehler surfaces; his argument relies on the study of Γ-periodic orbits. Extending Kawaguchi’s
methods and using Theorem B, we completely solve this existence problem for groups with
parabolic elements: let X be a smooth projective surface and Γ be a non-elementary subgroup of
Aut(X) containing parabolic elements, both defined over a number field k; if (X,Γ) possesses a
canonical vector height, then X is an abelian surface and Γ has a finite orbit (see Theorem E in
§ 8). The last assertion implies that, after conjugation by a translation, a finite index subgroup
of Γ preserves the neutral element of the abelian surface X, in particular the Néron–Tate height
provides a canonical vector height; we explain how all possible canonical vector heights are
derived from the Néron–Tate height (see § 8.4).

1.5 Stationary measures
Another application, which was our primary source of motivation for this paper, concerns the
classification of invariant and stationary measures. For simplicity, we suppose in this section, as

1 The name ‘vector height’ comes from the following viewpoint. Assume Pic(X;R) = NS(X;R), and fix a basis
Li of Pic(X;R). For x in X(Q), consider the vector (hLi(x)) ∈ Rρ, where ρ = dimR Pic(X;R). Property (1.3)
can be phrased in terms of these vectors, hence, the terminology.
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in Theorem C, that X is not abelian, Γ contains both loxodromic and parabolic elements, and
Γ does not preserve any algebraic curve.

With the classification and finiteness theorems for invariant Zariski-diffuse measures obtained
in [CD23b], Theorem C implies that the set of Γ-invariant probability measures is a finite
dimensional simplex, whose extremal points are given by:

– uniform counting measures on the finite orbits of Γ;
– measures μ for which there is a Γ-invariant totally real (possibly singular) surface Σ such that

Supp(μ) = Σ and μ is absolutely continuous with respect to any area form on Σ;
– measures μ such that Supp(μ) = X and μ is absolutely continuous with respect to any volume

form on X.

Note that some or all of these categories may be empty.
Now assume furthermore that X is a K3 or Enriques surface, that X and Γ are defined over

R, and consider the restriction of the action of Γ on the real part X(R) of X, which we assume to
be non-empty. Fix a probability measure ν on Γ, whose support is a finite set generating Γ. Then,
applying the results of [CD23c], this yields a classification and finiteness theorem for ν-stationary
measures on the real locus: the only ν-stationary measures on X(R) are convex combinations of
the natural area forms of the components of X(R), together with finitely many finite orbits.

1.6 Related recent results
Let us discuss a few related works which appeared after this work (and [CD23c]) were released.

Theorem A plays an important role in our more recent work [CD22], as it leads to global
hyperbolicity properties of the dynamics on an open and dense set of Wehler surfaces, for the
euclidean topology.

In [FT23], Filip and Tosatti use a similar blend of dynamics, analysis, and diophantine
geometry to construct canonical currents and heights on some K3 surfaces X; as for generic
Wehler surfaces, they assume that Aut(X) induces a lattice in the group of isometries of NS(X;Z)
and that the genus 1 fibrations on X have no reducible fiber.

A recent paper of Corvaja, Tsimerman, and Zannier [PT23] studies ‘finite orbits’ of the
group generated by a pair (g, h) of parabolic automorphisms, with completely different methods.
Their results are stronger than ours in some respects, since they conclude that there are only
finitely many points x for which {gnhm(x);n,m ∈ Z} is finite; thus, only a small part of the
〈g, h〉-orbit is assumed to be finite. But their assumptions are stronger (for instance, they
exclude isotrivial fibrations); in particular, their technique does not lead to a complete clas-
sification of the situations where finite orbits are Zariski dense, as in Theorem B. A hope would
be to combine our results with [PT23] to classify all pairs (g, h) of parabolic automorphisms with
a Zariski-dense set of common periodic points.

Finite Aut(X)-orbits on Wehler surfaces (over arbitrary fields) are studied by Fuchs, Litman,
Silverman, and Tran in [FLST23]. They study the structure of orbits over prime fields, and then
construct complex examples with finite orbits of size as large as 288.

1.7 Organization of the paper
We prove Theorem A in § 2, which is independent of the rest of the paper. Section 3 stud-
ies invariant curves for loxodromic automorphisms and non-elementary groups; we obtain an
effective bound for the degree of a curve invariant under a loxodromic automorphism (see
Proposition 3.7) and prove Theorem D. In § 4 we briefly discuss the case of tori and review the
Kummer construction. The core of the paper is § 5, in which we develop the arithmetic method
outlined above and establish Theorem B. Section 6 is devoted to consequences of Theorem B, and
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related comments. We prove Theorem C in § 7. Finally, canonical vector heights are discussed
in § 8, where we solve Baragar’s problem. Some open problems and possible extensions of our
results are discussed in §§ 6.3 and 7.4.

2. Very general Wehler surfaces

Consider the family of Wehler surfaces described in § 3 of [CD23c] and [Bar04, Can01a, Kaw13,
McM02]. In this section we prove Theorem A. For convenience, let us recall the statement of the
theorem.

Theorem 2.1. If X ⊂ P
1 × P

1 × P
1 is a very general Wehler surface, then Aut(X) does not

preserve any non-empty, proper, and Zariski-closed subset of X.

Here, very general means that this property holds in the complement of a set of countably
many hypersurfaces in the space of surfaces of degree (2, 2, 2) in P

1 × P
1 × P

1. The proof fol-
lows from an elementary but tedious parameter counting argument. As shown in § 2.5, such a
statement fails if Aut(X) is replaced by a thin non-elementary subgroup.

2.1 Notation and preliminaries
We use the notation of [CD23c, § 3]: M = P

1 × P
1 × P

1, with affine coordinates (x, y, z) (denoted
(x1, x2, x3) in [CD23c]), π1, π2, and π3 are the projections on the first, second, and third factors,
and πij is the projection (πi, πj) onto P

1 × P
1. Then Li = π∗i (O(1)), L = L2

1 ⊗ L2
2 ⊗ L2

3, and
X ⊂M is a member of the linear system |L|. In the affine coordinates (x, y, z), X is defined by
a polynomial equation of degree (2, 2, 2), which we write

P (x, y, z) = A222x
2y2z2 +A221x

2y2z + · · · +A100x+A010y +A001z +A000. (2.1)

Thus, H0(M,L) is of dimension 27 and since the equation {P = 0} is defined up to multiplication
by a complex scalar, the family of Wehler surfaces X is 26-dimensional. Modulo the action of
G = PGL(2,C)3 they form an irreducible family of dimension 17.

It was shown in [CD23c, § 3] that there exists a Zariski-open set W0 ⊂ |L| of surfaces X ∈ |L|
such that:

(i) X is a smooth K3 surface;
(ii) each of the three projections (πij)X : X → P

1 × P
1 is a finite map, that is,X does not contain

any fiber of πij : M → P
1 × P

1.

From now on, we suppose that X belongs to W0. Let i, j, and k be three indices with
{i, j, k} = {1, 2, 3}. Denote by σi : X → X the involution of X that permutes the points in the
fibers of the 2-to-1 branched covering (πjk)X : X → P

1 × P
1. By [CD23c, § 3], the σi generate

a non-elementary subgroup of Aut(X). This subgroup is isomorphic to Z/2Z � Z/2Z � Z/2Z, it
preserves the subspace of NS(X;Z) generated by the Chern classes of the Li, and its action on
this subspace is given by explicit matrices. Then fij = σi ◦ σj is a parabolic automorphism of
X, preserving the genus 1 fibration πk : X → P

1. Moreover, if X is very general the Li generate
NS(X;Z).

2.2 Invariant curves
Proposition 2.2. If X ∈W0, Aut(X) does not preserve any algebraic curve.

This follows from the previous paragraph and the following more precise result.

Lemma 2.3. Let X be a smooth Wehler surface. Assume that the three involutions σi induce a
faithful action of the group Z/2Z � Z/2Z � Z/2Z. Then the group generated by the σi does not
preserve any curve.
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Proof. Assume that C is an invariant curve. Since no curve can be contained simultaneously
in fibers of π1, π2, and π3, without loss of generality, we may suppose that π1 : C → P

1(C) is
dominant. Then the automorphism f23 = σ2 ◦ σ3 has finite order: indeed, on a general fiber F of
π1, it acts as a translation that preserves the non-empty finite set F ∩ C. This contradicts the
fact that f23 is parabolic and finishes the proof. �

Thus, to prove Theorem 2.1, we are left to prove the non-existence of periodic orbits, which
is the purpose of the following paragraphs.

2.3 Elliptic curves
Here we study (2, 2) curves in dimension 2. We keep notation as in § 2.1. Let us consider the
line bundles Li = π∗i (O(1)) on P

1 × P
1 and set L = L2

1 ⊗ L2
2. Fix (affine) coordinates (x, y) on

P
1 × P

1, with x and y in C ∪ {∞}. A curve C ⊂ P
1 × P

1 in the linear system |L| is given by an
equation of degree (2, 2) in (x, y). Assume that C contains the points (0, 0), (∞, 0), and (0,∞)
and that it is smooth at the origin, with a tangent line given by x+ y = 0. Then its equation
reduces to the form

αx2y2 + βx2y + γxy2 + δxy + ε(x+ y) = 0 (2.2)

for some complex numbers α, β, γ, δ, and ε, with ε �= 0. Denote this curve by C(α,β,γ,δ,ε). For a
general choice of these parameters, C is a smooth curve of genus 1. We will need the following
more precise result.

Lemma 2.4. Fix (β, γ, δ, ε) with ε �= 0. Then for general α, C(α,β,γ,δ,ε) is smooth.

Proof. An explicit calculation shows that the points of C on {∞} × P
1 and P

1 × {∞} are smooth
unless α = β = γ = 0. Thus, for α �= 0, C has no singular point at infinity. Now, viewing (2.2)
as a quadratic equation in x depending on the variable y, we can consider its discriminant
Δx = Δx(y); it is a polynomial of degree 4 in y that detects fibers C × {y} intersecting C at a
single point (for those values y for which C ∩ C × {y} is contained in C2, that is, the polynomial
in x is of degree 2). It is easy to check that if (x, y) is a singular point of C, then y must be a
multiple root of Δx. Hence, if y �→ Δx(y) only has simple roots, C is smooth in C2. Thus, it is
enough to check that if (β, γ, δ, ε) is an arbitrary 4-tuple such that ε �= 0, Δx has only simple
roots for general α. But Δx(y) = ay4 + by3 + cy2 + dy + e, where only b depends on α, with
b(α) = 2γδ − 4αε, and e = ε2 �= 0. Now the discriminant of Δx, as a degree 4 polynomial in y,
is a polynomial expression in (a, b, c, d, e), and as a polynomial in b it has a unique leading term
27b4e2. Thus, (β, γ, δ, ε) being fixed, with ε �= 0, this discriminant depends non-trivially on α; for
a general α, this discriminant is not zero, thus Δx has four distinct roots, so that C is smooth,
as was to be proved. �

There are two involutions σ1 and σ2 on C, respectively, permuting the points in the fibers
of the projections (π2)|C : C → P

1 and (π1)|C : C → P
1; that is, σi changes the ith coordinate,

while keeping the others unchanged. The composition f = σ1 ◦ σ2 is a translation on C mapping
(0,∞) to (∞, 0); in particular, f is not the identity.

Lemma 2.5. Fix (β, γ, δ, ε) with ε �= 0 and assume that the curve C(0,β,γ,δ,ε) is smooth. Then
the dynamics of the translation f on C(α,β,γ,δ,ε) varies non-trivially with α: it is periodic for a
countable dense set of α’s, and non-periodic for the other parameters.

Proof. For α in the complement of a finite set, Cα := C(α,β,γ,δ,ε) is a smooth curve of genus 1, and
f acts as a translation on Cα. Let us analyze the orbit of (0,∞). Denote by u, v ∈ C ∪ {∞} the
complex numbers such that σ2(∞, 0) = (∞, v) and (u, v) = σ1(∞, v) = f2(0,∞). The translation
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f is periodic of period 2 if and only if (u, v) = (0,∞), if and only if (∞,∞) is a point of Cα,
if and only if α = 0. Hence, f is periodic of period 2 on C0 but after perturbation it is not of
period 2 anymore. For small α we can write C = C/Λα for some lattice Λα = Z + Zτ(Cα) and
f(z) = z + t(Cα), with t(Cα) and τ(Cα) depending holomorphically on the parameters α. If we
further decompose t(Cα) = a(Cα) + b(Cα)τ(Cα), where a and b are two real analytic functions
with values in R, then both a and b must be non-constant. Indeed if one of them were constant,
then the other would be a non-constant real holomorphic function, which is impossible (see
[Can01b, Proposition 2.2] for a similar argument). The result follows. �

2.4 Proof of Theorem 2.1
2.4.1 From finite orbits to fixed points. Let us form the universal family X ⊂W0 ×M , where

W0 ⊂ |L| is the open set defined in § 2.1: the fiber of the projection X →W0 above X ∈W0 is
precisely the surface X ⊂M . The group Z/2Z � Z/2Z � Z/2Z acts by automorphisms on X ,
preserving each fiber of X →W0: the generators of the first, second, and third Z/2Z factors
give rise to involutions σ̃1, σ̃2, and σ̃3 which, when restricted to a fiber X, correspond to the
automorphisms σi ∈ Aut(X). These involutions σ̃i extend to birational involutions of the Zariski
closure X ⊂ |L| ×M .

Remark 2.6. If X ∈ |L| is smooth and contains a fiber V = {(x0, y0)} × P
1 ⊂ X of π12, the curve

V is contained in the indeterminacy locus of σ̃3 (one may consult [CO15] for further results: see
Theorem 3.3 and the proof of its third and fourth assertions).

Consider the group Z/2Z � Z/2Z � Z/2Z acting on X . Its restriction to the fiber X gives a
subgroup Γ of Aut(X). Let d be a positive integer. There are only finitely many homomorphisms
from Z/2Z � Z/2Z � Z/2Z to groups of order ≤ d!, and the intersection of the kernels of these
homomorphisms is a normal subgroup of finite index. Denote by Γd the corresponding subgroup
of Aut(X). If Γ has an orbit of cardinality ≤ d on some surface X, then this orbit is fixed
pointwise by Γd. Let us introduce the subvariety

Zd = {(X,x); x ∈ X and ∀f ∈ Γd, f(x) = x} ⊂ X . (2.3)

Since X →W0 is proper, from this discussion we obtain the following.

Lemma 2.7. The following properties are equivalent:

(1) for a very general surface X ∈ |L|, every orbit of Γ in X is infinite;
(2) for every d ≥ 1, the projection Zd →W0 is not surjective;

2.4.2 Preparation. According to Lemma 2.7, to prove Theorem 2.1 it suffices to show that
the projection of Zd ⊂ X onto W0 is a proper subset for every d ≥ 1. Thus, let us assume that
there is an integer d for which Zd surjects onto W0 and seek for a contradiction. Pick a small
open subset U ⊂W0 for the Euclidean topology, over which one can choose a holomorphic section
s : X �→ sX of X →W0 such that sX is fixed by Γd; equivalently, the image of s is contained
in Zd.

The group G = PGL2(C) × PGL2(C) × PGL2(C) acts on M and on |L|, preserving W0.
Recall that modulo the action of this group, the space of Wehler surfaces is irreducible and
of dimension 17.

2.4.3 Case 1. Let us first assume that we can find U such that sX is not fixed by σ̃1,
σ̃2, nor σ̃3. As in Lemma 2.4 this implies that for each pair of indices i �= j, the fiber C of
(πi)X : X → P

1 through sX is smooth near sX and sX ∈ C is not a ramification point of the
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projection (πj)|C : C → P
1. As in § 2.1, fix coordinates (x, y, z) on M = (P1)3 with x, y, and z in

C ∪ {∞}. Modulo the action of G, we may assume that for every X in U :

(a) the point sX is the point (0, 0, 0) in (P1)3;
(b) X contains (∞, 0, 0), (0,∞, 0), and (0, 0,∞);
(c) the tangent plane to X at the origin is given by the equation x+ y + z = 0;
(d) the coefficients of x2y2z2 and x, y and z in the equation of X are all equal to the same

complex number.

Note that assumption (a) can be achieved by a single translation, assumption (b) can be
obtained by transformations of the form (x, y, z) �→ (x/(x− α), y/(y − β), z/(z − γ)), assump-
tion (c) is achieved by the action of diagonal maps (note that by our assumption, the tangent
plane to X at the origin sX = (0, 0, 0) cannot be one of the coordinate planes), and then we
obtain assumption (d) by the action of homotheties. After such a conjugation, the equation of
X is of the form

Ax2y2z2 +Bx2y2z +B′x2yz2 +B′′xy2z2 + Cx2yz + C ′xy2z + C ′′xyz2

+Dx2y2 +D′x2z2 +D′′y2z2 + Exyz

+ Fx2y + F ′x2z + F ′′xy2 + F ′′′y2z + F ivxz2 + F vyz2

+Gxy +G′xz +G′′yz +A(x+ y + z) = 0. (2.4)

Since this equation is defined up to multiplication by an element of C∗, we are left with 19
parameters. The automorphism f12 = σ1 ◦ σ2 preserves the genus 1 fibration (π3)|X : X → P

1.
The fiber of (π3)|X through (0, 0, 0) is a curve C ⊂ P

1 × P
1 given by the equation

Dx2y2 + Fx2y + F ′′xy2 +Gxy +A(x+ y) = 0. (2.5)

Two cases need to be considered, depending on the smoothness of this curve.

– If this curve is singular, by Lemma 2.4 the coefficients in (2.5) satisfy a non-trivial relation of
the form P3(D,F, F ′′, G,A) = 0.

– If it is smooth, consider an iterate fm
12 of f12 in Γd, with 1 ≤ m ≤ d!; then fm

12 is a translation
of the genus 1 curve C that fixes sX , so that it fixes C pointwise. From Lemma 2.5, the
coefficients in (2.5) satisfy a relation of the form Q3(D,F, F ′′, G,A) = 0.

In both cases we get a relation of the form R3(D,F, F ′′, G,A) = 0 (with R3 = P3 or Q3)
that depends non-trivially on the first factor. Similarly, looking at the dynamics of f23 = σ2 ◦ σ3

and f31 = σ3 ◦ σ1, we obtain two further relations of the form R1(D′′, F ′′, F v, G′′, A) = 0 and
R2(D′, F ′, F iv, G′, A) = 0.

We claim that the subset defined by these 3 constraints is of codimension 3: indeed, if we
look at the subvariety cut out by the equations Ri = 0, i = 1, 2, 3 and slice it by a 3-plane corre-
sponding to the coordinates D, D′, and D′′, then by Lemmas 2.4 and 2.5 and the independence
of variables, this slice is reduced to a point. This shows that the image of the section X �→ sX

has dimension ≤16, which contradicts the fact that W0/G is of pure dimension 17. Thus, our
hypothesis on Zd cannot be true and Case 1 does not hold.

2.4.4 Case 2. If Case 1 does not hold, every point (X, (x, y, z)) of Zd has the property:
(x, y, z) ∈ X is a ramification point for at least one of the three projections (πi)|X . Equivalently,
every point of the finite orbit F = Γd(sX) ⊂ X is fixed by at least one of the three involutions σi.
This case is simpler, since a direct count of parameters will lead to a contradiction.
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• If a point of F were a ramification point of each (πi)|X , this point would be a singularity
of X, and X would not be in W0. Thus, each point of F is a ramification point for at least one
and at most 2 of the projections.

• Now, assume that every point of F is a ramification point for exactly 2 of the projections.
Choose a local section sX of Zd above a small open set U ⊂W0 (for the Euclidean topology), as
in § 2.4.3. Permuting the coordinates and using a translation in G, we assume that sX = (0, 0, 0)
and sX is fixed by σ2 and σ3. After this normalization, with notation as in (2.1), we have
A010 = A001 = A000 = 0. Let s′X = σ1(sX); this point is not equal to sX because otherwise X
would be singular at sX . Thus, we may use a transformation of the form x �→ x/(x− α) in G
to assume that s′X = (∞, 0, 0) (i.e. A200 = 0). Now by our assumption, this second point must
be fixed by σ2 and σ3, which imposes two more constraints (A201 = A210 = 0). Now, consider
the curve C1 ⊂ X defined by the equation x = 0. Using elements of G acting on y and z by
y �→ y/(y − β) and z �→ z/(z − γ), we may assume that (0,∞,∞) is on C1 and is a ramification
point for (π2)|C1

. With such a choice, the coefficients of y2z2 and y2z vanish. At this stage we
did not use the diagonal action of (C∗)3, which stabilizes (0, 0, 0), (∞, 0, 0), and (0,∞,∞). With
this we can impose for instance the same non-zero coefficients for the terms xy, yz, and zx, so
we end up with 17 coefficients, hence at most 16 free parameters. Again this contradicts the fact
that dim(W0) = 17.

• Now, assume that one of the points of the finite orbit F is fixed by σ3 but not by σ1 and σ2.
The analysis is similar to that of the previous case. We may choose this point to be sX , and
using the groupG, we can arrange that sX = (0, 0, 0), σ1(sX) = (∞, 0, 0), and σ2(sX) = (0,∞, 0);
with the notation from (2.1), this means A000 = A200 = A020 = 0. In addition A001 = 0 because
(0, 0, 0) is fixed by σ3. By our hypothesis, (∞, 0, 0) is fixed by σ2 or σ3 (or both). This implies that
at least one of A210 or A201 vanishes. Likewise A120A021 = 0. Now consider the curve C2 ⊂ X
given by y = 0. Given the constraints already listed, the equation of C2 can be written as

αx2z2 + βx2z + γxz2 + δxz + εz2 + ιx = 0. (2.6)

There are 4 ramification points for (π1)|C2
, counting with multiplicities, and none of them satisfies

z = 0. Thus, using z �→ z/(z − γ) and x→ λx we may put one of them at (1, 0,∞). This imposes
α+ γ + ε = 0 and β + δ = 0.

Finally, we may still use the subgroup {Id} × C∗ × C∗ ⊂ G, which fixes the four points
(0, 0, 0), (∞, 0, 0), (0,∞, 0), and (1, 0,∞), to assume that the non-zero coefficients in front of yz,
xz, and z2 are equal. In conclusion, under our assumption we have found at least 10 independent
linear constraints on the coefficients of the Wehler surface so again at most 16 free parameters
remain.

Thus, in all cases we get a contradiction, and the proof of Theorem 2.1 is complete.

2.5 Examples
2.5.1 Consider the subgroup H of Z/2Z � Z/2Z � Z/2Z generated by fm

23 and fm
31, for some

large positive integer m (as above, f23 = σ2 ◦ σ3, f31 = σ3 ◦ σ1). The automorphism f23 preserves
the fibers of the projection (π1)|X and its periodic points form a dense set of fibers (see [Can01b,
CD23b] or § 3.1.1 here). The intersection number between a fiber of (π1)|X and a fiber of (π2)|X
is equal to 2. Thus, if m is big enough, fm

23 and fm
31 share a common fixed point (in fact, � cm4

common fixed points, for some c > 0 as m goes to +∞). If X ∈W0, 〈fm
23, f

m
31〉 is non-elementary

because the class c1 ∈ NS(X;Z) of the invariant fibration of f23 is not fixed by f31, and vice versa
(see also Lemma 3.13). Taking a surface X ∈W0 that is defined over Q, we get, in particular,
the following.
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Proposition 2.8. For every integer N ≥ 0, there is a smooth Wehler surface X defined over Q
and a non-elementary subgroup Γ of Aut(XQ) with at least N fixed points.

Remark 2.9. If X ∈W0 and m ≥ 1, the group 〈fm
23, f

m
31〉 has infinite index in Aut(X). Indeed,

the index of 〈(σ2 ◦ σ3)m, (σ3 ◦ σ1)m〉 in Z/2Z � Z/2Z � Z/2Z is infinite.

2.5.2 Let us construct smooth Wehler surfaces for which the subgroup Γ of Aut(X) gener-
ated by the three involutions σi has a finite orbit. Using affine coordinates (x, y, z) for (P1)3, set
V = {(ε1, ε2, ε3); εi ∈ {0,∞} ∀i = 1, 2, 3}. Observe that if V is contained in a Wehler surface
X, then V is an orbit of Γ of size 8. Now, writing the equation of X as in (2.1), V ⊂ X if and
only if Aijk = 0 for all triples (i, j, k) ∈ {0, 2}3. The corresponding linear system has no base
points, except from the points of V . If (A100, A010, A001) �= (0, 0, 0), the surface is smooth at the
base point (0, 0, 0). The smoothness at the other 7 points of V is determined by similar con-
straints on the coefficients Aijk: for instance, the smoothness at the point (∞, 0, 0) is equivalent
to (A210, A201, A100) �= (0, 0, 0). Thus, the theorem of Bertini shows that a general member of
the family of Wehler surfaces containing V is smooth, and the result follows.

3. Non-elementary groups and invariant curves

The main purpose of this section is to establish the following.

Theorem D. Let X be a compact Kähler surface and let Γ be a subgroup of Aut(X) containing
a loxodromic element. Then there exists a loxodromic element f in Γ such that every f -periodic
curve is Γ-periodic.

Along the way, some results of independent interest will be obtained: Proposition 3.7, which
will be used in § 7, gives an effective bound for the degree of a periodic curve under a loxodromic
automorphism; Proposition 3.9 provides a singular model of (X,Γ) without Γ-periodic curves,
and discusses ampleness properties of some line bundles. This model will be crucial for the study
of the dynamical heights in § 5.

3.1 Preliminaries
Let X be a compact Kähler surface. By the Hodge index theorem, the intersection form 〈·|·〉 is
non-degenerate and of signature (1, h1,1(X) − 1) on H1,1(X;R); its isotropic cone is the set of
vectors u ∈ H1,1(X;R) with 〈u|u〉 = 0. Fix a Kähler form κ0 on X, with

∫
X κ0 ∧ κ0 = 1, denote

its class by [κ0], and define the positive cone in H1,1(X;R) to be the set

Pos(X) = {u ∈ H1,1(X;R); 〈u|u〉 > 0 and 〈[κ0]|u〉 > 0}. (3.1)

Equivalently, Pos(X) is the connected component of {u ∈ H1,1(X;R); 〈u|u〉 > 0} containing
Kähler forms; in particular, its definition does not depend on κ0. This cone Pos(X) contains one
of the two connected components, denoted HX , of the hyperboloid {u ∈ H1,1(X;R); 〈u|u〉 = 1};
we can identify HX with its projection P(HX) in the projective space P(H1,1(X;R)), and in
doing so we get HX � P(HX) = P(Pos(X)). Via this identification, the Hilbert metric on HX

coincides with the hyperbolic metric induced by the intersection form (see [CD23c, § 2]), and the
boundary ∂HX is identified to the projection of the isotropic cone in P(H1,1(X;R)).

Forgetting about torsion, H2(X;Z) ∩H1,1(X;R) can be identified with the Néron–Severi
group NS(X;Z); thus, we shall consider NS(X;R) as a subspace of H1,1(X;R).

An automorphism of X has a type (elliptic, parabolic, or loxodromic) according to the type
of its induced action on HX . Given a subgroup Γ ≤ Aut(X), we denote by Γpar (respectively,
Γlox) the set of parabolic (respectively, loxodromic) automorphisms in Γ.
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3.1.1 Parabolic automorphisms. If g is parabolic, it permutes the fibers of a genus-1 fibration
πg : X → Bg, and induces an automorphism g of the curve Bg. The induced automorphism g has
finite order, except maybe when X is a torus C2/Λ (see [CF03, Proposition 3.6]).

If g is the identity, then g preserves each fiber of πg, acting as a translation on each smooth
fiber. If U0 is a disk in Bg that does not contain any critical value of πg, the universal cover
of π−1

g (U0) is holomorphically equivalent to U0 × C, with its fundamental group Z2 acting by
(x, y) ∈ U0 × C �→ (x, y + a+ bτ(x)) for every (a, b) ∈ Z2, where τ : U0 → C is a holomorphic
function taking its values in the upper half plane. In these coordinates g lifts to a diffeo-
morphism g̃(x, y) = (x, y + t(x)) for some holomorphic function t : U0 → C. The mth iterate
gm fixes pointwise a fiber {x} × C/(Z ⊕ Zτ(x)) if and only if mt(x) ∈ Z ⊕ Zτ(x). The union of
such fibers, for all m ≥ 1, form a dense subset of X. This comes from the fact that ‘t varies
independently from τ ’, a property which implies also that the differential of gm at a fixed point
is, except for finitely many fibers, a 2 × 2 upper triangular matrix with ones on the diago-
nal and a non-trivial lower left coefficient. We refer to [Can01b, Can14, CD23b], and to the
proof of Theorem 5.15 for a slightly different viewpoint on this property, using real-analytic
coordinates.

The induced action g∗ on H1,1(X;R) admits a simple description: if F is any fiber of πg,
its class [F ] ∈ H1,1(X;R) is fixed by g∗, the ray R+[F ] is contained in the isotropic cone, and
(1/n2)(gn)∗w converges towards a positive multiple of [F ] for every w ∈ Pos(X). In particular,
the class [F ] is nef. Regarding the induced action on HX , P([F ]) is the unique fixed point of the
parabolic map g∗ on HX ∪ ∂HX (see [Can01b, Can14, CD23b]).

Recall that a linear endomorphism of a vector space is unipotent if all its eigenvalues α ∈ C
are equal to 1; it is virtually unipotent if some of is positive iterates is unipotent. Since the
topological entropy of g vanishes, Lemma 2.6 of [CP21] gives the following.2

Lemma 3.1. Let X be a complex projective surface. If g ∈ Aut(X) is parabolic, then g∗ is
virtually unipotent, both on NS(X;R) and on H2(X;R).

3.1.2 Loxodromic automorphisms. The dynamics of a loxodromic automorphism f is much
richer (see [Can14]). The isolated periodic points of f of period m equidistribute towards a
probability measure μf as m goes to +∞, the topological entropy of f is positive, and μf is the
unique ergodic, f -invariant probability measure of maximal entropy.

We denote by λ(f) the spectral radius of the induced automorphism f∗ on H1,1(X), which is
larger than 1. Then λ(f) and 1/λ(f) are eigenvalues of f∗ with multiplicity 1, with respective nef
eigenvectors θ+

f and θ−f which are isotropic and generate an f∗-invariant plane Πf ⊂ H1,1(X;R)
(see Figure 1). Their projectivizations are the two fixed points on ∂HX of the induced loxodromic
isometry of HX . The remaining eigenvalues have modulus 1. We normalize the eigenvectors θ±f
by imposing

〈θ+
f |[κ0]〉 = 〈θ−f |[κ0]〉 = 1, (3.2)

where κ0 is the Kähler form introduced at the beginning of § 3.1 (recall that 〈[κ0]|[κ0]〉 = 1). We
set mf = 1

2(θ+
f + θ−f ). With such a choice, 〈mf |mf 〉 = 1

2〈θ+
f |θ−f 〉 > 0.

Remark 3.2. Denote by Angκ0
(θ+

f , θ
−
f ) the visual angle between the boundary points P(θ+

f ) and
P(θ−f ), as seen from [κ0] (or P([κ0])). Then

〈mf |mf 〉 =
(
sin

(
1
2Angκ0

(θ+
f , θ

−
f )

))2 = 1
2(1 − cos(Angκ0

(θ+
f , θ

−
f ))), (3.3)

2 This can also be proved directly. For instance, on NS(X;R) this follows from the fact that the intersection form
is negative definite on [F ]⊥/R[F ] and the lattice NS(X;Z) is g∗-invariant.
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Figure 1. Left: a picture of NS(X;R) in case ρ(X) = 3. The highlighted plane is Πf , it inter-
sects the isotropic cone along the lines Rθ+

f and Rθ−f ; the line outside the cone is Π⊥
f , the

central point is [κ0]. If f preserves a curve E, its class lies on Π⊥
f . Right: a projective view

of the same picture, where the two tangent lines are the projectivizations of the planes (θ+
f )⊥

and (θ−f )⊥.

so, in particular, 0 < 〈mf |mf 〉 ≤ 1, and the right-hand inequality is an equality if and
only if mf = [κ0].3 In HX , the geodesic joining P(θ−f ) and P(θ+

f ) is the curve Ax(f)
parametrized by sθ+

f + tθ−f with s ∈ R∗
+ and st = 〈θ+

f |θ−f 〉−1. The projection of [κ0] on Ax(f) is
(
√

2/〈θ+
f |θ−f 〉1/2)mf and, by [BC16, Lemma 6.3], we have

cosh(dH([κ0],Ax(f))) =
√

2
〈θ+

f |θ−f 〉1/2
. (3.4)

3.1.3 Non-elementary subgroups of Aut(X). See [CD23c, § 2.3] for more details about the
results of this paragraph. By definition, a subgroup Γ ⊂ Aut(X) is non-elementary if it acts
on HX as a non-elementary group of isometries or, equivalently, if it contains a non-abelian free
group, all of whose elements f �= id are loxodromic. Such a group Γ ⊂ Aut(X) preserves a unique
subspace ΠΓ ⊂ H1,1(X;R) on which: (i) Γ acts strongly irreducibly and (ii) the intersection form
induces a Minkowski form. Moreover, ΠΓ = ΠΓ0 for any finite index subgroup of Γ.

Each of the following conditions implies that Γ is non-elementary:

– Γ contains a pair of loxodromic elements (f, g) with {θ+
f , θ

−
f } ∩ {θ+

g , θ
−
g } = ∅;

– Γ contains two parabolic elements associated to different fibrations; equivalently, Γ contains
a parabolic and a loxodromic element.

If Aut(X) contains a non-elementary group Γ, then X is automatically projective and ΠΓ

is contained in the Néron–Severi group NS(X;R) (see [CD23a]). If, in addition, Γ contains a
parabolic element, then ΠΓ is defined over Q with respect to the lattice NS(X;Z) (see [CD23c,
Lemma 2.9]).

The limit set Lim(Γ) ⊂ ∂HX is the closure of the set of fixed points of loxodromic elements
in P(ΠΓ), or equivalently the smallest closed invariant subset in ∂HX . The following lemma is
well known (see [Kap01, Lemma 3.24]).

3 This can be obtained from elementary Euclidean geometry in the hyperplane 〈·|[κ0]〉 = 1 by fixing coordinates in
which the quadratic form associated to the intersection product becomes x2

0 − x2
1 − · · · − x2

n and [κ0] = (1, 0, . . . 0).
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Lemma 3.3. If Γ is non-elementary, {(P(θ+
f ),P(θ−f )); f ∈ Γlox} is dense in Lim(Γ)2.

3.2 Periodic curves of loxodromic automorphisms
Fix a loxodromic automorphism f : X → X. Our purpose in this paragraph is to bound the
degree of the periodic curves of f .

Lemma 3.4. Let e be an element of H1,1(X;R) such that e is orthogonal to mf and 〈[κ0]|e〉 = 1.
Then 〈e|e〉 < 0 and

−〈e|e〉 ≥ 〈mf |mf 〉
1 − 〈mf |mf 〉 =

(
tan

(
1
2
Angκ0

(θ+
f , θ

−
f )

))2

.

Note that under the assumption of the lemmamf cannot be equal to [κ0], so 0 < 〈mf |mf 〉 < 1
by Remark 3.2.

Proof. Write mf = [κ0] + v and e = [κ0] + w where v and w are in the orthogonal comple-
ment [κ0]⊥. Then, 〈e|mf 〉 = 0, so 〈v|w〉 = −1, and the Cauchy–Schwarz inequality gives 1 ≤
(−〈v|v〉)(−〈w|w〉) because the intersection form is negative definite on [κ0]⊥. This inequality is
equivalent to 1 ≤ (1 − 〈mf |mf 〉)(1 − 〈e|e〉) and the result follows. �

If C ⊂ X is a curve, define its degree (with respect to κ0) to be

deg(C) =
∫

C
κ0 = 〈[C]|[κ0]〉, (3.5)

and similarly define the degree of an automorphism g ∈ Aut(X) by

deg(g) =
∫

X
κ0 ∧ g∗κ0 = 〈[κ0]|g∗[κ0]〉. (3.6)

In the following lemma, KX denotes the canonical bundle of X.

Lemma 3.5. Let cX ≥ 0 be a constant such that 〈KX |·〉 ≤ cX〈[κ0]|·〉 on the effective cone. If
f ∈ Aut(X) is loxodromic and E is a reduced, connected, and f -periodic curve, then

〈θ+
f |θ−f 〉deg(E) ≤ 2(1 + cX).

If E is not connected, then E has at most ρ(X) − 2 connected components, thus

〈θ+
f |θ−f 〉deg(E) ≤ 2(ρ(X) − 2)(1 + cX) ≤ 2(b2(X) − 2)(1 + cX),

where ρ(X) is the Picard number of X and b2(X) is its second Betti number.

If E is f -invariant, then [E] is orthogonal to Πf for the intersection form, so the Hodge index
theorem implies that [E]2 < 0. Thus, if E is irreducible, it is determined by its class [E], and
Lemma 3.5 shows that f has only finitely many irreducible periodic curves; this finiteness result
strengthens [Kaw08, Proposition B] (see also [Can01a] and [Can14, Proposition 4.1]). We denote
by Df the union of these irreducible f -periodic curves.

Example 3.6. We can take cX = 0 when X is a K3, Enriques, or abelian surface.

Proof of Lemma 3.5. Assume first that E is connected. Set e = [E]/deg(E) so that 〈e|[κ0]〉 = 1.
Since E is reduced and connected, its arithmetic genus 〈KX + E|E〉 + 2 is non-negative
(see [BHPV04, § II.11]), so

− 〈E|E〉 ≤ 2 + 〈KX |E〉 ≤ 2 + cX deg(E). (3.7)
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On the other hand, Lemma 3.4 implies

− 〈E|E〉 = −deg(E)2〈e|e〉 ≥ 〈mf |mf 〉
1 − 〈mf |mf 〉 deg(E)2. (3.8)

Putting these two inequalities together we get

deg(E)2 ≤ 1 − 〈mf |mf 〉
〈mf |mf 〉 (2 + cX deg(E)). (3.9)

Solving for the corresponding quadratic equation in deg(E), and applying the inequality
t(1 − t) ≤ 1/4 with t = 〈mf |mf 〉 finally gives

〈mf |mf 〉deg(E) ≤ (1 − 〈mf |mf 〉)cX + 1/
√

2 ≤ cX + 1. (3.10)

For the second assertion, write E as a union of disjoint connected components Ei. The classes
[Ei] are pairwise orthogonal, and are contained in (θ+

f )⊥ ∩ (θ−f )⊥, a subspace of codimension
2 in the Néron–Severi group of X. This implies that there are at most ρ(X) − 2 connected
components. �
Proposition 3.7. Let X be a compact Kähler surface with a reference Kähler form κ0 such
that

∫
κ2

0 = 1. If f ∈ Aut(X) is loxodromic and E is an f -invariant curve, then

deg(E) ≤ 254(ρ(X) − 2)(1 + cX) deg(f)56,

where the degrees are relative to κ0 and cX is as in Lemma 3.5.

Proof. As in Remark 3.2, denote by dH the hyperbolic distance on HX and let Ax(f) be the axis
of the loxodromic isometry f∗. Lemma 4.8 in [BC16] implies that4

dH([κ0],Ax(f)) ≤ 28 dH([κ0], f∗[κ0]) = 28 cosh−1(deg(f)).

Then, using the formula (3.4) for the distance dH([κ0],Ax(f)) together with the elementary
inequality cosh(kx) ≤ 2k−1 cosh(x)k, we obtain

2
〈θ+

f |θ−f 〉
= cosh(dH([κ0],Ax(f)))2 ≤ 254(deg(f))56. (3.11)

The result now follows from Lemma 3.5. �

3.3 Γ-periodic curves, singular models, and ampleness
Denote by Π⊥

Γ the orthogonal complement of ΠΓ with respect to the intersection form.

Lemma 3.8. Let Γ ⊂ Aut(X) be a non-elementary subgroup.

(i) A curve C ⊂ X is Γ-periodic if and only if [C] ∈ Π⊥
Γ .

(ii) If Γ contains a parabolic element, and C is irreducible, then C is Γ-periodic if and only if C
is contained in a fiber of πg for every g ∈ Γpar.

Proof. For assertion (i), we note that since the intersection form is negative definite on Π⊥
Γ , Γ

acts on this space as a group of Euclidean isometries. Thus, if c ∈ Π⊥
Γ is an integral class, then

Γ∗(c) is a finite set. Since ΠΓ is generated by nef classes, [C] belongs to Π⊥
Γ if and only if each

of its irreducible components does, so it is enough to prove the result for an irreducible curve.
Now an irreducible curve C with negative self-intersection is uniquely determined by its class
[C]; so if [C] is contained in Π⊥

Γ , we conclude that C is Γ-periodic. Conversely, if C is Γ-periodic,

4 It was stated for birational transformations of P
2 in [BC16] but the estimate holds in our setting with the same

proof (actually an easier one since here we work in a finite-dimensional hyperbolic space).
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a finite index subgroup Γ′ ⊂ Γ preserves C. If f ∈ Γ′
lox, then 〈θ+

f | [C]〉 = 0 because f preserves
the intersection form. But Vect(θ+

f , f ∈ Γ′
lox) is a Γ′-invariant subspace of ΠΓ, hence by strong

irreducibility it coincides with ΠΓ (see § 3.1.3). Thus, [C] ∈ Π⊥
Γ , and in particular [C]2 < 0.

Let us prove the second assertion. If [C] ∈ Π⊥
Γ and g ∈ Γpar, [C] intersects trivially the class

[F ] of the general fiber of πg; this implies that C is contained in a fiber of πg, and is an irreducible
component of a singular fiber since [C]2 < 0. Now, denote by S the set of irreducible curves which
are contained in some fiber of πg for all g ∈ Γpar; it remains to prove that each C ∈ S is Γ-periodic.
Since Γ is non-elementary, Γpar contains two elements g1 and g2 with distinct fixed points on the
boundary of HX ; these fixed points are given by the classes [F1] and [F2] of any smooth fiber
of πg1 and πg2 , respectively; hence, πg1 and πg2 cannot share any smooth fiber. This shows that
elements of S are contained in singular fibers of πg1 and, in particular, S is finite. Moreover,
S is Γ-invariant, because Γpar is invariant under conjugacy, thus every C ∈ S is a Γ-periodic
curve. �

Proposition 3.9. Let Γ ⊂ Aut(X) be a non-elementary subgroup containing parabolic
automorphisms. There is a birational morphism π0 : X → X0 onto a normal projective surface
X0 and a homomorphism τ : Γ → Aut(X0) such that:

(1) π0 contracts all Γ-periodic curves and only them;
(2) π0 is τ -equivariant, that is, π0 ◦ f = τ(f) ◦ π0 for every f ∈ Γ;
(3) there is an ample line bundle A on X0 such that π∗0A is a big and nef line bundle, whose

class belongs to ΠΓ.

This proposition shows that examples as in [CD20, § 11] do not appear for non-elementary
groups containing parabolic automorphisms. Before starting the proof, recall that a line bundle
M on X is semi-ample if and only if mM is globally generated (or equivalently base-point free)
for some m > 0 (see [Laz04, § 2.1.B]); here we use the additive notation mM for the line bundle
M⊗m. If M is semi-ample and m ≥ 1 is sufficiently divisible, the line bundle mM determines a
morphism

ΦmM : X → XmM ⊂ P(H0(X,mM)∨), (3.12)

onto a projective (possibly singular) normal variety XmM . According to Theorem 2.1.27 in
[Laz04], there is an algebraic fibre space Φ: X → Y such that:

(1) Y is a normal projective variety (see Example 2.1.15 in [Laz04]);
(2) XmM = Y and ΦmM = Φ for sufficiently divisible integers m ≥ 1;
(3) there is an ample line bundle A on Y such that Φ∗A = �M (for some � ≥ 1).

Example 3.10. To each g ∈ Aut(X)par corresponds a semi-ample line bundle Lg such that (i) the
members of |Lg| are given by the fibers of πg and (ii) πg : X → Bg coincides with the fibration
Φ: X → Y determined by Lg. The ray R+[Lg] ⊂ H1,1(X;R) determines the unique fixed point
of g∗ in ∂HX , and Lg is nef (see § 3.1).

Proof of Proposition 3.9. By Lemma 3.8, we can fix a finite number of parabolic elements gi ∈ Γ,
with 1 ≤ i ≤ k for some k ≥ 2, such that the set of irreducible and Γ-periodic curves C ⊂ X is
exactly the set of irreducible curves which are contained in fibers of πgi for i = 1, . . . , k. The line
bundle M =

∑
i Lgi is semi-ample, because the Lgi are; it is big because M2 > 0; and its class

belongs to ΠΓ because the classes [Lgi ] belong to the limit set of Γ (see [CD23c, § 2.3.6]). Since M
is big, the fibration Φ = ΦmM : X → Y defined, as above, by some sufficiently divisible multiple
of M , is a birational morphism (a generically finite fibration is a birational morphism since its
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fibers are, by definition, connected). By construction Φ contracts exactly the periodic curves
of Γ. Thus, setting π0 = Φ and X0 = Y , we obtain a birational morphism that contracts all peri-
odic curves, and only them. Since Γ permutes these curves, it induces a group of automorphisms
on X0. Moreover, we know that there is an ample line bundle A on X0 such that π∗0A = �M for
some � ≥ 1; this proves the third assertion. �
Remark 3.11. In the proof of Proposition 3.9, one may add extra parabolic automorphisms
gj ∈ Γpar, say with k + 1 ≤ j ≤ �, and replace M by

∑�
i=1miLi for any choice of integers mi > 0,

while getting the same conclusion. After multiplication by Q∗
+, the classes constructed in this

way form a dense subset of the convex cone{ �∑
i=1

αic1(Lgi); � ≥ 1, gi ∈ Γpar, and αi ∈ R∗
+ for all i

}
. (3.13)

This cone is Γ-invariant, its closure is the smallest convex cone whose projectivization contains
the limit set Lim(Γ), and it spans ΠΓ because ΠΓ is the smallest vector space containing Lim(Γ).
Thus, the classes of the form αc1(π∗0A), where A runs over the set of ample line bundles on X0

and α runs over Q∗
+, is a dense subset of this cone.

3.4 Proof of Theorem D
Let us first deal with the case where Γ is elementary. By [Can14, Theorem 3.2] there is a
loxodromic element f ∈ Γ such that (f∗)Z has finite index in Γ∗. If Aut(X)0 is non-trivial, then
X is a torus and then f has no invariant curve (see [Can14, Remark 3.3] and [CF03]). Otherwise,
the kernel of the homomorphism Γ → Γ∗ is finite, fZ has finite index in Γ, and therefore a curve
is Γ-periodic if and only if it is f -periodic, so we are done when Γ is elementary.

When Γ is non-elementary, Theorem D is covered by the following more precise statement
(recall that X is automatically projective in this case [CD23a]).

Proposition 3.12. Let X be a complex projective surface and Γ be a non-elementary subgroup
of Aut(X). Then there exists a loxodromic element f in Γ such that every f -periodic curve is
Γ-periodic.

If, in addition, Γ contains a parabolic element g, then f can be chosen of the form f = hN ◦ gN

for some h which is conjugate to g in Γ and N is any sufficiently large integer. If, moreover, N
is sufficiently divisible, then (gN )∗ is unipotent.

Proof. Consider a subset S ⊂ Γlox such that {(P(θ+
f ),P(θ−f )); f ∈ S} is dense in Lim(Γ)2, as in

Lemma 3.3. Let us exhibit an f ∈ S such that every f -periodic curve is Γ-periodic. By contra-
diction, we assume that every f ∈ S admits at least one irreducible periodic curve C(f) which
is not Γ-periodic, and we set c(f) = [C(f)]. By Lemma 3.8, c(f) does not belong to Π⊥

Γ , thus
u �→ 〈c(f)|u〉 is a non-trivial linear form on ΠΓ. Since the class of any periodic curve is orthogonal
to Πf , 〈c(f)|θ+

f 〉 = 〈c(f)|θ−f 〉 = 0.
Let U and U ′ be open subsets of ∂HX intersecting Lim(Γ) non-trivially, and such that

U ∩ U ′ = ∅; let x be an element of U ∩ Lim(Γ). Define

A(U,U ′) = {f ∈ Aut(X); f is loxodromic, P(θ+
f ) ∈ U and P(θ−f ) ∈ U ′}, (3.14)

and
D(U,U ′) = {c(f); f ∈ A(U,U ′) ∩ S}. (3.15)

By Lemma 3.5, D(U,U ′) is a finite set. From our assumption on S, there is a sequence (fn) of
elements in A(U,U ′) ∩ S such that x = limn(P(θ+

fn
)). Extracting a subsequence if necessary we
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may assume that c(fn) is constant, equal to some c∞ ∈ D(U,U ′), and we infer that x is contained
in c⊥∞. As a consequence, the limit set Lim(Γ) ⊂ P(ΠΓ) is locally contained in the finite union of
hyperplanes P(c⊥ ∩ ΠΓ), for c ∈ D(U,U ′). By compactness, Lim(Γ) is contained in a finite union
of hyperplanes, which contradicts the strong irreducibility of the action of Γ on ΠΓ.

Now, to prove the first assertion of the proposition, we simply put S = Γlox; by Lemma 3.3,
it satisfies the desired density property.

For the second assertion, we remark that the set of fixed points (u, u′) of all pairs (h, h′),
where h and h′ run independently over the conjugacy class of g, is dense in Lim(Γ)2. If we
apply Lemma 3.13 we see that the set of all loxodromic elements f = hN ◦ (h′)N with h and h′

conjugate to g satisfies the desired density property. The property ‘any irreducible f-periodic
curve is also Γ-periodic’ being invariant under conjugacy, we can choose f = hN ◦ gN for some
conjugate h of g and any large enough N .

The last assertion follows from Lemma 3.1. �
Lemma 3.13. Let h and h′ be two parabolic elements of Aut(X) with distinct fixed points u
and u′ in ∂HX . Let U and U ′ be small, disjoint neighborhoods of u and u′, respectively, in
P(ΠΓ). Then if N ∈ Z is large enough, fN := hN ◦ (h′)N is a loxodromic automorphism such
that P(θ+

fN
) ∈ U and P(θ−fN

) ∈ U ′.

Proof. Let us denote by P(h∗) the linear projective transformation induced by h∗ on
P(NS(X;R)). Since U does not contain u′, P(h′∗)N (U) ⊂ U ′ if |N | is large enough; similarly
P(h∗)N (U ′) ⊂ U . So for fN = hN ◦ (h′)N , P(f∗N ) maps U ′ strictly inside itself and likewise
P((f−1

N )∗) maps U strictly inside itself. This implies that fN is loxodromic, with its α-limit
and ω-limit points in U ′ and U , respectively. �

4. Complex tori and Kummer examples

This section gathers some facts on automorphism groups of complex tori. We also introduce and
study the notion of a Kummer group. Part of this material is well known, we provide the details
for completeness.

4.1 Finite orbits on tori
Consider a compact complex torus A = Ck/Λ. Each automorphism f of A is an affine transforma-
tion f(z) = Lf (z) + tf , where z �→ z + tf is the translation part and Lf is a linear automorphism,
induced by a linear transformation of Ck that preserves Λ. Let Γ be a subgroup of Aut(A).

Warning. By definition, compact tori and abelian varieties come equipped with their group struc-
ture, in particular with their neutral element, or ‘origin’. On the other hand, an automorphism
f with a non-trivial translation part tf does not preserve this group structure. If x ∈ A is fixed
by Γ, conjugating Γ by the translation z �→ z + x we may assume that Γ fixes the origin of A
and acts by linear isomorphisms. Alternatively, we can transport the group structure by this
translation and put the origin at x: this changes the group structure but not the underlying
complex manifold. We shall frequently do this operation without always specifying the change
in the group structure of A.

Suppose the orbit Γ(x) ⊂ A is finite, of cardinality m, and consider the stabilizer Γ0 ⊂ Γ of
x; its index divides m!. Conjugating Γ by z �→ z + x, as explained above, all elements f ∈ Γ0

are linear. In that case, every torsion point has a finite Γ0-orbit, hence also a finite Γ-orbit;
in particular, finite orbits of Γ form a dense subset of A for the Euclidean topology. The next
proposition summarizes this discussion.
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Proposition 4.1. Let A be a compact complex torus, and let Γ be a subgroup of Aut(A). If
Γ has a finite orbit, then its finite orbits form a dense subset of A. More precisely, if a periodic
point of Γ is chosen as the origin of A for its group law, then all torsion points of A are periodic
points of Γ.

Remark 4.2. If in Proposition 4.1 we moreover assume that dimCA = 2 and Γ contains a loxo-
dromic element fixing the origin, then conversely all periodic points of Γ are torsion points. This
follows from Lemma 4.3.

4.2 Dimension 2
Let A = C2/Λ be a compact complex torus of dimension 2, and let f(z) = Lf (z) + tf be a
loxodromic element of Aut(A). The loxodromy means exactly that the eigenvalues α and β of
Lf satisfy |α| < 1 < |β|. Pick a basis of Λ, and use it to identify Λ with Z4 and C2 with R4, as
real vector spaces. Then, Lf corresponds to an element Mf ∈ GL4(Z).

Lemma 4.3. Let f be a loxodromic automorphism of a compact complex torus A of dimension 2.
Then:

(1) f has a fixed point, and after translation z �→ z + x by such a fixed point, its periodic points
are exactly the torsion points of A;

(2) there is no f -invariant curve: the orbit fZ(C) of any curve is dense in A.

Proof. With the above notation, the fixed points of f are determined by the equation (Lf −
id)(z) ∈ Λ − tf or, equivalently, (Mf − id)(z) ∈ Z4 − tf . The complex eigenvalues of Lf being �=
1, there is at least one fixed point. Thus, after conjugation by a translation, we may assume that
tf = 0. Then, the periodic points of f correspond to the points x ∈ R4 such thatMn

f (x) − x ∈ Z4;
any solution to such an equation being rational, it corresponds to a torsion point in A. This proves
property (1). For property (2), we may now assume that tf = 0. There are two linear forms ξ+f ,
ξ−f : C2 → C such that ξ+f ◦ Lf = αξ+f and ξ−f ◦ Lf = βξ−f . They determine two linear foliations
on A: the stable and unstable foliations of f . Both have dense leaves. If y is a torsion point,
y is f -periodic, and its stable manifold, being dense, intersects C. Thus, the sequence (fn(C))
accumulates at every torsion point, so it is dense in A, and C is not invariant. �

4.3 Kummer structures
4.3.1 Kummer groups. Let X be a compact Kähler surface, and let Γ be a subgroup of

Aut(X). By definition (X,Γ) is a Kummer group if there is a (compact) torus A, a finite subgroup
G of Aut(A), a subgroup ΓA of Aut(A) containing G, and a bimeromorphic morphism qX : X →
A/G such that the following hold.

(a) ΓA normalizes G. Thus, if qA : A→ A/G is the quotient map, there is a homomorphism
h ∈ ΓA �→ h ∈ Aut(A/G) such that qA ◦ h = h ◦ qA for every h ∈ ΓA; we shall denote by ΓA

the image of this homomorphism.
(b) The bimeromorphic map qX is Γ-equivariant: there is a homomorphism Γ � f �→ f ∈

Aut(A/G), whose image is denoted by Γ, such that qX ◦ f = f ◦ qX for every f ∈ Γ.
(c) The subgroups Γ and ΓA of Aut(A/G) coincide.

To each f ∈ Γ corresponds an element fA ∈ ΓA, unique up to composition with elements of G; the
type of f as an automorphism of Aut(X) coincides with the type of fA as an automorphism of A,
and λ(f) = λ(fA). When X is projective, A is an abelian surface and q is a birational morphism.
According to the usual terminology, we also say that f ∈ Aut(X) is a Kummer example when
(X, fZ) is a Kummer group.
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Remark 4.4. Consider a section ΩA of the canonical bundle KA such that
∫
A ΩA ∧ ΩA = 1; it is

unique up to multiplication by a complex number of modulus one. In particular, the volume form
volA = ΩA ∧ ΩA is invariant under Aut(A). The quotient of volA by the action of G determines
a probability measure on A/G, and then on X. This probability measure coincides with the
measure of maximal entropy μf for every f ∈ Γlox.

From the definition of a Kummer group, Proposition 4.1 and Remark 4.2 we obtain the
following.

Proposition 4.5. Let (X,Γ) be a Kummer group with at least one finite orbit. Then, its finite
orbits are dense in X for the euclidean topology, and there is a dense, Γ-invariant, Zariski-open
subset in which all periodic points of loxodromic elements of Γ coincide.

4.3.2 Classification of Kummer examples. Let us consider, first, the case of an infinite cyclic
group generated by a loxodromic Kummer example f . From the classification given in [CF03,
CF05], we may assume that the finite group G is a cyclic group fixing the origin of A; in other
words, G is induced by a cyclic subgroup of GL2(C) preserving the lattice Λ such that A = C2/Λ.
There are only seven possibilities:

(1) G = {id} and X is a blow-up of a torus A;
(2) G = {id,−id} and A/G is a Kummer surface, in the classical sense; in particular, X is a

blow-up of a K3 surface;
(3) A is the torus (C/Z[i])2 and G is the group of order 4 generated by iid; in this case X is a

rational surface;
(4) A is the torus (C/Z[exp(2iπ/3)])2 and G is the group of order 3 generated by exp(2iπ/3)id;

in this case X is a rational surface;
(5) A is the torus (C/Z[exp(2iπ/3)])2 and G is the group of order 6 generated by exp(iπ/3)id;

in this case X is a rational surface;
(6) let ζ5 be a primitive fifth root of unity; the cyclotomic field Q[ζ5] has two distinct non-

conjugate embeddings in C, σ1 and σ2, determined by σ1(ζ5) = ζ5 and σ2(ζ5) = ζ2
5 ; the ring

of integers coincides with Z[ζ5] and its image by σ = (σ1, σ2) is a lattice Λ5 ⊂ C ⊕ C; the
abelian surface A is the quotient C2/Λ5; the group G is generated by the diagonal linear
map (x, y) �→ (ζ5x, ζ2

5y) and has order 5; here, X is rational too;
(7) as in the previous example, A = C2/Λ5, but now G has order 10 and is generated by (x, y) �→

(−ζ5x, ζ5y), and again X is rational.

These constraints on (A,G) apply to non-elementary Kummer groups; in particular, we shall
always assume that G is cyclic and fixes the neutral element of A. In cases (1)–(5) of the above
list, the abelian surface is C2/(Λ0 × Λ0) for some lattice Λ0 in C. The natural action of GL(2,Z)
on C2 preserves Λ0 × Λ0, and induces a non-elementary subgroup of Aut(A), which commutes
to G; hence, it determines also a non-elementary subgroup of Aut(A/G). On the other hand,
cases (6) and (7) do not appear.

Lemma 4.6. If (X,Γ) is a non-elementary Kummer group, then G is generated by a homothety
and the quotient A/G is not of type (6) or (7) in the classification above.

Proof. The group ΓA permutes the fixed points of G. Thus, the stabilizer Γ◦
A = StabΓA

(0) of the
neutral element is a finite index, non-elementary subgroup of ΓA. Pick any loxodromic element f
in Γ◦

A; it acts by conjugacy on G, which is finite, so there is a positive iterate such that fn ◦ g =
g ◦ fn for all g ∈ G. Near the origin, fn and g are two commuting linear transformations, fn has
two eigenvalues, of modulus < 1 and > 1, respectively, and g must preserve the corresponding
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stable and unstable directions of f . Since Γ◦
A is non-elementary, these tangent directions form

an infinite set as f varies in the set of loxodromic elements of Γ◦
A, so g is a homothety, and we

are done. �

4.3.3 Invariant curves. We keep the notation from the previous paragraphs and consider a
non-elementary Kummer group (X,Γ). The singularities of A/G are cyclic quotient singularities
and X dominates a minimal resolution of A/G.

Let us examine case (2), when G = {id,−id}. Then G has 16 fixed points, and to resolve the
16 singularities of A/G one can proceed as follows. First, one blows up the fixed points, creating
16 rational curves. Then one lifts the action of G to the blow-up Â. If E is one of the exceptional
divisors, then G fixes E pointwise and acts as w �→ −w transversally, so locally the quotient
map can be written (w, z) �→ (w2, z), with E = {w = 0} giving rise to a smooth rational curve
of self-intersection −2 on Â/G. This construction provides the minimal resolution Xmin = Â/G
of A/G, the singularities being replaced by disjoint (−2)-curves. Cases (3), (4), and (5) can
be handled with a similar process because if x ∈ A is stabilized by a subgroup H of G, then
H is locally given around x as a cyclic group of homotheties; so, in the minimal resolution of
A/G the singularities are replaced by disjoint rational curves Ei of negative self-intersection
E2

i ∈ {−2, . . . ,−6}. Cases (6) and (7) are more delicate; however, by Lemma 4.6, we do not need
to deal with them.

Lemma 4.7. Let (X,Γ) be a non-elementary Kummer group on a smooth projective surface.
Then:

(1) X is an abelian surface if and only if Γ admits no invariant curve;
(2) any connected Γ-periodic curve D is a smooth rational curve, and the induced dynamics of

StabD(Γ) on D has no periodic orbit.

Moreover, Df = DΓ for every f ∈ Γlox.

Proof. The minimal resolution Xmin of A/G is unique, up to isomorphism (see [BHPV04, § III.6],
Theorems (6.1) and (6.2), and their proofs). Thus, X dominates Xmin and every f ∈ Γ preserves
the exceptional divisor of the morphism X → Xmin and induces an automorphism fmin of Xmin.
In particular, Γ admits an invariant curve, unless G = {id} and X = Xmin = A. Conversely, in
that case Γ has no invariant curve, by Lemma 4.3. This proves the first assertion.

Let us prove the second assertion for the induced group Γmin ⊂ Aut(Xmin). Let E be a
connected periodic curve for Γmin. If fmin ∈ Γmin is loxodromic, it comes from an Anosov map
fA : A→ A, as in Lemma 4.3, and fA does not have any periodic curve. Since E is fmin-periodic,
it is contained in the exceptional divisor of the resolution Xmin → A/G; as explained before the
lemma, this divisor is a disjoint union of rational curves, so E is one of these rational curves
Ex = q−1

Xmin
(qA(x)), where x ∈ A has a non-trivial stabilizer Gx ⊂ G. In particular x is fixed

by a finite index subgroup ΓA,x of ΓA. Now since Γ is non-elementary, ΓA and ΓA,x are non-
elementary as well, and since the action of ΓA,x on A is by affine transformations, its action
on the exceptional divisor Ex is that of a non-elementary subgroup of PGL2(C) = Aut(Ex).
In particular, ΓA,x does not admit any finite orbit in Ex.

The birational morphism π : X → Xmin is equivariant with respect to Γ and its image Γmin in
Aut(Xmin). Thus, π−1 blows up periodic orbits of Γmin. The last few lines show that, when such a
periodic point y ∈ Xmin is blown up, first y does not lie on the exceptional locus of Xmin → A/G
and, second, the exceptional divisor Ey does not contain any finite orbit. Thus, X is obtained
by simple blow-ups centered on a finite set of distinct periodic points of Γmin, every connected
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component of the exceptional locus of qX is a smooth rational curve, and there is no Γ-periodic
point in these curves. �

5. Unlikely intersections for non-elementary groups

This section is devoted to the proof of Theorem B.

5.1 Strategy of the proof
If Γ has a Zariski-dense set F of finite orbits, a standard argument shows that there is a
sequence (xn) ∈ FN which is generic (given any fixed proper subvariety Y ⊂ X, xn /∈ Y for
n large enough). Let mxn be the probability measure equidistributed over the Galois orbit of xn.
We want to use arithmetic equidistribution to show that the sequence of measures (mxn) con-
verges when n→ ∞. For this, we need a height function hL (associated to some line bundle L
on X with appropriate positivity properties) that vanishes on F . In §§ 5.2–5.4 we construct such
height functions: they are associated to the choice of certain finitely supported probability mea-
sures ν on Γ. Indeed, to such a measure we associate the linear endomorphism P ∗

ν =
∑
ν(f)f∗ of

the Néron–Severi group NS(X;R), and we construct a big and nef line bundle L, that depends
on ν, such that P ∗

ν [L] = α(ν)[L] for some α(ν) > 1; then, hL will be a Weil height that satisfies
the invariance

∑
ν(f)hL ◦ f = α(ν)hL. The arithmetic equidistribution theorem of Yuan shows

that the measures mxn converge to a measure μν = S ∧ S, where S is a dynamically defined
closed positive current with cohomology class equal to [L]. On the other hand, the measures
mxn , hence their limit μ := μν , do not depend on ν. As we vary the choice of ν, the construction
has enough flexibility to show that for every f ∈ Γlox, μν can be made arbitrary close to the
maximal entropy measure μf . It follows that μf = μ is independent of f and is Γ-invariant. In
§ 5.5, the dynamics of parabolic elements of Γ is used to deduce that Supp(μ) = X. Then the
classification of Γ-invariant measures from [Can01b, CD23b] implies that μ has a smooth density,
and the main result of [CD20] shows that every f ∈ Γlox is a Kummer example (Theorem 5.17 in
§ 5.6). At this point the Kummer structure may a priori depend on f , as in Example 5.1 below.
This issue is solved in § 5.7 by adding an argument based on Theorem D which finally shows
that (X,Γ) is a Kummer group.

Example 5.1. Let X be a Kummer surface possessing both a Kummer automorphism f and a
non-Kummer one h, as in [KK01]. Then, f and h ◦ f ◦ h−1 are two Kummer automorphisms
which are not associated with the same Kummer structure; the pair (X, 〈f, h ◦ f ◦ h−1〉) is not
a Kummer group.

5.2 Kawaguchi’s currents
5.2.1 Action on H1,1. Let X be a compact Kähler surface and let ν be a probability measure

on Aut(X) satisfying the (exponential) moment assumption∫
(‖f‖C1 + ‖f−1‖C1)2 dν(f) < +∞. (5.1)

By [CD23c, Lemma 5.1], this implies ∫
‖f∗‖ dν(f) < +∞, (5.2)

where f∗ is the endomorphism of H2(X;R) determined by f and ‖ · ‖ is any operator norm.
(For the proof of Theorem 5.17, we will only consider finitely supported measures so the moment
conditions will be trivially satisfied.) Let Γν be the subgroup of Aut(X) generated by the support
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of ν. We let Pν be the linear endomorphism of H2(X;C) defined for every u ∈ H2(X;C) by

Pν(u) =
∫
f∗(u) dν(f). (5.3)

The following lemma is a strong version of the Perron–Frobenius theorem. Recall that the
Kähler form κ0 was fixed in § 3.

Lemma 5.2. Assume that Γν is non-elementary. Then, Pν has a unique eigenvector wν ∈
H1,1(X;R) such that w2

ν = 1 and 〈wν |[κ0]〉 > 0. This eigenvector is big and nef. The eigenvalue
α(ν) such that

Pν(wν) = α(ν)wν

is larger than 1 and coincides with the spectral radius of Pν ; the multiplicity of α(ν) is equal
to 1, and all other eigenvalues β ∈ C of Pν satisfy |β| < α(ν).

Proof. Recall the definition of the open convex cone Pos(X) ⊂ H1,1(X;R) from § 3.1. Since
every f ∈ Aut(X) preserves Pos(X), Pν preserves Pos(X) too, by convexity; moreover, if u ∈
∂Pos(X) \ {0} and u′ := Pν(u) ∈ ∂Pos(X), then f∗(u) ∈ R+u

′ for all f in Supp(ν). Thus, we
can apply the results of Vandergraft [Van68]. In his terminology, the faces of Pos(X) are the
isotropic rays in ∂Pos(X), so Pν is irreducible, because if a face R+u were fixed by Pν it would be
fixed by every f in Supp(ν), and Γν would be elementary. Thus, Theorems 4.2 and 4.3 of [Van68]
imply that the spectral radius α(ν) of Pν is a simple eigenvalue of Pν and the corresponding
eigenline Rwν intersects Pos(X); choosing wν ∈ HX , wν is uniquely determined.

If w,w′ ∈ HX , then 〈w|w′〉 ≥ 1 with equality if and only if w = w′. Computing the self-
intersection of Pν(wν), we deduce that α(ν) ≥ 1. In addition, α(ν) = 1 if and only if f∗(wν) = wν

for every f in Supp(ν), which would imply that Γν is elementary; hence, α(ν) > 1. The
Kähler cone satisfies also Pν(Kah(X)) ⊂ Kah(X). Hence, wν is nef (it is in the closure of
Kah(X)). It is big because it is nef and has positive self-intersection (see, e.g., [Laz04,
Theorem 2.2.16]).

Let us show that α(ν) is greater in magnitude than any other eigenvalue of Pν ; for this,
we can of course replace Pν by PN

ν , for some N ≥ 1 to be chosen below. According to [Van68,
Theorem 4.4] it is sufficient to show that PN

ν (Pos(X)) ⊂ Pos(X). As said above, if this fails
there exists u, u′ ∈ ∂Pos(X) \ {0} such that f∗u ∈ Ru′ for every f ∈ Supp(ν⊗N ). On the other
hand, for N large, there exist three loxodromic elements f1, f2, f3 ∈ Supp(ν⊗N ) with disjoint
fixed points (apply [BQ16, Theorem 6.36] and [CD23c, Proposition 2.8]). Replacing N by NN ′

and fi by fN ′
i if necessary, we can further assume that there are six disjoint open sets B±

i ,
i = 1, 2, 3, in ∂HX = P(∂Pos(X)) ⊂ P(H1,1(X,R)) such that P(fi)(∂HX \B−

i ) ⊂ B+
i for every i.

Now, suppose u, u′ ∈ ∂Pos(X) \ {0} satisfy f∗i u ∈ Ru′ for i = 1, 2, 3. If P(u) is in none of the
B−

i , then P(u′) must be in the intersection of the B+
i , a contradiction. Otherwise, P(u) is in

exactly one of the B−
i , say B−

1 , and P(u′) should be in B+
2 ∩B+

3 , a contradiction. Thus, we are
done. �

Example 5.3 (see [Can14, § 2] and [CD20, § 2.2]). Let f be a loxodromic automorphism, and take
ν to be the probability measure pδf + qδf−1 with p, q ≥ 0 and p+ q = 1. Note that Γν = fZ does
not satisfy the assumption of Lemma 5.2. Then Pν = pf∗ + q(f−1)∗ preserves the f∗-invariant
plane Πf ⊂ H1,1(X;R). If p > q, the spectral radius of Pν is equal to pλ(f) + q/λ(f), and the
corresponding eigenspace is the isotropic line of Πf corresponding to the eigenvalue λ(f) of f ;
if p < q, the spectral radius is equal to p/λ(f) + qλ(f) and the eigenspace is the other isotropic
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line in Πf . If p = q = 1/2, then (Pν)|Πf
is the scalar multiplication by

α(f) = 1
2(λ(f) + 1/λ(f)), (5.4)

α(f) > 1, and all vectors u ∈ Πf satisfy Pν(u) = α(f)u. This example shows that the previous
lemma fails for ν, whatever the values of p and q are: the dominant eigenvector is at the boundary
of the hyperbolic space, or is not unique.

5.2.2 Stationary currents. Let us borrow some notation from [CD23c, § 6.1]: we fix Kähler
forms κi, whose cohomology classes provide a basis ([κi]) of H1,1(X;R). Then, if a is any element
of H1,1(X;R), there is a unique (1, 1)-form Θ(a) =

∑
i aiκi in Vect(κi, 1 ≤ i ≤ h1,1(X)) whose

class [Θ(a)] is equal to a. If S is any closed positive current of bidegree (1, 1), then S = Θ([S]) +
ddcuS for some upper semi-continuous function uS : X → R: this function is locally the difference
of a plurisubharmonic (psh) function and a smooth function, and it is unique up to an additive
constant.

The following proposition is essentially due to Kawaguchi, who proved it in [Kaw06] under
slightly more restrictive assumptions.

Proposition 5.4. Let X be a compact Kähler surface, and let vol be a smooth volume form
on X. Let ν be a probability measure on Aut(X) satisfying the moment condition (5.1). Assume
that we are in one of the following two situations:

(i) Γν is non-elementary; in this case, set w = wν , and α = α(ν), as in Lemma 5.2;
(ii) ν = 1

2(δf + δf−1) for some loxodromic automorphism and w is a fixed point of (1/α(f))Pν

in HX , as in Example 5.3; in this case, set α = α(f).

Then, there is a unique closed positive current S such that∫
f∗(S) dν(f) = αS and [S] = w. (5.5)

This current has continuous potentials: S = Θ(w) + ddc(u) for a unique continuous function u
such that

∫
X u vol = 0. In particular, the product S ∧ S is a well-defined probability measure

on X.

Proof of Proposition 5.4 in case (i). Let β be a smooth form with [β] = w. For simplicity, we
denote by the same letter Pν the operator

∫
f∗(·) dν(f) acting on the cohomology, on differential

forms, or on currents. Write (α−1Pν)β = β + ddc(h) for some smooth function h. Then,(
1
α
Pν

)n

β = β + ddc

( n−1∑
j=0

1
αj

(Pν)j(h)
)
, (5.6)

where (Pν)j(h)(x) =
∫
h ◦ f(x) dν
j(f) and ν
j denotes the jth convolution power of ν. Using

the fact that ‖(Pν)j(h)‖∞ ≤ ‖h‖∞ for all j ≥ 1. We deduce that the series on the right-hand side
of (5.6) converges geometrically:

�∑
j=k

∥∥∥∥ 1
αj

(Pν)j(h)
∥∥∥∥
∞

≤ α− αk−�

α− 1
‖h‖∞
αk

≤ α

α− 1
‖h‖∞
αk

. (5.7)

Thus, if we set h∞ =
∑

j≥0(1/α
j)(P ∗

ν )j(h) and S = β + ddc(h∞) we see that S is a closed current
which satisfies Pν(S) = αS.

Let us show that S is positive. By Lemma 5.2, there is a Pν-invariant hyperplane W ⊂
H1,1(X;R) such that the spectral radius of Pν|W is < α(ν). Since w is nef, there is a smooth
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and closed form β′ such that [β′] ∈W and κ := β + β′ is Kähler. Choose dim(W ) smooth, closed
(1, 1)-forms γi such that γ1 = β′ and the classes [γi] form a basis of W . Then,

1
α
Pνγi =

∑
j

Qi,jγj + ddc(ui), (5.8)

where Q := (Qi,j) is the matrix of (1/α)Pν|W in the basis ([γi]) and the ui are smooth functions.
Fix some η < 1 larger than the spectral radius of Q. Iterating (5.8), one sees that ((1/α)Pν)nγi

is the sum of a closed form bounded by C1η
n, plus the ddc of a function which is bounded by

C2
∑n

j=0 η
n−jα−j . Thus, for each i, ((1/α)P )nγi converges to zero in the space of currents. In

particular, ((1/α)P )nβ′ converges to 0, and ((1/α)P )nκ converges towards S, so S is positive.
Let us prove that S is unique. Let T be a closed positive current such that Pν(T ) = αT and

[T ] = [S]. Since T − S is cohomologous to zero and is a difference of closed positive currents,
according to [CD23c, Lemma 6.1], we can write T − S = ddcv where v = u1 − u2, and each ui is
an (Aκ0)-psh function (A depends only of the mass of S and T ). Changing ui into ui −

∫
X uivol

we may assume that
∫
X uivol = 0 for i = 1, 2. From the invariance of T − S under (1/α)Pν we

obtain that
1
α
Pν(v) = v + c (5.9)

for some constant c ∈ R; thus, α−nPn
ν (v) = v + cn where cn converges geometrically towards

some c∞ ∈ R. From [CD23c, Lemma 6.5], there is a constant C > 1 such that∫
X

1
αn

|Pn
ν (v)|vol ≤ C

αn

∫
X

log(C‖Jac(f−1)‖∞) dν
n(f) (5.10)

for all n ≥ 1. Thanks to the moment condition (5.2) and the subadditivity property

log(‖Jac((f ◦ g)−1)‖∞) ≤ log(‖Jac(f−1)‖∞) + log(‖Jac(g−1)‖∞),

we see that∫
X

log(‖Jac(f−1)‖∞) dν
n(f) =
∫

X
log(‖Jac(f−1

n ◦ · · · ◦ f−1
1 )‖∞) dν(f1) · · · dν(fn)

≤
n∑

j=1

∫
X

log(‖Jac(f−1
j )‖∞) dν(f1) · · · dν(fn)

= O(n),

so the right-hand side of the inequality (5.10) tends to 0 as n goes to +∞. Hence, α−nPn
ν (v)

converges towards 0 in L1(X; vol). Since α−nPn
ν (v) = v + cn also converges towards v + c∞, we

deduce that v is a constant, namely v = −c∞, and finally T = S, as was to be proved. �
Proof of Proposition 5.4 in case (ii). Here, we use the notation of Example 5.3. There are two
closed positive currents T+

f and T−
f , with continuous potentials, such that f∗(T±

f ) = λ(f)±1T±
f ;

they are unique up to a positive scalar factor and their classes generate the isotropic lines
Rθ±f (see [Can14, § 5]). By convention, we choose them so that 〈[T+

f ]|[T−
f ]〉 = 1 or, equivalently,

T+ ∧ T− is a probability measure; to determine them uniquely we further require 〈[T+
f ]|[κ0]〉 =

〈[T−
f ]|[κ0]〉. Beware that this normalization is different from that of θ±f so a priori [T±

f ] �= θ±f .
Let w ∈ HX be of the form w = a[T+

f ] + b[T−
f ], with a, b > 0, and set S = aT+

f + bT−
f . Then

S satisfies the invariance property (1/α)PνS = S, and its uniqueness as a fixed current of Pν in
the class w is obtained as in case (i). �
Remark 5.5. Note that, in case (ii), the measure S ∧ S is equal to T+

f ∧ T−
f which is the measure

of maximal entropy μf (see § 3.1 and [Can14, §§ 5.2, 8.2]).
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5.2.3 Continuity properties of stationary currents. We keep the same setting as above and
consider a sequence of probability measures (νn) with supports contained in a fixed finite set
{f1, . . . , fm}:

νn =
∑

i

νn(fi)δfi , (5.11)

with coefficients in the simplex of dimension m− 1 determined by the constraints νn(fi) ≥ 0 and∑
i νn(fi) = 1. Assume that (νn) converges towards ν∞ =

∑
i ν∞(fi)δfi , and that each Γνn is non-

elementary. For n ∈ N, we denote by wνn ∈ HX the eigenvector of Pνn given by Lemma 5.2, and
by Sn the current given by Proposition 5.4; we write Sn = Θ(wνn) + ddcun, as in Proposition 5.4.
For the measure ν∞, we make one of the following two assumptions:

(a) either Γν∞ is non-elementary;
(b) or ν∞ = 1

2(δf + δf−1) for some loxodromic automorphism f , and wνn converges to wν∞ :=
(1/

√
2)([T+

f ] + [T−
f ]), with notation as in case (ii) of Proposition 5.4.

In both cases, Proposition 5.4 provides a unique closed positive current S∞ such that [S∞] = wν∞
and Pν∞S∞ = α(ν∞)S∞; it coincides with (1/

√
2)(T+

f + T−
f ) in case (b).

In case (a), by the uniqueness assertion of Lemma 5.2, the classes wνn converge towards wν∞ ;
in case (b) this convergence holds by assumption. Note that the corresponding constants α(νn)
converge as well.

Lemma 5.6. Let X be a smooth compact Kähler surface. Under the above assumptions,

(1) the sequence of closed positive currents (Sn) converges towards S∞;
(2) the canonical (continuous) potentials un converge uniformly to that of S∞;
(3) the sequence of measures μn := Sn ∧ Sn converges towards S∞ ∧ S∞.

In case (b), S∞ ∧ S∞ is the unique measure of maximal entropy μf of f .

Proof. The first assertion follows from the uniqueness of the current S obtained in
Proposition 5.4, and the compactness of the space of currents of mass 1. The speed of con-
vergence obtained in (5.7) shows that the sequence of potentials un is equicontinuous, and by
the uniqueness of the normalized potentials, it follows that (un) converges uniformly to u∞.
Then the convergence of the sequence of measures (μn) follows from the continuity properties
of wedge products of currents (see [Dem12, III.3.6]). Finally, the characterization of S∞ ∧ S∞ in
case (b) follows from Remark 5.5. �

5.2.4 Singular setting. In this section, we present a variation of Proposition 5.4 in which X is
projective but singular; on the other hand, the class w is supposed to be ample. Two main issues
have to be considered when X has singularities, the first is the existence of local potentials for
positive closed currents, and the second is to control Jac(f). The notions we need are described
in [BM14], [Dem85], and [GR65]: we present them for a (reduced and pure-dimensional) compact
complex analytic surface Y . Let Y reg and Y sing denote its regular and singular parts. There is
a finite cover of Y by open sets Yα ⊂ Y such that each Yα is isomorphic, via an embedding jα,
to an analytic subset of the unit ball in CN (for some N). By definition, a (p, q)-form of class
Ck on Yα is a (p, q)-form on Y reg

α which is the pull-back by jα of a (p, q)-form of class Ck on the
unit ball; a form is positive if it is induced by a positive form. By [BM14], Proposition 2.4.4,
there are smooth functions ϕα ≥ 0 with compact support ⊂ Yα such that

∑
α ϕα = 1 on Y . Let

ω be the standard hermitian (1, 1)-form of CN and set κα := j∗αω. Then κ :=
∑

α ϕακα is a
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smooth positive (1, 1)-form on Y . As a volume form, we shall use vol := κ ∧ κ. From [GR65,
§ 5.A, Theorems 14 and 16] and the compactness of Y , we get:

(1) the notion of (p, q)-form of class Ck does not depend on the local embedding jα;
(2) if κ′ is a positive hermitian form on Y , then a−1κ ≤ κ′ ≤ aκ for some a > 0;
(3) if f ∈ Aut(Y ), the jacobian determinant Jac(f) of f with respect to vol is a smooth, bounded

function on Y reg; in particular, log |Jac(f)| ∈ L1(Y, vol).

A (1, 1)-current on Yα is an element of the dual of the space of smooth (1, 1)-forms
(see [Dem85]). A current T on Yα induces a current (jα)∗T on CN by the formula 〈(jα)∗T |φ〉 :=
〈T |(jα)∗φ〉; it is positive if (jα)∗T is positive for every α. A function u : Yα → [−∞,+∞[ is psh
if it is the restriction to Yα of a psh function on the unit ball of CN (see [FN80, Theorem 5.3.1]
or [Dem85]). If, furthermore, u is continuous, then u is the restriction of a continuous and psh
function ũ on the unit ball (see [Ric68, Satz 2.4]). If u is psh, the current ddcu is defined on Yα

by

〈ddcu, ϕ〉 :=
∫

jα(Y )
ũ ddcϕ̃ (5.12)

for every form ϕ on Yα induced by a (1, 1)-test form ϕ̃ on CN ; the integral is computed on
the smooth part and is therefore equal to

∫
Y reg

α
uddcϕ (see [Dem85]). A function defined on an

open subset U ⊂ Y is psh if it is psh on each U ∩ Yα. A closed positive (1, 1)-current T on Y
has local (continuous) potentials if every point x has a neighborhood U on which T = ddcu for
some (continuous) psh function on U ; note that the existence of a local potential is a non-trivial
property when x ∈ Y sing. If T has a continuous potential u in U , its wedge product with any
closed (1, 1)-current S on U is defined by

S ∧ T (ϕ) = 〈(jα)∗S|ũ ddcϕ̃〉 (5.13)

for every smooth real-valued function ϕ on U ∩ Yα (and any smooth extension ϕ̃ of ϕ to the unit
ball). This is a positive measure on U , see [Dem12, Chapter III.3].

Example 5.7. Let Y be a (singular) complex projective surface, and w ∈ NS(Y ;Q) be an
ample class on Y . Then, there is an embedding ι : Y → P

N (C) such that the restriction of
the Fubini–Study metric ωFS to ι(Y ) is a Kähler form representing a positive multiple of w.
This form has smooth local potentials, because so does ωFS , and there is a constant a > 1 such
that a−1κ ≤ ι∗ωFS ≤ aκ.

Proposition 5.8. Let X be a (singular) complex projective surface, and let vol be a smooth
volume form on X. Let ν be a probability measure on Aut(X) satisfying the moment condi-
tion (5.1). Assume that we are in one of the situations (i) or (ii) of Proposition 5.4, and that
some real positive multiple of w is an integral ample class. Then, there is a closed positive current
S such that:

(a) PνS = αS and [S] = w;
(b) this current has continuous potentials, S = Θ(w) + ddc(u) for a unique continuous function

u such that
∫
X u vol = 0;

(c) if ω is a Kähler form representing the class w, then (α−1Pν)n(ω) converges towards S as n
goes to +∞.

In particular, the product S ∧ S is a well-defined probability measure on X. Furthermore, if T is
another closed positive current, PνT = αT , and T = S + ddc(v) for some function v, then T = S.
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The proof of properties (a), (b), and (c) is the same as that of Proposition 5.4, but here we
start with β = s−1ι∗ωFS instead of an arbitrary smooth form, where ι∗ωFS is as in Example 5.7
and s ∈ R∗

+ is chosen so that sw belongs to NS(X;Z) and is very ample.

Remark 5.9. Inspecting the proof reveals that our construction coincides with Kawaguchi’s con-
struction in [Kaw06, Theorem 3.2.1]. In other words, the current S coincides with the current T
of [Kaw06, Theorem 3.2.1], except that Kawaguchi assumed X to be smooth to avoid working
with Kähler forms on singular surfaces.

The only point that remains to be explained is the validity of the volume argument in the
uniqueness assertion of the proposition. First, as observed above, the Jacobian of an automor-
phism is uniformly bounded. Second, we have to extend [CD23c, Lemma 6.5] to the singular case.
The key step of this lemma is the fact that for a quasi-psh function u, there is a constant c > 0
such that vol{|u| ≥ t} ≤ c exp(−t/c) (see [Kis00]). To extend this result to the singular case it is
enough to deal with a local psh function u on a singular surface Yα in the unit ball of CN . Consider
a linear projection π : Yα → C2 onto a 2-dimensional plane which is a finite ramified cover. Then,
one can define π∗(u) outside the ramification locus Rπ of π, by π∗(u)(x) =

∑
y∈Yα,π(y)=x u(y).

This function is psh, and it is bounded, because u is locally bounded; so, it extends through
Rπ as a psh function. In particular, π∗(u) satisfies volC2{|π∗(u)| ≥ t} ≤ cπ exp(−t/cπ) for some
cπ > 0. Choosing finitely many such projections πj to ensure that

∑
j π

∗
j volC2 is a volume form

on Yα, we obtain vol{|u| ≥ t} ≤ c exp(−t/c) for some c > 0, as desired.

5.3 Rational invariant classes
We now construct sequences of probability measures for which the fixed classes wνn have good
positivity and integrality properties; the last assertion makes use of the contraction π0 : X → X0

constructed in Proposition 3.9.

Proposition 5.10. Let X be a smooth complex projective surface and Γ be a non-elementary
subgroup of Aut(X) such that ΠΓ is defined over Q. Let f be a loxodromic element of Γ. There
is a sequence (νn) of probability measures on Aut(X) such that:

(1) the support Supp(νn) is a finite subset F of Γ that does not depend on n and generates a
non-elementary subgroup of Γ containing f ;

(2) νn(g) is a positive rational number for all g ∈ F ;
(3) the unique eigenvector wνn of Pνn in HX is an element of R+NS(X;Z);
(4) the corresponding eigenvalue α(νn) belongs to Q+∩]1,+∞[;
(5) νn converges to the measure 1

2(δf + δf−1) and wνn converges to (1/
√

2)([T+
f ] + [T−

f ]).

If Γ contains a parabolic element g, one can furthermore assume that g belongs to F and
that wνn ∈ R+π

∗
0[An] for some ample line bundle An on X0.

Proof. For the proof we use the conventions of § 3.1.2, in particular the classes θ±f , which can be
defined by θ±f = 〈T±

f |[κ0]〉−1[T±
f ].

Step 1. Since the representation of Γ on ΠΓ is irreducible, it is also irreducible over C. Indeed, if
W is a proper, Γ-invariant, complex subspace of ΠΓ ⊗R C, then W does not contain any non-zero
real vector u ∈ H1,1(X;R); in particular, it does not contain any isotropic eigenvector of any
loxodromic element of Γ. This implies that W is contained in the orthogonal complement (θ+

h )⊥

for all h ∈ Γlox. But in ΠΓ the intersection
⋂

h∈Γlox
(θ+

h )⊥ is defined over R and is Γ-invariant, so
it is trivial.
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Thus, according to Burnside’s theorem (see [HR80]), Γ contains a basis of the real vector
space End(ΠΓ). More precisely, one can find a basis (f∗1 , f∗2 , . . . , f∗N ) withN = (dim ΠΓ)2 such that
fi ∈ Γ for all i, f1 = f and f2 = f−1 (indeed, f and f−1 are linearly independent endomorphisms).
In particular, the set of linear combinations

∑
i αif

∗
i with αi ≥ 0 contains a non-empty, open,

and convex cone of End(ΠΓ).
If Γ contains a parabolic element g we can require that g belongs to the basis, because f∗,

g∗, and (f−1)∗ are linearly independent: indeed, g∗ preserves a unique isotropic line, while any
linear combination of f∗ and (f−1)∗ preserves at least two isotropic lines.

Step 2. Set F = {f1, f2, . . . , fN} and ΔN = {(νi) ∈ RN
+ ;

∑
i νi = 1}. Let Δ◦

N be the interior of
this simplex. Points in Δ◦

N correspond to probability measures ν =
∑

i νiδfi whose support is
equal to F . When ν ∈ Δ◦

N , Γν is non-elementary; so, by Lemma 5.2, Pν has a unique fixed point
wν in HX . As a consequence, the map ν ∈ Δ◦ �→ wν is continuous. If U is an open subset of Δ◦

N ,
and ν0 is in U , then the image of U by ν �→ Pν is an open subset U ′ of the hyperplane{

P ∈ End(ΠΓ); P =
∑

αifi,
∑

αi = 1
}

⊂ End(ΠΓ). (5.14)

Now, take a vector w′ in HX ∩ ΠΓ near wν0 . Since Pν0(P(w′)) is near P(w′), there is a B ∈ GL(ΠΓ)
close to id such that Pν0(P(w′)) = B−1(P(w′)). Thus, B ◦ Pν0 is close to Pν0 and fixes P(w′). A
positive multiple of B ◦ Pν0 belongs to U ′, hence is of the form Pν′ for some ν ′ ∈ U . Then, w′ is
the leading eigenvector of Pν′ and w′ is in the image of ν �→ wν . This shows that ν �→ wν contains
an open set around wν0 .

Step 3. Now, consider a sequence (νn) of elements of Δ◦
N converging to aδf + (1 − a)δf−1 , with

0 < a < 1. Normalize the fixed point wνn by setting wn := 〈wνn |[κ0]〉−1wνn , so that 〈wn|[κ0]〉 = 1
and wn stays in a compact subset of H1,1(X;R). If wnj converges to w along a subsequence (nj)
the limit is a nef eigenvector of the operator af∗ + (1 − a)(f−1)∗ associated to an eigenvalue
≥ 1. Thus, if a is small the limit must be equal to θ−f and the sequence (wn) converges towards
this eigenvector (see Example 5.3). Conversely, if 1 − a is small, then the limit is θ+

f . The subset

Δ◦
N (ε) = {(νi) ∈ Δ◦

N ; νi ≤ ε, ∀i ≥ 3} (5.15)

is connected. Thus, the closure of its image by the continuous map ν �→ 〈wν |[κ0]〉−1wν is a
compact and connected subset of ΠΓ, and the intersection of these compact sets is also connected.
This set is contained in the segment [θ−f , θ

+
f ] because it is contained in Pos(X) and in the union of

eigenvectors of af∗ + (1 − a)(f−1)∗, for a ∈ [0, 1]. Since it contains the endpoints of this segment,
it actually coincides with it. From this we deduce that there exists a sequence of probability
measures νn ∈ Δ◦

N such that 〈wνn |[κ0]〉−1wνn converges to the class 1
2(θ+

f + θ−f ), hence:

– wνn converges to the class (1/
√

2)([T+
f ] + [T−

f ]).

Then Example 5.3, the proof of case (ii) of Proposition 5.4, and Lemma 5.6 show that:

– Pνn converges towards 1
2(f∗ + (f−1)∗);

– α(νn) converges towards α(f) = 1
2(λ(f) + 1/λ(f)).

Step 4. At this stage the coefficients νn(fi) and the eigenvalues α(νn) are positive real numbers.
Let Un be a small open neighborhood of νn = (νn(fi)) in Δ◦

N . By Step 2, the image of ν ′ ∈ Un �→
wν′ contains a neighborhood of wνn in ΠΓ ⊂ NS(X;R). Thus, after a small perturbation of νn

we may assume that wνn ∈ R+NS(X;Z). According to Proposition 3.9 and Remark 3.11, when
Γ contains parabolic elements, we may further choose wνn to be proportional to the pullback
[π∗0An] of an ample class.
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The equation satisfied by wνn is α(νn)wνn =
∑

i νn(fi)f∗i (wνn). Write wνn = ηnw̃n for some
w̃n in NS(X;Q) and ηn in R+; the equation becomes

α(νn)w̃n =
N∑

i=1

νn(fi)f∗i (w̃n). (5.16)

This is a linear relation of the form β0w̃n =
∑

i βif
∗
i (w̃n), where w̃n and the f∗i (w̃n) belong to

NS(X;Q) and the βi are positive real numbers (with β0 > 1). Thus, given any ε > 0, there is a
relation of the form β̃0w̃n =

∑
i β̃if

∗
i (w̃n) where the coefficients β̃i are rational numbers which

are ε-close to the original βi. This proves that we can perturb νn one more time to insure that
the νn(fi) and α(νn) are positive rational numbers. �

5.4 Arithmetic equidistribution
Here, X is a normal projective surface (possibly singular) and both X and the subgroup Γ of
Aut(X) are defined over some number field k ⊂ Q. For y in X(Q), let my denote the uniform
probability measure supported on the Galois orbit of y,

my =
1

deg(y)

∑
y′∈Gal(Q:k)(y)

δy′ ; (5.17)

here, deg(y) is the degree of the closed point defined by y or, equivalently, the cardinality of the
orbit of y under the action of the Galois group Gal(Q : k), and the sum ranges over all points
y′ in this orbit. A sequence (xj) of points of X(Q) is generic if the only Zariski-closed subset of
X containing infinitely many of the xj is X. Equivalently, (xj) converges to the generic point of
X for the Zariski topology.

Theorem 5.11. Let X be a normal projective surface defined over a number field k. Let ν be
a probability measure on Aut(Xk) with finite support F and rational weights ν(f) ∈ Q+, for f
in F , and such that Γν is non-elementary. Assume that:

(i) the class wν such that P ∗
νwν = α(ν)wν is ample and contained in NS(X;Q);

(ii) (xj) ∈ X(Q)N is a generic sequence such that each xj is a periodic point of Γν .

Then, the sequence of probability measures (mxj ) converges towards the measure Sν ∧ Sν , and
this measure is Γν-invariant.

Here wν is given by Lemma 5.2 and Sν is the current associated to wν by Proposition 5.8.
It is important that wν be a rational class, that is wν ∈ NS(X;Q) instead of just NS(X;R),
since we rely on results of Kawaguchi, Yuan, and Zhang that require this assumption. It is also
crucial that X is not supposed to be smooth because this result will be applied to the model X0

constructed in § 3.3.

Remark 5.12. By [Kaw08, Lee12], Theorem 5.11 also holds when Γν is elementary (with
essentially the same proof).

Example 5.13. Under the assumption of Theorem 5.11, assume furthermore that X is an abelian
surface. Since Γν has a periodic point x1, the stabilizer Γx1 = StabΓν (x1) has finite index in
Γν ; conjugating by a translation we can take x1 as the neutral element for the group law of
X � C2/Λ. Then, the periodic points of Γx1 (and of Γν) are exactly the torsion points of X
(see § 4.1). By the equidistribution theorem of Szpiro, Ullmo, and Zhang, the measures mxj

converge towards the Haar measure of X (see [SUZ97]). In addition, Γx1 is induced by a subgroup
Γ̃x1 of GL2(C) preserving the lattice Λ, and Γν is a group of affine transformations with linear part
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given by Γ̃x1 and translation part given by the finite subset Γν(0) ⊂ X. Every cohomology class
u in H1,1(X;R) has a distinguished representative, given by the unique translation invariant
(1, 1)-form ωu on X such that [ωu] = u. Since Γν acts by affine automorphisms, the operator
(1/α)Pν preserves ωwν , and Sν = ωwν . Thus, for abelian surfaces, Theorem 5.11 corresponds to
the theorem of Szpiro, Ullmo, and Zhang together with the fact that ωwν ∧ ωwν is equal to the
volume form inducing the Haar measure on X.

Proof of Theorem 5.11. For notational ease, set Γ = Γν , w = wν , α = α(ν). Let π : Y → X be
a minimal resolution; by [BHPV04, § III.6, Theorems (6.1) and (6.2)], it is unique up to iso-
morphism and Γ lifts to a subgroup ΓY of Aut(Y ). We shall also consider ν as a measure on ΓY .
The pull-back π∗ : Pic(X) → Pic(Y ) is an isometric embedding for the intersection form; more-
over, π∗NS(X;R) is ΓY -invariant and contains classes with positive self-intersection. Thus, ΓY

and Γ are both non-elementary. Moreover, Pν(π∗w) = απ∗w in NS(Y ;R), so π∗w coincides with
the unique eigenclass provided by Lemma 5.2 in NS(Y ;R).

Case 1. Assume that Pic0(X) is non-trivial; equivalently, Pic0(Y ) is non-trivial. Since ΓY contains
a loxodromic element, we deduce from [Can14, Theorem 10.1] that Y is a blow-up of an abelian
surface (for Pic0(Y ) is trivial when Y is birationally equivalent to a rational, K3, or Enriques
surfaces). But then X is smooth and is a blow-up of an abelian surface. If X itself is not an
abelian surface, the exceptional divisor E of the blow-up is Γ-invariant. From this invariance
we get α〈w|[E]〉 = 〈Pνw|[E]〉 = 〈w|[E]〉, but since w is ample and α > 1, this is a contradiction.
Therefore, X is abelian, and Theorem 5.11 follows from the discussion in Example 5.13.

Case 2. Assume now that Pic0(X) = 0. The proof is based on standard ideas from arithmetic
equidistribution theory. For the reader’s convenience we provide background and details (see
also [Lee12] for the applicability of arithmetic equidistribution in this context). Changing w into
a multiple, we assume w ∈ NS(X;Z). Multiplying the equation

∑
f ν(f)f∗(w) = αw by the least

common multiple b of the denominators, we obtain the linear relation∑
f∈F

n(f)f∗(w) = dw; (5.18)

in which d = bα and the coefficients n(f) = bν(f) are positive integers such that∑
f∈F

n(f) = b < d = bα (5.19)

because α > 1. Denote by D a divisor with class w, and by L the line bundle OX(D). Since
Pic0(X) is trivial, the Equality (5.18) implies⊗

f∈F

(f∗L)⊗n(f) = L⊗d (5.20)

up to an isomorphism of line bundles that we do not specify. From this identity, Kawaguchi
constructs in [Kaw06, § 1] a function ĥL : X(Q) → R+ which satisfies the relation

∑
f n(f)ĥL ◦

f = dĥL and differs from the naive Weil height function associated to L only by a bounded
error. It will be referred to as the canonical stationary height associated to ν and L. This height
function can be decomposed as a sum of continuous local height functions, see [Kaw06, § 4].
Arakelov theory also provides a canonical adelic metric on (X,L); for each place v of k, there
is a metric | · |v on the line bundle (Xkv , Lkv), where kv is an algebraic closure of the v-adic
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completion of k, such that ∏
f∈F

|s(f(x))|n(f)
v = |s(x)|dv (5.21)

for every local section s of L defined over k. In our setting, an embedding k ⊂ C is fixed; it
corresponds to one of the places of k. The adelic metric corresponding to that place gives a
continuous metric on L. By construction, the curvature current of the metric is precisely the
current S, here denoted by Sν , constructed in Proposition 5.8 (see Remark 5.9).

Lemma 5.14. A point x ∈ X(Q) satisfies ĥL(x) = 0 if and only if its Γν-orbit is finite.

Proof (see [Kaw06, Proposition 1.3.1.]). Let k′ be any number field containing k. The set {x ∈
X(k′); ĥL(x) = 0} is Γν-invariant and by Northcott’s theorem it is finite, so every element of that
set has a finite orbit. Let us prove the other implication. Iterating the relation

∑
f n(f)ĥL ◦ f =

dĥL and evaluating it on a periodic point x yields αnĥL(x) =
∑

g∈Γ ν

n(g)ĥL(g(x)) where ν
n

is the nth convolution of ν. The right-hand side is bounded because ĥL(g(x)) takes only finitely
many values, and on the left-hand side the term αn goes to +∞; thus, ĥL(x) = 0, as asserted. �

Let Ak denote the ring of adèles of the number field k. The sections of L defined over k
determine a lattice H0(X,L) in H0(X,L) ⊗ Ak, and the quotient (H0(X,L) ⊗ Ak)/H0(X,L) is
therefore compact. Denote by L the line bundle L endowed with its canonical adelic metric. For
each place v, denote by Bv ⊂ H0(X,L) ⊗ kv the unit ball with respect to the v-adic component
| · |v of the adelic metric of L. Let λL be a Haar measure on H0(X,L) ⊗ Ak. The quantity

χ(X,L) = log
λL(

∏
v∈Mk

Bv)
λL(H0(X,L) ⊗ Ak/H0(X,L))

(5.22)

does not depend on the choice of Haar measure. Taking tensor products, we get a sequence of
adelic metrized line bundles (L⊗n)n≥1, and by definition the arithmetic volume of L is

v̂olχ(X,L) = lim sup
n→+∞

χ(X,L⊗n)
n3/6

. (5.23)

This is to be compared with the usual volume vol(X,L) of L, which by definition is the limsup
of (2/n2)h0(X,L⊗n), as n tends to +∞. A fundamental inequality of Zhang asserts that if (xj)
is a generic sequence in X(Q),

lim inf
j

ĥL(xj) ≥ v̂olχ(X,L)
3vol(X,L)

. (5.24)

This follows from an adelic version of the Minkowski theorem on the existence of integer points
in lattices (see, e.g., [CT09, Lemma 5.1] or [Zha95, Theorem 1.10]).

As for the usual volume, the arithmetic volume can be interpreted in terms of arithmetic
intersection. Indeed, to L is associated an arithmetic degree d̂eg(c1(L)3), and it is shown
in [Zha95] that v̂olχ(X,L) = d̂eg(c1(L)3) ≥ 0 (see also [Kaw06, Theorem 2.3.1]). Thus, the exis-
tence of a generic sequence of periodic points (xj) shows that v̂olχ(X,L) = 0 and ĥL(xj) =
v̂olχ(X,L) for all j.

We are now in a position to apply Yuan’s equidistribution theorem (see [Yua08, BB10]): the
sequence of measures (mxj ) converges towards the probability measure Sν ∧ Sν as j goes to ∞.
If f is any element of Γν , the points f(xj) also form a generic sequence of Γ-periodic points.
Since the actions of Γ and Gal(Q : k) commute, we infer that f∗(mxj ) = mf(xj), so taking the
limit as j → ∞ yields f∗(Sν ∧ Sν) = Sν ∧ Sν , and finally Sν ∧ Sν is Γν-invariant. �
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5.5 Density of active saddle periodic points
Let f be a loxodromic automorphism of X. We say that a periodic point of f is active if it is
contained in the support of the measure of maximal entropy μf . From [Duj06, Can14] we know
that a saddle periodic point that is not contained in any f -periodic curve is active (see [Can14,
Theorem 8.2]).

Theorem 5.15. Let X be a compact Kähler surface and let Γ be a non-elementary subgroup
of Aut(X) that contains a parabolic automorphism. Then, given any non-empty open subset
V ⊂ X (for the Euclidean topology), there exists a point x ∈ V and a loxodromic element f ∈ Γ
such that x is an active saddle periodic point of f . In particular, the union of the supports of
the measures μf , for f ∈ Γlox, is dense in X.

Before proceeding to the proof, let us point out the following lemma, which readily follows
from Lemma 3.5, together with the fact that an irreducible curve with negative self-intersection
is determined by its class in NS(X;Z) ⊂ NS(X;R).

Lemma 5.16. Let U and U ′ be two disjoint open subsets of P(NS(X;R)) containing nef classes.
Set

A(U,U ′) = {f ∈ Aut(X); f is loxodromic, P([T+
f ]) ∈ U and P([T−

f ]) ∈ U ′}.
Then, the union of all periodic curves of all elements of A(U,U ′) is a finite set of curves.

Proof of Theorem 5.15. Pick g in Γpar. Since Γ is non-elementary we can conjugate g by an
element of Γlox to produce a pair g, h ∈ Γpar with distinct fixed points in ∂HX .

Step 1. Assume that X is a blow-up of an abelian surface A, and pick f in Γlox. By Lemma 4.3,
its periodic points are dense, and all of them are active because μf is the pull-back to X of the
Haar measure on A. Thus, any open subset of X contains active saddle periodic points.

From now on, assume that X is not a blow-up of an abelian surface.

Step 2. From § 3.1, g preserves a unique fibration πg : X → Bg and the automorphism induced by
g on Bg is periodic. Replacing g by some iterate, we assume that πg ◦ g = πg. Let U ⊂ Bg be a
small disk containing no critical value of πg. There is a real analytic diffeomorphism Φ: π−1

g (U) →
U × R2/Z2 and a real analytic map ϕ : U → R2 such that πU ◦ Φ = πg and gΦ := Φ ◦ g ◦ Φ−1

satisfies

gΦ(b, z) = (b, z + ϕ(b)) (5.25)

for all points (b, z) ∈ U × R2/Z2. According to [Can01b, CD23b], ϕ is generically of maximal
rank: there is a finite set Z ⊂ U such that (Dϕ)b : TbU → R2 has rank 2 for every b ∈ U \ Z;
hence, {b ∈ U ; ϕ(b) ∈ Q2/Z2} is dense in U . If ϕ(b) = (a0/N, b0/N) for some integers a0, b0, and
N , then every point q = (b, z) in the fiber is fixed by gN

Φ and

(DgN
Φ )x =

(
id2 0

N(Dϕ)b id2

)
. (5.26)

Thus, in any holomorphic coordinate system (x, y) in which πg expresses as πg(x, y) = x, the
differential of gN at the fixed point Φ−1(q) is of the form

(
1 0
a 1

)
with a �= 0.

Step 3. The invariant fibrations πg and πh are transversal in the complement of a proper Zariski-
closed set Tang(πg, πh). According to Lemmas 5.16 and 3.13, we can find an integer N > 0, and
a divisor F ⊂ X such that all elements g�N ◦ h�N with � ≥ 1 are loxodromic and do not have any
periodic curve outside F .
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Step 4. Let D be the union of the singular and multiple fibers of πg and of πh, of Tang(πg, πh),
and of the divisor F ; D is a divisor of X. Let V be an open subset of X. Then V contains a small
ball V ′ such that:

– V ′ does not intersect D;
– πg(V ′) and πh(V ′) are topological disks Ug and Uh in Bg and Bh, respectively;
– there are local coordinates (x, y) in V ′ (respectively, x in Ug and y in Uh) such that

(πg)|V ′(x, y) = x and (πh)|V ′(x, y) = y.

Step 2 provides a point (x0, y0) ∈ V ′ and an integer N > 0 such that gN fixes the fiber of πg

through (x0, y0) pointwise, hN fixes the fiber of πh through (x0, y0) pointwise, and

(DgN )(x0,y0) =
(

1 0
a 1

)
, and (DhN )(x0,y0) =

(
1 b
0 1

)
(5.27)

for some non-zero complex numbers a and b. If � ∈ Z is sufficiently large, f�N = (Dg�N )(x,y) ◦
(Dh�N )(x,y) is a loxodromic automorphism, (x0, y0) is a fixed point of f�N which is not contained
in a periodic curve of f�N (because (x0, y0) is not in F ), which is shown to be a saddle by an
explicit computation. Thus, as explained before the proof, (x0, y0) is active, and we are done. �

5.6 Measure rigidity and Kummer examples
Theorem 5.17. Let X be a smooth complex projective surface and let Γ be a subgroup of
Aut(X). Assume that:

(i) X and Γ are defined over a number field k ⊂ Q;
(ii) Γ is non-elementary and contains a parabolic automorphism.

If Γ has a Zariski-dense set of finite orbits, then every loxodromic automorphism in Γ is a
Kummer example.

Proof. Step 1: from the Zariski-dense set of finite orbits we can extract a generic sequence of
Γ-periodic points (xj) ∈ X(Q)N. Since Γ is non-elementary, it contains a loxodromic element f .
The isolated periodic points of f are defined over Q, because X and f are defined over Q, and
the non-isolated periodic points of f form a finite number of f -periodic curves (see § 3.2). Thus,
we can find a Zariski-dense set of Γ-periodic points x′i in X(Q). If Z ⊂ X is an irreducible curve
that contains infinitely many of the x′i, then Z is defined over Q too. There are only countably
many curves defined over Q. Thus, by a diagonal argument, we find an infinite sequence of
periodic points xj ∈ X(Q) such that (xj) is generic.

In what follows, (xj) denotes such a generic sequence of periodic points. Consider the con-
traction π0 : X → X0 of the union DΓ of all Γ-periodic curves (see Proposition 3.9); the group
Γ also acts on the normal projective surface X0. Note that the projection (π0(xj)) ∈ X0(Q)N is
also generic.

Step 2: there exists a Γ-invariant measure μ such that μf = μ for all loxodromic f . Fix
an arbitrary element f in Γlox. By [CD23c, Lemma 2.9], ΠΓ is defined over Q so applying
Proposition 5.10 we obtain a sequence of probability measures (νn). Denote by Sνn and Sνn,0

the currents, on X and X0, respectively, given by Propositions 5.4 and 5.8; by construction
π∗0Sνn,0 = Sνn , where the pull-back is obtained by locally pulling back the continuous potentials.

Fix an integer n ≥ 1. Theorem 5.11 shows that the sequence of probability measures mπ0(xj)

converges towards Sνn,0 ∧ Sνn,0 as j goes to +∞. Therefore, Sνn,0 ∧ Sνn,0 coincides with the
Γ-invariant probability measure μ0 := limj mπ0(xj) and does not depend on n. Since Sνn,0 has
continuous potentials, this measure gives no mass to proper analytic subsets of X0. Let μ be
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the probability measure which is equal to π∗0(μ0) on X \DΓ and gives no mass to DΓ. Since Sνn

has continuous potentials, μ = Sνn ∧ Sνn . In X, the sequence (mxj ) converges to μ. Indeed, if a
subsequence of (mxj ) converges towards some measure λ. Then (π0)∗λ = μ0, and since μ0 does
not charge Xsing

0 , we infer that λ is equal to π∗0(μ0) on X \DΓ and does not charge DΓ, so λ = μ.
Thus, by compactness of the set of probability measures, mxj converges towards μ.

Now, we let n→ ∞. By Proposition 5.10(5), Proposition 5.4, and Lemma 5.6, Sνn ∧ Sνn = μ
converges towards μf as n goes to +∞. Thus μ = μf for all loxodromic elements f in Γ.
In particular, μ is f -ergodic, hence Γ-ergodic.

Step 3: conclusion. As already explained, μ gives no mass to proper algebraic subsets of X.
Furthermore, Theorem 5.15 implies that the support of μ is equal to X. Thus, Theorem A
of [CD23b] shows that μ is absolutely continuous with a smooth density. Since μ = μf , the Main
Theorem of [CD20] implies that (X, f) is a Kummer example, as was to be shown. �

5.7 From Kummer examples to Kummer groups
Proposition 5.18. Let X be a compact Kähler surface, and Γ be a non-elementary subgroup
of Aut(X). Let f ∈ Γ be a loxodromic element whose maximal invariant curve Df coincides
with DΓ. If f is a Kummer example, then (X,Γ) is a Kummer group.

Proof. Consider the birational morphism π0 : X → X0 contracting Df (see [Can14, § 4.1]
or [CD20, Proposition 6.1]. By assumption, f is a Kummer example, which entails that X0

is a quotient A/G, with A = C2/Λ a compact torus and G a finite subgroup of Aut(A) generated
by a diagonal map g0 ∈ GL2(C) of order 2, 3, 4, 5, 6, or 10 (see § 4.3.2).

The group Γ induces a group of automorphisms ofX0. ViewX0 as an orbifold: its fundamental
group is Λ �G and its universal cover X̃0 is C2. Concretely, this means that X0 is the quotient
of C2 by the group of affine transformations with linear part in G and translation part in Λ. The
canonical hermitian metric on C2 is invariant under the affine action of Λ �G. If h̃ : C2 → C2 is
a lift of some h ∈ Γ to X̃0,5 the norm of Dh̃(x,y) with respect to this hermitian metric is constant
along the orbits of Λ �G, hence it is bounded since the action is co-compact. This implies that
the holomorphic map (x, y) ∈ C2 �→ Dh̃(x,y) is constant. Thus, if we denote by Γ̃ the group of
all possible lifts of all elements of Γ to C2 = X̃0, then Γ̃ is a group of affine transformations that
contains Λ �G as a normal subgroup and satisfies Γ̃/(Λ �G) = Γ. The action by conjugation
of Γ̃ on Λ �G preserves the subgroup Λ of translations. Therefore, Λ is also normal in Γ̃: this
shows that Γ̃ induces a group of automorphisms ΓA = Γ̃/Λ of A = C2/Λ that covers X0, and
the proof is complete. �
Conclusion of the proof of Theorem B. By Proposition 3.12, there exists f ∈ Γlox such that
Df = DΓ. Theorem 5.17 implies that f is a Kummer example, so Proposition 5.18 concludes
the proof. �

6. Around Theorem B: consequences and comments

6.1 Corollaries
The following corollary of Theorem B applies, for instance, to general Wehler examples defined
over Q.

5 To prove the existence of such a lift, note that h maps the regular part of X0 to itself, so first lift h|Reg(X0) to

C2 \ π−1(Sing(X0)), which is simply connected, and then use Hartogs extension to extend h̃ across the discrete
set π−1(Sing(X0)).
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Corollary 6.1. Let X be a smooth projective surface and let Γ be a subgroup of Aut(X).
Assume that:

(i) X and Γ are defined over a number field;
(ii) X is not an abelian surface;
(iii) Γ contains a parabolic automorphism, and has no invariant curve.

Then Γ admits only finitely many finite orbits.

Proof. Suppose Γ has infinitely many finite orbits; since Γ does not preserve any curve, these
orbits form a Zariski dense subset. Let g be a parabolic automorphism of Γ. If the fibration
πg were Γ-invariant, then Γ would preserve the curve

⋃
y∈Γ(x) π

−1
g (πg(y)) for every Γ-periodic

point x. Thus, there is an element h in Γ that does not preserve πg, and h−1 ◦ g ◦ h ∈ Γ is a
parabolic map associated to a different fibration. Hence, Γ is non-elementary (see § 3.1.3) and
Theorem B shows that Γ is a Kummer group. But, since X is not abelian, a Kummer subgroup of
Aut(X) admits an invariant curve (see Lemma 4.7): this contradiction concludes the proof. �

The next result is in the spirit of the ‘dynamical Manin–Mumford problem’.

Corollary 6.2. Let X be a smooth projective surface and Γ be a subgroup of Aut(X), both
defined over a number field. Suppose that Γ is non-elementary and contains parabolic elements.
Let C ⊂ X be an irreducible curve containing infinitely many periodic points of Γ. Then:

(1) either C is Γ-periodic and is fixed pointwise by a finite index subgroup of Γ;
(2) or (X,Γ) is a Kummer group and C comes from a translate of an abelian subvariety (of

dimension 1).

In both cases the genus of C is 0 or 1. Thus, a curve of genus ≥2 contains at most finitely many
periodic points of Γ.

To be specific, with the notation of § 4.3, the second assertion means the following: there
is a translate E + t of a 1-dimensional abelian subvariety E ⊂ A such that qX(C) = qA(E + t).
Moreover, if we choose the origin of A at a periodic point of ΓA, we can choose t to be a torsion
point of A. We keep this notation in the proof.

Proof. Let Per(C) be the set of periodic points of Γ in C; it is Zariski dense in C, for C is
irreducible. The Zariski closure of Γ(Per(C)) is either a Γ-invariant curve or X.

In the first case C is contained in DΓ, a finite index subgroup Γ′ ⊂ Γ preserves C, and the
restriction Γ′|C has infinitely many periodic points in C. In this case C has (arithmetic) genus 0
or 1 by [DJS07, Theorem 1.1]. A group of automorphisms of a curve with at least three periodic
orbits is finite, because it admits a finite index subgroup fixing 3 points; thus, a finite index
subgroup of Γ fixes C pointwise.

In the second case, Theorem B shows that (X,Γ) is a Kummer group. Since C cannot
be periodic, its image qX(C) ⊂ A/G is a non-trivial curve whose lift to A contains a Zariski-
dense subset of ΓA-periodic points. Choose one of these periodic points as the origin of A. By
Proposition 4.1 and Remark 4.2, the ΓA-periodic points are exactly the torsion points of A,
and conclusion (2) follows from Raynaud’s theorem (formerly known as the Manin–Mumford
conjecture) [Ray83]. �

6.2 Finitely generated groups
It turns out that Γ is often defined over a number field when X is.
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Proposition 6.3. Let X be a projective surface defined over a number field k. Assume that
Aut(X) contains a loxodromic element, and that X is not an abelian surface. Then any finitely
generated subgroup of Aut(X) is defined over a finite extension of k.

Corollary 6.4. If X is a K3 or Enriques surface defined over a number field k, Aut(X) is
finitely generated in this case (see [Ste85]) and is defined over a finite extension of k.

Proof of the Proposition. It is enough to show that any automorphism f ∈ Aut(X) is defined over
a finite extension of k. Under our assumption, Aut(X)∗ ⊂ GL(H∗(X,Z)) is infinite, Aut(X)0 is
trivial, and the homomorphism f ∈ Aut(X) �→ f∗ ∈ GL(H∗(X,Z)) has finite kernel (see [Can14,
Theorem 10.1]); more precisely, if H is any ample divisor, the stabilizer of [H] is a finite subgroup
Aut(X; [H]) of Aut(X).

Fix a finite extension k′ of k and a basis of NS(X;Z) given by classes of divisors Di which
are defined over k′. Fix an ample divisor H defined over k′. By assumption X and the Di

are defined by polynomial equations over k′, in some P
N . Now, consider an automorphism f

of X, defined by polynomial formulas with coefficients in some extension K of k′. Any field
automorphism ϕ ∈ Gal(K : k′) conjugates f to an automorphism fϕ of X: this defines a map
ϕ ∈ Gal(K : k′) �→ fϕ ∈ Aut(X). On the other hand, 〈(fϕ)∗[Di]|[Dj ]〉 = 〈f∗[Di]|[Dj ]〉 for any
pair (i, j) because the divisorsDi are defined over k′; thus, (fϕ)∗ = f∗ on NS(X;Z), and fϕ ◦ f−1

belongs to the finite group Aut(X; [H]), so the set {fϕ; ϕ ∈ Gal(K : k)} is finite, and we are
done. �

6.3 Open problems
In the case of the affine plane A

2, it follows from [DF17] that any non-elementary subgroup
of Aut(A2

k), for any number field k, has at most finitely many finite orbits (see [DF17] for the
definition of ‘non-elementary’ in this case). This motivates the following question.

Question 6.5. Is Theorem B true without assuming the existence of a parabolic element in Γ?

To understand the difficulties behind Question 6.5, let us comment on three arguments that
required the hypothesis Γpar �= ∅. First, it was used to show that ΠΓ ⊂ NS(X;R) is defined over Q
and to construct the projective surfaceX0 (which is then used in the construction of the canonical
stationary height). The point is that, in general, the contraction of the divisorDΓ is a well-defined
complex analytic surface, but it is not projective (see [CD20, § 11]). We expect that this issue
could be circumvented by applying more advanced techniques from Arakelov geometry. Second,
Theorem 5.15 also relies on the existence of parabolic elements; the point was to show that all
active periodic points of all loxodromic elements of Γ cannot be simultaneously contained in some
real surface. For instance, it is unclear to us whether there can exist a real projective surface
XR, with a non-elementary subgroup Γ ⊂ Aut(XR), such that all periodic points of all elements
f ∈ Γ \ {id} are contained in the real part X(R) of X. Third, parabolic automorphisms are
crucially used in the classification of Γ-invariant probability measures given in [Can01b, CD23b].
We expect that the techniques from [BH17, CD23c] will soon lead to a complete classification of
Γ-invariant probability measures, for any non-elementary group Γ ⊂ Aut(X). Such a classification
would then open the way to an extension of Theorem B to all non-elementary groups (defined
over a number field).

Remark 6.6. In [Kaw13, Question 3.3], Kawaguchi formulates two interesting questions which
are closely related to our main results as well as to Question 6.5.

(1) First, he asks whether two loxodromic automorphisms f and g of a complex projective
surface X with a Zariski-dense set of common periodic points automatically have the same
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periodic orbits. As it is formulated, the answer is no, because of Kummer groups: if we start
with two loxodromic automorphisms of an abelian surface A fixing the origin and generating
a non-elementary subgroup, then one can blow-up the origin, and the automorphisms lift to
automorphisms with the same periodic orbits (coming from torsion points of A), except for their
fixed points on the exceptional divisors, which do differ (see Lemma 4.7, assertion (2)). Thus, his
question needs to be modified by asking whether f and g have the same periodic points, except
for finitely many of them.

(2) The second part of [Kaw13, Question 3.3] asks whether two loxodromic automorphisms
of a Wehler surface having a Zariski-dense set of common periodic points automatically gen-
erate an elementary group. There are (singular) Kummer examples in the Wehler family (see
[Can10, § 8.2]), and they provide counter-examples to this question. Taking these comments
into consideration, Kawaguchi’s second question can now be reformulated as: if two loxodromic
automorphisms f and g of a complex projective surface X have a Zariski-dense set of common
periodic points, then is it true that either fm = gn for some m,n ≥ 1, or f and g generate a
Kummer group? This seems harder than Question 6.5, because common periodic points do not
directly provide common periodic orbits. A natural companion to the last question is: when do
two loxodromic automorphisms have the same measure of maximal entropy?

One may also ask for effective bounds on the cardinality of a maximal finite Γ-invariant
subset of X(C) in terms of the data (compare [DKY22]). Proposition 2.8 says that such a bound
should at least depend on the degrees of the generators of Γ.

Lastly, a natural question is whether the number field assumption in Theorem B is necessary
at all: this is what the next section is about.

7. From number fields to C

In this section we show how a specialization argument makes it possible to extend Corollary 6.1
beyond the number field case. A full generalization of Theorem B to complex coefficients would
require further ideas (see § 7.4 for a short discussion). For concreteness we first treat the case of
Wehler surfaces and then explain the extra ingredients required to address the general case.

7.1 Wehler surfaces
We resume the notation from § 2. The complete linear system |L| parameterizing Wehler surfaces
is a projective space of dimension 26, which yields a moduli space of dimension 17 modulo the
action of Aut(P1)3. There is a dense, Zariski-open subset W0 ⊂ |L| such that if X ∈W0, then X
is a smooth Wehler surface and for every 1 ≤ j �= k ≤ 3, πj,k : X → P

1 × P
1 is a finite morphism.

Let ΓX be the group generated by the three involutions σi.

Theorem 7.1. If X is a smooth Wehler surface for which the projections πj,k : X → P
1 × P

1

are finite maps, then ΓX admits only finitely many finite orbits.

For the proof we follow the approach of [DF17, § 5 and Theorem D] closely.

Proof. Let G = (Z/2Z) � (Z/2Z) � (Z/2Z) with generators a1, a2, a3 and let χ : G→ Aut(X) be
the unique homomorphism such that χ(ai) = σi. By definition, ΓX = χ(G). Let ci denote the
class of the curve X ∩ {zi = Cst}. The subspace Zc1 ⊕ Zc2 ⊕ Zc3 of NS(X,Z) is invariant by
χ(G)∗ ⊂ GL(NS(X,Z)) and this representation does not depend on X ∈W0: the matrices of
the involutions σ∗i = χ(ai)∗ in the basis (c1, c2, c3) have constant integer coefficients (see, e.g.,
[CD23c, § 3]). Thus, we can define Glox (respectively, Gpar) to be the set of elements h ∈ G such
that for any X ∈W0, χ(h) acts as a loxodromic (respectively, parabolic) map on NS(X,Z).
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Here, we implicitly use the fact that the type of h ∈ Aut(X) is the same as the type of h∗ in
restriction to any h∗-invariant subspace of H1,1(X;R) on which the intersection form is not
negative definite. In particular, the type of h coincides with the type of h∗ as an isometry of
Vect(c1, c2, c3).

Fix a system of affine coordinates (x, y, z) and write the equations of Wehler surfaces as
in (2.1); this gives a system of homogeneous coordinates on |L|, and |L| can be considered
as a projective space defined over Q. Then, endow |L| � P

26(C) with the Q-Zariski topology.
Fix X ∈W0, let b ∈ P

26 (for ‘base point’) denote the parameter corresponding to X, and S be
the closure of {b} for this topology: this is a subvariety of P

26 defined over Q in which b is, by
construction, a generic point. We put S0 = S ∩W0, and we restrict the universal family X → P

26

of Wehler surfaces to a family XS0 → S0, with a fiber-preserving action of the group G. The fiber
over s is denoted by Xs and the natural homomorphism G→ Aut(Xs) by χs; thus, X coincides
with Xb.

Lemma 7.2. For every s ∈ S0(C):

(1) Xs is a smooth K3 surface which does not contain any fiber of πi,j , i �= j ∈ {1, 2, 3};
(2) h ∈ G belongs to Glox (respectively, Gpar) if and only if χs(h) is a loxodromic (respectively,

parabolic) element of Aut(Xs);
(3) χs(G) is a non-elementary subgroup of Aut(Xs) without invariant curve.

Proof of Lemma 7.2. The first assertion follows from the results of § 2.1 and the inclusion
S0 ⊂W0. Likewise χs(G) has no invariant curve by § 2.2. The second assertion follows from
our preliminary remarks on the definition of Glox and Gpar, and it also implies that χs(G) is
non-elementary. �

Assume now by contradiction that ΓX admits infinitely many finite orbits. Then the following
holds.

Lemma 7.3. For every s ∈ S0(C), χs(G) has infinitely many finite orbits.

This lemma concludes the proof of the theorem. Indeed pick s ∈ S0(Q). By Lemma 7.2, χs(G)
is non-elementary, contains parabolic elements; and the Zariski closure of the set of finite orbits
of χs(G) coincides with Xs, as otherwise it would be an invariant curve. Then, by Theorem B,
(Xs, χs(G)) must be a Kummer group. But Xs is a K3 surface and a Kummer group on
a non-abelian surface admits an invariant curve, so that we get a contradiction with
Lemma 7.2.(3). �
Proof of Lemma 7.3. We first describe the set of finite ΓX -orbits as a countable union of subva-
rieties by arguing as in § 2.4.1. Let Gd be the intersection of the kernels of all homomorphisms
from G to groups of order ≤ d!; it is a finite index subgroup of G. For any action of G, if the
orbit of a point x has cardinality ≤ d, then x is fixed by Gd. Conversely, if x is fixed by Gd, then
its G-orbit is finite. Define a subvariety Zd of X by

Zd = {x ∈ X; ∀g ∈ Gd, χ(g)(x) = x}. (7.1)

Finally, put Z =
⋃

d≥1 Zd. Then the ΓX -orbit of x ∈ X is finite if and only if x ∈ Z. We can now
define a subvariety Zd of XS0 which is the fibered analogue of Zd, namely

Zd = {(s, x); x ∈ Xs, ∀g ∈ Gd, χs(g)(x) = x}, (7.2)

and put Z =
⋃Zd. We let Zs (respectively, Zd,s) be the intersection of Z (respectively, Zd)

with Xs.

159

https://doi.org/10.1112/S0010437X23007613 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X23007613


S. Cantat and R. Dujardin

Set f = a3a2a1 ∈ G. An explicit computation shows that f ∈ Glox and the eigenvalues of
χs(f)∗ on Vect(c1, c2, c3) are −1, λ(f) = 9 + 4

√
5, and 1/λ(f). The eigenline corresponding to

−1 is R · (c1 − 3c2 + c3), its orthogonal complement in Vect(c1, c2, c3) is the plane Πχs(f), and
this plane contains the class c1 + 2c2 + c3. This class is ample, because it is a convex combination,
with positive coefficients, of the Chern classes ci of the line bundles π∗i (OP1(1)), i = 1, 2, 3. Since
any invariant curve must be orthogonal to Πχs(f), we deduce that χs(f) has no invariant curve
(for all s ∈ S0).

Now assume by contradiction that there is a parameter t ∈ S0(C) such that Zt is finite. Let
Pn be the set of fixed points of χ(fn), so that P =

⋃
n Pn is the set of all periodic points of

χ(f); likewise, let Pn and P be their respective fibered versions. Note that Z ⊂ P. For fixed n,
let Yn be the (reduced) subvariety of XS0 whose underlying set is Z ∩ Pn. More precisely, the
sequence of subvarieties Ym

n :=
⋃m

d=1 Zd ∩ Pn is non-decreasing with m, so it stabilizes, and we
define Yn = Ym

n for m sufficiently large; its fibers will be denoted by Yn,s (Yn,s is the intersection
of Yn with Xs, it may be non-reduced). For the generic point b the cardinality of Yn,b tends to
infinity with n.

From this point, the argument is identical to that of Lemma 5.3 and Theorem D in [DF17].6

For x ∈ Yn,s, its multiplicity mult(x,Yn,s) as a point in Yn,s is equal to its multiplicity as a fixed
point of χs(f)n. Nakayama’s lemma implies that the function

s �→
∑

x∈Yn,s

mult(x,Yn,s)

is upper semicontinuous for the Zariski topology, hence∑
x∈Yn,t

mult(x,Yn,t) ≥
∑

x∈Yn,b

mult(x,Yn,b) −→
n→∞ +∞. (7.3)

On the other hand, Zt is a finite set, so there exists n0 such that for all n ≥ 1, Yn,t ⊂ Pn0,t,
and the theorem of Shub and Sullivan [SS74] asserts that for every x ∈ Pn0,t, the multiplicity
of x as a fixed point of χt(f)n is bounded as n→ ∞. This contradicts (7.3) and concludes the
proof. �

7.2 Groups without invariant curve
Let us recall Theorem C.

Theorem 7.4. Let X be a compact Kähler surface and let Γ be a subgroup of Aut(X). Assume
that (i) X is not an abelian surface, and (ii) Γ contains a parabolic element and has no invariant
curve. Then Γ admits only finitely many finite orbits.

Proof. The idea is the same as for Theorem 7.1, however new technicalities arise. As in
Corollary 6.1, Γ is automatically non-elementary, so X is projective. Arguing by contradiction,
we suppose that Γ admits infinitely many finite orbits. Applying Theorem D from § 3, we fix
f ∈ Γlox without invariant curve. We also fix a parabolic element g ∈ Γ.

Step 1: geometry of X. Since Γ is non-elementary, X is a blow-up of an abelian surface, a K3
surface, an Enriques surface, or the projective plane (see [Can14, Theorem 10.1]). In the first
three cases, there is a unique minimal model ϕ : X → X, and the exceptional divisor of ϕ is
Aut(X)-invariant; since Γ has no invariant curve, X is already equal to its minimal model X,
and since X is not abelian, X is a K3 or an Enriques surface.

6 Our setting is actually simpler since we are dealing with automorphisms on a projective surface rather than
birational mappings, so the properness issue analyzed in [DF17] is not relevant here.
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Step 2: reduction to a finitely generated subgroup. The group generated by f and g satisfies
assumption (ii) and since it is contained in Γ it also admits infinitely many finite orbits. From
now on, we replace Γ by 〈f, g〉 and assume Γ to be finitely generated.

Step 3: specialization formalism. Embed X into a projective space P
N
C . Fix a finite set of reduced

and effective, irreducible divisors Ej in X whose classes form a basis of NS(X;Z), let H ⊂ X
be a hyperplane section, and let Ω be a non-trivial rational section of K⊗2

X , where KX is the
canonical bundle. IfX is a K3 or an Enriques surface, we assume that Ω is regular, hence does not
vanish. Let R ⊂ C be the Q-subalgebra generated by the coefficients of a system of homogeneous
equations for X, the Ej , and H, and by the coefficients of the formulas defining Ω and a finite
symmetric set of generators of Γ. (We shall actually further enlarge R in § 7.3.2.)

Let K = Frac(R). It is isomorphic to the function field of some (irreducible) algebraic variety
V , defined over Q. There is a dense, Zariski-open subset S of V , which may be assumed to be
an affine subset, such that all elements of R correspond to regular functions on S. Note that in
what follows, by Zariski topology we mean the Q-Zariski topology; nevertheless, since we will
use transcendental arguments, S(C) will also be considered as a complex analytic space endowed
with its Euclidean topology.

By specialization, i.e. evaluation of the elements of R at s ∈ S, we can view X ⊂ P
N , Γ, the

Ej , H, and Ω as families over S; that is, there is a scheme X of finite type over Q and a proper
morphism π : X → S endowed with a group of fiber-preserving automorphisms Γ̃, together with
a (complex) base point b ∈ S so that the fiber Xb may be identified with X and, furthermore,
Γ̃b = Γ, Ej,b = Ej , Hb = H, Ω̃b = Ω, etc. The point b ∈ S may be thought of as the generic point
of S (i.e. its closure for the Zariski topology is S) so, in particular, b is a regular point of S and
S is smooth in a complex neighborhood of b. If X is a K3 or an Enriques surface, changing S
into some Zariski-dense affine open subset, we may assume that Ω̃s does not vanish on any Xs.

Step 4: types of automorphisms and invariant curves.

Lemma 7.5. There is a Zariski-open subset S1 ⊂ S such that:

(1) above S1(C), the projection X (C) → S(C) is a submersion; for s ∈ S1(C), Xs is smooth and
it is not an abelian surface;

(2) for s ∈ S1(C), fs is loxodromic and there exists a Euclidean neighborhood B of b such that
for s ∈ B, fs admits no invariant curve;

(3) for s ∈ S1(C), gs is parabolic.

Proof of part (1). The surface Xb is smooth and, by construction, there is a Zariski-dense open
subset S1 of S containing b above which X → S is a submersion; in particular, for s ∈ S1, Xs is
smooth (we will further reduce S1 finitely many times in the proof, keeping the same notation).
For the second conclusion, observe that S is connected (for the euclidean topology), hence so is
S1; therefore, by Ehresmann’s lemma the fibers above S1 are diffeomorphic to X. On the other
hand, a surface which is diffeomorphic to a complex torus and possesses a non-elementary group
of automorphisms is automatically an abelian surface. Since X is not abelian, we conclude that
the same is true for any fiber Xs, s ∈ S1. �

Proof of part (2). The loxodromic nature of fs follows from the lower semi-continuity, in
Zariski topology, of the dynamical degree for birational transformations of surfaces (see [Xie15,
Theorem 4.3]). Indeed, the set {s ∈ S1;λ(fs) ≤ 1} is Zariski closed but does not contain the
generic point, so it is a proper subset, which can be removed from S1.
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Let us show that fs has no invariant curve for s ∈ S1 close to b. Indeed, recall from
Proposition 3.7 that there is a uniform bound on the degree of an invariant curve. Here we
compute the degree of a curve on Xs (respectively, of fs) with respect to the normalized ample
class 〈Hs|Hs〉−1/2[Hs] induced by the hyperplane section Hs. If cX is as in Proposition 3.7, the
inequality 1

2 [Div(Ω̃s)] ≤ cX〈Hs|Hs〉−1/2[Hs] is satisfied on a Zariski-open set. Then by Bishop’s
theorem, if (si) is a sequence of points converging to b such that fsi preserves a curve Ci, we can
extract a subsequence along which (Ci) converges towards a curve C in Xb (see [Chi89, § 16] for
the relevant notions). This curve is fb-invariant, which contradicts our assumption on f . �

The proof of the third assertion of Lemma 7.5 is a little tedious and will be postponed to
§ 7.3.

Step 5: conclusion. We pick a point t in S1(Q) ∩B, and argue exactly as in the case of
Wehler surfaces. Indeed observe first that the assumptions of Corollary 6.1 are satisfied at the
parameter t. Next, since all periodic points of ft of a given period are isolated, we can apply to
ft the strategy of the proof of Theorem 7.1, based on Nakayama’s lemma and the theorem of
Shub and Sullivan; it implies that Γt has infinitely many periodic orbits on Xt, thereby reaching
the desired contradiction. �

7.3 Proof of Lemma 7.5(3)
By Step 1, X is a K3 surface, an Enriques surface, or a blow-up of the projective plane. By
semi-continuity of dynamical degrees and λ(g) = 1, gs is parabolic or elliptic for every s in S1.
Thus, we need to show that the set of parameters for which gs is elliptic is Zariski closed.

7.3.1 K3 and Enriques surfaces. Assume that X is a K3 (respectively, an Enriques)
surface. Above S1(C), every fiber Xs has the diffeomorphism type of Xb, in particular it is
simply connected, and KXs is trivial (respectively, its fundamental group is Z/2Z and K⊗2

XS
is

trivial), so it is also a K3 (respectively, an Enriques) surface, for K3 (respectively, Enriques) are
characterized by these properties (see [BHPV04, Chapter VI]). For such a surface, the group
{h ∈ Aut(Xs); h∗ = id on H2(Xs;Z)} has at most 4 elements (see [MN84]). The second Betti
number is fixed, equal to 22 (respectively, 10), and if h∗ ∈ GL(H2(Xs;Z)) has finite order, then
its order divides some fixed integer k, because GL22(Z) (respectively, GL10(Z)) contains a finite
index, torsion free subgroup. Thus, gs is elliptic if and only if g4k

s = id. This implies that the set
of parameters s for which gs is elliptic is Zariski closed and does not contain b, and we are done
in this case.

7.3.2 Rational surfaces. Now, we assume thatX is rational. This case is slightly more delicate
because there exists automorphisms of P

2 of arbitrary large finite order.
Let πg : X → B be the invariant fibration of g, with B = P

1 since X is rational. Replacing g
by some positive iterate, we assume that its action on the base B is the identity. As explained
in [CD12, CGL21], πg comes from a Halphen pencil; in particular, there is a pencil of curves in
P

2, defined by some rational function ϕ : P
2 ��� P

1, and a birational morphism η : X → P
2 that

blows up the base points of this pencil (and possibly other points too), such that πg coincides
with ϕ ◦ η. The last blow-up necessary to resolve the indeterminacies of ϕ provides an irreducible
curve E which is generically transverse to the fibration and has negative self-intersection. Let
us add to our Q-algebra R the coefficients of the formulas defining πg, ϕ, η, E, etc. Reducing
S1 if necessary, we get a family of automorphisms gs preserving each fiber of a genus 1 fibration
πg,s : Xs → P

1, with an irreducible multisection Es of negative self-intersection. As for K3 and
Enriques surfaces, the following lemma finishes the proof.
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Lemma 7.6. There is an integer � > 0 such that if s ∈ S1 and gs is elliptic, then g�
s = id.

Proof. Set m = 〈[E]|[F ]〉 where F is any fiber of πg. Above S1 the surfaces Xs are pairwise dif-
feomorphic, so they have the same second Betti number and there is an integer k > 0 such that
(h∗)k = id for every elliptic automorphism of Xs, for every s ∈ S1. Now, if gs is elliptic, then
(gk

s )∗[Es] = [Es] and this implies gk
s (Es) = Es. Since gs preserves every fiber, and Es intersects

every fiber in at most m points, we deduce that gk·m!
s fixes a point in each fiber. But an auto-

morphism of a curve of genus 1 which fixes a point has order at most 12, so g12k·m!
s = idXs , and

we are done. �

7.4 Discussion
It would be interesting to extend Theorem B in its general form beyond number fields, that is,
without assuming that DΓ = ∅. Fix (f, g) ∈ Γlox × Γpar, as above. The main difficulty appears
in the following situation: Γ fixes DΓ pointwise, and for every parameter s ∈ S(Q), the alleged
Zariski-dense set of finite orbits of Γ specializes as a finite subset of Xs which intersects (DΓ)s.
In that case, the theorem of Shub and Sullivan does not apply because it concerns isolated
fixed points; so, a finer understanding of the Lefschetz fixed point formula is required. The tools
introduced in [IU10] and in a chapter of Xie’s thesis [Xie14] may lead to a solution of this
problem.

8. Canonical vector heights

Let k be a number field and k � Q be an algebraic closure of k. Let X be a projective surface
defined over k and Γ be a subgroup of Aut(Xk). We consider the vector space

Pic(X;R) = Pic(Xk) ⊗Z R (8.1)

of R-divisors ofXk modulo linear equivalence; doing so, we annihilate the torsion part of Pic0(X).
Keep in mind that when X is birational to an abelian variety, the vector space Pic0(X;R) :=
Pic0(X) ⊗Z R is infinite-dimensional. The Weil height machine extends to Pic(X;R) by
R-linearity (see [HS00, § B.3.2]). Recall from § 1.3 that a canonical vector height on X(k) for
the group Γ is, by definition, a function h : Pic(X;R) ×X(k) → R+ such that:

(a) h is linear with respect to the first factor L ∈ Pic(X;R);
(b) for every L ∈ Pic(X;R), h(L, ·) is a Weil height associated to L;
(c) h is Γ-equivariant ; for every f ∈ Γ, h(L, f(x)) = h(f∗L, x).

Note that if Pic(Xk) is tensorized by Q instead of R and property (a) is stated over Q we get
an equivalent notion. Given any Γ-invariant subspace V ⊂ Pic(X;R), one may also study the
notion of restricted canonical vector height h : V ×X(k) → R. This is most significant when
V contains classes with positive self-intersection, in which case it surjects onto ΠΓ under the
natural map D ∈ Pic(X;R) → [D] ∈ NS(X;R) (see Lemma 8.3(1)). Note that we use brackets
to distinguish a class in NS(X;R) from a class in Pic(X;R).

If Ak is an abelian variety and Γ is a subgroup of Aut(Ak) fixing its neutral element, the
Néron–Tate height on A is a canonical vector height for Γ (see [HS00, Theorem B.5.6]). The
same holds if the neutral element is Γ-periodic, because in this case Γ(0) is made of torsion
points (see Remark 4.2). In this section, we describe automorphism groups of surfaces which are
non-elementary, contain parabolic elements, and possess a (restricted) canonical vector height
hcan: Theorems E, E′, and E′′ show that (X,Γ) is a Kummer group and hcan is derived from the
Néron–Tate height.
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8.1 Invariant classes and canonical vector heights
In the following lemmas, hcan is a restricted canonical vector height for (X,Γ), defined on some
Γ-invariant subspace Vcan ⊂ Pic(X;R). We say that a class [E] in NS(X;R) is almost Γ-invariant
if f∗[E] = ±[E] for all f in Γ.

Lemma 8.1. Let [E] ∈ NS(X;R) be almost Γ-invariant. Let ϕ : X(k) → R be a function. The
function

h[E],ϕ(D,x) = hcan(D,x) + 〈[E]|D〉ϕ(x)

is a restricted canonical vector height on Vcan ×X(k) if and only if either [E] is orthogonal to
Vcan, or ϕ : X(k) → R is bounded and satisfies ϕ(x)[E] = ϕ(f(x))f∗[E] for all f ∈ Γ.

In this situation, we shall say that h[E],ϕ is derived from the height hcan.

Proof. If [E] is orthogonal to Vcan, then h[E],ϕ = hcan on Vcan ×X(k) and there is nothing to
prove. Otherwise, we can fix a class D ∈ Vcan such that 〈[E]|D〉 �= 0. If h[E],ϕ is a canonical vector
height, then ϕ = 〈[E]|D〉−1(h[E],ϕ − hcan)(D, ·) is bounded, because h[E],ϕ(D, ·) and h(D, ·) are
Weil heights associated to the same divisor. Furthermore, ϕ satisfies ϕ(x)[E] = ϕ(f(x))f∗[E]
because h[E],ϕ and hcan are Γ-equivariant and 〈[E]|f∗(D)〉 = 〈f∗[E]|D〉 for all f ∈ Γ. The reverse
implication is straightforward. �
Lemma 8.2. Assume that Γ contains a loxodromic element. Let C ⊂ X be an irreducible
Γ-periodic curve. If the class of C belongs to Vcan, or if Vcan contains a Γ-periodic class D
such that O(D)|C is ample, then the restriction homomorphism StabΓ(C) � f �→ f|C has finite
image.

Proof. If C is Γ-periodic, then its self-intersection is negative, the restriction of OX(−C) to C
has positive degree, and (OX(−C))|C is therefore ample. Thus, it is enough to consider the case
where Vcan contains a periodic class D such that O(D)|C is ample.

After replacing Γ by a finite index subgroup, we may assume Γ(C) = C. If σ is an automor-
phism of C over k, it maps C to a Γ-invariant curve Cσ. Since Γ contains a loxodromic element,
there are only finitely many Γ-invariant irreducible curves (the components of DΓ, see § 3.2).
Thus, the orbit of C under the group of automorphisms of C over k is finite, C is defined over
a number field, and C(k) is dense in C(C).

Set Γ′ = StabΓ(D), and pick x0 ∈ C(k). Then hcan(D, y) = hcan(D,x0) for every y in Γ′(x0);
since hcan(D, ·) is a Weil height for D, and O(D)|C is ample, Northcott’s theorem implies that
{x ∈ C(k′);hcan(D,x) = hcan(D,x0)} is finite for every number field k′; thus, Γ′(x0) is a finite
set. Since C(k) is infinite, we can argue as in the proof of Corollary 6.2 to deduce that Γ′

|C is
finite, as asserted. �
Lemma 8.3. Assume Pic0(X) = 0 and identify Pic(X;R) with NS(X;R).

(1) If Vcan contains a class with positive self-intersection, then it contains ΠΓ.
(2) If Vcan contains ΠΓ, and if C is an irreducible rational Γ-periodic curve, then hcan(D,x) = 0

for every D ∈ ΠΓ and x ∈ C(k).

Proof. If Vcan contains a class in the positive cone it contains the limit set Lim(Γ), hence also
ΠΓ (see [CD23c, § 2.3]); this proves the first assertion. For the second, pick a probability measure
ν on Γ with finite support, and assume that P ∗

ν (D) = α(ν)D for some D in ΠΓ and some
α(ν) > 1. Then,

∑
f ν(f)hcan(D, f(x)) = α(ν)hcan(D,x) by equivariance and linearity. On the

other hand, O(D)|C has degree 0, because 〈D|C〉 = 0, and is therefore trivial because C is
rational. Thus, hcan(D, ·) is bounded on C(k). Since α(ν) > 1, this implies that hcan(D,x) = 0
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for every x ∈ C(k). To conclude, note that such eigenvectors D generate ΠΓ when we vary ν (see
§ 5.3). �

8.2 From canonical vector heights to Kummer groups
Theorem E. Let X be a smooth projective surface and Γ be a subgroup of Aut(X), both defined
over a number field k. Suppose that:

(i) Γ is non-elementary and contains parabolic elements;
(ii) there exists a canonical vector height hcan for (X(k),Γ) on a Γ-invariant subspace of

Pic(X;R) which contains a divisor with positive self-intersection.

Then (X,Γ) is a Kummer group. If, in addition, hcan is defined on Pic(X;R) ×X(k), then X is
an abelian surface.

The smoothness of X is essential for the last conclusion to hold; for instance, if (X0,Γ) is
a singular Kummer group with no Γ-invariant curve, we shall see that the Néron–Tate height
induces a canonical vector height on Pic(X0;R) ×X0(k).

The remainder of this subsection is devoted to the proof of Theorem E. Let us already observe
that once (X,Γ) is known to be a Kummer group, the last conclusion follows from Lemmas 4.7
and 8.2. Thus, all we have to show is that (X,Γ) is a Kummer group.

8.2.1 Reduction to Pic0(X) = 0. Suppose Pic0(X) �= {0}. Then, Γ being non-elementary,
[Can14, Theorem 10.1] shows that X is either an abelian surface or a blow-up of such a surface
along a finite orbit of Γ, and by definition (X,Γ) is a Kummer group.

Thus, from now on, we assume Pic0(X) = {0} and identify Pic(X;R) with NS(X;R).

8.2.2 A key lemma. Assumption (ii) provides a canonical vector height hcan for (X,Γ) defined
on ΠΓ (see Lemma 8.3). Recall from [Sil91, Kaw08] that for every f ∈ Γlox there exist canoni-
cal heights h±f , respectively associated to the classes θ±f , such that h+

f (f(x)) = λ(f)h+
f (x) and

h−f (f−1(x)) = λ(f)h−f (x). They satisfy:

– h±f ≥ 0 on X(k);
– if Df denotes the maximal invariant curve of f , then, for x ∈ X(k), h+

f (x) + h−f (x) = 0 if and
only if x is a periodic point or x ∈ Df (see [Kaw08, § 5]).

Furthermore, any Weil height h associated to θ+
f such that h(f(x)) = λ(f)h(x) coincides with

h+
f : indeed k := h− h+

f is bounded because h and h+
f are Weil heights associated to the same

class, so the relation k(f(x)) = λ(f)k(x) forces it to be identically zero. Thus, the next lemma
follows immediately from the defining properties (a), (b), and (c) (see [Kaw13, Proposition 3.4]
or [Bar04, § 1]).

Lemma 8.4. If Pic0(X) = {0} and if hcan is a canonical vector height for (X,Γ) defined on ΠΓ,
then hcan(θ±f , ·) = h±f (·) for every loxodromic f ∈ Γ.

Remark 8.5. If x belongs to the maximal invariant curve DΓ and c belongs to ΠΓ then
hcan(c, x) = 0. Indeed for every f ∈ Γlox, DΓ ⊂ Df so hcan(θ±f , x) = h+

f (x) = 0, and since the
classes (θ±f )f∈Γlox

span ΠΓ, the result follows by linearity. This extends the second assertion of
Lemma 8.3 to invariant curves which are not rational.
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Now, recall that the classes θ±f are normalized by 〈θ±f |[κ0]〉 = 1. Let us view HX and P(HX)
as subsets of {u ∈ H1,1(X;R); 〈u|u〉 > 0, 〈u|[κ0]〉 = 1}. Setting

Π̃Γ = ΠΓ ∩ {〈·|[κ0]〉 = 1}, (8.2)

Lim(Γ) can now be viewed as a subset of Π̃Γ which generates ΠΓ as a vector space. The start-
ing point of the proof of Theorem E is the following key lemma, inspired by the approach of
Kawaguchi in [Kaw13].

Lemma 8.6. In addition to the assumptions of Theorem E, suppose that:

(iii) there exists f ∈ Γlox such that [θ+
f , θ

−
f ] ∩ Int(Conv(Lim(Γ))) �= ∅, where Conv(·) is the

convex hull and Int(·) stands for the interior relative to Π̃Γ.

Then (X,Γ) is a Kummer group.

Proof. Set d = dim Π̃Γ. Replacing k by a finite extension, we may assume that the birational
morphism π0 : X → X0 constructed in Proposition 3.9 is defined over k; this morphism contracts
the maximal Γ-invariant curve DΓ.

Let ν be a probability measure on Γ, whose support is finite and contains f as well as elements
of Γpar. Let wν be the eigenvector of the operator Pν for the eigenvalue α(ν) given by Lemma 5.2.
As in Proposition 5.10, we may assume that wν is a rational class and is the pull-back of an
ample class [A0] on X0; by multiplying wν by a positive integer, we also assume that wν is an
integral class.

Let L be the line bundle given by the class wν , and ĥL be the associated canonical stationary
height, as in the proof of Theorem 5.11. This is the unique Weil height such that

∑
h ν(h)ĥL ◦

h = α(ν)ĥL. By the linearity of the canonical vector height and the uniqueness of ĥL, we get
ĥL(·) = hcan(wν , ·).

Pick w = aθ+
f + bθ−f in the interior of Conv(Lim(Γ)), with a, b in R+ and a+ b = 1. Then

by linearity and Lemma 8.4, hcan(w, ·) = ah+
f + bh−f . Caratheodory’s theorem provides a subset

Λ of Lim(Γ) such that |Λ| = d+ 1 and w belongs to the interior of the simplex Conv(Λ). By the
density of fixed points of loxodromic elements in Lim(Γ), we may assume that Λ is made of classes
θ+
g for g in a finite subset ΛΓ of Γlox. If ε > 0 is small enough, w − εwν stays in Int(Conv(Λ)); so,

there are positive coefficients βg, for g ∈ ΛΓ, such that w − εwν =
∑

g∈ΛΓ
βgθ

+
g . By the linearity

of hcan, we infer that

ah+
f (·) + bh−f (·) =

∑
g∈ΛΓ

βgh
+
g (·) + εĥL(·). (8.3)

Now, if x ∈ X(k) is f -periodic, then h+
f (x) = h−f (x) = 0, and since ĥL and the h+

g (x) are
non-negative, we deduce that ĥL(x) = 0. The line bundle L is the pull-back of an ample line
bundle A0 on X0; thus, by Lemma 5.14, the Γν-orbit of π0(x) in X0 is a finite set. Since f has a
Zariski-dense set of periodic points, Theorem B implies that (X,Γν) is a Kummer group.

Since we can further choose Γν to contain any a priori given finite subset of Γ,
Propositions 3.12 and 5.18 show that (X,Γ) is a Kummer group. �

From this point, the proof of Theorem E is completed in two steps. We first deal with the
case dim ΠΓ ≤ 4 by directly checking assumption (iii) of Lemma 8.6. This covers general Wehler
surfaces (which is the setting of [Kaw13]) since dim ΠΓ = 3 in this case. The general case is
treated in a second stage by a dimension reduction argument.
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8.2.3 Conclusion when dim ΠΓ ≤ 4. Since Γ is non-elementary, dim ΠΓ ≥ 3, so we need to
consider the cases dim ΠΓ = 3 and dim ΠΓ = 4.

For dim ΠΓ = 3, i.e. d = dim(Π̃Γ) = 2, the intersection of Π̃Γ with the positive cone is the
Klein model of the hyperbolic disk H

2. If assumption (iii) is not satisfied, then for every f ∈ Γlox,
Lim(Γ) is entirely contained on one side of the geodesic [θ+

f , θ
−
f ]. Fix 4 points in Lim(Γ) ⊂ ∂H

2 �
S

1, labelled in circular order (p1, p2, p3, p4). Lemma 3.3 provides elements f and g in Γlox such that
(θ+

f , θ
+
g , θ

−
f , θ

−
g ) is arbitrary close to (p1, p2, p3, p4). Then [θ+

f , θ
−
f ] intersects [θ+

g , θ
−
g ] transversally

in the disk H
2, so Lim(Γ) intersects both sides of [θ+

f , θ
−
f ], a contradiction.

Now assume dim ΠΓ = 4, i.e. d = 3. Then Conv(Lim(Γ)) is a convex body in dimension 3.
The conclusion relies on the following lemma (see below for a proof).

Lemma 8.7. Let p1, . . . , p5 be five points in general position in R3. Then, there is a pair of
indices i �= j such that the line segment between pi and pj intersects the interior of the convex
hull of p1, . . ., p5.

Indeed, fix such a 5-tuple of points in Lim(Γ) and approximate the given pair (pi, pj)
by (θ+

f , θ
−
f ), for some f ∈ Γlox. Then, [θ+

f , θ
−
f ] intersects the interior of Conv(Lim(Γ)), and

Lemma 8.6 finishes the proof of Theorem E (when dim(ΠΓ) ≤ 4).

Proof of Lemma 8.7. The general position assumption implies that there exists βi �= 0 such that∑
i βipi = 0 and

∑
i βi = 0. After a permutation of the pi and possibly replacing the βi by their

opposite, we may assume that

β1 < 0 < β2 ≤ β3 ≤ β4 ≤ β5 or β1 ≤ β2 < 0 < β3 ≤ β4 ≤ β5. (8.4)

In the first case, p1 lies in the interior of the simplex spanned by p2, . . . , p5. In the second case,
the point

−β1p1 − β2p2

−β1 − β2
=
β3p3 + β4p4 + β5p5

β3 + β4 + β5
(8.5)

lies in the interior of the convex hull of p1, . . . , p5 and in the interior of the line segment between
p1 and p2. �

Remark 8.8. The theorem of Steinitz (see [Gru03, § 13.1]) is a far-reaching generalization of
Lemma 8.7. There is no analogue of this lemma in higher dimension (see [Gru03, § 4.7]), hence
the need for a different argument when dim ΠΓ ≥ 5.

8.2.4 Conclusion of the proof of Theorem E. Recall from Lemma 3.1 that g∗ is virtually
unipotent for every g ∈ Γpar. Thus, if we pick a pair of parabolic elements g1, g2 in Γ with
distinct invariant fibrations, some positive iterates gN

1 and gN
2 satisfy the assumption of the

following lemma.

Lemma 8.9. Let g1 and g2 be parabolic elements in Aut(X), with distinct invariant fibrations
and such that g∗1 and g∗2 are unipotent. Then, Γ0 := 〈g1, g2〉 is non-elementary and dim(ΠΓ0) ≤ 4.

Proof. Since πg1 �= πg2 , Γ0 is non-elementary (see § 3.1.3). The subspace W := Fix(g∗1) ∩ Fix(g∗2)
of NS(X;R) is fixed pointwise by Γ0. Thus, W⊥ is Γ0-invariant, it contains ΠΓ0 (see [CD23c,
Proposition 2.8]), and all we need to show is that dim(W⊥) ≤ 4. To see this, note that a unipotent
Euclidean isometry is the identity, thus if g ∈ O+(1, d) is parabolic and unipotent, the structure
of parabolic isometries of Hd (see [FL12, § I.5]) implies that Fix(g∗) ⊂ Rd+1 is a subspace of
codimension 2, and we are done. �

167

https://doi.org/10.1112/S0010437X23007613 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X23007613


S. Cantat and R. Dujardin

Lemma 8.9 and § 8.2.3 imply that (X, 〈g1, g2〉) is a Kummer group for every pair of unipo-
tent elements g1, g2 ∈ Γpar generating a non-elementary subgroup. By Proposition 3.12 we can
choose f ∈ 〈g1, g2〉 such that Df = DΓ, hence from Proposition 5.18 we conclude that (X,Γ) is
a Kummer group, and Theorem E is established.

8.3 Canonical vector heights on abelian surfaces
In this section, A is an abelian surface, defined over some number field k and Γ ⊂ Aut(Ak)
is non-elementary. Denote by hNT : Pic(A) ×A(k) → R the Néron–Tate height on A; it van-
ishes identically on the torsion part of Pic(A), so we may also consider it as a function on
Pic(A;R) ×A(k). When 0 ∈ A has a finite Γ-orbit, hNT is a canonical vector height (see [HS00,
Theorem B.5.6]).

Let hcan be a restricted canonical vector height for (Ak,Γ), defined on some Γ-invariant
subspace Vcan of Pic(A;R). Our goal is to compare it with hNT.

By definition, a divisor D on A is symmetric if [−1]∗D is linearly equivalent to D, where
[m] denotes multiplication by m; likewise it is antisymmetric if [−1]∗D � −D or equivalently
if D ∈ Pic0(A) (see [HS00, Proposition A.7.3.2]). If f ∈ Aut(A) fixes the origin, it commutes to
[−1], so that f∗ preserves symmetry and antisymmetry.

Remark 8.10. Any class [D] ∈ NS(A) can be lifted to a symmetric divisor class D ∈ Pic(A),
which is unique up to a 2-torsion element in Pic0(A). Thus, D admits a unique symmetric lift in
Pic(A;R). By using such a lift it makes sense to consider also hNT(·, ·) (respectively, hcan(·, ·))
as a function on NS(A;R) ×A(k) (respectively, on the projection of Vcan in NS(A;R)). This
observation will be used repeatedly in the following.

Remark 8.11. The Picard number of any complex abelian surface satisfies ρ(A) ∈ {1, 2, 3, 4}.
When Aut(A) contains a non-elementary group Γ, we obtain 3 ≤ dim ΠΓ ≤ ρ(A) ≤ 4.
Moreover, ρ(A) = 4 if and only if A is isogenous to B ×B, for some elliptic curve B with
complex multiplication (see [BL04, Ex. 10 p. 142]).

Proposition 8.12. If Vcan contains Pic0(A) ⊗Z R, then Γ has a finite orbit in A(k).

Proof. In this proof it is enough to consider hcan as a function on Pic0(A) ×X(k), by composing
with the natural homomorphism Pic0(A) → Pic0(A;R).

Step 1: if D is an element of Pic0(A), then for every f ∈ Γlox, every periodic point x of f satisfies
hcan(D,x) = 0. Assume f q(x) = x for some q ≥ 1. The endomorphism f q − id is an isogeny of
A because f is loxodromic (see § 4.2). Thus, its dual (f q)∗ − id is an isogeny of Pic0(A) and we
can find E ∈ Pic0(A) such that (f q)∗E − E = D. By equivariance hcan((f q)∗E, x) = hcan(E, x),
and then by linearity hcan(D,x) = 0.

Step 2: let k′ be a finite extension of k and let P be a subset of A(k′). If, for every D ∈ Pic0(A),
the set {hNT(D,x); x ∈ P} ⊂ R is bounded, then P is finite. To see this, consider the abelian
group A(k′); by the Mordell–Weil theorem, its rank is finite, so modulo torsion it is isomorphic
to Zr for some r ≥ 0. Set Wk′ = A(k′) ⊗Z R, a real vector space of dimension r. Let H be an
ample symmetric divisor on Ak, then hNT(H, ·) determines a positive-definite quadratic form
on V ; let 〈·|·〉H be the bilinear pairing associated to hNT(H, ·). If s is an element of A(k), and
ts ∈ Aut(Ak) is the translation by s, then Ds := H − t∗sH is an element of Pic0(A) and hNT(Ds, ·)
induces an affine linear form A(k′) → R; namely, hNT(Ds, ·) = −2〈s|·〉H . Since 〈·|·〉H is positive
definite on Wk′ (see [HS00, Proposition B.5.3]), one can find r elements si ∈ A(k′) such that the
linear forms �i := 〈si|·〉H constitute a basis of the dual of Wk′ . Our assumption says that each
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�i(P ) is a relatively compact subset of R; this implies that P is contained in a compact, hence
finite, subset of the lattice A(k′) ⊂ V .

Step 3: Γ has a finite orbit. Let f be a loxodromic element of Γ, and x be a fixed point of f .
Its Γ-orbit is made of fixed points of conjugates of f . Note that Γ(x) is contained in A(k′) for
some finite extension of k. By the first step, hcan vanishes on Pic0(A) × Γ(x). Since hcan and
hNT are Weil heights, |hcan(D, ·) − hNT(D, ·)| ≤ B(D) for each divisor class D ∈ Pic0(A), where
B(D) ≥ 0 depends on D. Thus, |hNT(D,Γ(x))| ≤ B(D) for every D ∈ Pic0(A), and the second
step implies that Γ(x) is finite. �

Proposition 8.13. Assume that the neutral element has a finite Γ-orbit. Then hcan coincides
with the Néron–Tate height on:

– the set of symmetric divisors whose numerical class belongs to ΠΓ;
– the set of antisymmetric divisors;

whenever one of these sets is contained in Vcan.

In the following proofs, we denote by Πs
Γ the subspace Pic(A;R) made of symmetric elements

E ∈ Pic(A;R) such that [E] ∈ ΠΓ.

Proof. Let Γ0 ≤ Γ be the finite index subgroup fixing the origin. Let us show that hcan = hNT

on Πs
Γ ×A(k). For this, we use Remark 8.10, identify Πs

Γ with ΠΓ, and consider hcan and hNT as
functions on ΠΓ ×A(k). Now, if f ∈ Γ0,lox, we get hNT(θ+

f , ·) = hcan(θ+
f , ·) because the difference

is bounded on A(k), and is multiplied by λ(f) > 1 under the action of f (as in Lemma 8.4).
Since the classes θ+

f , for f ∈ Γlox, generate ΠΓ, our claim is established.
Let us now deal with antisymmetric divisors. Identifying Pic0(Ak) with the dual abelian

variety A∨
k

of A, we have to show that hcan coincides with hNT on A∨(k′) for every finite
extension k′ of k. By the Mordell–Weil theorem A∨(k′) is a finitely generated abelian
group so

W∨
k′ := A∨(k′) ⊗Z R (8.6)

is a real vector space of dimension r, for some r < +∞. Consider the function Φ : (D,x) �→
hcan(D,x) − hNT(D,x). When D is fixed, Φ(D, ·) is bounded: |Φ(D,x)| ≤ B(D) for all x ∈ A(k).
On the other hand, when x is fixed, Φx(D) := Φ(D,x) defines a linear form Φx : W∨

k′ → R.
Applying the previous boundedness property to f(x), for f ranging in Γ0, and using the
equivariance Φ(D, f(x)) = Φ(f∗D,x) we obtain that for every x ∈ A(k), Φx is bounded on
every Γ∗

0-orbit Γ∗
0(D) ⊂W∨

k′ .
We claim that this forces Φx to vanish, which is the desired result. For this we analyze the

dual action of Γ0. Let f be a loxodromic element of Γ0, and f∨k′ be the induced linear map on
W∨

k′ = A∨(k′) ⊗Z R. Let Lf be the linear lift of f to C2, as in §§ 4.1 and 4.2.

Lemma 8.14. The endomorphism f∨k′ is semi-simple and its complex eigenvalues are complex
conjugate to those of Lf ; none of them has modulus 1.

Let us take this for granted and conclude the proof. Since f∨k′ is semi-simple, W∨
k′ is a

direct sum of f∨k′-invariant irreducible factors
⊕
W∨

i , each of dimension 1 or 2. For each W∨
i ,

denote by λi the corresponding eigenvalue of f∨k′ , and pick some Di ∈W∨
i \ {0}. If W∨

i is a
line, then λi ∈ R∗ and |λi| �= 1. Since Φx is bounded on {(f∨k′)n(Di); n ∈ Z}, the line W∨

i is
contained in ker Φx. If W∨

i is a plane, then f∨k′ |W∨
i

is a similitude with |λi| �= 1 and Arg(λi) �= 0
mod (2πZ). If Φx|W∨

i
�= 0, {|Φx| ≤ B(Di)} ∩W∨

i is a strip, which furthermore contains the orbit
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{(f∨k′)n(Di), n ∈ Z}. This is not compatible with the properties of λi, and this contradiction
shows that W∨

i ⊂ ker Φx, so finally Φx = 0, as claimed. �

Proof of Lemma 8.14. The complex torus underlying A∨
C is isomorphic to a quotient of the space

of C-antilinear forms on C2. Thus, if f ∈ Aut(A) is induced by a linear map Lf ∈ GL2(C), the
automorphism of A∨ determined by f∗ is induced by the conjugate transpose Lt

f (see [BL04,
§ 2.4]). When f is loxodromic, the eigenvalues of Lf satisfy |α| < 1 < |β|; we deduce that the
automorphism of Aut(A∨

C) determined by f∗ is also loxodromic, with eigenvalues α and β, and
the minimal polynomial of Lt

f is (X − α)(X − β). Let P be the minimal, real, unitary polynomial
such that (X − α)(X − β) divides P (by construction deg(P ) ∈ {2, 3, 4} and P has no repeated
factors). Since P (Lt

f ) = 0, we infer that P (f∨k′) = 0 and the result follows. �

Proposition 8.15. Let Ak be an abelian surface defined over a number field k. Let Γ be a
non-elementary subgroup of Aut(Ak), for which the neutral element 0 ∈ A(k) is periodic. Then
one of the following situation occurs:

(1) NS(A,R) = ΠΓ and the Néron–Tate height is the unique canonical vector height on
Pic(A;R);

(2) NS(A,R) = ΠΓ

⊥⊕ R[E] for some [E] ∈ NS(A;R) \ {0}, and the canonical vector heights on
Pic(A;R) are exactly the functions of the form hcan(D,x) = hNT(D,x) + 〈[E]|D〉ϕ(x), where
ϕ : A(k) → R is any bounded function such that ϕ(f(x))f∗[E] = ϕ(x)[E] for all f in Γ.

Proof. When NS(A,R) = ΠΓ, Proposition 8.13 and the decomposition of any divisor class as
a sum D = Ds +Da with Ds symmetric and Da antisymmetric imply that hcan = hNT. Thus,
by Remark 8.11 we may assume that ρ(A) = 4 and dim(ΠΓ) = 3. Pick [E] ∈ Π⊥

Γ \ {0}. The line
R[E] is Γ-invariant, and the intersection form is negative on R[E]; as a consequence, there is a
homomorphism α[E] : Γ → {+1,−1} such that f∗[E] = α(f)[E] for all f ∈ Γ. Then for fixed x,

Δx(D) = hcan(D,x) − hNT(D,x), (8.7)

defines a linear form on Pic(A;R), which by Proposition 8.13 vanishes identically on Πs
Γ.

Thus, Δ(D,x) = 〈[E]|D〉ϕ(x) for some real valued function ϕ, and the conclusion follows from
Lemma 8.1. �

8.4 Synthesis
8.4.1 Canonical vector heights. Putting together Theorem E and Proposition 8.15 gives the

following.

Theorem E
′
. Let X be a smooth projective surface, defined over a number field k. Let Γ be a

non-elementary subgroup of Aut(Xk) that contains parabolic elements. Let hcan be a canonical
vector height on Pic(X;R) ×X(k) for the group Γ. Then, X is an abelian surface and hcan is
derived from a translate of the Néron–Tate height by a periodic point y of Γ:

hcan(D,x) = hNT(D,x+ y) + 〈[E]|D〉ϕ(x)

for some almost-invariant class [E] ∈ NS(X;R) and some bounded function ϕ : X(k) → R such
that ϕ(f(x))f∗[E] = ϕ(x)[E] for f ∈ Γ.

Note that hcan is just a translate of hNT when E is numerically trivial.
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8.4.2 Restricted canonical vector heights. Let us add the assumption

Pic0(X) = 0, (8.8)

to the hypotheses of Theorem E. Our goal is to describe all possibilities for (Vcan, hcan).
Since Pic0(X) = 0, X is not a blow-up of an abelian surface and Theorem E implies that

(X,Γ) is a Kummer group of type (2), (3), (4), or (5) in the nomenclature of § 4.3.2. We make use
of the notation of §§ 4.3.1 and 4.3.2. The origin 0 ∈ A is a fixed point of the cyclic group G, and
the orbit ΓA(0) is finite. Since G is generated by a finite-order homothety (x, y) �→ (αx, αy) on
A, G acts trivially on NS(A;R) and on symmetric divisors. Thus, NS(A/G;R) can be identified
to NS(A;R) and to the subspace of Pic(A;R) generated by symmetric divisors; let

ι : NS(A;R) → NS(X;R) (8.9)

denote the corresponding embedding, given by ι = q∗X(qA)∗. On the space of symmetric divisors,
the Néron–Tate height is G-invariant and Γ-equivariant, so it induces a canonical vector height
h

A/G
NT (·, ·) on A/G for ΓA. Then, it induces a restricted canonical vector height on ι(NS(A;R)) ×
X(k), namely

hX
NT : (D,x) �−→ h

A/G
NT ((qX)∗D, qX(x)). (8.10)

In what follows, we denote by Ei the disjoint irreducible rational curves contracted by qX
(see Lemma 4.7); their classes generate ι(NS(A;R))⊥ ⊂ NS(X;R). The height hX

NT vanishes on⋃
iEi(k), because the Ei are mapped to torsion points of A.

Lemma 8.16. We have ΠΓ = ι(ΠΓA
) ⊂ Vcan ⊂ ι(NS(A;R)).

Proof. The first equality comes from the equivariance of qX and qA. The first inclusion follows
from Lemma 8.3 and the assumption (ii) of Theorem E. It remains to prove the last inclusion.
If Vcan is not contained in q∗X(NS(A/G;R)), there is an index i, and a class D in Π⊥

Γ ∩ Vcan such
that 〈D|Ei〉 > 0, i.e. O(D)|Ei is ample. The action of Γ on Π⊥

Γ factorizes through a finite group
(see [CD23c, Lemma 2.9]), so D is Γ-periodic and by Lemma 8.2, Γ|Ei is finite; this contradicts
Lemma 4.7, and the conclusion follows. �

Let D be an element of ΠΓ. By Lemma 8.3, hcan(D,x) = 0 for all x ∈ ⋃
iEi(k). Thus,

(D,x) �→ hcan(ι(D), q−1
X (qA(x))) is a well-defined restricted canonical vector height on ΠΓA

×
A(k) (see Remark 8.10), which gives height 0 to the fixed points of elements of G \ {id}.
By Proposition 8.13, this height coincides with the Néron–Tate height on ΠΓA

×A(k).
This yields a complete description of hcan when Vcan = ΠΓ.
By Lemma 8.16 and Remark 8.11, the remaining possibility is that dim(Vcan) = 4 and

dim(ΠΓ) = 3. Choose an almost ΓA-invariant class [E] in NS(A;R), as in Proposition 8.15,
and a divisor F in X such that [F ] = ι([E]). Each element D ∈ Vcan decomposes as a sum

D = D′ +
〈[F ]|D〉
〈[F ]|[F ]〉 [F ] (8.11)

with D′ in ΠΓ. Then, for x in
⋃

iEi(k), we get

hcan(D,x) =
〈[F ]|D〉
〈[F ]|[F ]〉hcan([F ], x). (8.12)

Define a function by setting ψ(x) = 〈[F ]|[F ]〉−1hcan([F ], x) on
⋃

iEi(k) and ψ(x) = 0 otherwise.
It satisfies the equivariance ψ(f(x))f∗[F ] = ψ(x)[F ] because hcan is equivariant and [F ] is almost
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invariant, and it is bounded because O(F )|Ei
is trivial for each Ei. Now, if we set

h′can(D,x) = hcan(D,x) − 〈[F ]|D〉ψ(x) (8.13)

we get a new restricted canonical vector height on Vcan ×X(k) that vanishes on
⋃

iEi(k). This
height comes from a canonical vector height on A/G, and since as seen before NS(A/G;R) can
be identified to NS(A;R), it yields a canonical vector height for (A,ΓA) restricted to the space
of symmetric divisors. The second assertion of Proposition 8.15 entails that this last height is
derived from the Néron–Tate height for some function ϕ; since ΓA contains G, and G fixes [E], ϕ
is G-invariant. Coming back to X, we get that hcan is derived from the Néron–Tate height too.
In formulas,

hcan(D,x) = hX
NT(D,x) + 〈[F ]|D〉Φ(x), (8.14)

where Φ: X(k) → R is a bounded function which satisfies Φ(f(x))f∗[F ] = Φ(x)[F ] for f ∈ Γ.
This function is equal to ψ on

⋃
iEi(k) and to ϕ ◦ qX on its complement.

To conclude, using the above notation, let us summarize these results in a (somewhat
imprecise) statement.

Theorem E
′′
. LetX be a smooth projective surface, defined over a number field k, and such that

Pic0(Xk) = 0. Let Γ be a non-elementary subgroup of Aut(Xk) containing parabolic elements.
Let hcan be a restricted canonical vector height on Vcan ×X(k) for the group Γ, where Vcan ⊂
Pic(X;R) is Γ-invariant and contains classes with positive self-intersection. Then (X,Γ) is a
Kummer group associated to an abelian surface A, Vcan is contained in ι(NS(A;R)) and:

– either Vcan = ΠΓ and hcan coincides with the Néron–Tate height hX
NT;

– or ΠΓ is a codimension-1 subspace of Vcan and hcan is derived from hX
NT.
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