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Abstract

Consider the additive effects outliers (A.O.) model where one observes Yj<n = Xj + «,,„, 0 < j <
n, with

Xj = pXj-i + ej, j = 0, ±1, ± 2 , . . . , | i | < 1.

The sequence of r.v.s {XjJ < n} is independent of {vjyn,0 < j < n} and Vj>n, 0 < j < n, are
i.i.d. with d.f. (1 - yn)I[x > 0] + ynLn(x), x 6 R, 0 '< yn < 1, where the d.f.s Ln, n > 0,
are not necessarily known and f/s are i.i.d.. This paper discusses the asymptotic behavior of
functional least squares estimators under the above model. Uniform consistency and uniform
strong consistency of these estimators are proven. The weak convergence of these estimators to
a Gaussian process and their asymptotic biases are also discussed under the above A.O. model.

1980 Mathematics subject classification (Amer. Math. Soc.) (1985 Revision): 62 G 05, 62 M 10.

0. Introduction

Let F and Ln, n > 0, be distribution functions (d.f.s) on the real line R.
Throughout this paper F is assumed to have a density / > 0. Let {yn, n > 0}
be a sequence of numbers in [0,1] converging to 0 as n —> oo. Define

(0.1) 0n(x):=(l-yn)I{x>O] + ynLn(x), xeR,

where I[A] denotes the indicator function of the event A. Let e,, j =
0,±1,±2, . . . , be independent and identically distributed (i.i.d.) F random
variables (r.v.s), such that the first moment of Co exists and Eeo = 0. Let Vj>n,
0 < j < n, be i.i.d. /?„ r.v.s.
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300 Sunil K. Dhar [2]

We consider the model in which one observes, at stage n, r.v.s Yj<n, 0 <
j < n, satisfying

(0.2) Yj<n = Xj + vjtn, j = 0,l,...,n,

with {Xj} obeying the autoregressive model of order one (AR(l)), viz.

(0.3) Xj = pXj-X+Hj, \p\<\, j = 0,±l,±2,...,

where {Xj} is stationary. Moreover, {Xj,j < n} is assumed to be indepen-
dent of {vjyn, 0 < j < « } , « > 0. This paper studies the problem of estimating
P-

Denby and Martin [5] called the model in (0.2) and (0.3) the additive
effects outliers (A.O.) model. All the above assumptions on {Yj,0 < j < n},
{Xj}, {Vjtn, 0 < j < n} and {e,} will be referred to as the model assumptions.
The assumptions on {i>,,n, 0 < j < n} reflect the situation in which the outliers
are isolated in nature. Isolated outliers are denned by Martin and Yohai
[9] as the outliers any pair of which are separated in time by a nonoutlier.
In [9, Theorem 5.2 and Comment 5.1] they also made the assumption of
independence of the process {Xj,j < n} and {Vj>n,j — 0 ,1 ,2 , . . . ,«} , n > 0.

Denby and Martin [5] studied the least squares estimator, M-estimators
and a class of generalized M-estimators ((7M-estimators) of p under the
above models; they took F and Ln to be y^"(0, a}) and J^{0, a1), respectively.
Under their A.O. model all of these estimators have non-vanishing asymptotic
biases with a possible reduction in biases for GM-estimators.

Heathcote and Welsh [7] proposed a class of minimum distance estimators
pn(s) of the vector p in an autoregressive model of order k, denned so as to
minimize

(n-k)-1 £ exp{M(A0-X}_,t)}

as a function of t, where X^_, = (Xj-\,Xj_2,• • -.,Xj_k).
We shall study the behavior of this class of estimators of p e (-1,1), when

k=\, under the A.O. model (0.2)-(0.3).
Before proceeding further, observe that the process {Xj} is stationary er-

godic and Xj-\ is independent of Sj, j > 1. From the assumptions on vJ?n's
and A^'s it can be seen for each n, that the process {(Xj, v,,n),0 < j < n} is
stationary ergodic and hence so is {>>,«, 0 < j < n}. These observations will
be used in the sequel repeatedly.
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NOTATION. Throughout this paper, by op(\) (Op(l)) is meant a sequence
of r.v.s that converges to zero in probability (is tight or bounded in proba-
bility); the asymptotic bias of p(s) is denned as the mean of the asymptotic
distribution of \/n[p(s) - p]. Also, let Zn be a r.v. with d.f. Ln, n>0.

1. Definition of a class of estimators

Define S? := [-b, -a] u [a, b],0<a<b,
(1.1)

- 5 ~ 2 l o g n~

Let K be a compact set containing the true parameter p in its nonempty
interior. Then pn(s) for each s € S^U {0} denotes a measurable minimizer of
A/n(-,s) when restricted to K. For Mn as in (1.1), />« can be uniquely defined
to be sample continuous on 5?. Further pn(s) satisfies

(1.2) MMn(t,s) = Mn(pn(s),s).

Note that /5n(0) is the least squares estimator which has been studied in detail
by Denby and Martin [5] under the A.O. model; hence we shall not allow 5
to be zero.

2. Uniform (strong) consistency of pn(s),s € S?

In this section we prove uniform (strong) consistency of the estimators
pn(s), s € S". The idea of the proof for this result is taken from [4] and [7].

LEMMA 2.1. For each n, let Yj,n = Xj,n + «/,„, j — 0,1,...,n, be r.v.s. Let
Kn = n~l £ " = 1 \vJ>n\ A 1. Let Kn c R2 be such that

c\tfl= sup {\s\}, c2,n= sup {\st\} and c\,n + c2,n < c < 00.
(t,s)EKn (t,s)€Kn

Then

(2.1) sup [OLp{is[YJtH - tYj-ltH]}-

<[(c + 2)V4]Kfl.

https://doi.org/10.1017/S1446788700035709 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700035709
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PROOF. The triangle inequality and \e" - e"\ < \t - s\ A 2, t,s e R, show
that the l.h.s. of (2.1) can be bounded by

n

(2.2) « - ' 5 } { C I J # I K I | + C2,n\Vj-l,n\} A 2].
j=i

The expression inside the sum in (2.2) is bounded by [cijB|w_/,n|A2]+[C2>n|Uy-i,«|
A 2]. The r.h.s. of (2.2) is now dominated by [(chn V 2) + (c2,n V 2)]Kn. From
which the lemma follows.

REMARK. Under condition

(2.3) (a) Kn -> 0 in probability or (b)
n=0

the l.h.s. of (2.1) converges to zero in probability or a.s., the latter follows
from the Markov inequality and the Borel-Cantelli Lemma applied to Kn.
In the case when Vj,n are fin distributed for any d.f. Ln as in (0.1), EKH =
n~l(n + \)ynE{\Zn\ A 1}, and thus yn — o{\) or £)>„ < oo become sufficient
conditions for (a) or (b). Further note from here on we shall supress the n
in the random variables (r.v.s) ¥),„ and VjifI.

LEMMA 2.2. If <j)n{t) are characteristic functions on Rk such that <pn(t) -*
<p(t) for each t eR*, then for any compact subset K ofRk

0.

PROOF. The proof follows from Ash [1, Theorem 3.2.9].

LEMMA 2.3. Let X\, X2,... be a sequence of strictly stationary and ergodic
random vectors taking values in Rk. Then

(2.4) pfimT sup \Fn(Xl,...,xk)-F(xu...,xk)\ = o) = l,
\ n /

where Fn{x\,X2,...,xk) is the joint empirical distribution function based on
X\,...,Xn and F(x\ ,...,xk) is the joint distribution of the random vector X\.

PROOF. See [11] and [6].

To state the next lemma, let

(2.5) DH(t,s) = 1 £exp{«(r,- - tYj-M - 4>ei(s)4>xMP -
nJ-l

{t,s) e K x S?, where <f>x denotes the characteristic function of a r.v. X.
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[5] Functional least squares estimators 303

LEMMA 2.4. Let {Xj} be as in (0.3) with e/s i.i.d.. Let vj>n's be as in
Lemma 2.1. Then

(a) under (a) of {2.1)

(2.6) sup Dn(t,s) —»0 in probability

and
(b) under (b) of (2.3), (2.6) holds with convergence in probability replaced

by a.s. convergence.

PROOF. We shall give the proof of (b). The proof of (a) follows similarly.
From the triangle inequality we get

(2.7)

Dn(t,s) <
7=1 7=1

7=1

That the first term on the r.h.s. of (2.7) goes to zero a.s. follows from
condition (b) of (2.3). Since {(Xj-Uej)} is a stationary ergodic sequence,
Lemma 2.3 yields
(2.8)

1 = P \ sup
n

7=1

n

<P\ sup
l(s,,s2)€KlxK2

^ xuXj-i < x2] - Ftl(xi)FXo(x2)

isiSj + is2Xj-\} - <f>ti(s\)<t>xo(s2)
7 = 1

0

o ,

where K\ and K2 are any compact subsets of R. The inequality (2.8) follows
from the Continuity Theorem and Lemma 2.2. In particular, taking K\ = S?
and K2 = {s{p - t): s € &, t e K} in (2.8), we get
(2.9)

- 4>Sl(s)<t>Xo(s[P -
7 = 1

• 0 = 1 .

Now the lemma follows from (2.7) and (2.9).

Next, set

(2.10) M(t,s) = -s-2log\<j>ei(s)cj>Xo(s[p-t])\2, (t,s)eKx<¥>.
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Note that
(2.11)

M(t,s) > M{p,s) for all s and hence inf M(t,s) = M(p,s) for all s.
t£.K

THEOREM 2.5. Let X/s and Vj^'s be as in Lemma 2.4 with

(2.12) \<j>e,(s)\>0and0<\(t>xMP-t])\<l> s e ^ and t eK - {p}.

Then the following statements hold.
(a) Under (a) of (2.3),

(2.13) sup \pn(s) - p\ -> 0 in probability.

(b) Under (b) o/(2.3), (2.13) holds with probability convergence replaced
by almost sure convergence.

PROOF. The proof of (b) is as in [4, Theorem 4.1]. We shall give the proof
of (a). From (1.1) and (2.10),

\Mn(t,s)-M(t,s)\ < C0log[{Dn(t,s)/\^(s)\2\<t>xMP-(])\2} + 1],

where Co = sup{^~2: s € S*}. Since

Lemma 2.4 and the above inequality imply that

(2.14) sup \Mn(t,s)-M(t,s)\ = op

From (1.2), (2.11) and (2.14)
(2.15)

sup \Mn(pn(s),s) - M(p,s)\ = sup inf Mn(t,s)-inf M(t,s) = op{\).
t€K teK

For d > 0, let K(d) = K - {t: \t - p\ < S}. Then, (2.14) also implies

(2.16) sup inf Mn{t,s)- inf M(t,s) = op{\).

Suppose that
(2.17) sup \pn(s) — p\ does not converge to zero in probability.

Then there exists no, t\\ > 0 and a sequence of integers n^ | oo such that

(2.18) P( sup \pnk{s)-p\>nl) >rj0.
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M(p,s)- inf M(t,s)
t€K(n)

305

From assumption (2.12), r\ > 0. From (2.15), (2.16) and (2.18), there exists
ko{rj, rjo) such that for all k > ko{r\, t]0)

(2.19)

rio<P

<P

sup \Mnk{pnk(s),s) - M{p,s)\ < r\, sup \pnk(s) - p\

sup \Mnk{pnk{s),s) - M(p,s)\ < rj, sup \pnk(s) - p\ > m ,

sup inf Mnk(t,s)- inf M(t,s)

p\Mnk(pnk(s),s) - M(p,s)\ <rj, sup \pnk{s) - p\ > rj

sup inf Mnk{t,s)- inf M{t,s) >i

P hup \Mnk(pnk{s),s) - M{p,s)\ <n, sup \pnk(s)-p\ >Vi ,

sup inf Mnk{t,s)~ inf M{t,s) 3W4.

From the definition of t], the first term on the r.h.s. of (2.19) is zero, which
leads to a contradiction. Therefore (2.17) must be false and hence the result.

REMARK. If the distribution of ei is infinitely divisible then |0£l| > 0;
hence so is 10 ,̂1 > 0. Also, if the distribution of ei is lattice type then
1^,(5)1 < 1, for all 5 e R - {0}, follows from <j)Xl(s) = <j>X(s{ps)4>,{{s) and [3,
Theorem 6.4.7]. Thus from the above conditions on e1; condition (2.12) is
satisfied.

The proof of Theorem 2.5 does not use the existence of / nor does it use
any of the moments of EQ or Zn. Note that under the assumptions e/s i.i.d.
and \p\ < 1, {Xj} of (0.3) is invertible and strictly stationary ergodic.

3. Weak convergence of the process y/n{pn{s) — p), s e 5?

In this section we prove the weak convergence of y/n[pn(-) — p] as a
valued random element. The idea of the proof for this result is taken from
[7]. The C.L.T. given by [12] and [13] has been used to prove its finite
dimensional distribution convergence. We also discuss the behavior of its
asymptotic bias.
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Recall from (1.1) that to minimize Mn(t,s) w.r.t t is equivalent to maxi-
mizing U*(t,s) + V*(t,s), where for (t,s) eKx<y,

(3.1) Un(t,s) = «- '

Vn(t,s) = «= «"' and
7=1

Un = Vn = 0, otherwise.

Let

Then
(3.2)

mn(t,

0,

ns ^ j l

otherwise

(t,s)eKx<9>,

By the Taylor series expansion, we obtain

(3.3) mn(pn(s),s) = mn(p,s) + •^mn(t,s)\t=J(s)[pn(s) - p],

where

(3.4) \pn{s)-p\<\pn{s)-p\,

Theorem 3.1 below shows that (d/dt)mn(t,s)\t=-p^, uniformly in s, converges
in probability to a negative number. Hence

(3.5) sap\mn(pn(s),s)\ = op(l).

Thus from (3.3) and (3.5) we see that in order to prove the weak convergence
of y/n(pn{s) - p), it suffices to study the weak convergence of the process
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mn{p,s), s E S?. Before stating the next theorem, note that

(3.6) f-tmn(t,s) =

§-{Un(t,s)= -sn-^Yj^sinislYj-
7=1

f-tVn(t,s) = sn~l £ Yj-X cos{s[Yj - tYj-{\),
7=1

(3.7)
d2

y/_, cos(s[Yj - tYj.<\),
7 = 1

^TFB(/,s)= -s2n-lJ2Y?-i™
1 7=1

for all (/, s) € K x 5?. From here on it will be understood that sup is taken
over all 5 € S?, unless specified otherwise.

THEOREM 3.1. In addition to the assumptions of Theorem 2.5 (a) and all
the model assumptions (0.1)-(0.3), assume Umn EZ2 < oo. Then

(3.8) sup

with r = pnorp~n.

PROOF. Throughout this proof we shall need sup of each of the following
random functions

(3.9)
du
dt"

dt"

taken over all (t,s) e K x S", to be bounded in probability, which is evident
from (3.1), (3.7), Eel < °°> ^ e Stationary Ergodic Theorem and

(3.10)
7=1

which in turn follows from lim« EZ2 < oo.
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We shall now prove (3.8) with r = pn\ the proof for r = pn is exactly the
same. From the triangle inequality the expression inside the sup on the l.h.s.
of (3.8) can be bounded by

(3.11) —m n (r ,5) | r = p W - —mn(t , j ) | , = ? ( S)
C* Ol Y=X

%-mn(t,s)\l=p
Ot Y=X

Here, and in what follows, | t=P means that in the given expression replace
Y=X

by Xj and t by p, etc. The first term in (3.11) can be dominated by

(3.12) Collie a2

|C/w(^),5)-C/n(^),5)|y=x|

\Vn(p(s),s)-Vn(p(s),s)\Y=x\

a2

a 2 . .

\t=p(s)
Y=X

Y=X

L v * J L / = A J

That the sup norms of the second, fourth, fifth and sixth terms in (3.12) go
to zero in probability follows from (3.1), (3.7), (3.9), (3.10), the Lipschitz
property of the sine and cosine functions, the Stationary Ergodic Theorem
and

(3.13) sup \p(s)\ = Op{\),

which in turn follows from Theorems 2.5 (a) and (3.4). As the sine and cosine
share similar properties, it now remains only to show that the sup norm of
the third term in (3.12) goes to zero in probability in order to prove that the
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(3.14)
d2

<sln2 . . - 1

7 = 1

7=1

Let C\ = sup{^2} and Ci = sup{|s|3}; then the r.h.s. of (3.14) can be domi-
nated by

(3.15)
7=1 7=1

7=1 7=1

This follows from (0.2), the fact that the sine function is bounded by 1 and
Lipschitz of order 1, with constant 1. That the sup norm of the expression
(3.15) goes to zero in probability follows from (0.1), (3.10), (3.13), Eel < °°>
limw EZ2 < oo, the Markov inequality applied to each of the averages in
(3.15) and the independence of {Xj,j < n) and {VJ, 0 < j < n}. This
completes the proof that the sup norm of the first term of (3.11) is op{\). We
shall now show that the sup norm of the second term in (3.11) is op{\). It
can be dominated by

(3.16)
d2 „ , . d2 .. ., .. . . . ..

)\t=p(S)Un(p(s),s)\Y=X ~ ^jC/«(/ ,5) | t=p Un(p,s)\Y=X
Y=X dt Y=X

dz _
Y=X

r & i 2

^-^n(^>*)
L J

\9 U(ts)]2

[dt " 'S\ 'YI{X ~

• Q

pi
\d
[dt nK

d

-,2
, 5 )

J

t.s)\

2

t=P
Y=X

t=p
Y=X

\ t=_P VH(p,s)\r=xCo

Co

Co

From (3.4), (3.7), (3.9), the Lipschitz property of the sine and cosine func-
tions, Theorem 2.5(a) and the Stationary Ergodic Theorem, the sup norm of
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the third and fourth terms in (3.16) goes to 0 in probability. Since the sine
and cosine functions satisfy similar properties, to prove that the sup norm of
the expression in (3.16) converges to zero in probability we only need now
prove that the sup norm of the second term in (3.16) converges to zero in
probability. It can be dominated by

(3.17) Co I \£vH(t,S)\t=m ~ §]2Vn(t>S)\ >=P I VnO>(s),S)\Y=X

+ Co [Vn(p(s),s)W=x - Vn{p,s)\Y=x]^-2Vn{t,s)\ ,=„ .
OlL Y=X

From (3.1), (3.4), (3.9), the Lipschitz property of the sine function and The-
orem 2.5 (a), we get that the sup norm of the second term in (3.17) goes to
zero in probability. Let s* = sup{|s|}. The sup norm of the first term in
(3.17) can be dominated by

" r ( 1 1
(3.18) Co«~' > X)_x \\s*\X)-\ sup | ^ ( 5 ) - ^ | ^ A 2 ;

j ^ LI ^ J J
this follows from (3.1), (3.4) and the sine function being bounded by 1 and
the inequality |sin(.s) - sin(/)| < \s - t\ A 2, t,s e R. It remains to prove
that (3.18) goes to zero in probability. Let e > 0 be arbitrary. Then for all
n > no(m),

(3.19) P\n-XY.X}_X ]^s*\Xj-X\^\pH{s)-p^2^ >e

\pn(s)-p\\A2\ >e,
/'= 1

sup \pn(s) - p\ < — I + —

This follows from (2.16), the Markov inequality and the stationarity of
In (3.19), taking limit as n —> 00 and then as m —> 00, we see that Ee^ < 00
and the D.C.T. give that (3.18) converges to zero in probability.

Heathcote and Welsh [7, Theorem 2] proved that the sup norm of the third
term in (3.11) goes to zero a.s. This completes the proof of (3.8) as well.

In order to prove the finite dimensional distribution convergence of the
process \/n[p(s) - p], s € S?, we shall use [12, Theorem 2.1] and [13] to
prove the needed C.L.T. To achieve this consider the following lemmas.
For the definition of admixing set process see [12].
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LEMMA 3.2. Let 8n, a> be Borel measurable functions from R2 to R and
Zj,n = On(Yj-i,n,Yj>n), 1 < j < n, n > 1. Let Yj,n = co(Xj,vln), where
{Xj, j — 0, ± 1, ±2 , . . . } is a stationary process that is strongly ax-mixing [8,
Definition 17.2.1] and the sequence of independent r.v.s {Vj>n,0 < j < n}
is independent of {Xj, 0 < j < n}, n > 0. Then £ = {£„,« > 1}, where
£n = {£j,n, 1 < j < n}, is strongly admixing with

(3.20) a{ < ax.

PROOF. Let 6 = (£,,„,.. .,<*;,„), <f> = (Zj+k,n, • • •,{»,»), / = [Ki,#i, • • • ,^,«) €
Bi] and / = [({;+*,„,...,{»,„) e B2], where ^ e &{RJ), the Borel cr-field,
and B2 e ^(R"-^-* + 1 ) , 1 < j < n, 2 + j < j' + k < n. Let us suppress the n
in Vj<n and define

</>ltj: Rj+l -+Rj, [xo,xu... ,xj] ^ [6n(x0,Xi)t... ,dn(Xj-i,Xj)],

T1J+i:RJ+l -+RJ+l, [xo,xu...,Xj]->[co(xo,vo),...,fo(Xj,Vj)],

and rv. n_j_k+2 by replacing, in Tvj+i, v by v* and jbyn — j — k + l, where
v = (v0,vi,...,Vj) and v* = (vj+k_,,...,«„). Then,

(3.21)

- P[{CO(X0,

E[\P[(X0,...,Xj)

- P[(X0,...,Xj

Inequality (3.21) holds because for all k > 2, (v0,...,Vy,vj+k_\,...,vn) is
a sequence of independent r.v.s and independent of (A^,..., Xn). From the
definition of strongly a-mixing sequence of stationary r.v.s, and the station-
arity of {Xj}, we see that the r.h.s. of (3.21) can be bounded by ax. Taking
sup over all B\ and B2 in &(Rj) and ^{R"~j~k+l) and then taking max twice
first over all / s in the set {1 < j < n — k} and next over all fc's in the set
{k: k < n - 1}, we get that (3.20) holds.

REMARK. The proof of the Lemma 3.2 goes through even when <a and 6n

are replaced by con and BjA for each j and n.
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I

LEMMA 3.3. Define £;,„ as in Lemma 3.2 and satisfying all the conditions
there.

In addition, let {Vjtn,Q < j < n} be identically distributed /?„,
(3.22) with yn e [0,1], yn - o(\) and ax satisfying, for any n > 0,

< oo.

Further let 6 and h, be real valued Borel measurable functions
(3.23) with 6 defined on R2 and h on R, such that dn{x,y) < Ch(x)

and 6n{x,y) -> 6(x,y) for each x,y e R, 0 < C e R.

Let for some 8 > 0,

(3.24) E\h{co(X0))\
2+s < oo and sup£ f \h(co(X0, z))\2+6dLn{z) < oo,

n J
where co(-) — <a(-,0); then

( 3 . 2 5 ) « - ' ( T n
2 = « - ^

where

(3.26) T2 = YaT[6((o(X0),(o(Xl)]
oo

+ 2 £ Cov[e{co(X0),

PROOF. From the definition of Yj>n's and the conditions satisfied by X/s
and fy,n's, {Yjyf,,0 < j < n} is stationary, and hence we can write

2
(3.27) «-'<72 = Var(^,,n) + - ^ ( / i - j) Cov[9n(Y0>n, YUn), 6n(Yln, YJ+Un)].

j=i

From (0.1), the definition of Yj^s and the conditions satisfied by X/s and
Vj,n\

(3.28) VarK,,,,) = (1 - y , , ) 2 ^ ^ © ^ ) ^ ^ , ) }

- yn)E jd2
n{oi{X0),oj{Xuz)}dLn{z)

+ ynE jd2
n{(o(X0,z),(o(Xuvhn)}dLn(z) -

which in turn converges to the first term on the r.h.s. of (3.26). The above
convergence follows from yn = o(l), (3.23), (3.24) and the D.C.T. From
(0.1), the definition of ly^'s and the conditions satisfied by X/s and v7i«'s
for j > 2, we get

Cov[dn(Y0,n, YUn), (YM, Yj+Un)] = Sum of the terms of the
K*uy) type yk

n{\ - yn)*-k
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where <f>n2(Xo,X\) can be one of the following,

/

/

dn{co(X0),(o(Xuz)}dLn(z),

On{co(X0,z),co(Xl)}dLn(z) or

dn{co(X0,z),co(Xuu)}dLn(z)dLn(u),

<f>n3{Xj,Xj+\) is similarly denned and 0 < k < 4.
From computations similar to those in (3.29), yn = o{\), (3.23), (3.24)

and applying the D.C.T., one can show that for j = 1

(3.30) Cow[dn(Y0, r , ) , en(Y
^Cov[d{co(X0),co(Xl)},d{co(Xj),co(Xj+l)}].

Similarly, from (3.29), (3.30) holds for j > 2.
From (3.23) and (3.24) we see for each n > 1

(3.31) J% 2 (*o ,* i ) | 2 + '<c , <oo and
E\4>m{X0,X{)\

1+s < c2 < oo, 0 < cuc2 e R.

Applying [8, Theorem 17.22] to the sequence {Xj} with t — I, r — j - I,
J>2,Z = 4>n2(X0,Xi), r\ = (f>n}(Xj,Xj+l), and from (3.31), we obtain

(3.32) |Cov0B 2(*o,*i) ,0n3(*;,*;+i)] | < Cax{j - l)s«2+s\

where 0 < C e R depends only on c\, ci and 8. Thus from the conditions
satisfied by ax in (3.22), (3.29), (3.32) and the D.C.T. for counting measure,
we see that the second term on the r.h.s. of (3.27) converges to the second
term on the r.h.s. of (3.26). Hence (3.27) and the convergence of (3.28) to
the appropriate limit imply that (3.25) holds.

THEOREM 3.4. Under (3.22)-(3.24) and the assumption x2 > 0,

in distribution.

PROOF. In view of [12, Theorem 2.1] and [13] we shall first show that

(3.33) sapE\Sn(a,b)\2+* = O(bl+*'2+r») as b -» oo,
a,n
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where Sn(a, b) = Yfjta+i ij,n, 0 < a, I < b < n - a, and the set process £, is
given by (3.22). Let n = 8 which is as in (3.24) and rji = 1 + d/2. Then

Sn(a,b)
b

2+6

< E\dn(YQ<n,YUn)\2+6

C | ( 1 - yn)E\h{co(X0)}\2+s + ynEI \h{co(X0, z)}\
2+s + yEI \h{co(X0 z)}\2+s

E

The above inequality follows from the definition of lj,n's and the conditions
satisfied by X/s and u,-,n's, (0.1), (3.23) and the Jensen inequality. From
(3.24), (3.33) is satisfied. From Lemma 3.2 and the fact that l(k, u) < \da{k),
0 < k < oo, u real, we have l(k, u) = o(k~s) as k —> oo, where S — 2r\\lr\, is
satisfied. From Lemma 3.3 and T2 > 0, a\ —• oo as n —> oo and limn <j%/n > 0
are satisfied. Since {Yj,0 < j < n) is stationary, cn(j) = sup | Cov(id,n,£m>n)\,
0 < j < n, can be written as cn{j) = sup|Cov[^1)«,^(/_m|+1«]|, 0 < j < n,
where sup is taken over {d,m: \d - m\ > j}. From this, (3.10), the same
argument as in (3.31) to (3.32) and (3.24), we get

(3.34) c(j) < $Cax(j - l)<5/(2+<5), for j > 2.

From the conditions satisfied by ax in (3.22), (3.24) and (3.34), £ ~ o c ( ; ) <
oo is satisfied and hence the C.L.T. holds for <!;.

NOTATION. Next, set u(s) — iscos[.sei] and v(s) — £sin[.sei], s eR. Also,
by the random elements Xn and Yn satisfying Xn(s) = Yn(s) + op(l) we shall
mean supi€>r \Xn(s) - Yn(s)\ = op(l).

THEOREM 3.5. Let the assumptions of Theorem 3.1 hold. Also let

(a) f\f(x-u)-f(x)\dx<C\u\, MGR, for some 0< CeR,

(b) Vartcos^eO] > 0, Var[sin(sei)] > 0,

Var[w(s) sin(se!) - v(s) cos(5£i)] > 0, s € S*,

and

(c) sup£:|Zn|2+a<oo, 0<£|fii|2+Q <oo, a > 0 ,
n

hold. Then

(3.35) nl'2[pn(-)-p + Hn(-)]

converges weakly in C{5?) to a Gaussian process with mean 0 and covariance
{EXl)-'[\<t>{s)\\<f>{t)\]-\st)-lh(t,s), where

2h{t,s) = u(s - t)[u(s)u(t) + v(s)v(t)] + u(s + t)[v(s)v{t) - u(s)u(t)]

+ v(s - t)[v{s)u(t) - u(s)v(t)] - v(s + t)[u(s)v(t) + v(s)u(t)]
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and

[ d 1

-Q-tmn(t,s)\t=m
(3.36) • |.Ecos[s(£i +vi - pvo)]Evosin[s(ei +v\ - pvo)]

f «i - pvo)]Evo cos[5(ei + vi - pv0)] I.

PROOF. From (3.1), (3.3) and (3.5)-(3.7) we get
(3.37)

n[/2(pn(s) - p)s—mn(t,s)\t=m

sin[5(e; + «_,•
j=\ L

n ~ l Yi Yj-\ {cos[.?(e ; + vj - pvj-i)] - £ c o s [ 5 ( £ 1 +vt- pv0)]}

- <n~l 5^1y- i

\fn{Vn(p,s) -£sin[5(e, +u , - pv0)]}

•i + v\ - Pvo)]V"{Un(p,s) - £'cos[5(s1 + vi - pv0)]}

ECOS[S(EI + V\ - pvo)]y/n{Vn(p,s) - Esin[s(ei + V\ — pvQ)]}

We shall now proceed to prove that the sup norm of the second, third and
fourth terms in (3.37) converge to zero in probability. To achieve this we
shall prove

. . . - . y/n{Un{p,s) - E cos[s{ex + vi - pv0)]},
y/n{Vn(p,s)-Esin[s{ei+vi-pv0)]},
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converges weakly in C{S?) to a Gaussian process,
n

(3.39i) n-l

and

(3.39ii) n

In view of (3.37)-(3.39), to study the weak convergence of nl/2[pn—p+fin)]
it suffices to study the weak convergence of the first term in (3.37) when
centered.

PROOF OF (3.38). Denote

£j,n{s) — cos[s(ej + Vj - pVj-\)] - iscos[(ei + V\ - pvo)] for all s G S".

Since Yj - pYj-\ and Yk - pYk_{ are independent for all \j - k\ > 2 we
see that the set process £ given by £j,n(s) as above, is strongly a-mixing with
a(k) = 0, for k > 2. Also, s e S0, because yn —* 0, and so

(3.40) n~la2 = E^n{s) + 2{n - l)n~iEil>n(s)^2,n(s) -> Var[cos(^e0)],

which is positive because of the assumption (b). The remaining conditions
of [12, Theorem 2.1] and [13] are trivially satisfied.

Hence from [2, page 49] the finite dimensional distributions of

(3.41) n~1'

converge to that of a Gaussian process. Also for any s,t

2

(3.42) E WX^F.-lrt-n-1/2

j=\

s)-£,,,,(0]

n
From the Cauchy-Schwartz inequality and the Lipschitz property of the cosine
function the r.h.s. of (3.42) is dominated by C\t - s\2, where 0 < C e R.

(3.43) Thus from [2, Theorem 12.3], the process w~1/2 J2"=i ZjAs)is

tight, and its weak convergence to a Gaussian limit in C(S^)-
space follows from [2, Theorem 8.1].

The weak convergence of the second process in (3.38) to a Gaussian limit in
follows similarly.
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PROOF OF (3.39). The l.h.s. of (3.39i) without the sup can be dominated
by

(3.44)
n

n~l ^2Xj^i{sin[s(ej + Vj - pvj_\)] - sin[5e;]}
7 = 1

n

j-i sin[sej]
7 = 1

+ ~'

7 = 1

That the first term in (3.44) goes to zero in probability follows from the as-
sumption (c) and yn = o(\). From the Lipschitz property of the sine function,
the Cauchy-Schwartz inequality, the Stationary Ergodic Theorem, assumption
(c) and yn - o(l), the sup norm of the second term in (3.44) converges to
zero in probability. That the sup norm of the third term in (3.44) converges
to zero a.s. follows from [7, Lemma 3.1]. The last term in (3.44) converges
a.s. to 0 by the Stationary Ergodic Theorem. The proof of (3.39ii) is similar.

It remains to study the weak convergence of the first term in (3.37) when
centered. To that effect let

vi- pv0)]}sin[s(ej + Vj -

+vx- pv0)]} cos[s(ej

t=p{s)
- s—mn{t,s)

We shall first prove the finite dimensional distributions convergence of
Theorem 3.4. Put«"1/2 E"=i

On(x,y) = x[{Ecos[s(ei - pvo)]}sin[s(y - px)]

+vi- pvQ)]} cos[s(y - px)]],

and

d(x,y) = x{u(s) sin[s{y - px)] - v(s) cos[s(y - px)]}, x,y eR,

and take h = x, Xj, Yj,Vj as in the model assumptions with co(x,y) — x + y,
x,y e R, in Theorem 3.4. Since Xj = J2T=oPksj-k a-s-> using assumptions
(a) and (c) and [10, Theorem 2.1] with 5 = 2, A{k) = pk, gives {Xj} to be
strongly a-mixing with

(3.45) a(k) < Cp\p\2kli, for k > 2, for some Cp > 0.

By assumption (b) and (c), r2 = EX^ Var[w(5) sin(seo)-v(.s) cos(5Co)] > 0 for
each s € S?. Thus all the conditions of Theorem 3.4 are satisfied. Hence the
C.L.T. holds for <!; as defined above, for each 5 e S?. Now using the argument
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as in (3.41) we get the required finite dimensional distributions convergence.
Since for all / and j with |j - j \ > 2, Sj, Vj and Vj-\ are independent of
{(vk, Yk), k = i - \ , i), we have

(3.46) CovKl-n(/),^,JI(s)] = 0 for all s, teS?.

Using (3.46), the same argument as in equations (3.42) and (3.43), we get
w-i/2 J2"=i £;,«(•) converges weakly in C(^)-space to a Gaussian process with
mean 0 and covariance EXlh(t,s). Thus from (3.3)—(3.5), (3.8), [2, Theorem
4.1] and (3.37), we get (3.35).

REMARK. From (3.8), the assumption y/nyn = 0(1) and simple compu-
tations using (0.1), we can see that \fnjxn in Theorem 3.5 can be replaced
by

(3.47) vn[s)= - nl?2s-l\cl>ei(s)\

ei +v\ - pvo)]Evosin[s(ei +Vi - pv0]

- Esin[s{E[ + V\ - PVQ)]EVQCO%[S{EI +V\ —

Note that vn(s) represents the asymptotic bias of n^2(pn(s) - p). Consider
the following assumptions:

(a) y/nyn = o(l);
(b) \fnyn — O{\) and Zn —> 0 in probability;
(c) \fhyn —» y and Zn —» Z in probability.

Using (0.1) and the continuity of the sine and cosine functions, one concludes
that under (a) or (b), supie5* \vn(s)\ —* 0 and hence \fnpLn in Theorem 3.5
can be replaced by 0. Using the Lipschitz property of the sine and the cosine
functions, the condition (c) implies that supj€i^ \vn(s) - n(s)\ —> 0, where

Ms) = -s-l\<t>El(s)\-2[EXorl [{y£|zsin[j(e, - pz)]dL{z)}

• \u(s) + 2yE f cos[s(ei +2~\l - p)z)]cos[s2~l(I + p)z]dL(z)]

- | yE I zcos[s(e{ - pz)]dL(z) \

• \v(s) + 2yE f an[s(ei +2~\l - p)z)]cos[s2~l{l + p)z]dL(z)\\ .

Consequently ^/np.n(s) in Theorem 3.5 can be replaced by fi(s).
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REMARK. If / is a double exponential or JV{§, a2) density, Zn is such that
limn E\Zn\

3 < oo and yn = o{\), then simple calculations show that all the
conditions of Theorem 3.5 are satisfied.
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