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Büchi’s Problem in Modular Arithmetic for
Arbitrary Quadratic Polynomials

Pablo Sáez, Xavier Vidaux, andMaxim Vsemirnov

Abstract. Given a prime p ⩾ 5 and an integer s ⩾ 1, we show that there exists an integer M such that
for any quadratic polynomial f with coeõcients in the ring of integers modulo ps , such that f is not a
square, if a sequence ( f (1), . . . , f (N)) is a sequence of squares, then N is at most M. We also provide
some explicit formulas for the optimal M.

1 Introduction

We are interested in the following question.

Question 1.1 Given an integer m ≥ 3 and a quadratic polynomial f (x) = f2x2
+

f1x + f0 over Z, consider the sequence BN
f = ( f (1), . . . , f (N)) modulo m. How long

can this sequence be if every element of it is a square modulo m, but f itself is not a
squaremodulo m?

he same question can be considered for any commutative ring R with a unit, in-
stead of a quotient ofZ. For R = Z, itwas ûrst asked by R. Büchi in the early seventies,
and was motivated by a decision problem in logic [Lip90,Maz94].

In the case of modular arithmetic, Question 1.1 was ûrst addressed by D. Hensley
(unpublished). He showed that in theparticular casewherem is anoddprimenumber
and f (x) is of the form (x−ν)2

−a, N is strictly less than m; nevertheless he does not
give any explicit formula for the largest possible N as ν and a vary. We dealt with the
casewhere, for an odd given m, f2 is invertiblemodulo m [SVV15]. (Seeheorem 2.3
for the case of prime powers and [SVV15, §5] for general m.) In the present paper,
we solve the problem for any given prime power and any f by reducing it to the case
where f2 is invertible; seeheorem 2.2.

To give a taste of our main result, without introducing too many technicalities,
here we state a corollary.

heorem 1.2 Let p be a prime ≥ 3. Assume that g2 is a non-zero square modulo p,
s and t2 < s are positive even integers, and f2 = pt2 g2. As f varies within the set of non-
square quadratic polynomialswith this restriction on f2, the largest possible N such that
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each of f (1), . . . , f (N) is a squaremodulo ps is p
s−t2
2 − 1, i.e., there are sequences of this

length, and no longer ones.

Let us give a concrete example. For any odd prime p,modulo p4, the polynomial
f (x) = p2x2

+ p3 is not the square of a polynomial, because p3 is not a square; but by
Hensel’s lemma, it is easy to see that f (k) is a squaremodulo p4 for k = 1, . . . , p − 1,
so the length p 4−2

2 − 1 = p − 1 is reached. Note that f (0) and f (p) are not squares
modulo p4.

houghmany analogous results exist in the literature over diòerent type of rings R,
they always assume that the polynomial f is monic, with just one exception: Natalia
Garcia-Fritz [Ga17,heorem 1.6, Corollary 1.7 and the comments that follow] did not
put restrictions on f2 (unconditionally if R is a function ûeld of a curve over C, and
assuming the Bombieri–Lang conjecture when R = Q). here is some literature on
sequences of squareswhose second diòerence is an arbitrary element of R,which cor-
responds essentially to considering a quadratic f with an arbitrary dominant coeõ-
cient. Symmetric sequences of that kindwere considered byAllison [All86], Bremner
[Bre03], Browkin and Brzeziński [BB06], andGonzalez-Jimenez and Xarles [GoX11].
Analogues of Question 1.1 have been considered for most classical rings (but in

the case of number ûelds, under some well-known conjectures, like Bombieri–Lang
for surfaces, or some version of ABC). Relevant results in positive characteristic can
be found in [Pa11] (the analogue of Büchi’s problem for any power over ûelds with
a prime number of elements), and in [PaW15] (over rings of functions) that gen-
eralized previous results in [PhV06, PhV10, ShV10, AW11, AHW13]. For a general
survey on Büchi’s problem and its extensions to other structures and higher powers,
see [PaPhV10].

2 Preliminaries and Main Result

If n is an integer, [n]m will denote its residue class modulo m (we use the bracket
notation for polynomials and for sequences as well), and if p is a prime, ordp n will
stand for the usual order at p of n,with the convention ordp(0) =∞, so that for every
integer x we have ordp x <∞ if and only if x ≠ 0.

Henceforth,wewill only consider sequences BN
f overZ that satisfy the two follow-

ing conditions for some odd integer m ≥ 3.

(C1) f (1), . . . , f (N) are squares modulo m.
(C2) f is not the square of a polynomial modulo m.

Following [SVV15], sequencesBN
f satisfying (C1) are called f -Büchi sequencesmod-

ulo m, and they are called non-trivial if (C2) is also satisûed (we can just say “Büchi”
instead of “ f -Büchi” when it is clear what f is). We should immediately point out
that in [SVV15] we considered f -Büchi sequences as trivial when f is the square of
a polynomial of degree at most 1. But indeed, when f2 is invertible, this makes no
diòerence with condition (C2), as shown by the following proposition, which will be
proved at the beginning of the next section.
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Proposition 2.1 Let p be an odd prime and s be a positive integer. Let f = f2X2
+

f1X + f0 ∈ Z[X]. he following statements are equivalent.
(i) he polynomial f is the square of a polynomial modulo ps .
(ii) Either ordp f0 < min{ordp f1 , ordp f2} and [ f0]ps is a square, or f is the square

of a polynomial modulo ps whose degree is at most one.

For odd m ≥ 3, let us writeml(m, f2 , f1) for

max
f0

{N ∶ [BN
f ]m is a non-trivial Büchi sequence, where f = f2X2

+ f1X + f0} ,

(with the convention ml(m, f2 , f1) = 0 if all the sequences in the set are trivial), and
opt(m, f2 , f1) = ml(m, f2 , f1) + 1. Also, we will write

ml(m, f2) = max
f1

ml(m, f2 , f1) and opt(m, f2) = ml(m, f2) + 1.

Note that when m = p is prime, we trivially have

ml(p, 0) = max
f1

ml(p, 0, f1) = max{ml(p, 0, f1) ∶ [ f1]p ≠ [0]p} .

Here “ml” stands for “maximal length” and “opt” stands for “optimal bound”. he
reason to use both concepts is that the proofs are done in terms of maximal lengths
but the formulas that we need from [SVV15] are nicer in terms of the optimal bound
(the reader will see the point in heorem 2.3).

We can now state our main theorem.

heorem 2.2 Let p be a prime ≥ 3 and s be a positive integer. Let f2 ∈ Z,with f2 ∉ psZ
unless f2 = 0. Write t2 = ordp f2 and let g2 be such that f2 = pt2 g2 when f2 ≠ 0, and
g2 = 0 otherwise. Assume t2 ≠ 0. We have

opt(ps , f2) =
⎧
⎪⎪
⎨
⎪⎪
⎩

opt(p, 0) if t2 is odd or t2 =∞,
max{opt(p, 0), opt(ps−t2 , g2)} if t2 is even.

In this paper, we deal only with the prime power modulus. he case of a general
modulus m can be reduced to the case of powers of primes following the strategy
described in [SVV15, §5.1]. Any Büchi sequencemodulo m = ps1

1 ⋅ ⋅ ⋅ p
sk
k can be glued

from Büchi sequences modulo the ps i
i using the Chinese Remainder heorem. he

only subtle point to take care of is that one must check that the resulting sequence
modulo m is non-trivial, so there are various cases to consider, which result in an
elementary but cumbersome analysis; we leave the details to the reader.

While heorem 2.2 is a natural extension of what we did in our previous work, it
was not clear from the beginning what the right statement should be (for example,
we were surprised when we discovered that the concept of triviality had to be kept
unchanged). We have tried to write the proof in the most uniformly possible way,
instead of doing the obvious case-by-case analysis.

In order to have a global picture of the situation, and for later references, we sum-
marize in a single theorem what we knew in the case where f2 is invertible. Given
α ∈ Z not divisible by p, we deûnedml(m, α) as

max
a ,ν

{N ∶ [BN
f ]m is an f -Büchi sequence, where f = α(X + ν)2

+ a and a ≠ 0} ,
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and opt(m, α) = ml(m, α) + 1 [SVV15]. Note that when f2 is invertible modulo an
oddm ≥ 3, then every polynomial f (X) = f2X2

+ f1X + f0 can be written in a unique
way in the form α(X + ν)2

+ a modulo m, so the notation in [SVV15] is compatible
with the present one.

heorem 2.3 ([SVV15,heorems 1.7, 1.8, Lemma 2.13]) Let p be an odd prime num-
ber, and let s ≥ 1 and f2 be integers. Assume that [ f2]ps is invertible.
(i) If [ f2]ps is a non-square and p ≥ 5, then opt(ps , f2) = opt(p, n) <∞, where n is

any quadratic non-residuemodulo p.
(ii) If [ f2]ps is a non-zero square and s = 2r is even, then opt(ps , f2) = pr .
(iii) If [ f2]ps is anon-zero square and s = 2r+1 is odd, then opt(ps , f2) = opt(p, 1)pr

<

∞.
(iv) We have opt(p, 0) ≤ p+3

2 .
(v) For any k ∈ Z, we have opt(3, 2 + 3k) =∞.
(vi) For any s ≥ 2 and k ∈ Z, we have opt(3s , 2 + 3k) = 5.

We get heorem 1.2 by ûrst applying heorem 2.2 and then heorem 2.3 items (ii)
and (iv). For other cases, it is clear how similar corollaries can be obtained.

3 Reduction to the Case When [ f2]ps Is Invertible or Is [0]ps

We will frequently use the following well-known fact.

Lemma 3.1 Let p be an odd prime number. If y ∈ Z is a non-zero squaremodulo pt

for some t ≥ 1, then y is a squaremodulo ps for any s ≥ 1.

Proof of Proposition 2.1 We ûrst prove that (ii) implies (i). Assume

ordp f0 < min{ordp f1 , ordp f2}

and [ f0]ps is a square. If f is identically 0 modulo ps , then the claim is trivial, so we
can assume that f0 is not 0 modulo ps . We have

f ≡ (pr g0)2
+ p2r+1Xg ≡ (pr g0)2

(1 + pXh) (mod ps
)

for some g ∈ Z[X], g0 ∈ Z not divisible by p, and h ∈ Z[X] such that g2
0h ≡ g

(mod ps
). he Taylor series modulo ps of the square root of 1 + pXh is actually a

polynomial, since denominators are powers of 2 and numerators have increasing or-
der at p.

We now prove that (i) implies (ii). Assume s ≥ 2 (indeed, for s = 1, the claim is
trivial as Fp is an integral domain). Let φ ∈ Z[X] be such that [ f ]ps = [φ2

]ps . We can
assume [φ]ps ≠ [0]ps . Let u be the largest integer such that φ = pu g and g ∈ Z[X],
so that [g]p ≠ [0]p . We have f ≡ φ2

≡ p2u g2
(mod ps

). If 2u ≥ s, there is nothing
to prove, so we can assume 2u < s, hence 2u + 1 ≤ s. Let ̃f = ̃f0 + ̃f1X +

̃f2X2
∈ Z[X]

be such that p2u ̃f = f and [g2
]p = [

̃f ]p . So [g2
]p has degree at most 2, and since

[g]p ≠ [0]p , we deduce that [g]p has degree at most 1 (because we are now over the
integral domain Fp). So we have g = g0 + g1X + pvhX2, for some v ≥ 1 and some
h ∈ Z[X]. If h is the zero polynomial, then we are done. Otherwise choose v as large
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as possible, so that h has at least one coeõcient not divisible by p, namely, [h]p ≠ [0]p .
We then have φ = pu

(g0 + g1X + pvhX2
).

Case 1: Assume that p divides g1, so that p does not divide g0. We then have φ =

pu g0 + pu+1k0 for some k0 ∈ Z[X], hence f ≡ φ2
≡ p2u g2

0 + p2u+1k1 (mod ps
) for

some k1 ∈ Z[X], so 2u = ordp f0 < min{ordp f1 , ordp f2}.

Case 2: Assume that p does not divide g1. Write ℓ = g0 + g1X, so that

f ≡ p2u
(ℓ2 + pvhX2

(2ℓ + pvhX2
)) (mod ps

),

hence

(3.1) f − p2uℓ2 ≡ p2u+vhX2
(2ℓ + pvhX2

) (mod ps
).

If 2u + v ≥ s, then we are done (since ℓ has degree 1). So it remains to consider the
case where 2u + v < s, which will turn out to be impossible. Multiplying both sides of
(3.1) by

(2ℓ)s−1
− (2ℓ)s−2pvhX2

+ ⋅ ⋅ ⋅ + (−1)s−1
(pvhX2

)
s−1

we obtain
( f − p2uℓ2)[(2ℓ)s−1

− (2ℓ)s−2pvhX2
+ ⋅ ⋅ ⋅]

≡ p2u+vhX2
((2ℓ)s

+ (−1)s−1
(pvhX2

)
s
)

≡ p2u+vhX2
(2ℓ)s

(mod ps
),

since v ≥ 1. Hence we have

(3.2) (
̃f − ℓ2)[(2ℓ)s−1

− (2ℓ)s−2pvhX2
+ ⋅ ⋅ ⋅] ≡ pvhX2

(2ℓ)s
(mod pv+1),

since s − 2u ≥ v + 1. We now compare the coeõcients of X2+d+s on both sides, where
d is the degree of [h]p . Let hd ∈ Z be the coeõcient of h at Xd (so [hd]p is the
dominant coeõcient of [h]p), and let h0 be the constant term of h. he coeõcient of
X2+d+s modulo pv+1 on the le�-hand side is the coeõcient of (̃f − ℓ2)(2ℓ)s−2pvhX2

modulo pv+1 (the terms that are not written in (3.2) will have order at least 2v ≥ v + 1,
and in the term (

̃f − ℓ2)(2ℓ)s−1 all monomials have degree at most s + 1 < 2 + d + s),
which is

2pvh0g0 ⋅ 2s−2g s−2
1 pvhd ,

(here the term 2pvh0g0 comes from (3.1)). On the other hand, the right-hand side of
(3.2) gives pvhd2s g s

1 , so we have

pv ⋅ 2h0g0 ⋅ 2s−2g s−2
1 hd ≡ hd2s g s

1 (mod p),
which is a contradiction, since p divides neither g1 nor hd . ∎

Note that if any of f1 or f2 is invertiblemodulo p, then the condition

min{ordp f1 , ordp f2} > ordp f0
is never satisûed. We now prove a sequence of lemmas that will imply our main the-
orem.

Lemma 3.2 Let p be an odd prime and s ≥ 1. Let f (X) = f2X2
+ f1X + f0 ∈ Z[X].

Write t i = ordp f i for each i. Assume that min{t1 , t2} > t0 and [ f0]ps is a non-square.
If BN

f is a Büchi sequencemodulo ps , then N = 0.
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Proof Note that t0 ≠ ∞. Also note that t0 < s (because [ f0]ps is a non-square, so
in particular it is not [0]ps ). Write f (X) = pt0 g(X), where g(X) = pt2−t0 g2X2

+

pt1−t0 g1X + g0, so that g0 is invertible modulo p. We assume N ≥ 1 and will get a
contradiction. Let k, x ∈ Z be such that f (1) = x2

+ kps . From the hypothesis of the
lemma, we have

x2
+ kps

= f (1) = pt0 g(1) ≡ pt0 g0 = f0 (mod pt0+1
),

hence, recalling that t0+1 ≤ s, f0 is a squaremodulo pt0+1. Since g0 isnon-zeromodulo
p, also f0 is non-zeromodulo pt0+1. So f0 is a squaremodulo ps by Lemma 3.1,which
contradicts our hypothesis on f0. ∎

Lemma 3.3 Let p be an odd prime and s ≥ 1. Let f1 , f2 ∈ Z. If f1 is invertiblemodulo
p and f2 is not invertiblemodulo p, then

opt(ps , f2 , f1) = opt(p, 0, f1).

Proof We ûrst prove the “≤” inequality. Let N ≥ 0 and f0 be integers. Write f =
f2X2

+ f1X+ f0 and assume thatBN
f is anon-trivialBüchi sequencemodulo ps . Modulo

p, since f2 is not invertible, we have f ≡ f1X + f0. Write g = f1X + f0. Since f (x) is
a square modulo ps for each x = 1, . . . ,N , it is a square modulo p, so BN

g is a Büchi
sequencemodulo p. Since f1 is invertible, BN

g is a non-trivial Büchi sequencemodulo
p, hence N is at most ml(p, 0, f1).

We now prove the other inequality. Let h = f1X + b be such that BN
h is a Büchi

sequence of lengthN = ml(p, 0, f1) (note that this is always ûnite byheorem 2.3(iv)).
Consider

f = f2X2
+ f1X + b ≡ f1X + b (mod p).

If there is no 0 (mod p) in the sequence BN
h , then f (x) is a non-zero squaremodulo

p for any x ∈ {1, . . . ,N}, hence it is a square modulo ps by Lemma 3.1. Assume that
there is some x0 ∈ {1, . . . ,N} such that h(x0) is congruent to 0 modulo p, so that
b is congruent to − f1x0 modulo p (there can be at most one such x0). In that case,
consider

f = f2X2
+ f1X − f1x0 − f2x2

0 ≡ f1X + b (mod p),
so that f (x0) is actually 0 ∈ Z, hence a squaremodulo ps , and as before,when x ≠ x0,
f (x) is a non-zero squaremodulo ps . In both cases, BN

f is a Büchi sequencemodulo
ps .

We now prove that B f is a non-trivial Büchi sequencemodulo ps . It is enough to
prove that f (N + 1) is not a squaremodulo ps . Indeed, we have f (N + 1) ≡ h(N + 1)
(mod p), and the latter is not a square by deûnition of h, so f (N + 1) is not even a
squaremodulo p. ∎

Next comes the key lemma for having a uniform proof ofheorem 2.2.

Lemma 3.4 Let p be an odd prime and s ≥ 1. Let f1 , f2 ∈ Z, with f i ∉ psZ unless
f i = 0. Assume that not both f1 and f2 are 0. Write t1 = ordp f1 and t2 = ordp f2. For
i ∈ {1, 2}, let g i be such that f i = pt i g i (if f i = 0, take g i = 0). Write m = min{t1 , t2}.
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(i) If m is even, then we have

opt(ps , f2 , f1) = opt(ps−m , pt2−m g2 , pt1−m g1),

where pt i−m g i reads as 0 if f i = 0.
(ii) he sides of the equation in item (i) are inûnite if and only if p = 3, s = m+ 1, and

g2 ∈ 2 + 3Z.
(iii) If m is odd, then we have opt(ps , f2 , f1) ≤ 3.
(iv) If t2 =∞ and t1 is odd, then opt(ps , 0, f1) ≤ 2.

Proof We ûrst prove items (iii) and (iv), togetherwith the “≤” inequality in item (i).
Let N ≥ 0 and f0 be integers, and write t0 = ordp f0 and f0 = pt0 g0 (with g0 = 0
if f0 = 0). Assume that BN

f is a non-trivial Büchi sequence modulo ps , where f =
f2X2

+ f1X + f0. In particular, by Proposition 2.1 the polynomial f is not the square
of a linear polynomial modulo ps , and we have m ≤ t0, unless [ f0]ps is a non-square.
If m > t0 and [ f0]ps is a non-square, we have N = 0 by Lemma 3.2, so we can assume
m ≤ t0. Write f = pm g, where

g = pt2−m g2X2
+ pt1−m g1X + pt0−m g0 .

We can now complete the proof of (iii). Assumem is odd. In that case, if [ f (n)]ps

is a square, then [g(n)]p = [0]p . If m = t1 < t2, we have

g = pt2−t1 g2X2
+ g1X + pt0−t1 g0 ≡ g1X + pt0−t1 g0 (mod p),

hence g(n) can be 0modulo p for at most one value of n, hence N ≤ 1. Ifm = t2 ≤ t1,
we have g = g2X2

+ pt1−t2 g1X + pt0−t2 g0, so g(n) can be 0 modulo p for at most two
values of n, hence N ≤ 2.

We now turn to (i). Assumem is even. Since f is not the square of a linear polyno-
mial modulo ps , g also is not the square of a linear polynomial modulo ps−m . More-
over, since t0 ≥ m = min{t2 , t1}, we have

t0 −m ≥ min{t2 −m, t1 −m},

hence BN
g is a non-trivial Büchi sequencemodulo ps−m by Proposition 2.1, sowe have

N ≤ ml(ps−m , pt2−m g2 , pt1−m g1).
We now prove “≥” in (i) (so, in particular, we assume that m is even). First note

that the claim is trivial when t2 = 0 (which is the case in particular when s = 1). Let
g = pt2−m g2X2

+ pt1−m g1X + b be such that BN
g is a non-trivial Büchi sequence of

length N = ml(ps−m , pt2−m g2 , pt1−m g1) (N can be∞).
Consider f = pm g = pm

(pt2−m g2X2
+ pt1−m g1X+b). For any x ∈ {1, . . . ,N}, since

g(x) is a squaremodulo ps−m and m is even, also f (x) is a squaremodulo ps , so B f
is a Büchi sequencemodulo ps .

We now prove that BN
f is a non-trivial Büchi sequence modulo ps . Since BN

g is a
non-trivial Büchi sequence modulo ps−m , g is not the square of a linear polynomial
modulo ps−m , hence also, sincem is even, pm g is not the square of a linear polynomial
modulo ps . Moreover, by Proposition 2.1, either min{t1 − m, t2 − m} ≤ ordp b, in
which casemin{t1 , t2} ≤ ordp pmb, or [b]ps−m is not a square, in which case [pmb]ps

is not a square. So BN
f is a non-trivial Büchi sequencemodulo ps .
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We prove (ii). If m = t1 < t2, then the right-hand side is ûnite by Lemma 3.3.
Otherwise it is an immediate consequence of heorem 2.3 applied to modulus ps−m

(observe that in this theorem, (v) is the only case where opt is inûnite). ∎

Corollary 3.5 Let p be an odd prime and s ≥ 1. Let f1 , f2 ∈ Z, with f i ∉ psZ, unless
f i = 0. Write t i = ordp f i and let g i be such that f i = pt i g i (if f i = 0, take g i = 0). We
have

opt(ps , f2 , f1) =
⎧
⎪⎪
⎨
⎪⎪
⎩

opt(ps−t2 , g2 , pt1−t2 g1) if t2 ≤ t1 and t2 is even,
opt(p, 0, g1) if t2 > t1 and t1 is even.

Proof First note that the claim is trivial when t2 = 0. If t2 ≤ t1 and t2 is even, this
is just Lemma 3.4. Assume that t2 > t1 and t1 is even. In particular, since t2 > t1, f1
cannot be 0. We have

opt(ps , f2 , f1) = opt(ps−t1 , pt2−t1 g2 , g1) = opt(p, 0, g1)

(recalling the convention that pt2−t1 g2 = 0 if f2 = 0), where the ûrst equality comes
from Lemma 3.4, and the second equality comes from Lemma 3.3 (which can be ap-
plied because pt2−t1 g2 is not invertiblemodulo p, but g1 is invertiblemodulo p since
f1 ≠ 0). ∎

Lemma 3.6 Let p be a prime ≥ 3 and s ≥ 1. Let f2 ∈ Z, with f2 ∉ psZ unless f2 = 0.
Write t2 = ordp f2 ≠ 0. We have the following.
(i) If t2 =∞, then

max{opt(ps , f2 , f1) ∶ ordp f1 <∞ is even} ≥ 2,

(ii) If t2 <∞ is odd, then

max{opt(ps , f2 , f1) ∶ ordp f1 < t2 and ordp f1 is even} ≥ 3.

(iii) If t2 <∞ is even, then

max{opt(ps , f2 , f1) ∶ ordp f1 ≥ t2, or ordp f1 < t2 and ordp f1 is even} ≥ 3.

Proof For (i), just note that for any non-zero b ∈ Z that is coprime with p, the
function f = b2X deûnes a non-trivial Büchi sequence of length ≥ 1. Indeed, if f ≡
(g1X + g2)

2
(mod ps

), then g2
1 ≡ g2

2 ≡ 0 (mod ps
), hence [g1]p = [g2]p = 0, but

2g1g2 ≡ b2
(mod ps

), which contradicts the fact that b is coprime with p, and the
constant term is 0, hence has order greater than or equal to the order of the other
coeõcients. We conclude by Proposition 2.1 that it is a non-trivial sequence.
For (ii) and (iii), choose f = f2X2

+ f1X + f0 with f1 = 1 − 3 f2 and f0 = 2 f2 − 1,
so that f (1) = 0 and f (2) = 1 (so they are squares modulo any ps). Since t2 ≠ 0, f2
is divisible by p, hence ordp( f1) = 0 is even and < t2. Moreover, B2

f is a non-trivial
sequence because, on the one hand, we have ordp( f0) = 0 ≥ min{ordp f1 , ordp f2},
and on the other hand, it is not the square of a linear polynomial modulo ps . If itwere,
then we would have

f = f2X2
+ (1 − 3 f2)X + 2 f2 − 1 ≡ g2

1 X
2
+ 2g1g2X + g2

2 (mod ps
),
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which is impossible, since modulo p the right-hand side is a constant polynomial
(because p divides f2, hence also g1), while the le�-hand side is a non-constant poly-
nomial, since 1 − 3 f2 is not divisible by p. ∎

We conclude this work with the proof of our main theorem.

Proof of Theorem 2.2 If f2 = 0, then we have (recalling the convention
opt(ps , 0, 0) = 1; see the introduction)

opt(ps , f2) = max{opt(ps , 0, f1) ∶ f1 ∈ Z}

= max({opt(ps , 0, f1) ∶ ordp f1 <∞ is even}

∪ {opt(ps , 0, f1) ∶ ordp f1 <∞ is odd})

= max{opt(ps , 0, f1) ∶ ordp f1 <∞ is even}

= max{opt(p, 0, g1) ∶ g1 is invertiblemodulo p}

= opt(p, 0),

where the second and third equalities come from Lemma 3.6(i) and Lemma 3.4, and
the fourth equality comes from Corollary 3.5.

If t2 <∞ is odd, then we have (using again Lemmas 3.6, 3.4, and Corollary 3.5)

opt(ps , f2) = max{opt(ps , f2 , f1) ∶ f1 ∈ Z}

= max({opt(ps , f2 , f1) ∶ ordp f1 < t2 and ordp f1 is even}

∪ {opt(ps , f2 , f1) ∶ ordp f1 ≥ t2 or ordp f1 is odd})

= max{opt(ps , f2 , f1) ∶ ordp f1 < t2 and ordp f1 is even}

= max{opt(p, 0, g1) ∶ g1 is invertiblemodulo p}

= opt(p, 0).

If 0 ≠ t2 <∞ is even, then we have

opt(ps , f2) = max{opt(ps , f2 , f1) ∶ f1 ∈ Z}

= max{opt(ps , f2 , f1) ∶ ordp f1 ≥ t2,

or ordp f1 < t2 and ordp f1 is even,

or ordp f1 < t2 and ordp f1 is odd}

= max({opt(ps−t2 , g2 , pt1−t2 g1) ∶ [g1]p ≠ [0]p}

∪ { opt(p, 0, g1) ∶ [g1]p ≠ [0]p})

= max{opt(ps−t2 , g2), opt(p, 0)} . ∎
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